Why are carbon filaments tubular?

Journal of Crystal Growth 66, 632-638

DOI: 10.1016/0022-0248(84)90163-5

Citation Report

#	Article	IF	CITATIONS
1	An adsorption-diffusion isotherm and its application to the growth of carbon filaments on iron catalyst particles. Carbon, 1987, 25, 367-375.	5.4	155
2	Kink site saturation mechanism for whisker growth under sputtering conditions. Journal of Crystal Growth, 1987, 82, 289-294.	0.7	17
3	Clusters, colloids and catalysis. Journal of Molecular Catalysis, 1987, 41, 59-74.	1.2	82
4	Graphitic nature of chemical vapor-deposited carbon filaments grown on silicon surfaces from acetylene. Carbon, 1988, 26, 291-293.	5.4	22
5	A new model explaining carbon filament growth on nickel, iron, and Ni\$z.sbnd;Cu alloy catalysts. Journal of Catalysis, 1988, 109, 241-251.	3.1	316
6	Methane conversion and Fischer?Tropsch catalysis over MoS2: Predictions and interpretations from molecular orbital theory. Journal of Catalysis, 1989, 119, 135-145.	3.1	16
7	Kinetic implications of mechanisms proposed for catalytic carbon filament growth. Journal of Catalysis, 1989, 117, 455-466.	3.1	31
8	Structure and intercalation of thin benzene derived carbon fibers. Journal of Crystal Growth, 1989, 94, 834-848.	0.7	121
9	Solid-State diffusion during carbon gasification and filament growth. Carbon, 1989, 27, 956-958.	5.4	4
10	Solubility and diffusivity of carbon in metals. Journal of Catalysis, 1990, 122, 206-210.	3.1	43
11	Helical microtubules of graphitic carbon. Nature, 1991, 354, 56-58.	13.7	39,105
12	The dependence of catalytic carbon filament growth kinetics upon gas phase carbon activity. Carbon, 1991, 29, 1245-1250.	5.4	25
13	Electronic Structure of Fullerene Tubules. Materials Research Society Symposia Proceedings, 1992, 247, 339.	0.1	13
14	Theory for New Carbon-Based Materials. Materials Research Society Symposia Proceedings, 1992, 270, 275.	0.1	0
15	Energetics of nanoscale graphitic tubules. Physical Review B, 1992, 45, 12592-12595.	1.1	893
16	Large-scale synthesis of carbon nanotubes. Nature, 1992, 358, 220-222.	13.7	2,939
17	Are fullerene tubules metallic?. Physical Review Letters, 1992, 68, 631-634.	2.9	2,087
18	Growth model for carbon nanotubes. Physical Review Letters, 1992, 69, 3100-3103.	2.9	460

#	Article	IF	CITATIONS
19	An analysis of electron diffraction patterns of thin vapour-grown carbon filaments. Carbon, 1992, 30, 269-284.	5.4	11
20	A model for the catalytic growth of carbon filaments. Carbon, 1992, 30, 285-293.	5.4	44
21	Morphology and structure of graphitic soot particles generated in arc-discharge C60 production. Chemical Physics Letters, 1992, 198, 596-602.	1.2	136
22	Preparation of vapor-grown carbon fibers by floating catalyst method in Linz-Donawitz converter gas: Influence of catalyst size. Carbon, 1993, 31, 699-703.	5.4	15
23	Well-aligned carbon nanotubules. Advanced Materials, 1993, 5, 643-646.	11.1	4
24	On the energetics of tubular fullerenes. Journal of Physics and Chemistry of Solids, 1993, 54, 587-593.	1.9	99
25	Scanning tunneling microscopy of vapor-phase grown nanotubes of carbon. Journal of Physics and Chemistry of Solids, 1993, 54, 1871-1877.	1.9	16
26	From dopyballs to nanowires. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1993, 19, 1-7.	1.7	114
27	Growth of carbon nanotubes. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1993, 19, 172-180.	1.7	209
28	A review of catalytically grown carbon nanofibers. Journal of Materials Research, 1993, 8, 3233-3250.	1.2	878
29	Physical properties of vapor-grown carbon fibers. Carbon, 1993, 31, 1039-1047.	5.4	96
30	Effect of carbon source on formation of vapor-grown carbon fiber. Carbon, 1993, 31, 937-940.	5.4	20
31	Properties of fullerene nanotubules. Journal of Physics and Chemistry of Solids, 1993, 54, 1835-1840.	1.9	136
32	Electron-energy-loss spectroscopy of carbon nanometer-size tubes. Physical Review B, 1993, 47, 6859-6862.	1.1	128
33	Vapor-Condensation Generation and STM Analysis of Fullerene Tubes. Science, 1993, 260, 515-518.	6.0	211
34	Helically coiled cage forms of graphitic carbon. Physical Review B, 1993, 48, 5643-5647.	1.1	189
35	Diamond-coated carbon fiber. Journal of Materials Research, 1994, 9, 636-642.	1.2	30
37	Scanning tunneling microscopy of singleâ€shell nanotubes of carbon. Applied Physics Letters, 1994, 65, 2284-2286.	1.5	76

#	ARTICLE	IF	CITATIONS
38	Hairy carbon electrodes studied by cyclic voltammetry and battery discharge testing. Journal of Power Sources, 1994, 47, 313-320.	4.0	16
39	Growth of tubular boron nitride filaments. Journal of Materials Science, 1994, 29, 1575-1580.	1.7	81
40	Role of sulfur in the production of carbon fibers in the vapor phase. Carbon, 1994, 32, 569-576.	5.4	167
41	The study of carbon nanotubules produced by catalytic method. Chemical Physics Letters, 1994, 223, 329-335.	1.2	465
42	Localized incorporation of lanthanum carbide crystals in carbon nanotubes. Advanced Materials, 1994, 6, 590-592.	11.1	5
43	Growth behavior and growth defects of carbon nanotubes. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 185, 131-140.	2.6	27
44	Carbon spheric nanoparticles: possible formation mechanism. Physics Letters, Section A: General, Atomic and Solid State Physics, 1994, 189, 127-130.	0.9	8
45	Highly oriented WSe2 thin films prepared by selenization of evaporated WO3. Thin Solid Films, 1994, 245, 180-185.	0.8	78
46	A Formation Mechanism for Catalytically Grown Helix-Shaped Graphite Nanotubes. Science, 1994, 265, 635-639.	6.0	956
48	Singleâ€walled carbon nanotubes produced at high yield by mixed catalysts. Applied Physics Letters, 1994, 64, 2087-2089.	1.5	165
49	A Lecture Note on Advanced Materials Materia Japan, 1994, 33, 847-852.	0.1	0
50	Nested interfacial growth of carbon nanotubes catalyzed by hafnium. Advanced Materials, 1995, 7, 286-289.	11.1	16
51	Electronic and structural properties of carbon nanotubes. Carbon, 1995, 33, 893-902.	5.4	333
52	Scanning tunneling microscopy of carbon nanotubes and nanocones. Carbon, 1995, 33, 915-920.	5.4	140
53	Solvent cleansing of the surface of carbon filaments and its benefit to the electrochemical behavior. Carbon, 1995, 33, 1681-1698.	5.4	32
54	A structural study of strings of multi-shell graphitic particles. Carbon, 1995, 33, 341-343.	5.4	1
55	Carbon structures grown from decomposition of a phenylacetylene and thiophene mixture on Ni nanoparticles. Carbon, 1995, 33, 669-678.	5.4	38
56	Electromechanical and electrothermal behaviours of carbon whisker reinforced elastomer composites. Journal of Materials Science, 1995, 30, 4263-4272.	1.7	20

#	Article	IF	Citations
57	New carbon tubelite-ordered film structure of multilayer nanotubes. Physics Letters, Section A: General, Atomic and Solid State Physics, 1995, 197, 40-46.	0.9	21
58	Carbon with tubelene-like nearest atomic order in inclusions of iron-nickel-carbon alloys. Physics Letters, Section A: General, Atomic and Solid State Physics, 1995, 200, 171-176.	0.9	5
59	Polygonal spiral of coil-shaped carbon nanotubules. Physical Review B, 1995, 52, 5313-5317.	1.1	38
60	Electronic structure simulations of carbon nanotubes. Synthetic Metals, 1996, 77, 231-234.	2.1	38
61	SCANNING TUNNELING MICROSCOPY OF CARBON NANOTUBES AND NANOCONES. , 1996, , 65-70.		0
62	ELECTRONIC AND STRUCTURAL PROPERTIES OF CARBON NANOTUBES. , 1996, , 37-46.		2
63	Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide. Chemical Physics Letters, 1996, 260, 471-475.	1.2	1,141
64	Scanning tunneling microscopy and spectroscopy of a carbon nanotube. Carbon, 1996, 34, 1295-1297.	5.4	24
65	Carbon filaments and carbon black as a conductive additive to the manganese dioxide cathode of a lithium electrolytic cell. Journal of Power Sources, 1996, 58, 41-54.	4.0	62
66	Use of carbon filaments in place of carbon black as the current collector of a lithium cell with a thionyl chloride bromine chloride catholyte. Journal of Power Sources, 1996, 58, 55-66.	4.0	25
67	Coprecipitated Ni-alumina and Niî—Cu-alumina catalysts of methane decomposition and carbon deposition. II. Evolution of the catalysts in reaction. Applied Catalysis A: General, 1996, 141, 117-129.	2.2	211
68	Optimization of catalytic production and purification of buckytubes. Journal of Molecular Catalysis A, 1996, 107, 159-168.	4.8	85
69	Formation and growth of carbon nanostructures: fullerenes, nanoparticles, nanotubes and cones. Physics-Uspekhi, 1997, 40, 717-737.	0.8	72
70	Carbon nanotubes grown <i>in situ</i> by a novel catalytic method. Journal of Materials Research, 1997, 12, 613-615.	1.2	168
71	Nanometre-size tubes of carbon. Reports on Progress in Physics, 1997, 60, 1025-1062.	8.1	472
72	Band theory and electronic structures of carbon nanotubes. Synthetic Metals, 1997, 89, 81-86.	2.1	12
73	Filamentous Carbon Formation and Gasification: Thermodynamics, Driving Force, Nucleation, and Steady-State Growth. Journal of Catalysis, 1997, 169, 240-249.	3.1	368
74	Carbon nanotubes production over Co/silica catalysts. Catalysis Letters, 1997, 48, 229-238.	1.4	61

#	ARTICLE	IF	Citations
75	Catalytic growth of carbon fibers from methane on a nickel-alumina composite catalyst prepared from Feitknecht compound precursor. Applied Catalysis A: General, 1997, 163, 45-57.	2.2	96
76	Carbon nanotubes: Novel architecture in nanometer space. Progress in Crystal Growth and Characterization of Materials, 1997, 34, 37-51.	1.8	30
77	The effect of copper on the structural characteristics of carbon filaments produced from iron catalyzed decomposition of ethylene. Catalysis Today, 1997, 37, 295-307.	2.2	61
78	Effect of high-temperature coke deposition from methane upon the structure of manganese-yttrium oxides. Carbon, 1997, 35, 587-592.	5.4	2
79	New filamentous deposits in the boron-carbon system. Carbon, 1997, 35, 993-1000.	5.4	14
80	Electrochemical behavior of hairy carbons. Carbon, 1997, 35, 1439-1455.	5.4	10
81	Improving the electrochemical behavior of carbon black and carbon filaments by oxidation. Carbon, 1997, 35, 1111-1127.	5.4	53
82	Catalytic preparation of narrow pore size distribution mesoporous carbon. Carbon, 1998, 36, 269-275.	5.4	26
83	Carbon nanotubes from polyethylene precursors: Structure and structural changes caused by thermal and chemical treatment revealed by HREM. Carbon, 1998, 36, 1149-1157.	5.4	118
84	Chemical vapor deposition of methane for single-walled carbon nanotubes. Chemical Physics Letters, 1998, 292, 567-574.	1.2	865
85	Laser-assisted production of multi-walled carbon nanotubes from acetylene. Chemical Physics Letters, 1998, 295, 525-530.	1.2	51
86	Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature, 1998, 395, 878-881.	13.7	1,270
87	Energy implications of future stabilization of atmospheric CO2 content. Nature, 1998, 395, 881-884.	13.7	561
88	Characterisation of carbon fibres grown from carbonaceous gases by measurements of their density and oxidation resistance. European Journal of Solid State and Inorganic Chemistry, 1998, 35, 715-734.	0.5	5
89	Carbon nanotubes–Fe–alumina nanocomposites. Part I: influence of the Fe content on the synthesis of powders. Journal of the European Ceramic Society, 1998, 18, 1995-2004.	2.8	102
90	Pressure Dependence of the Structures of Carbonaceous Deposits Formed by Laser Ablation on Targets Composed of Carbon, Nickel, and Cobalt. Journal of Physical Chemistry B, 1998, 102, 4892-4896.	1.2	93
91	Metal nanoparticles for the catalytic synthesis of carbon nanotubes. New Journal of Chemistry, 1998, 22, 1229-1237.	1.4	107
92	Young's modulus of single-walled carbon nanotubes. Journal of Applied Physics, 1998, 84, 1939-1943.	1.1	344

#	Article	IF	CITATIONS
93	Carbon Deposition and Hydrocarbon Formation on Group VIII Metal Catalysts. Journal of Physical Chemistry B, 1998, 102, 4165-4175.	1.2	134
94	Electron field emission from phase pure nanotube films grown in a methane/hydrogen plasma. Applied Physics Letters, 1998, 73, 2113-2115.	1.5	191
95	Vapor Grown Carbon Fiber Composites., 1999,, 139-167.		15
96	Large-Scale Synthesis of Carbon Nanotubes by Pyrolysis. , 1999, , 143-152.		7
97	Beaded carbon tubes. Applied Physics Letters, 1999, 75, 3309-3311.	1.5	24
98	Formation mechanism of single-wall carbon nanotubes on liquid-metal particles. Physical Review B, 1999, 60, 11180-11186.	1.1	185
99	XPS and SIMS studies of carbon deposits on Pt/Al2O3 and Pd/SiO2 catalysts applied in the synthesis of hydrogen cyanide and selective hydrogenation of acetylene. Applied Catalysis A: General, 1999, 176, 135-146.	2.2	49
100	Electrical resistivity as a tool for the characterisation of carbonaceous phases in vapour-grown carbon fibres. Composites Science and Technology, 1999, 59, 1613-1623.	3.8	4
101	High-Resolution Transmission Electron Microscopy Study of Carbon Deposited on the NiO/MgO Solid Solution Catalysts. Journal of Catalysis, 1999, 184, 298-302.	3.1	56
102	A structure model and growth mechanism for novel carbon nanotubes. Journal of Materials Science, 1999, 34, 2745-2749.	1.7	20
103	Ab initiostructural, elastic, and vibrational properties of carbon nanotubes. Physical Review B, 1999, 59, 12678-12688.	1.1	854
104	Electron diffraction and microscopy of nanotubes. Reports on Progress in Physics, 1999, 62, 1471-1524.	8.1	131
105	Formation of bamboo-like nanocarbon and evidence for the quasi-liquid state of nanosized metal particles at moderate temperatures. Chemical Communications, 1999, , 1141-1142.	2.2	74
106	An investigation of carbon nanotubes obtained from the decomposition of methane over reduced Mg _{1â^²<i>x</i>y} M _{<i>x</i>y} Al ₂ O ₄ spinel catalysts. Journal of Materials Research, 1999, 14, 2567-2576.	1.2	72
107	Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties. Science, 1999, 283, 512-514.	6.0	2,944
108	Controlled Chemical Routes to Nanotube Architectures, Physics, and Devices. Journal of Physical Chemistry B, 1999, 103, 11246-11255.	1.2	216
109	Structural Inhomogeneity of Carbon Fibres grown from Carbonaceous Gases on a Substrate. Materials Technology, 2000, 15, 143-150.	1.5	1
110	Multiwall Carbon Nanotubes by Hydrothermal Treatment. Materials Research Society Symposia Proceedings, 2000, 633, 13321.	0.1	0

#	Article	IF	CITATIONS
111	Formation of nodulated vapor grown carbon fiber. Carbon, 2000, 38, 1917-1923.	5.4	9
112	The structure of nanotubes fabricated by carbon evaporation at high gas pressure. Carbon, 2000, 38, 1217-1240.	5.4	47
113	Novel NbS2 metallic nanotubes. Solid State Communications, 2000, 115, 635-638.	0.9	95
114	Effect of temperature on the thickening and morphology of chemical vapor deposited carbon fiber. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 77, 218-220.	1.7	2
115	Filled and mixed nanotubes: from TEM studies to the growth mechanism within a phase-diagram approach. Applied Surface Science, 2000, 164, 227-240.	3.1	43
116	Catalytic growth of carbon nanofibers on a porous carbon nanotubes substrate. Journal of Materials Science Letters, 2000, 19, 1929-1931.	0.5	16
117	The formation of carbon filaments upon decomposition of hydrocarbons catalysed by iron subgroup metals and their alloys. Russian Chemical Reviews, 2000, 69, 623-638.	2.5	130
118	Catalytically active nickel {110} surfaces in growth of carbon tubular structures. Applied Physics Letters, 2000, 76, 1255-1257.	1.5	58
119	Directed Synthesis of Metal-Catalyzed Carbon Nanofibers and Graphite Encapsulated Metal Nanoparticles. Journal of Physical Chemistry B, 2000, 104, 11606-11611.	1.2	36
120	Formation of chains of graphitic nanoparticles by heating fullerene blacks covered with thin metal films. Physical Chemistry Chemical Physics, 2000, 2, 2765-2771.	1.3	7
121	Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Applied Physics Letters, 2000, 77, 2767-2769.	1.5	472
122	Single-wall carbon nanotube diameter distributions calculated from experimental parameters. Physical Review B, 2001, 63, .	1.1	41
123	Relation of Carbon Nanotubes to Other Carbon Materials., 2001,, 11-28.		57
124	Nanotube Growth and Characterization. , 2001, , 29-53.		150
125	Growth of Single-Walled Carbon Nanotubes from Discrete Catalytic Nanoparticles of Various Sizes. Journal of Physical Chemistry B, 2001, 105, 11424-11431.	1.2	648
126	Growth Mechanisms of Carbon Nanotubes. , 2001, , 55-81.		76
127	Root-Growth Mechanism for Single-Wall Carbon Nanotubes. Physical Review Letters, 2001, 87, 275504.	2.9	350
128	Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. Journal of Applied Physics, 2001, 90, 5308-5317.	1.1	1,034

#	ARTICLE	IF	CITATIONS
129	A Study of the Formation of Single- and Double-Walled Carbon Nanotubes by a CVD Method. Journal of Physical Chemistry B, 2001, 105, 9699-9710.	1.2	117
130	Thermodynamic analysis of nucleation of carbon deposits on metal particles and its implications for the growth of carbon nanotubes. Physical Review B, 2001, 64, .	1.1	107
131	Growth of Nanotubes: The Combined Tem and Phase-Diagram Approach. , 2001, , 133-148.		0
132	Carbon Nanotubes: Synthesis, Properties, and Applications. Critical Reviews in Solid State and Materials Sciences, 2001, 26, 145-249.	6.8	403
133	Hydrothermal Processing of Carbon Nanotubes from Dense Fluids: Growth Mechanism. Materials Transactions, 2001, 42, 1681-1683.	0.4	10
134	Tubular structures of germanium. Solid State Communications, 2001, 119, 653-657.	0.9	23
135	Field emission from carbon nanotubes: the first five years. Solid-State Electronics, 2001, 45, 893-914.	0.8	580
136	Chemical state of a supported iron-cobalt catalyst during CO disproportionation. Journal of Physics and Chemistry of Solids, 2001, 62, 1015-1021.	1.9	16
137	Carbon nanotube composites synthesized by ion-assisted pulsed laser deposition. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 79, 123-127.	1.7	6
138	Tubular Structures of Siloxenes. Physica Status Solidi (B): Basic Research, 2001, 225, 393-399.	0.7	17
139	Formation of vapor grown carbon fibers with sulfuric catalyst precursors and nitrogen as carrier gas. Carbon, 2001, 39, 91-100.	5 . 4	27
140	Topological changes of vapor grown carbon fibers during heat treatment. Carbon, 2001, 39, 1747-1752.	5.4	15
141	The encapsulation of Ni in graphitic layers using C60 as a precursor. Carbon, 2001, 39, 1769-1787.	5.4	21
142	Structural characterization of carbon nanofibers obtained by hydrocarbon pyrolysis. Carbon, 2001, 39, 2003-2010.	5.4	91
143	Crystallization behavior of the amorphous carbon nanotubes prepared by the CVD method. Journal of Crystal Growth, 2001, 233, 823-828.	0.7	104
144	Tubular structures of silicon. Physical Review B, 2001, 63, .	1.1	154
145	Electron microscopy of carbon nanotubes. Crystallography Reports, 2001, 46, 577-585.	0.1	1
146	Growth of tubular carbon from vapor phase. Materials Chemistry and Physics, 2001, 72, 228-231.	2.0	3

#	Article	IF	Citations
147	Ab initio Molecular Dynamics Study on Small Carbon Nanotubes. Chinese Physics Letters, 2001, 18, 1496-1499.	1.3	30
148	Growth mechanism of carbon nanotube forests by chemical vapor deposition. Applied Physics Letters, 2002, 80, 2752-2754.	1.5	103
149	Continuum elastic model of fullerenes and the sphericity of the carbon onion shells. Journal of Chemical Physics, 2002, 116, 3396-3400.	1.2	20
150	Mechanism of thermokinetical selection between carbon nanotube and fullerene-like nanoparticle formation. Journal of Applied Physics, 2002, 91, 10074.	1.1	8
151	Forming silicon carbon nitride crystals and silicon carbon nitride nanotubes by microwave plasma-enhanced chemical vapor deposition. Applied Physics Letters, 2002, 80, 4638-4640.	1.5	18
152	Morphological stabilization, destabilization, and open-end closure during carbon nanotube growth mediated by surface diffusion. Physical Review E, 2002, 66, 011601.	0.8	36
153	Adjustable boron carbonitride nanotubes. Journal of Applied Physics, 2002, 91, 5325-5333.	1,1	97
156	A Temperature Window for Chemical Vapor Decomposition Growth of Single-Wall Carbon Nanotubes. Journal of Physical Chemistry B, 2002, 106, 2821-2825.	1.2	59
157	Temperature selective growth of carbon nanotubes by chemical vapor deposition. Journal of Applied Physics, 2002, 92, 3299-3303.	1.1	178
158	A Novel Route to Multiwalled Carbon Nanotubes and Carbon Nanorods at Low Temperature. Journal of Physical Chemistry B, 2002, 106, 933-937.	1.2	86
159	Mechanics of carbon nanotubes. Applied Mechanics Reviews, 2002, 55, 495-533.	4.5	983
160	Stability of Metal Chalcogenide Nanotubes. Journal of Physical Chemistry B, 2002, 106, 2497-2501.	1.2	148
161	Filling Carbon Nanotubes Using an ARC Discharge. Fundamental Materials Research, 2002, , 1-16.	0.1	3
162	Carbon nanotubes: opportunities and challenges. Surface Science, 2002, 500, 218-241.	0.8	1,190
163	Formation Mechanism of Pentagonal Defects and Bamboo-Like Structures in Carbon Nanotube Growth Mediated by Surface Diffusion. Physica Status Solidi A, 2002, 193, 585-596.	1.7	27
164	Growth of Filamentous Carbon from the Surface of Ni/SiO2 Doped with Alkali Metal Bromides. Journal of Colloid and Interface Science, 2002, 250, 37-48.	5.0	20
165	Carbon nanotubes and nanofibre: An overview. Fibers and Polymers, 2002, 3, 134-139.	1.1	78
166	The revolutionary creation of new advanced materialsâ€"carbon nanotube composites. Composites Part B: Engineering, 2002, 33, 263-277.	5.9	891

#	Article	IF	CITATIONS
167	Filamentous carbon prepared by the catalytic pyrolysis of CH4 on Ni/SiO2. Applied Catalysis A: General, 2002, 231, 35-44.	2.2	119
168	Catalytic production of carbon nanofibers over iron carbide doped with Sn2+. Applied Catalysis A: General, 2002, 228, 103-113.	2.2	31
169	Methane decomposition to carbon nanotubes and hydrogen on an alumina supported nickel aerogel catalyst. Catalysis Today, 2002, 74, 145-155.	2.2	110
170	Electron emission from arrays of carbon nanotubes/fibres. Current Applied Physics, 2002, 2, 509-513.	1.1	27
171	A model for the growth of bamboo and skeletal nanotubes: catalytic capillarity. Journal of Crystal Growth, 2002, 240, 164-169.	0.7	67
172	Solid–liquid–solid growth mechanism of single-wall carbon nanotubes. Carbon, 2002, 40, 113-118.	5.4	151
173	Microscopic mechanisms for the catalyst assisted growth of single-wall carbon nanotubes. Carbon, 2002, 40, 1649-1663.	5.4	121
174	Uniform carbon nanoflake films and their field emissions. Chemical Physics Letters, 2002, 358, 187-191.	1.2	142
175	Catalytic synthesis of multiwall carbon nanotubes from methylacetylene. Chemical Physics Letters, 2002, 363, 169-174.	1.2	22
176	Sequential catalytic growth of carbon nanotubes. Chemical Physics Letters, 2002, 364, 27-33.	1.2	50
177	Bulk production of multi-wall carbon nanotube bundles on sol–gel prepared catalyst. Chemical Physics Letters, 2002, 366, 555-560.	1.2	43
178	Systematicab initiostudy of curvature effects in carbon nanotubes. Physical Review B, 2002, 65, .	1.1	235
179	Formation of Carbon Filaments from 1,3-Butadiene on Fe/Al2O3 Catalysts. Kinetics and Catalysis, 2002, 43, 677-683.	0.3	9
180	Mechanism of Coking on Metal Catalyst Surfaces: I. Thermodynamic Analysis of Nucleation. Kinetics and Catalysis, 2003, 44, 726-734.	0.3	33
181	GaN-filled carbon nanotubes: synthesis and photoluminescence. Chemical Physics Letters, 2003, 381, 715-719.	1.2	21
182	Nucleation and growth of SWNT: TEM studies of the role of the catalyst. Comptes Rendus Physique, 2003, 4, 975-991.	0.3	24
183	Carbon nanotube synthesis using magnetic fluids on various substrates. Metals and Materials International, 2003, 9, 427-431.	1.8	6
184	The nature and binding strength of carbon adspecies formed during the equilibrium dissociative adsorption of CH4 on Ni–YSZ cermet catalysts. Journal of Catalysis, 2003, 217, 324-333.	3.1	61

#	Article	IF	CITATIONS
185	Raman spectroscopy on carbon nanotubes at high pressure. Journal of Raman Spectroscopy, 2003, 34, 611-627.	1.2	77
186	New Developments in Transmission Electron Microscopy for Nanotechnology. Advanced Materials, 2003, 15, 1497-1514.	11.1	155
187	Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements. Comptes Rendus Physique, 2003, 4, 993-1008.	0.3	574
188	Finite deformation continuum model for single-walled carbon nanotubes. International Journal of Solids and Structures, 2003, 40, 7329-7337.	1.3	35
189	Synthesis of carbon nanotubes over Fe catalyst on aluminium and suggested growth mechanism. Carbon, 2003, 41, 539-547.	5.4	209
190	Microstructural changes induced in "stacked cup―carbon nanofibers by heat treatment. Carbon, 2003, 41, 1941-1947.	5.4	174
191	Chemical vapor deposition of pyrolytic carbon on carbon nanotubes. Carbon, 2003, 41, 2897-2912.	5.4	48
192	Carbon nanotubes and onions from carbon monoxide using Ni(acac)2 and Cu(acac)2 as catalyst precursors. Carbon, 2003, 41, 2711-2724.	5.4	118
193	Influence of ferrocene/benzene mole ratio on the synthesis of carbon nanostructures. Chemical Physics Letters, 2003, 376, 83-89.	1.2	65
194	Synthesis of multi-walled carbon nanotubes and nano-fibres using the aerosol method with metal-ions as the catalyst precursors. Chemical Physics Letters, 2003, 377, 293-298.	1.2	33
195	A major milestone in nanoscale material science: the 2002 Benjamin Franklin Medal in Physics presented to Sumio lijima. Journal of the Franklin Institute, 2003, 340, 221-242.	1.9	8
196	Plasma breaking of thin films into nano-sized catalysts for carbon nanotube synthesis. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 352, 308-313.	2.6	20
197	Formation mechanism of toroidal carbon nanotubes. Physica Status Solidi (B): Basic Research, 2003, 238, 115-119.	0.7	15
198	Stability of narrow zigzag carbon nanotubes. International Journal of Quantum Chemistry, 2003, 91, 51-56.	1.0	27
199	Nanomechanics of carbon nanotubes and composites. Applied Mechanics Reviews, 2003, 56, 215-230.	4.5	260
200	Oxidized Diamond as a Simultaneous Production Medium of Carbon Nanomaterials and Hydrogen for Fuel Cell. Chemistry of Materials, 2003, 15, 4571-4575.	3.2	37
201	Formation, Structure, and Structural Properties of a New Filamentary Tubular Form:Â Hollow Conical-Helix of Graphitic Boron Nitride. Journal of the American Chemical Society, 2003, 125, 8032-8038.	6.6	24
202	Carbon nanotube growth by PECVD: a review. Plasma Sources Science and Technology, 2003, 12, 205-216.	1.3	697

#	Article	IF	CITATIONS
203	Nanostructured Materials for Rocket Propulsion System: Recent Progress., 2003,,.		4
204	Finite Deformation Continuum Model for Energetics of Carbon Nanotubes. , 2003, , .		1
205	Science and Technology of the Twenty-First Century: Synthesis, Properties, and Applications of Carbon Nanotubes. Annual Review of Materials Research, 2003, 33, 419-501.	4.3	871
206	Growth and Properties of Single-Walled Carbon Nanotubes. , 2003, , 1219-1250.		О
207	Elastic deformation of helical-conical boron nitride nanotubes. Journal of Chemical Physics, 2003, 119, 3436-3440.	1.2	15
208	What causes the carbon nanotubes collapse in a chemical vapor deposition process. Journal of Chemical Physics, 2003, 118, 878-882.	1.2	27
209	Diffusion-controlled kinetics of carbon nanotube forest growth by chemical vapor deposition. Journal of Chemical Physics, 2003, 118, 7622.	1.2	111
210	The tubular conical helix of graphitic boron nitride. New Journal of Physics, 2003, 5, 118-118.	1.2	10
211	Ferric-sulfate-catalysed hot filament chemical vapour deposition carbon nanotube synthesis. Nanotechnology, 2003, 14, 925-930.	1.3	8
212	Fabrication and field emission property studies of multiwall carbon nanotubes. Journal Physics D: Applied Physics, 2004, 37, 273-279.	1.3	31
213	Synthesis of semiconductor nanowires by annealing. Applied Physics Letters, 2004, 85, 1802-1804.	1.5	16
214	Deformations and Thermal Stability of Carbon Nanotube Ropes. IEEE Nanotechnology Magazine, 2004, 3, 230-236.	1.1	27
215	Cold wall chemical vapor deposition of single walled carbon nanotubes. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 747.	0.9	13
216	KINETICS OF THE CARBON NANOMATERIALS OXIDATION. International Journal of Nanoscience, 2004, 03, 355-369.	0.4	3
217	Thermodynamics of the growth of carbon nanotubes of various structures from droplets of supersaturated melt. Technical Physics, 2004, 49, 1166-1175.	0.2	7
218	Carbon nanotube technology for solid state and vacuum electronics. IET Circuits, Devices and Systems, 2004, 151, 443.	0.6	36
219	The role of the catalytic particle in the growth of carbon nanotubes by plasma enhanced chemical vapor deposition. Journal of Applied Physics, 2004, 95, 6387-6391.	1.1	105
220	Functionalized carbon nanotubes and device applications. Journal of Physics Condensed Matter, 2004, 16, R901-R960.	0.7	104

#	Article	IF	CITATIONS
221	Nitric acid oxidation of vapor grown carbon nanofibers. Carbon, 2004, 42, 2433-2442.	5.4	283
222	Molecular mechanics of structural properties of boron nitride nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 23, 26-30.	1.3	47
223	Growing carbon nanotubes. Materials Today, 2004, 7, 22-29.	8.3	180
224	Controlling the Morphology of Multiwalled Carbon Nanotubes by Sequential Catalytic Growth Induced by Phosphorus. Advanced Materials, 2004, 16, 447-453.	11.1	23
225	Nanocrystalline materials and coatings. Materials Science and Engineering Reports, 2004, 45, 1-88.	14.8	768
226	Computational modelling of thermo-mechanical and transport properties of carbon nanotubes. Physics Reports, 2004, 390, 235-452.	10.3	192
227	A multiscale projection method for the analysis of carbon nanotubes. Computer Methods in Applied Mechanics and Engineering, 2004, 193, 1603-1632.	3.4	149
228	Nucleation mechanism of carbon nanotube. Chemical Physics Letters, 2004, 383, 321-325.	1.2	16
229	Thermal analysis–mass spectroscopy coupling as a powerful technique to study the growth of carbon nanotubes from benzene. Chemical Physics Letters, 2004, 388, 259-262.	1.2	32
230	Catalytic growth of carbon nanotubes through CHNO explosive detonation. Carbon, 2004, 42, 361-370.	5.4	50
231	Applications of carbon nanotubes in the twenty–first century. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2004, 362, 2223-2238.	1.6	212
232	Pulsed Corona Discharge as a Source of Hydrogen and Carbon Nanotube Production. IEEE Transactions on Plasma Science, 2004, 32, 1727-1733.	0.6	14
233	In SituStudy of Iron Catalysts for Carbon Nanotube Growth Using X-Ray Diffraction Analysis. Japanese Journal of Applied Physics, 2004, 43, L471-L474.	0.8	77
234	Thermal physics in carbon nanotube growth kinetics. Journal of Chemical Physics, 2004, 121, 446.	1.2	28
235	Carbon nanotubes: synthesis and properties, electronic devices and other emerging applications. International Materials Reviews, 2004, 49, 325-377.	9.4	231
236	Formation of close-packed multi-wall carbon nanotube bundles. Diamond and Related Materials, 2004, 13, 180-183.	1.8	15
237	Tubular structures of GaS. Physical Review B, 2004, 69, .	1.1	62
238	In Situ TA-MS Study of the Six-Membered-Ring-Based Growth of Carbon Nanotubes with Benzene Precursor. Journal of the American Chemical Society, 2004, 126, 1180-1183.	6.6	105

#	Article	IF	Citations
239	å٬ºæ¶²ç•Œé¢æŽ¥è§¦è'¸ç€æ³•ã«ã,ˆã,‹æœ‰æ©Ÿæ¶²ä½"ä¸ã§ã®ç,ç´ãƒŠãƒŽææ−™å•̂æ•̂• Materia Japan, 2004, 43,	21⁄81224.	0
240	The growth of bunched and multi-circularly wrapped carbon nanotubes on bulk magnetic alloys by microwave enhanced hot-filament CVD with a dilute gas of ammonia. EPJ Applied Physics, 2005, 29, 153-160.	0.3	2
241	Carbon Nanotubes/Nanofibers and Carbon Fibers. , 2005, , 175-193.		3
242	The catalyst in the CCVD of carbon nanotubesâ€"a review. Progress in Materials Science, 2005, 50, 929-961.	16.0	562
243	Growth of carbon nanotubes on transition metal alloys by microwave-enhanced hot-filament deposition. Thin Solid Films, 2005, 484, 58-63.	0.8	19
244	Structural and thermal stability of narrow and short carbon nanotubes and nanostrips. Carbon, 2005, 43, 1371-1377.	5.4	38
245	Synthesis and structural characterization of thin multi-walled carbon nanotubes with a partially facetted cross section by a floating reactant method. Carbon, 2005, 43, 2243-2250.	5.4	109
246	Growth of multiwalled carbon nanotubes during the initial stages of aerosol-assisted CCVD. Carbon, 2005, 43, 2968-2976.	5.4	90
247	Comparative study of herringbone and stacked-cup carbon nanofibers. Carbon, 2005, 43, 3005-3008.	5.4	30
248	Lattice inversion for interatomic potentials in AlN, GaN and InN. Chemical Physics, 2005, 309, 309-321.	0.9	22
249	Carbon nanotube growth from titanium–cobalt bimetallic particles as a catalyst. Chemical Physics Letters, 2005, 402, 149-154.	1.2	55
250	Catalytic growth of carbon fibers from methane and ethylene on carbon-supported Ni catalysts. Applied Catalysis A: General, 2005, 283, 137-145.	2.2	41
251	Formation of diamond-like carbon balls, self aligned and nonaligned nanotubes at the tip of the cathode during the synthesis of fullerenes in the DC arc discharge experiment. Materials Letters, 2005, 59, 1585-1588.	1.3	6
252	Influence of acid treatments of carbon nanotube precursors on Ni/CNT in the synthesis of carbon nanotubes. Journal of Molecular Catalysis A, 2005, 230, 17-22.	4.8	22
253	Processing and characterization of epoxy nanocomposites reinforced by cup-stacked carbon nanotubes. Polymer, 2005, 46, 11489-11498.	1.8	87
254	Effective precursor for high yield synthesis of pure BN nanotubes. Solid State Communications, 2005, 135, 67-70.	0.9	275
255	Catalytic growth of carbon nanofilament in liquid hydrocarbon. Catalysis Letters, 2005, 101, 191-194.	1.4	6
257	Criteria for the growth of fullerenes and single-walled carbon nanotubes in sooting environments. Nanotechnology, 2005, 16, 1739-1745.	1.3	11

#	ARTICLE	IF	Citations
258	Two growth modes of graphitic carbon nanofibers with herring-bone structure. Physical Review B, 2005, 72, .	1.1	5
259	Nanosystems of Polymerized Fullerenes and Carbon Nanotubes. , 2004, , 153-166.		0
260	ENHANCED GROWTH OF CARBON NANOTUBES ON SELECTED AREA USING AN AQUEOUS CATALYST. International Journal of Nanoscience, 2005, 04, 431-436.	0.4	5
261	Large-scale fabrication of boron nitride nanohorn. Applied Physics Letters, 2005, 87, 063107.	1.5	42
262	Iron Silicide Root Formation in Carbon Nanotubes Grown by Microwave PECVD. Journal of Physical Chemistry B, 2005, 109, 24215-24219.	1.2	18
263	Tubular Configurations and Structure-Dependent Anisotropic Strains in GaS Multi-Walled Sub-Microtubes. Journal of the American Chemical Society, 2005, 127, 16860-16865.	6.6	14
264	Relevant Synthesis Parameters for the Sequential Catalytic Growth of Carbon Nanotubes. Journal of Physical Chemistry B, 2005, 109, 1380-1386.	1.2	12
265	Preconcentration of Volatile Organics on Self-Assembled, Carbon Nanotubes in a Microtrap. Analytical Chemistry, 2005, 77, 1183-1187.	3.2	81
266	Control of Carbon Capping for Regrowth of Aligned Carbon Nanotubes. Journal of Physical Chemistry B, 2005, 109, 6044-6048.	1.2	36
267	Fundamental Properties of Single-Wall Carbon Nanotubes. Journal of Physical Chemistry B, 2005, 109, 52-65.	1.2	142
268	Polymer Nanostructured Materials for Propulsion Systems. , 2005, , .		4
269	Silicon and III-V compound nanotubes: Structural and electronic properties. Physical Review B, 2005, 72, .	1.1	250
270	Real-Time Observation of Tubule Formation from Amorphous Carbon Nanowires under High-Bias Joule Heating. Nano Letters, 2006, 6, 1699-1705.	4.5	112
271	The formation of low-dimensional inorganic nanotube crystallites in carbon nanotubes. Journal of Chemical Physics, 2006, 124, 124706.	1.2	21
272	Influence of synthesis process on preparation and properties of Ni/CNT catalyst. Diamond and Related Materials, 2006, 15, 15-21.	1.8	12
273	Synthesis Methods and Growth Mechanisms. Lecture Notes in Physics, 2006, , 49-130.	0.3	34
274	Flammability Properties and Microstructure Studies of Polymer Nanocomposites., 2006,,.		0
275	Novel approach to low substrate temperature synthesis of carbon nanotubes. , 0, , .		0

#	Article	IF	Citations
276	Laser Ablation Synthesis of Single-Wall Carbon Nanotubes: The SLS Model., 2006,, 611-632.		1
277	Nanowires and Carbon Nanotubes. , 2006, , 237-280.		3
278	Force Output, Control of Film Structure, and Microscale Shape Transfer by Carbon Nanotube Growth under Mechanical Pressure. Nano Letters, 2006, 6, 1254-1260.	4.5	82
279	Sodium Chloride-Catalyzed Oxidation of Multiwalled Carbon Nanotubes for Environmental Benefit. Journal of Physical Chemistry B, 2006, 110, 12017-12021.	1.2	8
280	Growth Mechanism of Long Aligned Multiwall Carbon Nanotube Arrays by Water-Assisted Chemical Vapor Deposition. Journal of Physical Chemistry B, 2006, 110, 23920-23925.	1.2	137
281	Synthesis of carbon nanotubes. , 2006, , 19-49.		10
282	Nucleation and growth of single-walled carbon nanotubes in the laser ablation products. , 2006, , .		0
283	Laser assisted chemical vapor deposition synthesis of carbon nanotubes and their characterization. Carbon, 2006, 44, 1393-1403.	5.4	66
284	An essential role of CO2 and H2O during single-walled CNT synthesis from carbon monoxide. Chemical Physics Letters, 2006, 417, 179-184.	1.2	144
285	Structural evolution of AlN nano-structures: Nanotips and nanorods. Chemical Physics Letters, 2006, 418, 152-157.	1.2	44
286	Biological effects of nanoparticulate materials. Materials Science and Engineering C, 2006, 26, 1421-1427.	3.8	45
287	Structural and mechanical properties of polymer nanocomposites. Materials Science and Engineering Reports, 2006, 53, 73-197.	14.8	1,234
288	Study on effects of substrate temperature on growth and structure of alignment carbon nanotubes in plasma-enhanced hot filament chemical vapor deposition system. Applied Surface Science, 2006, 253, 904-908.	3.1	8
289	Ab initio studies of elastic properties and electronic structures of C and BN nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 33, 155-159.	1.3	29
290	Polymorphism and Structure of Carbons. Lecture Notes in Physics, 2006, , 1-47.	0.3	5
291	On the morphology of carbon nanotubes growing from catalyst particles: Formulation of the model. Physics of the Solid State, 2006, 48, 1605-1615.	0.2	6
292	On the morphology of carbon nanotubes growing on a nanoporous substrate from catalyst particles. Physics of the Solid State, 2006, 48, 1616-1623.	0.2	0
293	Synthesis and Application of Carbon Nanotubes. Journal of Natural Gas Chemistry, 2006, 15, 235-246.	1.8	30

#	Article	IF	Citations
294	Synthesis and Characterization of Carbon-Based Nanoparticles and Highly Magnetic Nanoparticles with Carbon Coatings. Advanced Functional Materials, 2006, 16, 296-305.	7.8	27
295	The degenerate Fermi gas of π electrons in fullerenes and the σ surface instabilities. Nanotechnology, 2006, 17, 1686-1694.	1.3	4
296	Effect of Tungsten on Synthesis of Multiwalled Carbon Nanotubes Using Cobalt as Catalyst. Japanese Journal of Applied Physics, 2006, 45, L50-L53.	0.8	12
297	Carbon Nanostructures Grown on Graphite Substrates without Catalyst by Pulsed Laser Deposition. Japanese Journal of Applied Physics, 2006, 45, 2872-2874.	0.8	6
298	Carbon nanotubes as nanoelectromechanical systems components. , 2006, , 361-488.		1
299	Radial moduli of individual single-walled carbon nanotubes with and without electric current flow. Applied Physics Letters, 2006, 89, 211906.	1.5	12
300	Ab initiostudy of helical silver single-wall nanotubes and nanowires. Physical Review B, 2006, 73, .	1.1	29
301	SINGLE WALL BAMBOO SHAPED CARBON NANOTUBE: A MOLECULAR DYNAMICS AND ELECTRONIC STUDY. International Journal of Modern Physics C, 2006, 17, 187-196.	0.8	2
302	Inorganic Nanotubes and Fullerene-Like Structures (IF). Topics in Applied Physics, 2007, , 631-671.	0.4	47
303	Flame Retardant Intumescent Polyamide 11-Carbon Nanofiber Nanocomposites: Thermal and Flammability Properties. Materials Research Society Symposia Proceedings, 2007, 1056, 1.	0.1	3
304	Chapter 8 Thermal stability of carbon nanosystems: Molecular-dynamics simulations. Theoretical and Computational Chemistry, 2007, 18, 201-226.	0.2	0
305	Synthesizing carbon nanotubes and carbon nanofibers over supported-nickel oxide catalysts via catalytic decomposition of methane. Diamond and Related Materials, 2007, 16, 1656-1664.	1.8	44
306	Polymer Nanostructured Materials for Propulsion Systems. Journal of Spacecraft and Rockets, 2007, 44, 1250-1262.	1.3	34
307	A Dual Catalytic Role of Co Nanoparticles in Bulk Synthesis of Si-Based Nanowires. , 2007, , 153-181.		0
308	Radius dependence of the melting temperature of single-walled carbon nanotubes: molecular-dynamics simulations. Journal of Physics Condensed Matter, 2007, 19, 436224.	0.7	16
309	Nucleation and growth of carbon nanotubes in catalytic chemical vapor deposition. Journal of Applied Physics, 2007, 102, 044303.	1.1	26
310	Behavior of Ni-Doped MgMoO4 Single-Phase Catalysts for Synthesis of Multiwalled Carbon Nanotube Bundles. Chemical Vapor Deposition, 2007, 13, 30-36.	1.4	4
311	Catalytic effects of production of carbon nanotubes in a thermogravimetric CVD reactor. Surface and Coatings Technology, 2007, 201, 9226-9231.	2.2	21

#	Article	IF	CITATIONS
312	Features of vapor-grown cone-shaped graphitic whiskers deposited in the cavities of wood cells. Carbon, 2007, 45, 248-255.	5.4	29
313	The effect of sulfur on the number of layers in a carbon nanotube. Carbon, 2007, 45, 2152-2158.	5. 4	68
314	Controllable synthesis of carbon nanotubes with ultrafine inner diameters in ethanol flame. Physica B: Condensed Matter, 2007, 398, 18-22.	1.3	13
315	One dimensional nanostructured materials. Progress in Materials Science, 2007, 52, 699-913.	16.0	567
316	Mechanical Properties, Thermal Stability and Heat Transport in Carbon Nanotubes. Topics in Applied Physics, 2007, , 165-195.	0.4	23
317	Formation of single-wall carbon nanotubes in Ar and nitrogen gas atmosphere by using laser furnace technique. European Physical Journal D, 2007, 43, 143-146.	0.6	2
318	Micro-Raman spectroscopy analysis of catalyst morphology for carbon nanotubes synthesis. Chemical Physics, 2008, 353, 25-31.	0.9	12
319	Preliminary study of the stiffness enhancement of wood–plastic composites using carbon nanofibers. European Journal of Wood and Wood Products, 2008, 66, 313-322.	1.3	14
320	Preparation routes based on magnetron sputtering for tungsten disulfide (WS ₂) films for thinâ€film solar cells. Physica Status Solidi (B): Basic Research, 2008, 245, 1745-1760.	0.7	69
321	Neutron scattering, electron microscopy and dynamic mechanical studies of carbon nanofiber/phenolic resin composites. Carbon, 2008, 46, 577-588.	5.4	27
322	Prediction of optimum catalysts and cocatalysts for chemical growth of carbon nanotubes. Physics of the Solid State, 2008, 50, 986.	0.2	0
323	Carbon tolerant Ni–Au SOFC electrodes operating under internal steam reforming conditions. Journal of Catalysis, 2008, 259, 75-84.	3.1	92
324	Toroidal structures from C60 agglomeration. Materials Letters, 2008, 62, 816-819.	1.3	1
325	Theoretical and experimental evidence of a metal-carbon synergism for the catalytic growth of carbon nanotubes by chemical vapor deposition. New Carbon Materials, 2008, 23, 331-338.	2.9	6
326	Investigations on electrodeposited ni clusters used as catalysts for carbon nanostructures. Diamond and Related Materials, 2008, 17, 1569-1572.	1.8	2
327	Theoretical Study on Structural and Elastic Properties of ZnO Nanotubes. Chinese Physics Letters, 2008, 25, 1030-1033.	1.3	13
328	Ab Initio Modeling of Contact Structure Formation of Carbon Nanotubes and Its Effect on Electron Transport. Materials Research Society Symposia Proceedings, 2008, 1081, 1.	0.1	0
329	Development and Commercialization of Vapor Grown Carbon Nanofibers: A Review. Key Engineering Materials, 0, 380, 193-206.	0.4	14

#	Article	IF	CITATIONS
330	Control of carbon nanotube geometry via tunable process parameters. Applied Physics Letters, 2008, 93, 103106.	1.5	1
332	Liquid surface model for carbon nanotube energetics. Physical Review E, 2008, 78, 051601.	0.8	20
333	A synergetic description of carbon nanofiber growth. Journal of Applied Physics, 2009, 105, 064305.	1.1	7
334	Flame-retardant Polyamide 11 and 12 Nanocomposites: Thermal and Flammability Properties. Journal of Composite Materials, 2009, 43, 1803-1818.	1.2	49
335	Nanostructures for Treating Musculoskeletal Conditions. Current Bioactive Compounds, 2009, 5, 185-194.	0.2	3
336	Selective Electrochemical Etching of Singleâ€Walled Carbon Nanotubes. Advanced Functional Materials, 2009, 19, 3618-3624.	7.8	30
337	Horizontally oriented carbon nanotubes coated with nanocrystalline carbon. Thin Solid Films, 2009, 517, 1917-1921.	0.8	7
338	Carbon nanotube synthesis from propane decomposition on a pre-treated Ni overlayer. Bulletin of Materials Science, 2009, 32, 135-140.	0.8	8
339	Catalyst layer-free carbon-coated steelâ€"An easy route to bipolar plates of polymer electrolyte membrane fuel cells: Characterization on structure and electrochemistry. Journal of Power Sources, 2009, 186, 393-398.	4.0	30
340	Growth kinetics of MWCNTs synthesized by a continuous-feed CVD method. Carbon, 2009, 47, 384-395.	5.4	64
341	Temperature effect on the formation of catalysts for growth of carbon nanofibers. Carbon, 2009, 47, 795-803.	5.4	41
342	Effects of partial and total methane flows on the yield and structural characteristics of MWCNTs produced by CVD. Carbon, 2009, 47, 998-1004.	5.4	27
343	Thermal Analysis Study of the Growth Kinetics of Carbon Nanotubes and Epitaxial Graphene Layers on Them. Journal of Physical Chemistry C, 2009, 113, 9623-9631.	1.5	32
344	The Influence of Fe–Co/MgO Catalyst Composition on the Growth Properties of Carbon Nanotubes. Particulate Science and Technology, 2009, 27, 222-237.	1.1	19
345	Flexural properties and micromorphologies of wood flour/carbon nanofiber/maleated polypropylene/polypropylene composites. Composites Part A: Applied Science and Manufacturing, 2009, 40, 948-953.	3.8	14
346	Investigations on the effects of CoOx to MoOx ratio and CoOx–MoOx loading on methane decomposition into carbon nanotubes. Journal of Alloys and Compounds, 2009, 488, 294-299.	2.8	9
347	A review of plasma enhanced chemical vapour deposition of carbon nanotubes. Journal Physics D: Applied Physics, 2009, 42, 213001.	1.3	208
348	Carbon Nanotube Electronics. Integrated Circuits and Systems, 2009, , .	0.2	19

#	Article	IF	CITATIONS
349	The filling of flexible carbon nanotubes by molten salts. Journal of Materials Chemistry, 2009, 19, 2929.	6.7	13
350	History of Carbon Nanomaterials., 2009, , .		0
351	CVD synthesis of carbon nanofibres with washable support catalyst of potassium fluoride. International Journal of Nanomanufacturing, 2010, 5, 100.	0.3	2
352	Synthesis of Carbon Nanostructures by CVD Method. Advanced Structured Materials, 2010, , 23-49.	0.3	47
353	Development and degradation of graphitic microtexture in carbon nanospheres under a morphologically restrained condition. Materials Chemistry and Physics, 2010, 121, 419-424.	2.0	16
354	Combustion synthesis of carbon nanotubes and related nanostructures. Progress in Energy and Combustion Science, 2010, 36, 696-727.	15.8	113
355	How to switch from a tip to base growth mechanism in carbon nanotube growth by catalytic chemical vapour deposition. Carbon, 2010, 48, 3953-3963.	5.4	58
357	An Updated Review of Synthesis Parameters and Growth Mechanisms for Carbon Nanotubes in Fluidized Beds. Industrial & Engineering Chemistry Research, 2010, 49, 5323-5338.	1.8	113
358	In situ monitoring of the acetylene decomposition and gas temperature at reaction conditions for the deposition of carbon nanotubes using linear Raman scattering. Optics Express, 2010, 18, 18223.	1.7	10
359	CVD fabrication of carbon nanotubes on electrodeposited flower-like Fe nanostructures. Journal of Alloys and Compounds, 2010, 507, 494-497.	2.8	21
360	Flame-retardant Polyamide 11 and 12 Nanocomposites: Processing, Morphology, and Mechanical Properties. Journal of Composite Materials, 2010, 44, 2933-2951.	1.2	35
361	Carbon and Oxide Nanostructures. Advanced Structured Materials, 2011, , .	0.3	23
362	Flame-retardant polyamide 11 nanocomposites: further thermal and flammability studies. Journal of Fire Sciences, 2011, 29, 479-498.	0.9	48
363	Growth evolution of rapid grown aligned carbon nanotube forests without water vapor on Fe/Al2O3/SiO2/Si substrate. Diamond and Related Materials, 2011, 20, 859-862.	1.8	14
364	Growth of Vertically Aligned Carbon Nanotubes by RF-DC Plasma Chemical Vapor Deposition. , $2011, \ldots$		0
365	Carbon Nanotube Synthesis and Growth Mechanism. , 0, , .		38
366	Flame Synthesis of Carbon Nanotubes. , 0, , .		26
367	Recent Progress on the Growth Mechanism of Carbon Nanotubes: A Review. ChemSusChem, 2011, 4, 824-847.	3.6	331

#	Article	IF	CITATIONS
368	Methane decomposition to COx-free hydrogen and nano-carbon material on group $8\hat{a}\in 10$ base metal catalysts: A review. Catalysis Today, 2011, 162, 1-48.	2.2	387
369	An experimental and theoretical examination of the effect of sulfur on the pyrolytically grown carbon nanotubes from sucrose-based solid state precursors. Carbon, 2011, 49, 508-517.	5.4	20
370	Electron microscopy and in situ testing of mechanical deformation of carbon nanotubes. Micron, 2011, 42, 663-679.	1.1	17
371	Modeling Electrostatically Induced Collapse Transitions in Carbon Nanotubes. Physical Review Letters, 2011, 106, 155501.	2.9	15
372	The Synthesis of CNTs over Hydroxyapatite by CVD and the Preparation of CNTs/HA <i>in Situ</i> Composite. Materials Science Forum, 0, 704-705, 790-795.	0.3	0
373	Equilibrium at the edge and atomistic mechanisms of graphene growth. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15136-15140.	3.3	236
374	Syntheses of Boron Nitride Nanotubes from Borazine and Decaborane Molecular Precursors by Catalytic Chemical Vapor Deposition with a Floating Nickel Catalyst. Chemistry of Materials, 2012, 24, 2872-2879.	3.2	46
375	Unified platform for the chemical reactivity and catalytic potential of catalyst nanoparticles of even very diverse structures and characteristics for nanotube (including carbon nanotube) syntheses. Journal of Materials Chemistry, 2012, 22, 21560.	6.7	9
376	Concept of Component Seed Vastly Broadens the Understanding of Nanotube Synthesis and Characteristics. Journal of Physical Chemistry C, 2012, 116, 5312-5326.	1.5	4
377	<i>In Situ</i> TEM Study of Lithiation Behavior of Silicon Nanoparticles Attached to and Embedded in a Carbon Matrix. ACS Nano, 2012, 6, 8439-8447.	7.3	321
378	The role of water vapor in carbon nanotube formation via water-assisted chemical vapor deposition of methane. Journal of Industrial and Engineering Chemistry, 2012, 18, 1504-1511.	2.9	15
379	Unfolding the Fullerene: Nanotubes, Graphene and Polyâ€Elemental Varieties by Simulations. Advanced Materials, 2012, 24, 4956-4976.	11.1	50
380	Growth mechanism of carbon nanotubes: a nano Czochralski model. Nanoscale Research Letters, 2012, 7, 356.	3.1	9
381	Functionalized Carbon Nanotubes and Their Enhanced Polymers. , 2012, , 439-478.		5
382	Effect of pyrolysis temperature on properties of ACF/CNT composites. Journal of Central South University, 2012, 19, 2746-2750.	1.2	1
383	Theoretical Study of the Mechanical Behavior of Individual TiS ₂ and MoS ₂ Nanotubes. Journal of Physical Chemistry C, 2012, 116, 11714-11721.	1.5	114
384	Carbon nanotube synthesis: from large-scale production to atom-by-atom growth. Nanotechnology, 2012, 23, 142001.	1.3	73
385	Optimisation of reaction conditions for the synthesis of singleâ€walled carbon nanotubes using response surface methodology. Canadian Journal of Chemical Engineering, 2012, 90, 489-505.	0.9	18

#	Article	IF	Citations
386	Origin of structural defects in multiwall carbon nanotube. Materials Letters, 2012, 72, 68-70.	1.3	12
387	Evaluating the effects of operating conditions on the quantity, quality and catalyzed growth mechanisms of CNTs. Journal of Molecular Catalysis A, 2012, 357, 26-38.	4.8	21
388	Thermodynamic Imbalance, Surface Energy, and Segregation Reveal the True Origin of Nanotube Synthesis. Advanced Materials, 2012, 24, 1262-1275.	11.1	15
389	Improvement of crystallization of borazine-derived boron nitride using small amounts of Fe or Ni nanoparticles. Nanoscale, 2013, 5, 10000.	2.8	8
391	Improving microstructure of silicon/carbon nanofiber composites as a Li battery anode. Journal of Power Sources, 2013, 221, 455-461.	4.0	50
392	Efficient Methane Conversion to Hydrogen by the Force-Activated Oxides on Iron Particle Surfaces. Journal of Physical Chemistry C, 2013, 117, 16104-16118.	1.5	18
393	Catalyst-free growth of readily detachable nanographene on alumina. Journal of Materials Chemistry C, 2013, 1, 6438.	2.7	10
394	Zinc oxide nanotubes: An <i>ab initio</i> investigation of their structural, vibrational, elastic, and dielectric properties. Journal of Chemical Physics, 2013, 138, 214706.	1.2	29
395	Curvature effect in the longitudinal unzipping carbon nanotubes. Journal of Solid State Electrochemistry, 2013, 17, 1189-1200.	1.2	9
397	BORON/PHOSPHORUS CO-DOPING IN ZIGZAG SINGLE-WALLED CARBON NANOTUBES: A FIRST-PRINCIPLES STUDY. Modern Physics Letters B, 2013, 27, 1350114.	1.0	1
398	A new way to synthesize carbon nanofiber film on bulk titanium via hybrid surface mechanical attrition treatment. Applied Surface Science, 2013, 264, 191-196.	3.1	12
399	Growth of carbon nanotubes over non-metallic based catalysts: A review on the recent developments. Catalysis Today, 2013, 217, 1-12.	2.2	37
400	Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition. Carbon, 2013, 58, 2-39.	5.4	460
401	Carbon nanotubes and hydrogen production from the reforming of toluene. International Journal of Hydrogen Energy, 2013, 38, 8790-8797.	3.8	27
402	Thermodynamic and Energetic Effects on the Diameter and Defect Density in Single-Walled Carbon Nanotube Synthesis. Journal of Physical Chemistry C, 2013, 117, 3527-3536.	1.5	17
403	Beryllium Oxide Nanotubes and their Connection to the Flat Monolayer. Journal of Physical Chemistry C, 2013, 117, 12864-12872.	1.5	60
404	Structural, electronic, vibrational, and elastic properties of SWCNTs doped with B and N: an ab initio study. European Physical Journal D, 2013, 67, 1.	0.6	10
405	On the Predictions of Carbon Deposition on the Nickel Anode of a SOFC and Its Impact on Open-Circuit Conditions. Journal of the Electrochemical Society, 2013, 160, F94-F105.	1.3	50

#	ARTICLE	IF	CITATIONS
406	Formation of Carbon Nanotubes from Methane Decomposition: Effect of Concentration of Fe ₃ O ₄ on the Diameters Distributions. Advanced Materials Research, 0, 832, 62-67.	0.3	4
407	Fabrication, Purification and Characterization of Carbon Nanotubes: Arc-Discharge in Liquid Media (ADLM)., 0,,.		3
409	CVD growth of carbon nanofibers. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2679-2687.	0.8	9
410	Introduction to Fiber Materials. , 2014, , 1-32.		0
411	Laser-assisted growth of carbon nanotubesâ€"A review. Journal of Laser Applications, 2014, 26, .	0.8	18
412	Overview of Environmental Nanoscience. Frontiers of Nanoscience, 2014, 7, 1-54.	0.3	6
413	Structural, electronic and energetic properties of giant icosahedral fullerenes up to C6000: insights from an ab initio hybrid DFT study. Physical Chemistry Chemical Physics, 2014, 16, 13390-13401.	1.3	30
414	Structural Changes in Iron Oxide and Gold Catalysts during Nucleation of Carbon Nanotubes Studied by <i>In Situ</i> In Situ	7.3	52
415	Effect of stepped substrates on the interfacial adhesion properties of graphene membranes. Physical Chemistry Chemical Physics, 2014, 16, 11390-11397.	1.3	16
417	Activity of Ni–Cu–Al based catalyst for renewable hydrogen production from steam reforming of glycerol. Energy Conversion and Management, 2014, 78, 253-259.	4.4	76
418	An Overview of Nanomaterials., 2015,, 22-108.		4
419	Large-Scale Preparation of Carbon Nanotubes via Catalytic Pyrolysis of Phenolic Resin at Low Temperature. InterCeram: International Ceramic Review, 2015, 64, 86-89.	0.2	3
421	Defect-induced faceted blue phosphorene nanotubes. Physical Review B, 2015, 92, .	1.1	26
422	Ultra-stable small diameter hybrid transition metal dichalcogenide nanotubes X–M–Y (X, Y = S, Se, Te;) Tj E	TQq1_1 0.7	784314 rgBT
423	Structure and stability of SnS2-based single- and multi-wall nanotubes. Surface Science, 2015, 641, 6-15.	0.8	22
424	New laser ablation chamber for producing carbon nanomaterials using excimer laser. Materials Research Innovations, 2015, 19, 33-39.	1.0	15
425	Dielectric barrier discharge plasma for preparation of Ni-based catalysts with enhanced coke resistance: Current status and perspective. Catalysis Today, 2015, 256, 29-40.	2.2	78
426	Chemical Forces: Nanoparticles. , 2015, , 111-136.		0

#	Article	IF	CITATIONS
428	Bimetallic-catalyst-mediated syntheses of nanomaterials (nanowires, nanotubes, nanofibers,) Tj ETQq0 0 0 rgBT /C Journal Physics D: Applied Physics, 2016, 49, 495304.	Overlock 1 1.3	0 Tf 50 747 ⁷
429	Novel pot-shaped carbon nanomaterial synthesized in a submarine-style substrate heating CVD method. Journal of Materials Research, 2016, 31, 117-126.	1.2	1
430	Industrial Synthesis of Whisker Carbon Nanotubes. Materials Science Forum, 0, 852, 514-519.	0.3	6
431	Thermal conducting properties of aligned carbon nanotubes and their polymer composites. Composites Part A: Applied Science and Manufacturing, 2016, 91, 351-369.	3.8	99
432	Development of Disposable Carbon Nanofibers Electrodes Supported on Filters. Electroanalysis, 2016, 28, 890-897.	1.5	4
433	CVD growth of 1D and 2D sp2 carbon nanomaterials. Journal of Materials Science, 2016, 51, 640-667.	1.7	70
434	The microstructures, growth mechanisms and properties of carbon nanowires and nanotubes fabricated at different CVD temperatures. Diamond and Related Materials, 2017, 72, 77-86.	1.8	16
435	Epitaxial Growth of Aligned and Continuous Carbon Nanofibers from Carbon Nanotubes. ACS Nano, 2017, 11, 1257-1263.	7.3	23
436	Progress in catalytic synthesis of advanced carbon nanofibers. Journal of Materials Chemistry A, 2017, 5, 13863-13881.	5.2	38
437	A novel borophene featuring heptagonal holes: a common precursor of borospherenes. Physical Chemistry Chemical Physics, 2017, 19, 19890-19895.	1.3	12
438	CO Dissociation on Ni/SiO2: The Formation of Different Carbon Materials. Topics in Catalysis, 2017, 60, 890-897.	1.3	9
439	Electronic and optical properties of \hat{l}^2 -graphyne nanotubes and their BN analogues. Journal of Materials Science, 2017, 52, 13133-13148.	1.7	7
440	Atomistic potential for graphene and other sp ² carbon systems. Physical Chemistry Chemical Physics, 2017, 19, 30925-30932.	1.3	13
441	Structure and Properties of Carbon Nanotubes. , 2017, , 47-69.		18
442	Synthesis of carbon nanotubes via Fe-catalyzed pyrolysis of phenolic resin. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 86, 24-35.	1.3	35
443	A neural-network potential through charge equilibration for WS2: From clusters to sheets. Journal of Chemical Physics, 2017, 147, 234306.	1.2	11
444	Carbon nanotube-based black coatings. Applied Physics Reviews, 2018, 5, .	5.5	91
445	Growth mechanism and wave-absorption properties of multiwalled carbon nanotubes fabricated using a gaseous detonation method. Materials Research Bulletin, 2018, 102, 153-159.	2.7	21

#	Article	IF	CITATIONS
446	Methane decomposition to tip and base grown carbon nanotubes and CO _x -free H ₂ over mono- and bimetallic 3d transition metal catalysts. Catalysis Science and Technology, 2018, 8, 858-869.	2.1	90
447	Controllable synthesis of carbon nanotubes via autothermal reforming of ethyl acetate. Materials and Design, 2018, 141, 150-158.	3.3	9
448	Band engineering of double-wall Mo-based hybrid nanotubes. Chinese Physics B, 2018, 27, 076104.	0.7	4
449	In Situ TEM: Theory and Applications. Springer Tracts in Modern Physics, 2018, , 381-477.	0.1	1
450	Secondary Electron Yield Measurements of Carbon Nanotube Forests: Dependence on Morphology and Substrate. IEEE Transactions on Plasma Science, 2019, 47, 3801-3809.	0.6	8
451	Carbon nanotubes and its gas-sensing applications: A review. Sensors and Actuators A: Physical, 2019, 291, 107-143.	2.0	190
452	Preparation and properties of manipulated carbon nanotube composites and applications., 2019,, 489-520.		17
453	Can Single-Walled Carbon Nanotube Diameter Be Defined by Catalyst Particle Diameter?. Journal of Physical Chemistry C, 2019, 123, 30305-30317.	1.5	17
454	Synergy of physical properties of low-dimensional carbon-based systems for nanoscale device design. Materials Research Express, 2019, 6, 042002.	0.8	48
455	Storage of Mechanical Energy Based on Carbon Nanotubes with High Energy Density and Power Density. Advanced Materials, 2019, 31, e1800680.	11.1	46
456	Vapor-Grown Carbon Fiber Synthesis, Properties, and Applications. , 2020, , .		1
457	Carbon Encapsulation of High Entropy Alloy Nanoparticles with Extraordinary Coercivity and Saturation at Room Temperature. Particle and Particle Systems Characterization, 2020, 37, 2000137.	1.2	8
458	Dynamics and Mechanism of Carbon Filament Formation during Methane Reforming on Supported Nickel Clusters. Journal of Physical Chemistry C, 2020, 124, 20143-20160.	1.5	8
459	Auxetics among Materials with Cubic Anisotropy. Mechanics of Solids, 2020, 55, 461-474.	0.3	34
460	Structural and chemical mechanisms governing stability of inorganic Janus nanotubes. Npj Computational Materials, 2021, 7, .	3.5	22
461	A scalable electron beam irradiation platform applied for allotropic carbon transformation. Carbon, 2021, 174, 567-580.	5.4	6
462	Complex Phenomenal Growth of Multi-walled Carbon Nanotubes in Conventional Arc Discharge Process. Transactions of the Indian Institute of Metals, 2021, 74, 2043-2048.	0.7	2
463	Carbon encapsulation of ferromagnetic L1oFePt nanocrystals with an enhanced coercivity from distorted lattices. Journal of Materials Research and Technology, 2021, 13, 83-88.	2.6	3

#	Article	IF	Citations
464	Technical View of Cu Composited Carbon Nanotubes for Magnet Wires and Coils. Journal of Japan Institute of Electronics Packaging, 2021, 24, 417-427.	0.0	O
465	Chemical Vapor Deposition. , 2003, , 102-144.		2
466	Nanotubes: A Revolution in Materials Science and Electronics. Topics in Current Chemistry, 1999, , 189-234.	4.0	133
467	Direct Synthesis and Integration of SWNT Devices. Integrated Circuits and Systems, 2009, , 43-61.	0.2	1
468	Spray-based and CVD Processes for Synthesis of Fuel Cell Catalysts and Thin Catalyst Layers. , 2008, , 917-963.		5
469	Carbon Nanofibers. , 2013, , 233-262.		36
471	Graphitization of Carbonaceous Materials by Ni, Co and Fe. Springer Series in Materials Science, 1998, , 99-105.	0.4	7
472	Nucleation and Growth of Carbon Filaments and Vapor-Grown Carbon Fibers., 2001,, 63-73.		2
473	Filamentous Carbon Formation on Metals and Alloys., 1990,, 441-457.		4
474	Physical Modeling of Carbon Filament Growth. , 1990, , 525-540.		5
475	HREM characterization of graphitic nanotubes. Microscopy Microanalysis Microstructures, 1993, 4, 505-512.	0.4	6
476	Synthesis of Boron Nitride Nanotubes Using a Ball-Milling and Annealing Method., 2005,,.		2
477	Computational Nanotechnology of Carbon Nanotubes. , 2004, , 25-63.		17
478	Growth of Carbon Nanotubes by Arc Discharge and Laser Ablation. , 2004, , 65-97.		9
480	The Stability and Mechanical Properties of Boron Nanotubes Explored through Density Functional Calculations. International Journal for Multiscale Computational Engineering, 2010, 8, 245-250.	0.8	2
482	Effect of Graphitization on the Structures and Conducting Property of Carbon Nanotubes. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2009, 24, 535-538.	0.6	2
483	Comparison of Synthesis and Purification of Carbon Nanotubes by Thermal Chemical Vapor Deposition on the Nickel-Based Catalysts: NiSio2 and 304-Type Stainless Steel. Journal of Applied Sciences, 2010, 10, 716-723.	0.1	13
484	Growth of Boron Nitride Nanotubes Having Large Surface Area Using Mechanothermal Process. World Journal of Nano Science and Engineering, 2011, 01, 119-128.	0.3	3

#	ARTICLE	IF	CITATIONS
485	Formation and Graphitization of Vapor-Grown Carbon Fibers. Tanso, 1995, 1995, 218-230.	0.1	5
486	Detergent Enzymes. , 2005, , 673-684.		0
487	Synthesis of Singlewalled and Doublewalled Carbon Nanotubes by Hot-Filament CVD Using Alcohol as Carbon Source. Hyomen Kagaku, 2007, 28, 91-96.	0.0	1
488	Mechanics of Carbon Nanotubes 1. The Electrical Engineering Handbook, 2007, , 23-1-23-63.	0.2	0
489	ã,«ãf¼ãfœãf³ãfŠãfŽãfãf¥ãf¼ãf−ã®è£½æ³•ã®é€²å±•ã•æ°é•·æ©Ÿæ§‹. Journal of the Vacuum Society of Jap	oano 20 08,	51 9 235-239.
490	Field Emission of Carbon Nanotubes. , 2009, , 588-617.		1
492	Studying Nucleation Mechanism of Carbon Nanotubes by Using In Situ TEM. Springer Theses, 2013, , 37-54.	0.0	0
494	Reinforcement Application., 2013,, 205-226.		0
496	Carbon Nanotubes and Other Carbon Materials. , 2014, , 628-642.		0
497	LDF Electronic Structure of Fullerene Tubules. , 1996, , 153-175.		0
498	Chemical Forces: Nanoparticles. , 2016, , 1-23.		0
499	Introduction to Carbon and Carbon Nanomaterials. , 2017, , 1-40.		0
500	Carbon Nanofibers and Filaments. , 2017, , 121-148.		0
501	Synthesis of Carbon Nano Fiber from Organic Waste and Activation of its Surface Area. , 2019, 2, 056-059.		4
502	The VLS Mechanism. Springer Series in Materials Science, 2020, , 69-99.	0.4	1
503	Chalcogenides. Nanoscience and Technology, 2020, , 631-833.	1.5	0
504	Layer-dependent interface adhesion energy of graphene in a curved substrate. Journal Physics D: Applied Physics, 2021, 54, 035301.	1.3	0
505	Oxygen-Rich Ultramicroporous Activated Carbon for Boosting H2 Production Via Toluene Steam Reforming: Effect of H2o2-Modification and Ni/Co Loading. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
506	Effective medium theory of random regular networks. Europhysics Letters, 2022, 138, 27001.	0.7	3
509	Oxygen-rich ultramicroporous activated carbon for boosting H2 production via toluene steam reforming: Effect of H2O2-modification and Ni/Co loading. Fuel Processing Technology, 2022, 232, 107275.	3.7	7
510	Synthesis methods of nanotubes. , 2022, , 251-280.		0
511	Evaluating the performance of ReaxFF potentials for sp2 carbon systems (graphene, carbon nanotubes,) Tj ETQq1	1.0.7843 1.8	14 rgBT /Ov
512	Graphitization by Metal Particles. ACS Omega, 2023, 8, 3278-3285.	1.6	8
513	Gaussian Curvature Effects on Graphene Quantum Dots. Nanomaterials, 2023, 13, 95.	1.9	2
514	Computational Study of the Formation of Inorganic Nanotubes. , 2011, , 307-333.		0
516	Uranium adsorption property of carboxylated tubular carbon nanofibers enhanced chitosan microspheres., 2023,, 133-152.		O
517	A review of fibrous graphite materials: graphite whiskers, columnar carbons with a cone-shaped top, and needle- and rods-like polyhedral crystals. New Carbon Materials, 2023, 38, 18-35.	2.9	5