The third-body approach: A mechanical view of wear

Wear 100, 437-452 DOI: 10.1016/0043-1648(84)90025-5

Citation Report

#	Article	IF	CITATIONS
1	Some current trends in tribology in the UK and Europe. Tribology International, 1986, 19, 295-311.	3.0	11
2	Comments on "the wear of copper in single-pass sliding― Wear, 1986, 113, 295-297.	1.5	0
3	A perspective on boundary lubrication. Industrial & Engineering Chemistry Fundamentals, 1986, 25, 518-524.	0.7	10
4	Continuity and dry friction: An Osborne Reynolds approach. Tribology Series, 1987, 11, 653-661.	0.1	6
5	Paper I(iv) Boundary conditions: adhesion in friction. Tribology Series, 1987, 12, 19-25.	0.1	0
6	Paper IV(i) Granular flow as a tribological mechanism – a first look. Tribology Series, 1987, 12, 75-88.	0.1	15
7	Paper IX(ii) Three-body-interaction in metal-ceramic and ceramic-ceramic contacts. Tribology Series, 1987, 12, 227-235.	0.1	1
8	Paper IX(iv) The variability of wear rate data in simultaneous experiments. Tribology Series, 1987, , 245-252.	0.1	0
9	A thermodynamical model of contact, friction and wear: I governing equations. Wear, 1987, 114, 135-168.	1.5	64
10	Distribution of wear rate data and a statistical approach to sliding wear theory. Wear, 1987, 119, 295-312.	1.5	34
11	A four-square chain wear rig. Tribology International, 1987, 20, 3-9.	3.0	9
12	Formation, readhesion and escape of wear particles in fretting and sliding wear in inert and oxidizing environments. Wear, 1988, 125, 3-23.	1.5	16
13	Velocity accommodation in fretting. Wear, 1988, 125, 25-38.	1.5	131
14	Initial frictional behavior during the wear of steel, aluminum and poly(methyl methacrylate) on abrasive papers. Wear, 1988, 124, 1-20.	1.5	9
15	The Mapping of Metallic Sliding Wear. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 1988, 202, 379-395.	1.1	33
16	The Behavior of Suspended Solid Particles in Rolling and Sliding Elastohydrodynamic Contacts. Tribology Transactions, 1988, 31, 12-21.	1.1	80
17	Fretting Wear Mechanisms and Their Effects on Fretting Fatigue. Journal of Tribology, 1988, 110, 517-524.	1.0	38
19	Fretting fatigue and fretting wear. Tribology International, 1989, 22, 235-242.	3.0	140

TATION REDO

#	Article	IF	Citations
20	Wear mode diagram in lubricated sliding friction of carbon steel. Wear, 1989, 129, 303-317.	1.5	23
21	Interpretations of the sliding friction break-in curves of alumina-aluminum couples. Wear, 1989, 129, 81-92.	1.5	14
22	Velocity Accommodation in Friction. Tribology Transactions, 1989, 32, 490-496.	1.1	146
23	Effect of interlamellar spacing on the wear resistance of eutectoid steels under rolling-sliding conditions. Wear, 1990, 135, 369-389.	1.5	53
24	The dependence of the transition from severe to mild wear on load and surface roughness when the oxide particles are supplied before sliding. Wear, 1990, 139, 319-333.	1.5	39
25	Material-specific wear mechanisms: relevance to wear modelling. Wear, 1990, 141, 159-183.	1.5	83
26	Sliding friction of ceramics: Mechanical action of the wear debris. Journal of Materials Science, 1990, 25, 3592-3604.	1.7	88
27	A chemical study of wear particles and other features associated with the wear of ceramics. Tribology International, 1990, 23, 235-243.	3.0	5
28	Numerical modellisation of contact with friction phenomena by the finite element method. Computers and Geotechnics, 1990, 9, 59-72.	2.3	14
29	Third-bodies in tribology. Wear, 1990, 136, 29-45.	1.5	271
30	Experimental evidence for friction and wear modelling. Wear, 1990, 139, 77-92.	1.5	104
32	Viewpoint set on materials aspects of wear—Introduction. Scripta Metallurgica Et Materialia, 1990, 24, 799-803.	1.0	16
33	Friction and wear of ultrahigh molecular weight polyethylene against various new ceramics. Wear, 1991, 142, 43-56.	1.5	31
34	Polymer-polymer friction: Relation to adhesion. Wear, 1991, 151, 63-75.	1.5	43
35	The role of soft (metallic) films in the tribological behavior of ceramic materials. Wear, 1991, 149, 221-232.	1.5	7
36	Material effects in fretting wear: application to iron, titanium, and aluminum alloys. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1991, 22, 1535-1544.	1.4	134
37	Tribological Behavior of SiC-Whisker/Al2O3 Composites against Carburized 8620 Steel in Lubricated Sliding. Journal of the American Ceramic Society, 1991, 74, 2224-2233.	1.9	40
38	The role of oxide particles in the fretting wear of mild steel. Wear, 1991, 151, 301-311.	1.5	86

TION RE

#	Article	IF	CITATIONS
39	On the role of interfacial debris morphology in a conforming contact tribosystem. Wear, 1991, 149, 169-185.	1.5	14
40	Wear modelling: Using fundamental understanding or practical experience?. Wear, 1991, 149, 325-340.	1.5	36
41	Paper III (i) Impact Wear Analysis. Tribology Series, 1992, , 67-74.	0.1	0
42	The role of water in the wear of ceramics. Journal Physics D: Applied Physics, 1992, 25, A205-A211.	1.3	36
43	Fretting fatigue. International Materials Reviews, 1992, 37, 77-98.	9.4	215
44	Paper VI (ii) Particle Detachment Processes in the Dry and Lubricated Wear of Ceramics. Tribology Series, 1992, , 237-246.	0.1	0
45	Paper VI (i) First Body Behavior before Debris Formation. Tribology Series, 1992, 21, 229-235.	0.1	3
46	Paper VIII (i) Phenomenological Models of Third Body Rheology. Tribology Series, 1992, , 337-346.	0.1	0
47	Paper XI (ii) Some Third-Body Tribology Effects in Conforming Contacts Sliding in High Vacuum. Tribology Series, 1992, 21, 445-451.	0.1	0
48	Paper XI (iii) Wear Debris Action in Sliding Friction of Ceramics. Tribology Series, 1992, 21, 453-462.	0.1	1
49	Paper V (i) Modelling a Ball-on-Disk Experiment for the System 100Cr6 Steel Vs (Ti,X)N Coating. Tribology Series, 1992, , 193-202.	0.1	1
50	Cracking behaviour of various aluminium alloys during fretting wear. Wear, 1992, 155, 317-330.	1.5	109
51	Rolling/sliding wear behavior of a chromium-molybdenum rail steel in pearlitic and bainitic conditions. Wear, 1992, 156, 121-131.	1.5	42
52	Mechanics and materials in fretting. Wear, 1992, 153, 135-148.	1.5	106
53	Roughness effect of silicon nitride sliding on steel under boundary lubrication. Wear, 1992, 159, 173-184.	1.5	8
54	On wear synergism in hybrid composites. Composites Science and Technology, 1992, 43, 71-84.	3.8	12
55	Influence of interposed wear particles on the wear and friction of silicon carbide in different dry atmospheres. Wear, 1992, 154, 141-150.	1.5	34
56	Micro-mechanisms of wear — wear modes. Wear, 1992, 153, 277-295.	1.5	116

#	Article	IF	CITATIONS
57	Dry sliding behaviour of steam treated sintered iron alloys. Wear, 1992, 159, 127-134.	1.5	28
58	Wear and friction of a unidirectional carbon fiber-glass matrix composite against various counterparts. Wear, 1993, 162-164, 1103-1113.	1.5	50
59	Friction microprobe investigation of particle layer effects on sliding friction. Wear, 1993, 162-164, 102-109.	1.5	19
60	Wear mechanisms of silicon nitride, partially stabilized zirconia and alumina in unlubricated sliding against steel. Wear, 1993, 162-164, 305-313.	1.5	47
61	Particulate dental composites under sliding wear conditions. Journal of Materials Science: Materials in Medicine, 1993, 4, 266-272.	1.7	17
62	Sliding wear of a unidirectional carbon fibre-reinforced glass composite against steel. Journal of Materials Science Letters, 1993, 12, 173-175.	0.5	7
63	Lubricated Rolling and Sliding Wear of a SiC-Whisker-Reinforced Si3N4 Composite against M2 Tool Steel. Journal of the American Ceramic Society, 1993, 76, 105-112.	1.9	15
64	Surface Engineering of Structural Ceramics. Journal of the American Ceramic Society, 1993, 76, 261-268.	1.9	13
65	Tribological properties of TiC-Fe coatings obtained by plasma spraying reactive powders. Journal of Thermal Spray Technology, 1993, 2, 39-44.	1.6	12
66	Wear Models for Multiphase Materials and Synergistic Effects in Polymeric Hybrid Composites. Composite Materials Series, 1993, 8, 209-273.	0.2	39
67	Fractionated thin film lubrication. Tribology Series, 1993, , 389-396.	0.1	3
68	Friction Process Diagrams for Analyzing Interfacially-Complex Sliding Contacts. Tribology Transactions, 1994, 37, 751-756.	1.1	4
69	Limitations on the use of ceramics in unlubricated sliding applications due to transfer layer formation. Wear, 1994, 175, 1-8.	1.5	50
70	Low amplitude reciprocating wear of sintered iron. Wear, 1994, 176, 121-130.	1.5	9
71	Lubricated Rolling Wear of SiC-Whisker-Reinforced Al2O3 Composites against M2 Tool Steel. Journal of the American Ceramic Society, 1994, 77, 179-185.	1.9	3
72	Discontinuously reinforced aluminium composites sliding against steel: study on wear behaviour. Materials Science and Technology, 1994, 10, 481-486.	0.8	10
73	Effects of Trapped Wear Particles and Environments on Friction and Wear of Silicon Carbide Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 1995, 61, 1599-1604.	0.2	0
74	A multipass/scanning tribometer for on-line friction and wear mapping. International Journal of Machine Tools and Manufacture, 1995, 35, 177-181.	6.2	9

# 75	ARTICLE Dry sliding wear of discontinuously reinforced aluminum composites: review and discussion. Wear, 1995, 189, 1-19.	IF 1.5	CITATIONS 358
76	Analysis of sliding behaviour for fretting loadings: determination of transition criteria. Wear, 1995, 185, 35-46.	1.5	233
77	A simple coefficient for wear assessment. Wear, 1995, 189, 77-85.	1.5	3
78	Polymer-polymer friction: Adhesion dependence. Journal of Synthetic Lubrication: Research, Development and Application of Synthetic Lubricants and Functional Fluids, 1995, 12, 125-131.	0.7	1
79	Influence of Surface Roughness and Oil Ageing on Various Ceramic-Steel Contacts under Boundary Lubrication. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 1995, 209, 173-182.	1.0	1
80	The Quasi-Hydrodynamic Mechanism of Powder Lubrication—Part III: On Theory and Rheology of Triboparticulates. Tribology Transactions, 1995, 38, 269-276.	1.1	53
81	Mechanics and Chemistry of Solids in Sliding Contactâ€. Langmuir, 1996, 12, 4486-4491.	1.6	82
82	Forum on New Ideas in Tribology. Langmuir, 1996, 12, 4574-4582.	1.6	13
83	Elusive 'Third Bodies'. Tribology Series, 1996, 31, 115-123.	0.1	0
84	Third body formation in soft solid processing. Tribology Series, 1996, , 335-343.	0.1	0
85	Tribological analysis of friction damage on coated plastics through the third body concept. Tribology Series, 1996, 31, 479-488.	0.1	0
86	Smoothing effect of the third body compaction on alumina surface in sliding contact. Tribology Series, 1996, 31, 585-596.	0.1	6
87	Well-founded selection of materials for improved wear resistance. Wear, 1996, 194, 238-245.	1.5	32
88	Tribological aspects of wheel-rail contact: a review of recent experimental research. Wear, 1996, 191, 170-183.	1.5	89
89	Friction and wear properties of E-glass fiber reinforced epoxy composites under different sliding contact conditions. Wear, 1996, 192, 112-117.	1.5	110
90	The effect of laminate orientations on friction and wear mechanisms of glass reinforced polyester composite. Wear, 1996, 195, 186-191.	1.5	46
91	Tribological properties of AlNCeO2Si3N4 cutting materials in unlubricated sliding against tool steel and cast iron. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 209, 277-286.	2.6	11
92	Quantification of fretting damage. Wear, 1996, 200, 186-205.	1.5	369

#	ARTICLE Tribological properties of ormosil coatings. Journal of Sol-Gel Science and Technology, 1996, 6,	IF	CITATIONS
94	287-297. Crack Path Prediction Under Fretting Fatigue—A Theoretical and Experimental Approach. Journal of Tribology, 1996, 118, 711-720.	1.0	29
95	Self-lubricant "Mosaic―surfaces of type 316 austenitic stainless steel. Tribology Series, 1996, 31, 401-406.	0.1	0
96	Methodology of wear testing. , 1996, , 223-245.		0
97	Role of the Third Body in Life Enhancement of MoS2. Tribology Series, 1996, , 407-413.	0.1	3
98	Effect of chromic acid anodizing treatment on fretting behaviour during fretting tests on pre-stressed specimens. Thin Solid Films, 1997, 298, 170-176.	0.8	4
99	Fifty years of research on the wear of metals. Tribology International, 1997, 30, 321-331.	3.0	98
100	Abrasive wear of metals. Tribology International, 1997, 30, 333-338.	3.0	90
101	A general approach to discontinuous transfer films: influence of sliding speed and stick-slip phenomena. Wear, 1997, 203-204, 564-572.	1.5	17
102	Wear resistance of zirconias. Dielectrical approach. Wear, 1997, 213, 13-20.	1.5	13
103	An investigation of the fretting wear of two aluminium alloys. Tribology International, 1997, 30, 1-7.	3.0	27
104	On the wear debris of polyetheretherketone: fractal dimensions in relation to wear mechanisms. Tribology International, 1997, 30, 87-102.	3.0	49
105	Study on fretting wear behavior of laser treated coatings by X-ray imaging. Wear, 1998, 218, 250-260.	1.5	20
106	The role of triboparticulates in dry sliding wear. Tribology International, 1998, 31, 245-256.	3.0	227
107	Helical scan head and tape contact behavior: optimization of tribological and magnetic aspects. Tribology International, 1998, 31, 479-484.	3.0	2
108	Fretting wear behaviour of polymethylmethacrylate under linear motions and torsional contact conditions. Tribology International, 1998, 31, 701-711.	3.0	67
109	Revealing the hidden world of fretting wear processes of surface coatings by X-ray imaging. Surface and Coatings Technology, 1998, 107, 133-141.	2.2	11
110	Mechanical modeling of fretting cycles of electrical contacts. , 0, , .		6

		CITATION REP	ORT	
#	Article		IF	CITATIONS
112	How Third-Body Processes Affect Friction and Wear. MRS Bulletin, 1998, 23, 37-40.		1.7	73
113	Four great challenges confronting our understanding and modeling of sliding friction. Research sponsored by the U.S. Department of Energy, Assistant Secretary for Energy Efficiency and Renewal Energy, office of Transportation Technologies, as part of the Heavy Vehicle Propulsion System Materials Program, under contract DE-AC05-960R22464 with Lockheed Martin Energy Research	ple	0.1	9
114	Effects of Frequency on the Fretting Conditions in a Contact Between PMMA and a Rigid Counterfa Journal of Tribology, 1998, 120, 729-736.	ce.	1.0	2
115	Friction and Wear Properties of Hard Materials Against Metals. Comparison of Hard Coating Films a Sintered Ceramics Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 1998, 49, 974	nd 1-979.	0.1	1
116	The Effect of Hollow Nanoparticles of WS2 on Friction and Wear. Tribology Series, 1999, 36, 567-5	73.	0.1	2
117	An investigation of fretting behavior of ion-plated TiN, magnetron-sputtered MoS2 and their composite coatings. Wear, 1999, 225-229, 46-52.		1.5	29
118	Surface damage of poly(methylmethacrylate) under fretting loading. Wear, 1999, 230, 146-155.		1.5	15
119	Finite element treatment of two-dimensional thermoelastic wear problems. Computer Methods in Applied Mechanics and Engineering, 1999, 177, 441-455.		3.4	45
120	Fretting of glass fibre reinforced composites. Journal of Materials Science, 1999, 34, 191-194.		1.7	4
121	3D optical-profilometric assessment of transfer and its significance for the mechanisms of primary particle detachment and wear. Wear, 1999, 225-229, 417-426.		1.5	11
122	Feasibility of friction stir welding steel. Science and Technology of Welding and Joining, 1999, 4, 365-372.		1.5	322
123	First steps for a rheological model for the solid third body. Tribology Series, 1999, 36, 551-559.		0.1	9
124	Effects of Surrounding Humidity on the Friction and Wear Properties of Electroless Ni-P Alloy Coating Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2000, 51, 735-739.		0.1	3
125	Effect of displacement amplitude in oil-lubricated fretting. Wear, 2000, 239, 237-243.		1.5	39
126	Genesis and role of wear debris in sliding wear of ceramics. Wear, 2000, 245, 53-60.		1.5	138
127	Transfer layer and friction in cold metal strip rolling processes. Wear, 2000, 245, 125-135.		1.5	51
128	Contact damage of poly(methylmethacrylate) during complex microdisplacements. Wear, 2000, 24 27-39.	·0,	1.5	52
129	Severe wear mechanisms in Al2O3–AlON ceramic composites. Journal of the European Ceramic S 2000, 20, 1311-1318.	ociety,	2.8	25

#	ARTICLE Pin-on-Disc Tests of Pelletized Molybdenum Disulfide, Tribology Transactions, 2001, 44, 79-87	IF	Citations
130	Characterization of Pelletized MoS2 Powder Particle Detachment Process. Journal of Tribology, 2001,	1.0	15
132	Analysis of surface and subsurface of sliding electrical contact steel/steel in magnetic field. Surface and Coatings Technology, 2001, 148, 241-250.	2.2	35
133	Mechanical modeling of fretting cycles in electrical contacts. Wear, 2001, 249, 12-19.	1.5	20
134	Simulations of the kinetic friction due to adsorbed surface layers. Tribology Letters, 2001, 10, 7-14.	1.2	112
135	Quantification of third body damage to the tibial counterface in mobile bearing knees. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2001, 215, 171-179.	1.0	23
136	Simulations of the static friction due to adsorbed molecules. Physical Review B, 2001, 64, .	1.1	61
137	Wear of polymers. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2002, 216, 401-413.	1.0	137
138	Third body processes and friction of solid lubricants studied by in situ optical and raman tribometry. Tribology Series, 2002, 40, 327-336.	0.1	12
139	Sliding friction and wear behavior of Al–Ni–Co–Si quasicrystalline coatings deposited by the high-velocity oxy-fuel spraying technique. Journal of Materials Research, 2002, 17, 492-501.	1.2	12
140	A Review of Recent Approaches for Modeling Solid Third Bodies. Journal of Tribology, 2002, 124, 725-735.	1.0	89
141	Mechanism of friction of fullerenes. Industrial Lubrication and Tribology, 2002, 54, 171-176.	0.6	109
142	Solid Third Body Analysis Using a Discrete Approach: Influence of Adhesion and Particle Size on Macroscopic Properties. Journal of Tribology, 2002, 124, 530-538.	1.0	61
143	Cracking under fretting fatigue: Damage prediction under multiaxial fatigue. Journal of Strain Analysis for Engineering Design, 2002, 37, 519-533.	1.0	5
144	Powder lubricated bearing operation to PV of half a million. Tribology Series, 2002, 40, 477-480.	0.1	1
145	Friction Behavior of Boric Acid and Annealed Boron Carbide Coatings Studied by In Situ Raman Tribometry. Tribology Transactions, 2002, 45, 354-362.	1.1	47
146	100mm Diameter Self-Contained Solid/Powder Lubricated Auxiliary Bearing Operated at 30,000 rpm. Tribology Transactions, 2002, 45, 76-84.	1.1	29
147	Role of Third Bodies in Friction Behavior of Diamond-like Nanocomposite Coatings Studied by <i>In Situ</i> Tribometry. Tribology Transactions, 2002, 45, 363-371.	1.1	89

TION

#	Article	IF	CITATIONS
148	Comparative study of the tribological behavior of thermal sprayed quasicrystalline coating layers. Journal of Alloys and Compounds, 2002, 342, 321-325.	2.8	33
149	Load bearing capacity of bronze, iron and iron–nickel powder composites containing fullerene-like WS2 nanoparticles. Tribology International, 2002, 35, 47-53.	3.0	37
150	Application oriented tribotesting of thin layers. Surface and Coatings Technology, 2002, 151-152, 454-461.	2.2	0
151	Tribological properties of Al–Ni–Co–Si quasicrystalline coatings against Cr-coated cast iron disc. Wear, 2002, 253, 1057-1069.	1.5	12
152	Étude des transformations microstructurales survenant lors deÂl'endommagement par frottement sec d'un couple fonte/acierA study of microstructural transformations occurring during the deterioration by dry friction of an iron/steel pair. Mecanique Et Industries, 2002, 3, 237-243.	0.2	0
153	Rheology and flows of solid third bodies: background and application to an MoS1.6 coating. Wear, 2002, 252, 546-556.	1.5	117
154	Title is missing!. Tribology Letters, 2002, 12, 229-234.	1.2	4
155	The Effect of the Third Body on the Fretting Wear Behavior of Coatings. Journal of Materials Engineering and Performance, 2002, 11, 288-293.	1.2	7
156	Tribological properties of WS2 nanoparticles under mixed lubrication. Wear, 2003, 255, 785-793.	1.5	291
157	An energy description of wear mechanisms and its applications to oscillating sliding contacts. Wear, 2003, 255, 287-298.	1.5	290
158	Superior tribological properties of powder materials with solid lubricant nanoparticles. Wear, 2003, 255, 794-800.	1.5	93
159	Nano-rheological properties of polymeric third bodies generated within fretting contacts. Surface and Coatings Technology, 2003, 163-164, 435-443.	2.2	35
160	Modification of contact surfaces by fullerene-like solid lubricant nanoparticles. Surface and Coatings Technology, 2003, 163-164, 405-412.	2.2	42
161	Dry sliding wear of magnetron sputtered TiN/CrN superlattice coatings. Surface and Coatings Technology, 2003, 173, 58-66.	2.2	30
162	In situ analysis and modeling of crack initiation and propagation within model fretting contacts using polymer materials. Tribology International, 2003, 36, 109-119.	3.0	30
163	Self-optimization in tool wear for friction-stir welding of Al 6061+20% Al2O3 MMC. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 349, 156-165.	2.6	145
164	Modeling the consequences of local kinematics of the first body on friction and on third body sources in wear. Wear, 2003, 255, 299-308.	1.5	33
165	Progression of the stick/slip zones in a dry wheel-rail contact: Updating theories on the basis of tribological reality. Tribology Series, 2003, , 845-853.	0.1	4

#	Article	IF	CITATIONS
167	Role of third bodies in friction and wear of protective coatings. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, S232-S240.	0.9	142
168	Wear mechanisms of UHMWPE for artificial knee joints in combined rolling and sliding cyclic motion. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A/Chung-kuo Kung Ch'eng Hsuch K'an, 2003, 26, 825-834.	0.6	0
169	Kinetics of particle detachment: contribution of a granular model. Tribology Series, 2003, 43, 63-73.	0.1	4
170	Numerical study of the wear flows in a plane contact. Tribology Series, 2003, , 85-93.	0.1	1
171	Third Body Formation on Brake Pads and Rotors. , 0, , .		5
172	A Granular Dynamic Model for the Degradation of Material. Journal of Tribology, 2004, 126, 606-614.	1.0	47
173	Granular Lubrication: Toward an Understanding of the Transition Between Kinetic and Quasi-Fluid Regime. Journal of Tribology, 2004, 126, 137-145.	1.0	78
174	The role and effects of the third body in the wheel-rail interaction. Fatigue and Fracture of Engineering Materials and Structures, 2004, 27, 423-436.	1.7	56
175	Effect of Interfacial Layers on Wear Behavior of a Dental Glassâ€Ceramic. Journal of the American Ceramic Society, 2000, 83, 1831-1833.	1.9	14
176	Friction layers and friction films on PMC brake pads. Wear, 2004, 257, 215-226.	1.5	158
177	A study on sliding wear mechanism of ultrahigh molecular weight polyethylene/polypropylene blends. Wear, 2004, 256, 1088-1094.	1.5	46
178	Effects of temperature on tribological properties of nanostructured and conventional Al2O3–3 wt.% TiO2 coatings. Wear, 2004, 256, 1018-1025.	1.5	48
179	Low Friction Stainless Steel Coatings Graphite Doped Elaborated by Air Plasma Sprayed. Journal of Materials Engineering and Performance, 2004, 13, 557-563.	1.2	1
180	Thermal stability of frictional surface layer and wear debris of epoxy nanocomposites in relation to the mechanism of tribological performance improvement. Journal of Materials Science, 2004, 39, 3817-3820.	1.7	12
181	Cr-Mo solid solutions forced by high-energy ball milling. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 1105-1111.	1.1	1
182	Crâ^'Mo solid solutions forced by high-energy ball milling. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 1105-1111.	1.1	11
183	Tribological performance of SiC and TiB2 against SiC and Al2O3 at low sliding speeds. Wear, 2004, 256, 695-704.	1.5	34
184	Finite element simulation and experimental validation of fretting wear. Wear, 2004, 256, 1114-1127.	1.5	389

#	Article	IF	CITATIONS
185	Diamond polishing. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2004, 460, 3547-3568.	1.0	83
186	Surface Micrography and Analysis. Tribology Series, 2004, , 165-220.	0.1	Ο
187	Friction behaviour of plasma-sprayed stainless steel coatings doped with graphite particles. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2004, 218, 479-484.	1.0	0
188	Simulation of Wear Through Mass Balance in a Dry Contact. , 2004, , 1157.		2
189	Simulation of Wear Through Mass Balance in a Dry Contact. Journal of Tribology, 2005, 127, 230-237.	1.0	56
190	Widening Classical Wear Laws to the Concept of Third Body. , 2005, , 51.		Ο
191	Finite Element Analysis of a Contact With Friction Between an Elastic Body and a Thin Soft Layer. Journal of Tribology, 2005, 127, 461-468.	1.0	3
192	Fracture of Glassy Polymers Within Sliding Contacts. , 0, , 153-193.		3
193	Numerical study of a thin layer of cohesive particles under plane shearing. Powder Technology, 2005, 159, 46-54.	2.1	54
194	Experimental and modelling aspects of abrasive wear of a A357 aluminium alloy under gross slip fretting conditions. Wear, 2005, 258, 40-49.	1.5	41
195	Improvement of the adhesive wear resistance of steel by nitriding quantified by the energy dissipated in friction. Wear, 2005, 258, 712-718.	1.5	18
196	Wear kinetics of Ti–6Al–4V under constant and variable fretting sliding conditions. Wear, 2005, 259, 292-299.	1.5	53
197	Tribology of polymers: Adhesion, friction, wear, and mass-transfer. Tribology International, 2005, 38, 910-921.	3.0	572
198	Nanoscale multilayer WC/C coatings developed for nanopositioning, part II: Friction and wear. Thin Solid Films, 2005, 488, 140-148.	0.8	30
199	Clay exfoliation and organic modification on wear of nylon 6 nanocomposites processed by different routes. Composites Science and Technology, 2005, 65, 2314-2328.	3.8	125
200	Applications of WS2(MoS2) inorganic nanotubes and fullerene-like nanoparticles for solid lubrication and for structural nanocomposites. Journal of Materials Chemistry, 2005, 15, 1782.	6.7	315
201	Presence and role of the third body in a wheel–rail contact. Wear, 2005, 258, 1081-1090.	1.5	63
202	Wear of truck brake lining materials using three different test methods. Wear, 2005, 259, 1022-1030.	1.5	33

#	Article	IF	Citations
203	Wear of different aluminum matrix composites under conditions that generate a mechanically mixed layer. Wear, 2005, 259, 590-601.	1.5	128
204	Molecular dynamics studies of atomic-scale tribological characteristics for different sliding systems. Tribology Letters, 2005, 18, 315-330.	1.2	25
205	Experimental Thermal Study of Contact With Third Body. , 2005, , 75.		1
207	Modeling of Transient Wear Behaviors During Sliding Wear of Polymers. , 2005, , 37.		0
209	Investigating worn surfaces of nanoscale TiAlN/VN multilayer coating using FIB and TEM. Journal of Physics: Conference Series, 2006, 26, 95-98.	0.3	8
210	Characterization of wear debris of systems operated under low wear-rate conditions. Wear, 2006, 260, 458-461.	1.5	38
211	Experimental thermal study of contact with third body. Wear, 2006, 261, 467-476.	1.5	24
212	Characterization of fretting fatigue in self-piercing riveted aluminium alloy sheets. Fatigue and Fracture of Engineering Materials and Structures, 2006, 29, 646-654.	1.7	25
213	The influence of roughness on tribological properties of nuclear grade graphite. Journal of Nuclear Materials, 2006, 350, 74-82.	1.3	9
214	Understanding the occurrence of squealing noise using the temporal finite element method. Journal of Sound and Vibration, 2006, 292, 443-460.	2.1	15
215	A novel electrodeposited Ni–P gradient deposit for replacement of conventional hard chromium. Surface and Coatings Technology, 2006, 200, 3719-3726.	2.2	75
216	Tribological behaviour of epoxy based composites for rapid tooling. Wear, 2006, 260, 30-39.	1.5	53
217	Nano-mechanical behaviour of the 3rd body generated in dry friction—Feedback effect of the 3rd body and influence of the surrounding environment on the tribology of graphite. Wear, 2006, 260, 601-614.	1.5	27
218	A tribological characterization of the "damage mechanism―of low rail corrugation on sharp curved track. Wear, 2006, 260, 984-995.	1.5	18
219	Third body formation on brake pads and rotors. Tribology International, 2006, 39, 401-408.	3.0	111
220	Evaluation of the friction of WC/DLC solid lubricating films in vacuum. Tribology International, 2006, 39, 1584-1590.	3.0	18
221	A comparative study on the tribological behavior of nanocrystalline nickel and cobalt coatings correlated with grain size and phase structure. Materials Chemistry and Physics, 2006, 99, 96-103.	2.0	145
222	An investigation on wear mechanism of POM/LLDPE blends. Journal of Applied Polymer Science, 2006, 101, 48-53.	1.3	24

ARTICLE IF CITATIONS # Mechanische und tribologische Eigenschaften von hochstickstoffhaltigen Austeniten. 223 0.5 7 Materialwissenschaft Und Werkstofftechnik, 2006, 37, 747-754. Influence of Re-adhesion on the Wear and Friction of Glass Fibre–Reinforced Polyester Composites. 224 1.8 Journal of Adhesion, 2006, 82, 1033-1060. Fretting wear of Ti(CxNy) PVD coatings under variable environmental conditions. Proceedings of the 225 1.0 14 Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2006, 220, 125-134. Oscillating sliding wear behaviour of SiC, TiC, TiB2, 59SiC–41TiB2 and 52SiC–24TiC–24TiB2 materials up to 750°C in air. TriboTest Journal: Tribology and Lubrication in Practice, 2006, 12, 99-111. Discrete element model: A helpful tool for abrasion process study. Proceedings of the Institution of 227 1.5 3 Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2007, 221, 1031-1039. Modeling of Fretting Wear Under Gross Slip and Partial Slip Conditions. Journal of Tribology, 2007, 129, 528-535. 1.0 Friction Coefficient as a Macroscopic View of Local Dissipation. Journal of Tribology, 2007, 129, 229 1.0 19 829-835. Tribochemistry and material transfer for the ultrananocrystalline diamond-silicon nitride interface 230 revealed by x-ray photoelectron emission spectromicroscopy. Journal of Vacuum Science & 1.3 Technology B, 2007, 25, 1700. Mechanisms of friction in diamondlike nanocomposite coatings. Journal of Applied Physics, 2007, 101, 231 1.1 62 063521. Manufacture and Properties of AlON-TiN Particulate Composites. Key Engineering Materials, 2005, 0.4 280-283, 1133-1138. Polymer entanglement density and its influence on interfacial friction. Physical Review E, 2007, 76, 233 0.8 27 026101. A Review of Dry Particulate Lubrication: Powder and Granular Materials. Journal of Tribology, 2007, 234 1.0 111 129, 438-449. Wear modeling and the third body concept. Wear, 2007, 262, 949-957. 235 1.5 166 Towards a better understanding of brake friction materials. Wear, 2007, 263, 1189-1201. 1.5 Coupling between friction physical mechanisms and transient thermal phenomena involved in 237 1.5 58 pad–disc contact during railway braking. Wear, 2007, 263, 1230-1242. In situ tribometry of solid lubricant nanocomposite coatings. Wear, 2007, 262, 1239-1252. Modelling third body flows with a discrete element methodâ€"a tool for understanding wear with 239 3.0100 adhesive particles. Tribology International, 2007, 40, 973-981. Effect of the third-body particles on the tool–chip contact and tool-wear behaviour during dry 240 24 cutting of aeronautical titanium alloys. Tribology International, 2007, 40, 1351-1359.

#	Article	IF	CITATIONS
241	Tribological property of self-lubricating PM304 composite. Wear, 2007, 262, 575-581.	1.5	56
242	Analysis of tribological behaviour of pad–disc contact in railway braking. Wear, 2007, 262, 582-591.	1.5	80
243	The application of fretting wear modelling to a spline coupling. Wear, 2007, 262, 1205-1216.	1.5	52
244	A finite element based approach to simulating the effects of debris on fretting wear. Wear, 2007, 263, 481-491.	1.5	87
245	The role of the tribofilm and roll-like debris in the wear of nanoscale nitride PVD coatings. Wear, 2007, 263, 1328-1334.	1.5	36
246	Microstructure of tribologically induced nanolayers produced at ultra-low wear rates. Wear, 2007, 263, 1259-1265.	1.5	51
247	In Situ Analysis of Third Body Contributions to Sliding Friction of a Pb–Mo–S Coating in Dry and Humid Air. Tribology Letters, 2007, 28, 263-274.	1.2	53
248	Discrete Element method, a tool to investigate contacts in material forming. International Journal of Material Forming, 2008, 1, 1235-1238.	0.9	3
249	Micro-tribological performance of MoS2 lubricants with varying Au content. Surface and Coatings Technology, 2008, 203, 761-765.	2.2	16
250	Mechanical and chemical investigation of the temperature influence on the tribological mechanisms occurring in OMC/cast iron friction contact. Wear, 2008, 264, 815-825.	1.5	45
251	Fretting wear of a coated titanium alloy under free displacement. Wear, 2008, 264, 166-176.	1.5	18
252	An in situ mechanism for self-replenishing powder transfer films: Experiments and modeling. Wear, 2008, 264, 131-138.	1.5	51
253	Tensile and wear behaviour of in situ Al–7Si/TiB2 particulate composites. Wear, 2008, 265, 134-142.	1.5	286
254	Run-in behavior of nanocrystalline diamond coatings studied by in situ tribometry. Wear, 2008, 265, 477-489.	1.5	71
255	Traction, forces, wheel climb and damage in high-speed railway operations. Wear, 2008, 265, 1446-1451.	1.5	19
256	Contact surface topography and system dynamics of brake squeal. Wear, 2008, 265, 1784-1792.	1.5	113
257	Numerical simulation of typical contact situations of brake friction materials. Tribology International, 2008, 41, 1-8.	3.0	32
258	A discrete element model to investigate sub-surface damage due to surface polishing. Tribology International, 2008, 41, 957-964.	3.0	33

ARTICLE IF CITATIONS On the geometry of the fuel rod supports concerning a fretting wear failure. Nuclear Engineering 259 0.8 32 and Design, 2008, 238, 3321-3330. Some results concerning the development of the molecular-mechanical theory of friction. Journal of 0.1 Friction and Wear, 2008, 29, 243-250. Finite element modelling of fretting wear surface evolution: Application to a Ti–6A1–4V contact. 261 1.5 85 Wear, 2008, 264, 26-36. Tribology of Diamond-Like Carbon Films., 2008,,. 206 On the thermodynamics of degradation. Proceedings of the Royal Society A: Mathematical, Physical 263 1.0 149 and Engineering Sciences, 2008, 464, 2001-2014. Third Bodies and Tribochemistry of DLC Coatings., 2008, , 201-236. Effect of particle size dispersion on granular lubrication regimes. Proceedings of the Institution of 265 1.0 22 Mechanical Engineers, Part J: Journal of Engineering Tribology, 2008, 222, 725-739. Friction reduction and wear resistance of electro-co-deposited inorganic fullerene-like WS₂ coating for improved stainless steel orthodontic wires. Journal of Materials 1.2 266 Research, 2008, 23, 2909-2915. 267 Observing Interfacial Sliding Processes in Solidâ€"Solid Contacts. MRS Bulletin, 2008, 33, 1159-1167. 1.7 45 Experimental identification and characterization of the effects of contaminants in the wheelâ€"rail contact. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid 1.3 Transit, 2008, 222, 207-216. Interactions between Third-Body Flows and Localisation Phenomena during Railway High-Energy Stop 269 0.4 18 Braking. SAE International Journal of Passenger Cars - Mechanical Systems, 0, 1, 1267-1275. Modeling of Friction Evolution and Assessment of Impacts on Vibration Excitation at the Pad-Disc 0.4 Interface. SAE International Journal of Passenger Cars - Mechanical Systems, 2008, 1, 1258-1266. Genesis of the Third-Body at the Pad-Disc Interface: Case Study Of Sintered Metal Matrix Composite 272 0.3 11 Lining Material. SAE International Journal of Materials and Manufacturing, 2009, 2, 25-32. A multi-scale model for fretting wear with oxidation-debris effects. Proceedings of the Institution of 1.0 Mechanical Engineers, Part J: Journal of Engineering Tribology, 2009, 223, 1019-1031. Selfa€lubricating and selfa€protecting properties of polymer composites for wear and friction 274 2.39 applications. Polymer Composites, 2009, 30, 932-940. Fundamental aspects and recent progress on wear/scratch damage in polymer nanocomposites. 14.8 223 Materials Science and Engineering Reports, 2009, 63, 31-80. Characterizations of C/C composites and wear debris after heavy braking demands. Carbon, 2009, 47, 276 5.432 85-93. Utility of a fretting device working under free displacement. Tribology International, 2009, 42, 277 1330-1339.

#	Article	IF	CITATIONS
278	Sharp curved track corrugation: From corrugation observed on-site, to corrugation reproduced on simulators. Tribology International, 2009, 42, 1691-1705.	3.0	23
279	Analytical approach for wear prediction of metallic and ceramic materials in tribological applications. Wear, 2009, 266, 476-481.	1.5	12
280	A comprehensive microscopic study of third body formation at the interface between a brake pad and brake disc during the final stage of a pin-on-disc test. Wear, 2009, 267, 781-788.	1.5	123
281	Characterisation of fretting-induced wear debris for Ti-6Al-4 V. Wear, 2009, 267, 283-291.	1.5	76
282	Third body effects in the wear of polyamide: Micro-mechanisms and wear particles analysis. Wear, 2009, 266, 1013-1020.	1.5	11
284	Industrial Lubricants. , 2009, , 239-292.		3
285	Self-lubricating carbon nanotube reinforced nickel matrix composites. Journal of Applied Physics, 2009, 106, .	1.1	72
286	Experimental and Density Functional Theory Study of the Tribochemical Wear Behavior of SiO ₂ in Humid and Alcohol Vapor Environments. Langmuir, 2009, 25, 13052-13061.	1.6	89
287	Friction control during automotive braking: experimental observations and simulation at nanometre scale. Tribology - Materials, Surfaces and Interfaces, 2009, 3, 196-202.	0.6	8
288	Discrete Element Method, a Tool to Investigate Complex Material Behaviour in Material Forming. , 2010, , .		2
289	On the Thermodynamics of Friction and Wear―A Review. Entropy, 2010, 12, 1021-1049.	1.1	155
290	Wear and friction of TiAlN/VN coatings against Al2O3 in air at room and elevated temperatures. Acta Materialia, 2010, 58, 2912-2925.	3.8	100
291	Micro-scale sliding contacts on Au and Au-MoS2 coatings. Surface and Coatings Technology, 2010, 205, 1449-1454.	2.2	22
292	Friction and wear behavior of Ni–P coated Si3N4 reinforced Al6061 composites. Tribology International, 2010, 43, 623-634.	3.0	144
293	Multiscale computation of fretting wear at the blade/disk interface. Tribology International, 2010, 43, 708-718.	3.0	57
294	Modeling of brake pad-disc interface with emphasis to dynamics and deformation of structures. Tribology International, 2010, 43, 719-727.	3.0	33
295	The effect of sample finishing on the tribology of metal/metal lubricated contacts. Wear, 2010, 268, 1518-1523.	1.5	25
296	Changes in tribological performance of high molecular weight high density polyethylene induced by the addition of molybdenum disulphide particles. Wear, 2010, 269, 31-45.	1.5	58

#	Article	IF	CITATIONS
297	On the stabilized asymptotic response of a system of solids in contact with wear. Comptes Rendus - Mecanique, 2010, 338, 545-552.	2.1	0
298	Fault weakening and earthquake instability by powder lubrication. Nature, 2010, 467, 452-455.	13.7	249
299	Coupling system dynamics and contact behaviour: Modelling bearings subjected to environmental induced vibrations and â€~false brinelling' degradation. Mechanical Systems and Signal Processing, 2010, 24, 1068-1080.	4.4	41
300	Ionothermal Synthesis of Layered Zirconium Phosphates and Their Tribological Properties in Mineral Oil. Inorganic Chemistry, 2010, 49, 8270-8275.	1.9	44
301	Investigation of surface film nanostructure and assessment of its impact on friction force stabilization during automotive braking. International Journal of Materials Research, 2010, 101, 669-675.	0.1	38
302	Chemistry and Technology of Lubricants. , 2010, , .		71
303	Influence of boric acid additive size on green lubricant performance. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 4851-4868.	1.6	103
304	Application Study of a Modified Phenolic Resin as Binder for Hybrid Fibers Reinforced Brake Pad for Railroad Passenger-coach Braking. Journal of Macromolecular Science - Pure and Applied Chemistry, 2011, 48, 261-270.	1.2	5
305	Friction Stir Welding Technology. Advanced Structured Materials, 2011, , 85-124.	0.3	22
306	New Insights into Wear and Biological Effects of Metal-on-Metal Bearings. Journal of Bone and Joint Surgery - Series A, 2011, 93, 76-83.	1.4	77
307	Tribological behaviour of Pearlitic and Bainitic steel grades under various sliding conditions. Tribology International, 2011, , .	3.0	1
308	Functionality of conventional brake friction materials – Perceptions from findings observed at different length scales. Wear, 2011, 271, 2198-2207.	1.5	61
309	Characterization of wear particles generated from CoCrMo alloy under sliding wear conditions. Wear, 2011, 271, 1658-1666.	1.5	73
310	Friction and wear behaviour of cast Al 6063 based in situ metal matrix composites. Wear, 2011, 271, 1928-1939.	1.5	114
311	On the local description of wear-induced volume loss andÂshape changes for engineering surfaces. Meccanica, 2011, 46, 509-521.	1.2	2
312	Effect of Sliding Speed on Surface Modification and Tribological Behavior of Copper–Graphite Composite. Tribology Letters, 2011, 41, 363-370.	1.2	106
313	Tribological Characteristics of Combined Layered Phosphate and Silicate Additives in Mineral Oil. Tribology Letters, 2011, 43, 197-203.	1.2	9
314	Aggregate breakage under dynamic loading. Granular Matter, 2011, 13, 385-393.	1.1	11

#	Article	IF	CITATIONS
315	New insights into the microstructure of the friction surface layer of C/C composites. Carbon, 2011, 49, 4554-4562.	5.4	34
316	Sliding friction and wear behaviors of surface-coated natural serpentine mineral powders as lubricant additive. Applied Surface Science, 2011, 257, 2540-2549.	3.1	73
317	An asperity-based fractional coverage model for transfer films on a tribological surface. Wear, 2011, 270, 127-139.	1.5	16
318	Effect of surface texture on transfer layer formation and tribological behaviour of copper–graphite composite. Wear, 2011, 270, 218-229.	1.5	61
319	A novel energy-based generic wear model at the asperity level. Wear, 2011, 270, 760-770.	1.5	18
320	Numerical simulation of the third body in fretting problems. Wear, 2011, 270, 876-887.	1.5	27
321	Multiphysical modeling of third-body rheology. Tribology International, 2011, 44, 417-425.	3.0	41
322	Numerical tribology of a dry contact. Tribology International, 2011, 44, 834-844.	3.0	100
323	Practical Application Study of Hybrid Fibers Reinforced Organic Brake Pad for Railroad Passenger-Coach Braking. Journal of Macromolecular Science - Pure and Applied Chemistry, 2011, 48, 531-537.	1.2	1
324	The effects of graphite, coke and ZnS on the tribological and surface characteristics of automotive brake friction materials. Industrial Lubrication and Tribology, 2011, 63, 245-253.	0.6	21
325	Tribocorrosion mechanisms in sliding contacts. , 2011, , 118-152.		11
326	Coupling Continuous and Discontinuous Descriptions to Model First Body Deformation in Third Body Flows. Journal of Tribology, 2011, 133, .	1.0	18
327	Environmental effects in fretting. , 2011, , 100-117.		1
328	A study of third body behaviour under dry sliding conditions. Comparison of nanoscale modelling with experiment. Estonian Journal of Engineering, 2012, 18, 270.	0.3	6
329	Green Lubricants: Role of Additive Size. Green Energy and Technology, 2012, , 265-286.	0.4	13
330	FEM analysis on multibody interaction process in three body friction geometry with rough surface. Tribology - Materials, Surfaces and Interfaces, 2012, 6, 59-66.	0.6	0
331	Influence of countersurface materials on dry sliding performance of CuO/Y-TZP composite at 600°C. Journal of the European Ceramic Society, 2012, 32, 4137-4147.	2.8	6
332	Green Tribology. Green Energy and Technology, 2012, , .	0.4	70

#	Article	IF	CITATIONS
333	Friction Material Composites. Springer Series in Materials Science, 2012, , .	0.4	8
334	Materials Phenomena Revealed by InÂSitu Tribometry. Jom, 2012, 64, 35-43.	0.9	31
335	Mechanical properties and wear behavior of Al–2wt.% Cu alloy composites reinforced by B4C nanoparticles and fabricated by mechanical milling and hot extrusion. Materials Characterization, 2012, 67, 119-128.	1.9	90
336	Possible impacts of third body nanostructure on friction performance during dry sliding determined by computer simulation based on the method of movable cellular automata. Tribology International, 2012, 48, 128-136.	3.0	46
337	Microtribological performance of Au–MoS2 nanocomposite and Au/MoS2 bilayer coatings. Tribology International, 2012, 52, 144-152.	3.0	24
338	Effect of temperature on friction and wear behaviour of CuO–zirconia composites. Journal of the European Ceramic Society, 2012, 32, 2235-2242.	2.8	17
339	Scaling effects between micro- and macro-tribology for a Ti–MoS2 coating. Wear, 2012, 274-275, 149-161.	1.5	37
340	Experimental and Numerical Atomistic Investigation of the Third Body Formation Process in Dry Tungsten/Tungsten-Carbide Tribo Couples. Tribology Letters, 2013, 50, 67-80.	1.2	42
341	Verification of nanometre-scale modelling of tribofilm sliding behaviour. Tribology International, 2013, 62, 155-162.	3.0	31
342	Frictional strength and wear-rate of carbonate faults during high-velocity, steady-state sliding. Earth and Planetary Science Letters, 2013, 381, 127-137.	1.8	65
343	Friction and Wear Mechanisms of Tungsten–Carbon Systems: A Comparison of Dry and Lubricated Conditions. ACS Applied Materials & Interfaces, 2013, 5, 6123-6135.	4.0	44
344	Laser in-situ synthesis of TiB2–Al composite coating for improved wear performance. Surface and Coatings Technology, 2013, 236, 200-206.	2.2	14
345	A simple model for friction evolution infretting. Wear, 2013, 301, 517-523.	1.5	12
346	Decrypting third body flows to solve dry lubrication issue – MoS2 case study under ultrahigh vacuum. Wear, 2013, 305, 192-204.	1.5	43
347	The role of a tribofilm and wear debris in the tribological behaviour of nanocrystalline Ni–Co electrodeposits. Wear, 2013, 306, 296-303.	1.5	48
348	Tribological properties and deformation mechanism of TiAlN coating sliding with various counterbodies. Tribology International, 2013, 66, 143-149.	3.0	60
349	Influence of mild and severe wear condition in the formation and stability of friction film in clutch system. Wear, 2013, 302, 1384-1391.	1.5	19
350	The effect of temperature on wear and friction of a high strength steel in fretting. Wear, 2013, 303, 622-631.	1.5	157

#	Article	IF	CITATIONS
351	The effect of contact geometry on fretting wear rates and mechanisms for a high strengthsteel. Wear, 2013, 301, 491-500.	1.5	50
352	Fretting damage modeling of liner-bearing interaction by combined finite element – discrete element method. Tribology International, 2013, 61, 19-31.	3.0	17
353	Tribological investigation of packing friction along the stem of a valve. Tribology International, 2013, 65, 354-362.	3.0	5
354	Modelling of a thin soft layer on a self-lubricating ceramic composite. Wear, 2013, 303, 178-184.	1.5	21
355	A phenomenological model of the third body particles circulation in a high temperature contact. Wear, 2013, 298-299, 66-79.	1.5	15
356	Modelling material transfer on a single asperity scale. Wear, 2013, 307, 198-208.	1.5	23
358	Prediction of Wear in Reciprocating Dry Sliding via Dissipated Energy and Temperature Rise. Tribology Letters, 2013, 50, 365-378.	1.2	31
359	Degradation of polymer films. Soft Matter, 2013, 9, 344-358.	1.2	39
360	Developments in functional surfaces for electrical contacts [Holm Award paper]. , 2013, , .		2
361	Tribology for Scientists and Engineers. , 2013, , .		123
361 362	Tribology for Scientists and Engineers. , 2013, , . A Study of Tribological Properties of Water-Based Ceria Nanofluids. Tribology Transactions, 2013, 56, 275-283.	1.1	123 35
361 362 363	Tribology for Scientists and Engineers. , 2013, , . A Study of Tribological Properties of Water-Based Ceria Nanofluids. Tribology Transactions, 2013, 56, 275-283. THE ADVERSE EFFECT OF STEEL PARTICLE CONTAMINANTS ON FATIGUE LIFE OF GREASE LUBRICATED BALL BEARINGS. American Journal of Applied Sciences, 2014, 11, 1530-1541.	1.1	123 35 1
361 362 363 364	Tribology for Scientists and Engineers. , 2013, , .A Study of Tribological Properties of Water-Based Ceria Nanofluids. Tribology Transactions, 2013, 56, 275-283.THE ADVERSE EFFECT OF STEEL PARTICLE CONTAMINANTS ON FATIGUE LIFE OF GREASE LUBRICATED BALL BEARINGS. American Journal of Applied Sciences, 2014, 11, 1530-1541.Voltage noise across a metal/metal sliding contact as a probe of the surface state. Journal of Applied Physics, 2014, 115, 154903.	1.1 0.1 1.1	123 35 1 7
361 362 363 364	Tribology for Scientists and Engineers. , 2013, , .A Study of Tribological Properties of Water-Based Ceria Nanofluids. Tribology Transactions, 2013, 56, 275-283.THE ADVERSE EFFECT OF STEEL PARTICLE CONTAMINANTS ON FATIGUE LIFE OF GREASE LUBRICATED BALL BEARINGS. American Journal of Applied Sciences, 2014, 11, 1530-1541.Voltage noise across a metal/metal sliding contact as a probe of the surface state. Journal of Applied Physics, 2014, 115, 154903.Some Considerations on the Role of Third Bodies during Automotive Braking. SAE International Journal of Passenger Cars - Mechanical Systems, 2014, 7, 1287-1294.	1.1 0.1 1.1	123 35 1 7 8
361 362 363 364 365	Tribology for Scientists and Engineers. , 2013, , .A Study of Tribological Properties of Water-Based Ceria Nanofluids. Tribology Transactions, 2013, 56, 275-283.THE ADVERSE EFFECT OF STEEL PARTICLE CONTAMINANTS ON FATICUE LIFE OF GREASE LUBRICATED BALL BEARINGS. American Journal of Applied Sciences, 2014, 11, 1530-1541.Voltage noise across a metal/metal sliding contact as a probe of the surface state. Journal of Applied Physics, 2014, 115, 154903.Some Considerations on the Role of Third Bodies during Automotive Braking. SAE International Journal of Passenger Cars - Mechanical Systems, 2014, 7, 1287-1294.Amontons-Coulomb Friction Laws, A Review of the Original Manuscript. SAE International Journal of Materials and Manufacturing, 0, 8, 98-103.	1.1 0.1 1.1 0.4 0.3	123 35 1 7 8 15
361 362 363 364 365 366	Tribology for Scientists and Engineers., 2013, , . A Study of Tribological Properties of Water-Based Ceria Nanofluids. Tribology Transactions, 2013, 56, 275-283. THE ADVERSE EFFECT OF STEEL PARTICLE CONTAMINANTS ON FATIGUE LIFE OF GREASE LUBRICATED BALL BEARINGS. American Journal of Applied Sciences, 2014, 11, 1530-1541. Voltage noise across a metal/metal sliding contact as a probe of the surface state. Journal of Applied Physics, 2014, 115, 154903. Some Considerations on the Role of Third Bodies during Automotive Braking. SAE International Journal of Passenger Cars - Mechanical Systems, 2014, 7, 1287-1294. Amontons-Coulomb Friction Laws, A Review of the Original Manuscript. SAE International Journal of Materials and Manufacturing, 0, 8, 98-103. Analysis of friction, wear and oxidation behaviour of X40CrMoV5/Fe3608 steel couple in an open-sliding contact. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2014, 228, 276-287.	1.1 0.1 1.1 0.4 0.3 1.0	123 35 1 7 8 15 7
 361 362 363 364 365 366 367 368 	Tribology for Scientists and Engineers. , 2013, , .A Study of Tribological Properties of Water-Based Ceria Nanofluids. Tribology Transactions, 2013, 56, 275-283.THE ADVERSE EFFECT OF STEEL PARTICLE CONTAMINANTS ON FATICUE LIFE OF GREASE LUBRICATED BALL BEARINGS. American Journal of Applied Sciences, 2014, 11, 1530-1541.Voltage noise across a metal/metal sliding contact as a probe of the surface state. Journal of Applied Physics, 2014, 115, 154903.Some Considerations on the Role of Third Bodies during Automotive Braking, SAE International Journal of Passenger Cars - Mechanical Systems, 2014, 7, 1287-1294.Amontons-Coulomb Friction Laws, A Review of the Original Manuscript. SAE International Journal of Materials and Manufacturing, 0, 8, 98-103.Analysis of friction, wear and oxidation behaviour of X40CrMoV5/Fe360B steel couple in an open-sliding contact. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2014, 228, 276-287.DEM Simulation on the Startup Dynamic Process of a Plain Journal Bearing Lubricated by Granular Media. Tribology Transactions, 2014, 57, 198-205.	1.1 0.1 1.1 0.4 0.3 1.0 1.1	123 35 1 7 8 15 7

#	Article	IF	CITATIONS
370	DEM Simulation of Ceramic Tool Abrasion in Machining Superalloy. Materials Science Forum, 0, 800-801, 385-389.	0.3	2
371	Wear behaviour of PMMA against 316L stainless steel under dry and lubricated conditions. Industrial Lubrication and Tribology, 2014, 66, 601-608.	0.6	3
372	Sliding wear-induced chemical nanolayering in Cu–Ag, and its implications for high wear resistance. Acta Materialia, 2014, 72, 148-158.	3.8	70
373	The preparation and tribological properties of surface modified zinc borate ultrafine powder as a lubricant additive in liquid paraffin. Tribology International, 2014, 70, 155-164.	3.0	28
374	Fault Wear by Damage Evolution During Steady-State Slip. Pure and Applied Geophysics, 2014, 171, 3143-3157.	0.8	12
375	Temperature and thermoelastic instability at tread braking using cast iron friction material. Wear, 2014, 314, 171-180.	1.5	30
376	Experimental study of the impact of grease particle contaminants on wear and fatigue life of ball bearings. Engineering Failure Analysis, 2014, 39, 164-180.	1.8	26
377	The Tribological Properties of Zinc Borate Ultrafine Powder as a Lubricant Additive in Sunflower Oil. Tribology Transactions, 2014, 57, 425-434.	1.1	37
378	Understanding the wear and tribological properties of ceramic matrix composites. , 2014, , 312-339.		12
379	Coarse Graining and Localized Plasticity between Sliding Nanocrystalline Metals. Physical Review Letters, 2014, 113, 036101.	2.9	37
380	Using FEM–DEM coupling method to study three-body friction behavior. Wear, 2014, 318, 114-123.	1.5	31
381	Third Body Behavior During Dry Sliding of Cold-Sprayed Al-Al2O3 Composites: In Situ Tribometry and Microanalysis. Tribology Letters, 2014, 54, 191-206.	1.2	31
382	Bit cutter-on-rock tribometry: Analyzing friction and rate-of-penetration for deep well drilling substrates. Tribology International, 2014, 77, 178-185.	3.0	27
383	On the physical nature of tribolayers and wear debris after sliding wear in a superalloy/steel tribosystem at 25 and 300°C. Wear, 2014, 317, 26-38.	1.5	56
384	Identification of heat partition in grinding related to process parameters, using the inverse heat flux conduction model. Applied Thermal Engineering, 2014, 66, 122-130.	3.0	36
385	Degradation of high loaded oscillating bearings: Numerical analysis and comparison with experimental observations. Wear, 2014, 317, 141-152.	1.5	20
386	Simulation of fretting wear evolution for fatigue endurance limit estimation of assemblies. Wear, 2014, 316, 49-57.	1.5	26
387	Shear-induced particle size segregation in composite powder transfer films. Powder Technology, 2014, 264, 133-139.	2.1	7

#	Article	IF	CITATIONS
388	Deposition of MoS2 particulate layers by pressure impregnation of porous sliding bearings. Archives of Civil and Mechanical Engineering, 2014, 14, 255-261.	1.9	2
392	Third Body Concept and Wear Particle Behavior in Dry Friction Sliding Conditions. Key Engineering Materials, 0, 640, 1-12.	0.4	23
395	Dependence of tribofilm characteristics on the running-in behavior of aluminum–silicon alloys. Journal of Materials Science, 2015, 50, 5524-5532.	1.7	12
396	Effect of copper powder third body on tribological property of copper-based friction materials. Tribology International, 2015, 90, 420-425.	3.0	67
397	Wear analysis of swash plate/slipper pair of axis piston hydraulic pump. Tribology International, 2015, 90, 467-472.	3.0	48
398	Time-of-Flight Secondary Ion Mass Spectroscopy investigation of the chemical rearrangement undergone by MoS2 under tribological conditions. Thin Solid Films, 2015, 588, 67-77.	0.8	14
399	Fretting wear mapping: the influence of contact geometry and frequency on debris formation and ejection for a steel-on-steel pair. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471, 20140291.	1.0	32
400	Investigation of crystalline and amorphous MoS 2 based coatings: Towards developing new coatings for space applications. Wear, 2015, 330-331, 448-460.	1.5	53
401	Exceptional Friction Mitigation via Subsurface Plastic Shear in Defective Nanocrystalline Ceramics. Materials Research Letters, 2015, 3, 23-29.	4.1	7
402	Analysis of mechanical properties of large particles in contact process and their impact on powder lubrication. Tribology - Materials, Surfaces and Interfaces, 2015, 9, 99-104.	0.6	4
403	Fretting-induced friction and wear in large flat-on-flat contact with quenched and tempered steel. Tribology International, 2015, 92, 191-202.	3.0	45
404	Tribology of particle suspensions in rolling-sliding soft contacts. Biotribology, 2015, 3, 1-10.	0.9	45
405	A numerical framework for discrete modelling of friction and wear using Voronoi polyhedrons. Tribology International, 2015, 90, 343-355.	3.0	22
407	Wear Debris Mobility, Aligned Surface Roughness, and the Low Wear Behavior of Filled Polytetrafluoroethylene. Tribology Letters, 2015, 60, 1.	1.2	21
408	System dynamic instabilities induced by sliding contact: A numerical analysis with experimental validation. Mechanical Systems and Signal Processing, 2015, 58-59, 70-86.	4.4	15
409	The influence of Al2O3 particle morphology on the coating formation and dry sliding wear behavior of cold sprayed Al–Al2O3 composites. Surface and Coatings Technology, 2015, 270, 324-333.	2.2	109
410	Surface Softening in Metal–Ceramic Sliding Contacts: An Experimental and Numerical Investigation. ACS Nano, 2015, 9, 1478-1491.	7.3	22
411	Vacuum Tribological Properties of Titanium with a Nanocrystalline Surface Layer. Tribology Letters, 2015, 57, 1.	1.2	32

#	Article	IF	CITATIONS
412	Understanding integrated effects of humidity and interfacial transfer film formation on tribological behaviors of sintered polycrystalline diamond. RSC Advances, 2015, 5, 53484-53496.	1.7	36
413	Thermo-Mechanical Investigations of a Tribological Interface. Tribology Letters, 2015, 58, 1.	1.2	10
414	Effect of Cu particles as an interfacial media addition on the friction coefficient and interface microstructure during (steel/steel) pin on disc tribotest. Wear, 2015, 330-331, 70-78.	1.5	27
415	Adhesion tendency of PVD TiAlN coatings at elevated temperatures during reciprocating sliding against carbon steel. Wear, 2015, 330-331, 209-222.	1.5	6
416	The role of frictional power dissipation (as a function of frequency) and test temperature on contact temperature and the subsequent wear behaviour in a stainless steel contact in fretting. Wear, 2015, 330-331, 103-111.	1.5	38
417	The friction coefficient evolution of a TiN coated contact during sliding wear. Applied Surface Science, 2015, 345, 109-115.	3.1	78
418	Friction and wear behaviour of dual phase steels in discontinuous sliding contact conditions as a function of sliding speed and contact frequency. Tribology International, 2015, 90, 32-42.	3.0	29
419	Analysis of Nanoscale Wear Particles from Lubricated Steel–Steel Contacts. Tribology Letters, 2015, 58, 1.	1.2	9
420	Energy filtering transmission electron microscopy and atomistic simulations of tribo-induced hybridization change of nanocrystalline diamond coating. Carbon, 2015, 87, 317-329.	5.4	68
421	Influence of geometry imperfections on squeal noise linked to mode lock-in. International Journal of Solids and Structures, 2015, 75-76, 99-108.	1.3	16
422	Influence of subsurface microstructure on the running-in of an AlSi alloy. Wear, 2015, 332-333, 926-931.	1.5	10
423	The running-in corridor of lubricated metal–metal contacts. Wear, 2015, 342-343, 60-64.	1.5	18
424	Contribution on understanding the friction film development in the performance of a dry automotive clutch system. Wear, 2015, 342-343, 364-376.	1.5	14
425	Monolayer Transfer Layers During Sliding at the Atomic Scale. Tribology Letters, 2015, 59, 1.	1.2	8
426	Mechanisms of incursion accommodation during interaction between a vibrating blade and an abradable coating. Wear, 2015, 330-331, 406-418.	1.5	17
427	Synthesis and annealing effects on the properties of nanostructured Ti–Al–V–N coatings deposited by plasma enhanced magnetron sputtering. Materials Chemistry and Physics, 2015, 149-150, 179-187.	2.0	19
428	On the Growth Rate of Tribomaterial in Bovine Serum Lubricated Sliding Contacts. Lubricants, 2016, 4, 21.	1.2	6
429	Tribological Analysis of Bolted Joints Submitted to Vibrations. Tribology Online, 2016, 11, 255-263.	0.2	3

		CITATION REPORT	
#	Article	IF	CITATIONS
430	The Role of Solid Lubricants for Brake Friction Materials. Lubricants, 2016, 4, 5.	1.2	71
431	Tribofilms Forming in Oil-Lubricated Contacts. Lubricants, 2016, 4, 27.	1.2	8
432	Numerical Investigation of Thirdâ€Body Behavior in Dry and Wet Environments under Plane Shearin Chemical Engineering and Technology, 2016, 39, 1497-1508.	g. 0.9	3
433	Combining in situ and online approaches to monitor interfacial processes in lubricated sliding contacts. MRS Communications, 2016, 6, 301-308.	0.8	9
434	FEM-DEM coupling simulations of the tool wear characteristics in prestressed machining superalloy MATEC Web of Conferences, 2016, 80, 04001.	0.1	3
435	Surface quality, microstructure, mechanical properties and tribological results of the SKD 61 tool steel with prior heat treatment affected by the deposited energy of continuous wave laser micro-polishing. Journal of Materials Processing Technology, 2016, 234, 177-194.	3.1	14
436	The influence of the initial near-surface microstructure and imposed stress level on the running-in characteristics of lubricated steel contacts. Wear, 2016, 360-361, 114-120.	1.5	13
437	Pin-on-disc tribotests with the addition of Cu particles as an interfacial media: Characterization of disc tribosurfaces using SEM-FIB techniques. Tribology International, 2016, 100, 351-359.	3.0	13
438	Stick-slip in stepping piezoelectric Inertia Drive Motors – Mechanism impact on a rubbing contac Tribology International, 2016, 100, 371-379.	t. 3.0	18
439	A tribological approach to understand the behavior of oral-care silica during tooth brushing. Biotribology, 2016, 6, 1-11.	0.9	2
440	Multiscale modeling of low friction sliding behavior of a hybrid epoxy-matrix nanocomposite. Procedia Structural Integrity, 2016, 2, 2347-2354.	0.3	2
441	Dry sliding wear behaviour and structural characteristics of laser-annealed electroless Ni–P/Ni–Mo–P duplex coatings. Tribology International, 2016, 103, 343-351.	3.0	19
442	Relationship between arrangement patterns and tribological properties of copper-aluminum-graphi materials. Industrial Lubrication and Tribology, 2016, 68, 170-175.	.e 0.6	2
443	Soft Interface Fracture Transfer in Nanoscale MoS2. Tribology Letters, 2016, 64, 1.	1.2	9
444	Nanocrystalline glaze layer in ceramic-metallic interface under fretting wear. Surface and Coatings Technology, 2016, 308, 307-315.	2.2	30
445	Molecular Dynamic Simulation of Collision-Induced Third-Body Formation in Hydrogen-Free Diamond-Like Carbon Asperities. Tribology Letters, 2016, 63, 26.	1.2	16
446	Cold spray deposition of a Ni-WC composite coating and its dry sliding wear behavior. Surface and Coatings Technology, 2016, 308, 424-434.	2.2	62
447	Observation and Analysis of Micro-Behavior Characteristics and Element Contents during Boundary Layer Evolution under Powder Particulate Lubrication. Tribology Letters, 2016, 64, 1.	1.2	7

#	Article	IF	CITATIONS
448	Mechanical and tribological properties of boron oxide and zinc borate glasses. Journal of Commonwealth Law and Legal Education, 2016, 57, 233-244.	0.2	5
449	Experimental damage analysis in high loaded oscillating bearings. Tribology International, 2016, 102, 507-515.	3.0	16
450	Assessment of wear coefficients of nuclear zirconium claddings without and with pre-oxidation. Wear, 2016, 356-357, 17-22.	1.5	33
451	Nanoscale self-organization reaction in Cu–Ag alloys subjected to dry sliding and its impact on wear resistance. Tribology International, 2016, 100, 420-429.	3.0	24
452	Zinc dialkyl dithiophosphate antiwear tribofilm and its effect on the topography evolution of surfaces: A numerical and experimental study. Wear, 2016, 362-363, 186-198.	1.5	23
453	Role of WS2, WS2+CrC and bonded coatings on damage and friction of Inconel 718 flat rough surfaces at high temperature. Tribology International, 2016, 100, 430-440.	3.0	14
454	Review on the friction and wear of brake materials. Advances in Mechanical Engineering, 2016, 8, 168781401664730.	0.8	111
455	A multibody meshfree strategy for the simulation of highly deformable granular materials. International Journal for Numerical Methods in Engineering, 2016, 108, 1477-1497.	1.5	27
456	Role of Third Body on Bolted Joints' Self-Loosening. Tribology Letters, 2016, 61, 1.	1.2	11
457	Influence of subsurface plastic deformation on the running-in behavior of a hypoeutectic AlSi alloy. Tribology International, 2016, 100, 224-230.	3.0	15
458	An elastic–plastic investigation of third body effects on fretting contact in partial slip. International Journal of Solids and Structures, 2016, 81, 95-109.	1.3	29
459	Dry Wear Mechanisms and Modeling. , 2016, , 41-68.		5
460	Thermal analysis of pad-on-disc contact under tribological solicitations: a coupled numerical–experimental approach to identify surface temperatures and flow partition coefficient. Heat and Mass Transfer, 2016, 52, 1923-1934.	1.2	11
461	Numerical optimization of wear performance – Utilizing a metamodel based friction law. Computers and Structures, 2016, 165, 10-23.	2.4	12
462	A DEM–FEM coupling based approach simulating thermomechanical behaviour of frictional bodies with interface layer. International Journal of Solids and Structures, 2016, 81, 203-218.	1.3	32
463	The role of carbon fibers and silica nanoparticles on friction and wear reduction of an advanced polymer matrix composite. Materials and Design, 2016, 93, 474-484.	3.3	84
464	Third Particle Ejection Effects on Wear with Quenched and Tempered Steel Fretting Contact. Tribology Transactions, 2017, 60, 70-78.	1.1	14
465	Significance of Al 2 O 3 particle morphology in the microstructure evolution of cold-sprayed Al-Al 2 O 3 during unconstrained high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 684, 510-516.	2.6	15

#	Article	IF	CITATIONS
466	Influence оf gravity and thermodynamics on the sliding electrical ÑоntаÑŧ. Tribology International, 2017, 105, 299-303.	3.0	20
467	The influence of sliding velocity and third bodies on the dry sliding wear of Fe30Ni20Mn25Al25 against AISI 347 stainless steel. Wear, 2017, 374-375, 63-76.	1.5	9
468	Impact of copper nanoparticles on tribofilm formation determined by pin-on-disc tests with powder supply: Addition of artificial third body consisting of Fe3O4, Cu and graphite. Tribology International, 2017, 110, 103-112.	3.0	43
469	Contribution to modeling the wear mechanism of X40CrMoV5/Fe360B steel couple in an open sliding contact at high temperature. Journal of Materials Research, 2017, 32, 2601-2608.	1.2	0
470	In-situ generated tribomaterial in metal/metal contacts: Current understanding and future implications for implants. Biotribology, 2017, 10, 42-50.	0.9	26
471	Influence of tribological parameters on S335 steel filing Ti–W–N in dry sliding wear: Prediction model and sliding condition optimization. International Journal of Advanced Manufacturing Technology, 2017, 92, 4057-4071.	1.5	5
472	Effects of humidity on the sliding wear properties of Zn–Ni alloy coatings. RSC Advances, 2017, 7, 22662-22671.	1.7	9
473	Numerical analysis of contact stress and strain distributions for greased and ungreased high loaded oscillating bearings. Wear, 2017, 376-377, 1164-1175.	1.5	17
474	Experimental tribological analysis of the Swiss lever escapement. Wear, 2017, 376-377, 1418-1428.	1.5	4
475	A numerical simulation of fretting wear profile taking account of the evolution of third body layer. Wear, 2017, 376-377, 1475-1488.	1.5	34
476	Experimental study and simulation analysis on friction behavior of a mechanical surface sliding on hard particles. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2017, 231, 1371-1379.	1.0	7
477	Scratch adhesion and tribological behaviour of graded Cr/CrN/CrTiN coatings synthesized by closed-field unbalanced magnetron sputtering. Wear, 2017, 380-381, 163-175.	1.5	60
478	General Procedure for Selecting and Testing Materials and Coatings in Response to a Tribological Problem. Journal of Tribology, 2017, 139, .	1.0	3
479	h-BN lamellar lubricant in hydrocarbon and formulated oil in porous sintered bearings (iron + h-BN). Archives of Civil and Mechanical Engineering, 2017, 17, 687-693.	1.9	13
480	Adsorption and Tribochemical Factors Affecting the Lubrication of Silicon-Based Materials by (Fluorinated) Ionic Liquids. Journal of Physical Chemistry C, 2017, 121, 7259-7275.	1.5	12
481	Tribological characterization of a labyrinth-abradable interaction in a turbo engine application. Wear, 2017, 370-371, 29-38.	1.5	22
482	Brittle to ductile transition of tribomaterial in relation to wear response at high temperatures. Wear, 2017, 392-393, 60-68.	1.5	47
483	Friction Evolution of Granitic Faults: Heating Controlled Transition From Powder Lubrication to Frictional Melt. Journal of Geophysical Research: Solid Earth, 2017, 122, 9275-9289.	1.4	20

#	Article	IF	CITATIONS
485	Influence of third body evolution on tribological property of copper-matrix friction material by surface treatment. AIP Conference Proceedings, 2017, , .	0.3	4
486	Effect of quenching processes on microstructures and tribological behaviors of polycrystalline diamond compact (PCD/WC-Co) in annealing treatment. Diamond and Related Materials, 2017, 79, 79-87.	1.8	18
487	Effect of oil temperature and counterpart material on the wear mechanism of ta-CNx coating under base oil lubrication. Wear, 2017, 390-391, 312-321.	1.5	40
488	Wear of hardfaced valve spindles in highly loaded stationary lean-burn large bore gas engines. Wear, 2017, 376-377, 1652-1661.	1.5	4
489	Analysis of the running-in of thermal spray coatings by time-dependent stribeck maps. Wear, 2017, 376-377, 1467-1474.	1.5	3
490	Role of Third Bodies in Friction and Wear of Cold-Sprayed Ti and Ti–TiC Composite Coatings. Tribology Letters, 2017, 65, 1.	1.2	37
491	Work of Adhesion Measurements of MoS ₂ Dry Lubricated 440C Stainless Steel Tribological Contacts. Advanced Engineering Materials, 2017, 19, 1700423.	1.6	5
492	Effect of dry deposited particles on the tire/road friction. Wear, 2017, 376-377, 1437-1449.	1.5	19
493	The Role of Temperature and Frequency on Fretting Wear of a Like-on-Like Stainless Steel Contact. Tribology Letters, 2017, 65, 1.	1.2	23
494	Effect of Various Nanoparticles on Tribo-Layers and Wear Behavior of TC11 Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 3287-3299.	1.1	4
495	Real time measurement of wear and surface damage in the sliding wear of alumina. Wear, 2017, 376-377, 1866-1876.	1.5	12
496	Nano-indentation mapping of fretting-induced surface layers. Tribology International, 2017, 108, 186-193.	3.0	25
497	Fibre-reinforced multifunctional SiC matrix composite materials. International Materials Reviews, 2017, 62, 117-172.	9.4	207
498	<i>In situ</i> single asperity wear at the nanometre scale. International Materials Reviews, 2017, 62, 99-115.	9.4	17
499	Clarification of high wear resistance mechanism of ta-CNx coating under poly alpha-olefin (PAO) lubrication. Tribology International, 2017, 105, 193-200.	3.0	41
500	The Effect of Silica Abrasive Particle Sizes in Polyester Based Composite on the Tribological Properties of Ti64. Materials Science Forum, 2017, 886, 69-73.	0.3	0
501	Scaling Effects on Materials Tribology: From Macro to Micro Scale. Materials, 2017, 10, 550.	1.3	44
502	Effect of Hydrogen Exposure on Mechanical and Tribological Behavior of CrxN Coatings Deposited at Different Pressures on IN718. Materials, 2017, 10, 563.	1.3	11

#	Article	IF	CITATIONS
503	The Formation of Composite Ti-Al-N Coatings Using Filtered Vacuum Arc Deposition with Separate Cathodes. Metals, 2017, 7, 497.	1.0	14
504	Comparative research on the effect of an oxide coating and a tribo-oxide layer on dry sliding wear of Ti–6Al–4V alloy. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2018, 232, 1569-1580.	1.0	5
505	Damage evolution and contact surfaces analysis of high-loaded oscillating hybrid bearings. Wear, 2018, 406-407, 1-12.	1.5	20
506	Stability of Metal Matrix Composite Pads During High-Speed Braking. Tribology Letters, 2018, 66, 1.	1.2	40
507	Wear Resistance of Cu/Ag Multilayers: A Microscopic Study. ACS Applied Materials & Interfaces, 2018, 10, 15288-15297.	4.0	26
508	Analyses of anti-wear and extreme pressure properties of castor oil with zinc oxide nano friction modifiers. Applied Surface Science, 2018, 449, 277-286.	3.1	91
509	Comparison of fretting behaviour of electrodeposited Zn-Ni and Cd coatings. Tribology International, 2018, 120, 535-546.	3.0	5
510	Effects of a horizontal magnetic field on unstable vibration and noise of a friction interface with different magnetic properties. Tribology International, 2018, 120, 47-57.	3.0	8
511	Interaction between contact behaviour and vibrational response for dry contact system. Mechanical Systems and Signal Processing, 2018, 110, 110-121.	4.4	42
512	Frictional Properties and Mechanisms of an Organic–Metal Brake Pair Braking Repeatedly in Magnetic Field. Tribology Transactions, 2018, 61, 1-11.	1.1	9
513	A Critical Review on Physical Vapor Deposition Coatings Applied on Different Engine Components. Critical Reviews in Solid State and Materials Sciences, 2018, 43, 158-175.	6.8	62
514	High-Temperature Friction and Wear of Boron Steel and Tool Steel in Open and Closed Tribosystems. Tribology Transactions, 2018, 61, 448-458.	1.1	5
515	Quantitative analysis of frictional behavior of cupronickel B10 at the tool-chip interface during dry cutting. Tribology International, 2018, 118, 163-169.	3.0	13
516	Correlations between third body evolution and tribological performance of copper-matrix friction material under abrasive paper interference conditions. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2018, 232, 711-721.	1.0	5
517	Geotribology - Friction, wear, and lubrication of faults. Tectonophysics, 2018, 733, 171-181.	0.9	44
518	The Influence of Cu/Fe Ratio on the Tribological Behavior of Brake Friction Materials. Tribology Letters, 2018, 66, 1.	1.2	55
519	A mathematical model for the third-body concept. Mathematics and Mechanics of Solids, 2018, 23, 420-432.	1.5	3
520	Metal Matrix Composite Coatings by Cold Spray. , 2018, , 297-318.		7

#	Article	IF	CITATIONS
521	Tribological Analysis of UHMWPE Tibial Implants in Unicompartmental Knee Replacements: From Retrieved to In Vitro Studies. Biotribology, 2018, 13, 1-15.	0.9	14
522	Tribological Coatings Prepared by Cold Spray. , 2018, , 321-348.		11
523	High temperature impact testing of a thin hard coating using a novel high-frequency in situ micromechanical device. Surface and Coatings Technology, 2018, 333, 178-186.	2.2	11
524	Molecular-dynamic study the influence of size parameter and temperature of the system on adhesive wear mechanisms. AIP Conference Proceedings, 2018, , .	0.3	0
525	Influence of Copper/Graphite Properties on the Tribological and Electrical Behavior of Copper-Graphite Third Body Layer. Lubricants, 2018, 6, 109.	1.2	5
526	Tribocorrosion. , 2018, , 504-514.		6
528	Wear Mechanisms in Contacts Involving Slippers in Axial Piston Pumps: A Multi-Technical Analysis. Journal of Materials Engineering and Performance, 2018, 27, 5395-5405.	1.2	6
529	Force Chain Characteristics and Effects of a Dense Granular Flow System in a Third Body Interface During the Shear Dilatancy Process. Journal of Applied Mechanics and Technical Physics, 2018, 59, 153-162.	0.1	3
530	The origin of surface microstructure evolution in sliding friction. Scripta Materialia, 2018, 153, 63-67.	2.6	63
531	Tribochemical Competition within a MoS ₂ /Ti Dry Lubricated Macroscale Contact in Ultrahigh Vacuum: A Time-of-Flight Secondary Ion Mass Spectrometry Investigation. ACS Applied Materials & Interfaces, 2018, 10, 20106-20119.	4.0	14
532	Tribocorrosion of Passive Materials: A Review on Test Procedures and Standards. International Journal of Corrosion, 2018, 2018, 1-24.	0.6	54
533	Tribology of Self-Lubricating Metal Matrix Composites. , 2018, , 33-73.		9
534	Numerical Analysis of the Contact Pressure in a Quasi-Static Elastomeric Reciprocating Sealing System. Journal of Tribology, 2018, 140, .	1.0	2
535	Nanomechanical testing of third bodies. Current Opinion in Solid State and Materials Science, 2018, 22, 142-155.	5.6	13
536	Pathways of Dissipation of Frictional Energy under Boundary Lubricated Sliding Wear of Martensitic Materials. Lubricants, 2018, 6, 34.	1.2	11
537	The Running-in of Lubricated Metal-Metal Contacts—A Review on Ultra-Low Wear Systems. Lubricants, 2018, 6, 54.	1.2	10
538	Tribochemical Characterization and Tribocorrosive Behavior of CoCrMo Alloys: A Review. Materials, 2018, 11, 30.	1.3	30
539	Hydrogen Permeation, and Mechanical and Tribological Behavior, of CrNx Coatings Deposited at Various Bias Voltages on IN718 by Direct Current Reactive Sputtering. Coatings, 2018, 8, 66.	1.2	6

~		~	
(REDU	DT
\sim	плп	NLFU	

#	Article	IF	CITATIONS
540	Fretting wear behavior of duplex PEO/chameleon coating on Al alloy. Surface and Coatings Technology, 2018, 352, 238-246.	2.2	36
541	A dynamical FEA fretting wear modeling taking into account the evolution of debris layer. Wear, 2018, 412-413, 92-108.	1.5	31
542	Effect of Cr2AlC nanolamella addition on tribological properties of 5W-30 engine oil. Applied Surface Science, 2019, 493, 1098-1105.	3.1	14
543	Low friction of metallic multilayers by formation of a shear-induced alloy. Scientific Reports, 2019, 9, 9480.	1.6	7
544	Solid Flow Regimes Within Dry Sliding Contacts. Tribology Letters, 2019, 67, 1.	1.2	18
545	The dependence of wear rate on wear scar size in fretting; the role of debris (third body) expulsion from the contact. Wear, 2019, 440-441, 203081.	1.5	6
546	Tribology and Industry: From the Origins to 4.0. Frontiers in Mechanical Engineering, 2019, 5, .	0.8	36
547	Influence of WC on third body behaviour during fretting of cold-sprayed Cu MoS2WC composites. Tribology International, 2019, 134, 15-25.	3.0	17
548	Characterization and evolution of the coefficient of friction during pin on disc tribotest: Comparison between C10200 Cu, AA6082-T6 Al and C36000 brass pins under varying normal loads. Tribology International, 2019, 138, 403-414.	3.0	16
549	Evidence that abrasion can govern snow kinetic friction. Journal of Glaciology, 2019, 65, 68-84.	1.1	14
550	Oxide dependent wear mechanisms of titanium against a steel counterface: Influence of SMAT nanostructured surface. Wear, 2019, 430-431, 245-255.	1.5	21
551	A Recursive Wheel Wear and Vehicle Dynamic Performance Evolution Computational Model for Rail Vehicles with Tread Brakes. Vehicles, 2019, 1, 88-114.	1.7	5
552	The Effect of Elements of Secondary Structures on the Wear Resistance of Steel in Friction against Experimental Aluminum Alloys for Monometallic Journal Bearings. Lubricants, 2019, 7, 21.	1.2	6
553	Thermomechanical phenomena and wear flow mechanisms during high speed contact of abradable materials. Wear, 2019, 426-427, 1102-1109.	1.5	4
554	A Chemical, Mechanical, and Tribological Analysis of DLC Coatings Deposited by Magnetron Sputtering. Lubricants, 2019, 7, 38.	1.2	22
555	Dry Sliding Wear Behavior and Mechanism of a Hot-Dip Aluminized Steel as a Function of Sliding Velocity. Journal of Materials Engineering and Performance, 2019, 28, 1685-1697.	1.2	1
556	The effect of frequency on both the debris and the development of the tribologically transformed structure during fretting wear of a high strength steel. Wear, 2019, 426-427, 694-703.	1.5	32
557	Evolution of the road bitumen/aggregate interface under traffic-induced polishing. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2019, 233, 1433-1445.	1.0	9

		CITATION R	EPORT	
#	Article		IF	CITATIONS
558	Emergence of self-affine surfaces during adhesive wear. Nature Communications, 2019), 10, 1116.	5.8	55
559	Dynamic changes of mechanical properties induced by friction in the Archard wear mo 428-429, 366-375.	del. Wear, 2019,	1.5	52
560	Fretting wear rate evolution of a flat-on-flat low alloyed steel contact: A weighted frict formulation. Wear, 2019, 426-427, 676-693.	on energy	1.5	33
561	High temperature friction and wear behavior of cold-sprayed Ti6Al4V and Ti6Al4V-TiC c coatings. Wear, 2019, 426-427, 357-369.	omposite	1.5	47
562	Simple Law for Third-Body Friction. Physical Review Letters, 2019, 122, 135503.		2.9	12
563	Ab initiothermodynamics study of ambient gases reacting with amorphous carbon. Phy 2019, 99, .	vsical Review B,	1.1	3
564	Fade behaviour of copper-based brake pad during cyclic emergency braking at high specondition. Wear, 2019, 428-429, 10-23.	ed and overload	1.5	39
565	Research on Motion Characteristics of Single Particle Third Body in Braking Process Ba Fractal Feature. IOP Conference Series: Materials Science and Engineering, 2019, 692,	sed on W-M 012011.	0.3	2
566	Tribology Effect of Copper Based Composites for High-Speed Train Braking Application Series: Materials Science and Engineering, 2019, 611, 012004.	. IOP Conference	0.3	0
568	Study of Ni ₆₃ -Co ₃₇ nanocrystalline electrodeposited alloy as coating on mild steel substrate. Materials Research Express, 2019, 6, 126557.	s anti-wear	0.8	1
569	Calculation of the stress-strain state for surface layers of materials at the mesolevel. Al Proceedings, 2019, , .	P Conference	0.3	0
570	Abrasive wear performance of zirconium diboride based ceramic composite. Internatio Refractory Metals and Hard Materials, 2019, 79, 224-232.	nal Journal of	1.7	23
571	Dual effects of TiSiO ₄ composite nanoparticles on dispersion stability and performance of vegetable oilâ€inâ€water emulsions. Lubrication Science, 2019, 31, 21	l lubrication 39.	0.9	5
572	The dual role of metal sulfides as lubricant and abrasive: an interface study in friction c Materials Research Express, 2019, 6, 045315.	omposite.	0.8	29
573	"Tribological solicitations―of piezoelectric inertia motors by means of in situ tribo body flow framework. Wear, 2019, 420-421, 257-268.	otesting and 3rd	1.5	0
574	Tribological behavior of zirconium phosphateâ€1,4â€dimethylpiperazine compound as Lubrication Science, 2019, 31, 51-60.	lubricant additives.	0.9	1
575	Debris development in fretting contacts – Debris particles and debris beds. Tribolog, 2020, 149, 105592.	/ International,	3.0	23
576	Understanding the behavior of fine particles at the tire/road interface. Tribology Intern 149, 105635.	ational, 2020,	3.0	7

#	Article	IF	CITATIONS
577	Mechanical Model of the Electrical Response from a Ring–Wire Sliding Contact. Tribology Transactions, 2020, 63, 215-221.	1.1	2
578	Prediction of contact condition and surface damage by simulating variable friction coefficient and wear. Tribology International, 2020, 143, 106054.	3.0	9
579	Investigation on the Unlubricated Sliding Tribological Properties of Ti–20Zr–6.5Al–4V Alloy at Elevated Temperatures. Metals and Materials International, 2020, 26, 1766-1778.	1.8	2
580	Experiment to Investigate the Relationship Between the Third-Body Layer and the Occurrence of Squeals in Dry Sliding Contact. Tribology Letters, 2020, 68, 1.	1.2	19
581	Research on the Establishment and Collapse of Oxidation-Induced Wear of Steels Under Various Sliding Speeds. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 684-696.	1.1	3
582	Effect of sliding speed and hardness on wear behavior and mechanism of AISI H13 steel. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2020, 234, 1822-1833.	1.0	12
583	Running-in in fretting, transition from near-stable friction regime to gross sliding. Tribology International, 2020, 143, 106073.	3.0	4
584	Effect of Potential and Microstructure on the Tribocorrosion Behaviour of Beta and Near Beta Ti Alloys I. Biotribology, 2020, 24, 100141.	0.9	9
585	Using FEM to study the frictional instability induced by third-body particles confined in frictional interface. Industrial Lubrication and Tribology, 2020, 72, 1239-1244.	0.6	3
586	Derivation and analysis of a combined fretting wear-fatigue model based on the asymptotic equivalence between perfect plasticity and friction. International Journal of Solids and Structures, 2020, 204-205, 1-17.	1.3	3
587	A mechanistic model for the growth of cylindrical debris particles in the presence of adhesion. International Journal of Solids and Structures, 2020, 203, 1-16.	1.3	4
588	A simple route to suspend boric acid in non-polar media. SN Applied Sciences, 2020, 2, 1.	1.5	1
589	Groove Generation and Coalescence on a Large cale Laboratory Fault. AGU Advances, 2020, 1, e2020AV000184.	2.3	7
590	Role of interfacial adhesion on minimum wear particle size and roughness evolution. Physical Review E, 2020, 102, 043001.	0.8	22
591	Structureâ€Dependent Wear and Shear Mechanics of Nanostructured MoS ₂ Coatings. Advanced Materials Interfaces, 2020, 7, 1901870.	1.9	13
593	Building direction dependence of wear resistance of selective laser melted AISI 316L stainless steel under high-speed tribological environment. International Journal of Advanced Manufacturing Technology, 2020, 108, 2385-2396.	1.5	15
594	Effect of Environment on Microstructure Evolution and Friction of Au–Ni Multilayers. Tribology Letters, 2020, 68, 1.	1.2	7
595	Can friction replace roughness in the numerical simulation of granular materials?. Granular Matter, 2020, 22, 1.	1.1	45

#	Article	IF	CITATIONS
596	Substance evolution and wear mechanism on friction contact area of brake disc for high-speed railway trains at high temperature. Engineering Failure Analysis, 2020, 111, 104472.	1.8	19
597	Enhancing the Mechanical and Tribological Properties of Cellulose Nanocomposites with Aluminum Nanoadditives. Polymers, 2020, 12, 1246.	2.0	14
598	Fretting corrosion. , 2020, , 273-278.		0
599	Tribology performance, airborne particle emissions and brake squeal noise of copper-free friction materials. Wear, 2020, 448-449, 203215.	1.5	21
600	Roller bearing under high loaded oscillations: Life evolution and accommodation mechanisms. Tribology International, 2020, 147, 106278.	3.0	12
601	Wear behaviour analysis of medium carbon high silicon alloy steel at different process parameter. Advances in Materials and Processing Technologies, 2020, 6, 292-300.	0.8	4
602	Atomic Scale Origin of Metal Ion Release from Hip Implant Taper Junctions. Advanced Science, 2020, 7, 1903008.	5.6	18
603	Significance of third body rheology in friction at a dry sliding interface observed by a multibody meshfree model: Influence of cohesion between particles. Tribology International, 2020, 145, 106188.	3.0	20
604	Partial-gross slip fretting transition of martensitic stainless steels. Tribology International, 2020, 146, 106163.	3.0	20
605	Structure original of temperature depended superlow friction behavior of diamond like carbon. Diamond and Related Materials, 2020, 107, 107880.	1.8	16
606	A Novel Austenite Aging Steel Laser Cladding Coating and Its Elevated-Temperature Wear Resistance. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2020, 51, 1127-1136.	1.0	5
607	Tribological performance and dry sliding-induced microstructure evolution in T20Z alloy under different atmospheric conditions. Surface Topography: Metrology and Properties, 2020, 8, 025010.	0.9	0
608	Experimental investigation of debris entrapment in annular contacts. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2021, 235, 687-697.	1.0	1
609	Using a coupled FEM-DEM method to study the nonlinear phenomena of third-body behavior. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2021, 235, 975-988.	1.0	1
610	Lessons learned using machine learning to link third body particles morphology to interface rheology. Tribology International, 2021, 153, 106630.	3.0	10
611	Photo-optical luminance analysis of transfer films: Measurement principle, data analysis and result plotting. Tribology International, 2021, 153, 106626.	3.0	1
612	Effects of Dispersant and ZDDP Additives on Fretting Wear. Tribology Letters, 2021, 69, 1.	1.2	12
613	A review and perspectives on predicting the performance and durability of electrical contacts in automotive applications. Engineering Failure Analysis, 2021, 121, 105143.	1.8	20

#	ARTICLE	IF	Citations
614	Effect of nano CuO addition on the triboâ€mechanical behavior of alumina ceramics in nonâ€conformal contact. International Journal of Applied Ceramic Technology, 2021, 18, 110-118.	1.1	6
615	Tribological behaviour of hybrid reinforced vinyl ester based functionally graded materials. Materials Today: Proceedings, 2021, 44, 4682-4688.	0.9	2
617	Detecting vorticity in cohesive deformable granular material. EPJ Web of Conferences, 2021, 249, 08005.	0.1	0
618	Structural and Mechanical Properties of a-BCN Films Prepared by an Arc-Sputtering Hybrid Process. Materials, 2021, 14, 719.	1.3	6
619	Tribological Behavior of Polymers and Polymer Composites. , 0, , .		7
620	A self-similar model for fretting wear contact with the third body in gross slip. Wear, 2021, 466-467, 203562.	1.5	3
621	Fretting Wear Performance of PVD Thin Films. , 0, , .		1
622	Molecular Dynamics Simulations of High-speed Nanoscale Sliding with Third Medium. IOP Conference Series: Earth and Environmental Science, 2021, 701, 012053.	0.2	0
623	The mechanism-based approach of understanding run-in and steady state: A gross-slip fretting experiment to fathom tribocorrosion of total hip taper junctions. Biotribology, 2021, 25, 100165.	0.9	12
624	The influence of copper content on the braking performance of iron-based powder metallurgy friction materials. Journal of Physics: Conference Series, 2021, 1885, 032068.	0.3	0
625	A critical review on self-lubricating ceramic-composite cutting tools. Ceramics International, 2021, 47, 20745-20767.	2.3	55
626	Tribological Properties of SiCp/A356 Composites Against Semimetallic Materials under Dry and Wet Conditions. Journal of Materials Engineering and Performance, 2021, 30, 4148-4161.	1.2	9
627	High temperature wear performance of laser cladding maraging steel with low nickel on AISI H13 steel. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021, 235, 7264-7272.	1.1	4
628	Mechanical Properties and Tribological Behavior of MoS2-Enhanced Cellulose-Based Biocomposites for Food Packaging. Polymers, 2021, 13, 1838.	2.0	9
629	Contact size and debris ejection in fretting: The inappropriate use of Archard-type analysis of wear data and the development of alternative wear equations for commonly employed non-conforming specimen pair geometries. Wear, 2021, 474-475, 203710.	1.5	5
630	In-depth investigation of a third body formed by selective transfer in a NiCr / AgPd electrical contact. Wear, 2021, 474-475, 203753.	1.5	0
631	Abrasive wear performance and wear map of ZrB2-MoSi2-SiCw composites. Journal of the European Ceramic Society, 2021, 41, 3227-3251.	2.8	13
632	Assessing the Mechanisms Thought to Govern Ice and Snow Friction and Their Interplay With Substrate Brittle Behavior. Frontiers in Mechanical Engineering, 2021, 7, .	0.8	10

#	Article	IF	Citations
633	Sliding wear behavior of cold-sprayed Ni-WC composite coatings: Influence OF WC content. Wear, 2021, 477, 203792.	1.5	24
634	Transitions in the sliding wear mechanisms of binary Cu-Al alloys having a range of solute contents and microstructures. Wear, 2021, 476, 203681.	1.5	6
635	Image processing applied to tribological dry contact analysis. Wear, 2021, 476, 203748.	1.5	7
636	Investigation of the influence of velocity in a tribological three-body system containing a single layer of rolling hard particles from a mechanical point of view. Tribology International, 2021, 159, 106948.	3.0	7
637	Understanding the role of glaze layer with aligned images from multiple surface characterization techniques. Wear, 2021, 477, 203837.	1.5	5
638	Towards a quantitative characterization of wear particles using image analysis and machine learning. , 2021, , .		1
639	Rock adhering to cemented carbide surfaces – The role of image acquisition. Wear, 2021, 476, 203766.	1.5	2
640	Tribological properties of Ni–B–TiO2 sol composite coating elaborated by sol-enhanced process: abrasive wear and impact wear. Journal of Materials Research and Technology, 2021, 13, 857-871.	2.6	9
641	Micro- and Nanowear of Self-Mated Steel Generated and Studied With an AFM at the Single Asperity Level. Frontiers in Mechanical Engineering, 2021, 7, .	0.8	2
642	Dry sliding wear behaviour of additive manufactured CrC-rich WC-Co cemented carbides. Wear, 2021, 486-487, 204127.	1.5	11
643	Differences in Wear and Material Integrity of NAO and Low-Steel Brake Pads under Severe Conditions. Materials, 2021, 14, 5531.	1.3	8
644	Interaction of displacement amplitude and frequency effects in fretting wear of a high strength steel: Impact on debris bed formation and subsurface damage. Wear, 2021, 482-483, 203981.	1.5	5
645	An attempt to generate mechanical white etching layer on rail surface on a new rolling contact test bench. Wear, 2021, 482-483, 203945.	1.5	6
646	Understanding and modelling wear rates and mechanisms in fretting via the concept of rate-determining processes - Contact oxygenation, debris formation and debris ejection. Wear, 2021, 486-487, 204066.	1.5	5
647	The Joule–Thomson effect and the non-equilibrium thermodynamics of sliding nano-contact. IOP Conference Series: Materials Science and Engineering, 0, 1019, 012029.	0.3	1
648	Third body flow during wheel-rail interaction. , 2006, , 336-336.		6
649	Contact Mechanics of Wearing out Solids. , 2007, , 311-331.		2
650	Modeling of Friction and Wear Phenomena. , 1988, , 12-36.		8

#	Article	IF	CITATIONS
651	Analyzing Mild- and Ultra-Mild Sliding Wear of Metallic Materials by Transmission Electron Microscopy. Microtechnology and MEMS, 2018, , 29-59.	0.2	11
652	Nanotribology in Automotive Industry. Nanoscience and Technology, 2007, , 549-560.	1.5	2
653	Diamond Films and Their Tribological Performances. , 2013, , 79-110.		2
654	Wear Particle Life in a Sliding Contact Under Dry Conditions : Third Body Approach. , 2001, , 393-411.		7
655	Friction with Colloidal Lubrication. , 1992, , 263-286.		2
656	Scale Effects in Sliding Friction: An Experimental Study. , 1992, , 523-534.		21
657	Industrial lubricants. , 1997, , 228-263.		3
659	The Tribology of Composite Materials: A Preface. Composite Materials Series, 1993, 8, 3-15.	0.2	17
660	Reciprocating Dry Friction and Wear of Short Fibre Reinforced Polymer Composites. Composite Materials Series, 1993, , 65-105.	0.2	6
661	Tribological Properties of Unidirectionally Oriented Carbon Fibre Reinforced Glass Matrix Composites. Composite Materials Series, 1993, , 367-403.	0.2	2
662	Fretting and Fretting Fatigue of Advanced Composite Laminates. Composite Materials Series, 1993, 8, 669-722.	0.2	9
663	Passivity Issues in Tribocorrosion. , 2006, , 477-487.		5
664	Adhesive wear mechanisms in the presence of weak interfaces: Insights from an amorphous model system. Physical Review Materials, 2019, 3, .	0.9	15
665	Effect of adhesion on material removal during adhesive wear. Physical Review Materials, 2019, 3, .	0.9	14
666	Tuning of friction noise by accessing the rolling-sliding option. Physical Review Research, 2020, 2, .	1.3	2
667	Modeling Wear for Heterogeneous Bi-Phasic Materials Using Discrete Elements Approach. Journal of Tribology, 2014, 136, .	1.0	14
668	System Deformation Behavior of Friction Pair in Fretting Wear. Journal of Tribology, 2020, 142, .	1.0	1
669	A Novel Three-Dimensional Finite Element Model to Simulate Third Body Effects on Fretting Wear of Hertzian Point Contact in Partial Slip. Journal of Tribology, 2021, 143, .	1.0	10

#	Article	IF	CITATIONS
670	Discontinuously reinforced aluminium composites sliding against steel: study on wear behaviour. Materials Science and Technology, 1994, 10, 481-486.	0.8	2
671	Effects of Temperature on Tribological Properties of Al2O3-TiO2 Coating. Defence Science Journal, 2008, 58, 582-587.	0.5	10
672	Development of a Predictive Wear Model for Grid-to-Rod Fretting in Light Water Nuclear Reactors. , 2013, , 139-158.		1
673	Imprinting and Column Damage on CoCrMo Head Taper Surfaces in Total Hip Replacements. , 2018, , 131-155.		5
674	Wear resisting polymer nanocomposites: preparation and properties. , 2006, , 540-577.		3
675	Design of a Dynamic Tribometer Applied to Piezoelectric Inertia Drive Motors - In Situ Exploration of Stick-Slip Principle Tribology Online, 2016, 11, 218-226.	0.2	3
676	Etude du comportement de l'acier X40crMov5-1 pré-oxydé en frottement-usure sous faible vitesse de glissement. Annales De Chimie: Science Des Materiaux, 2010, 35, 41-57.	0.2	6
677	Surface Characterization and Tribological Behavior of Graphene-Reinforced Cellulose Composites Prepared by Large-Area Spray Coating on Flexible Substrate. Coatings, 2020, 10, 1176.	1.2	1
678	Characterization of Friction and Wear Behavior of Friction Modifiers used in Wheel-Rail Contacts. International Journal of Prognostics and Health Management, 2017, 8, .	0.6	2
679	Comparative Study of the Impact of Corundum Particle Contaminants Size on Wear and Fatigue Life of Grease Lubricated Ball Bearings. Modern Mechanical Engineering, 2013, 03, 161-170.	0.2	4
680	Enhanced Antiwear Property of Cu-Sn-Bi Bimetal Composites with TiB ₂ under Different Working Conditions. Tribology Transactions, 2022, 65, 78-87.	1.1	7
681	Microstructure and tribological behaviors of diffusion bonded powder sintered Cu–Sn based alloys. Materials Research Express, 2021, 8, 116505.	0.8	4
682	Fretting Wear Failures. , 2002, , 922-940.		15
683	A MODEL FOR PREDICTING THE MICRO-SLIP ZONE ON A FRETTING CONTACT INTERFACE. Annals of the Oradea University: Fascicle Management and Technological Engineering, 2010, XIX (IX), 2010/1, .	0.1	1
684	The Tribological Continuum. , 2010, , 413-429.		0
685	Mechanochemical Friction of Third-Body as an Exergetic Collision. Tribology Online, 2011, 6, 55-63.	0.2	1
688	Contact Mechanics; Friction and Wear. Solid Mechanics and Its Applications, 2013, , 483-550.	0.1	0
689	Green and Biomimetic Tribology. , 2013, , 605-636.		1

#	Article	IF	Citations
691	HOW TO CHOOSE COATINGS IN FRETTING. , 1987, , 321-334.		0
692	Tribological aspects of ceramic composites in conforming contacts. , 1989, , 452-463.		1
693	Vibrations and Fretting Wear. , 1990, , 153-183.		0
694	Tribological Properties of Boron-Ion-Implanted SUS304, Si3N4 and WC-9%Co Zairyo/Journal of the Society of Materials Science, Japan, 1993, 42, 202-208.	0.1	5
695	Experimental Tribo-Analysis of Rail/Wheel Interface. , 1993, , 225-238.		0
697	Material and Tribology Issues of Self-Lubricating Copper Matrix Composite. Advances in Chemical and Materials Engineering Book Series, 2015, , 47-71.	0.2	0
698	Material and Tribology Issues of Self-Lubricating Copper Matrix Composite. , 2017, , 414-438.		1
699	Fretting Wear. , 2017, , 323-336.		1
700	Comprehension of Thermomechanical Phenomena and Material Behavior During High Speed Contact. Lecture Notes in Mechanical Engineering, 2019, , 638-660.	0.3	0
701	Simulation of Energy Dissipation and Heat Transfers of a Braking System Using the Discrete Element Method: Role of Roughness and Granular Plateaus. Journal of Heat Transfer, 2020, 142, .	1.2	2
702	Effect of Matrix Alloying on Braking Performance of Copper-Based Brake Pad Under Continuous Emergency Braking. Journal of Tribology, 2020, 142, .	1.0	3
703	Wear Behaviour of SAE 4340 Steel in Comparison with Single Test Specimen. INCAS Bulletin, 2020, 12, 219-228.	0.3	0
704	Valve-seat components in a diesel engine: a tribological approach to limit wear. Mechanics and Industry, 2021, 22, 44.	0.5	0
706	Tribological Characteristics and Load-Sharing of Point-Contact Interface in Three-Body Mixed Lubrication. Journal of Tribology, 2022, 144, .	1.0	10
707	Dynamics of deformable contacting bodies with sliding, rolling, and spinning. International Journal of Mechanical Sciences, 2022, 216, 106981.	3.6	6
708	Review of automotive brake lining materials and their tribological properties. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 0, , 135065012110598.	1.0	2
709	Shear Induced Dynamic Grain-Refinement in Sliding Polycrystalline Metal Surfaces. , 2021, , 169-183.		0
710	Experimental and simulation study of the dynamic characteristics of friction force under third-body intrusion behaviour. Mechanical Systems and Signal Processing, 2022, 168, 108726.	4.4	7

#	Article	IF	CITATIONS
712	Tribological Evaluation of Lead-Free MoS2-Based Solid Film Lubricants as Environmentally Friendly Replacements for Aerospace Applications. Lubricants, 2022, 10, 7.	1.2	11
713	Effect of wear particles and roughness on nanoscale friction. Physical Review Materials, 2022, 6, .	0.9	8
714	Inter-diffusion effects and tribological behaviour of electron beam evaporated Ni-YSZ nanocomposite coatings subjected to diffusion annealing with borosilicate glass for nuclear applications. Ceramics International, 2022, 48, 13319-13330.	2.3	1
715	Study of rolling-sliding contact damage and tribo-chemical behaviour of wheel-rail materials at low temperatures. Engineering Failure Analysis, 2022, 134, 106077.	1.8	9
716	Comparative analysis of wear behaviour of commercial polymeric pipe materials under different sliding environments. Advances in Materials and Processing Technologies, 0, , 1-22.	0.8	0
717	The establishment and dynamic analysis of a new friction model of brake pair considering interface morphology and particles. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236, 4988-5004.	1.1	3
718	In situ real time observation of tribological behaviour of coatings. Surface and Coatings Technology, 2022, 442, 128233.	2.2	3
719	The influence of surface topography on friction squeal-A review. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2022, 236, 2067-2086.	1.0	8
720	Cross-effects of loading rate and cumulative fault slip on pre-seismic rupture and unstable slip rate of laboratory earthquakes. Tectonophysics, 2022, 826, 229266.	0.9	4
721	How vorticity and agglomeration control shear strength in soft cohesive granular flows. Granular Matter, 2022, 24, 1.	1.1	5
722	Formation, stability and degradation of transfer films formed by polyphenylene sulfide (PPS) and its composites in dry sliding against steel. Wear, 2022, 500-501, 204343.	1.5	4
723	Tribology of Self-Lubricating Metal Matrix Composites. , 2022, , 31-71.		5
724	Multi Scale Modelling of Friction Induced Vibrations at the Example of a Disc Brake System. Applied Mechanics, 2021, 2, 1037-1056.	0.7	2
725	Synergistic effect of bismuth III sulfide and iron sulfide in the tribological performance of brake friction composite. Surface Topography: Metrology and Properties, 2022, 10, 025015.	0.9	4
726	Mass and Energy Balance of a Three-Body Trybosystem. Lubricants, 2022, 10, 95.	1.2	2
727	Wear behavior of (Mo–Nb–Ta–V–W)C highâ€entropy carbide. International Journal of Applied Ceramic Technology, 2023, 20, 224-235.	1.1	11
728	Fatigue crack growth in bearing steel under cyclic mode IIÂ+Âstatic biaxial compression. International Journal of Fatigue, 2022, 163, 107074.	2.8	3
729	Wheel-rail interface under extreme conditions. , 2022, , 137-160.		0

#	Article	IF	CITATIONS
730	Segmentation and morphological analysis of wear track/particles images using machine learning. Journal of Electronic Imaging, 2022, 31, .	0.5	3
731	Contact Characteristics at Interface in Three-Body Contact Conditions with Rough Surfaces and Foreign Particles. Lubricants, 2022, 10, 164.	1.2	6
732	Experimental study of the influence of the relative humidity of leaves and their link to adhesion losses in the wheel-rail contact. Mechanics and Industry, 2022, 23, 23.	0.5	3
734	A multiscale approach to modeling the frictional behavior of the materials produced by additive manufacturing technologies. Continuum Mechanics and Thermodynamics, 2023, 35, 1353-1385.	1.4	2
735	Use of synchrotron X-rays for direct observation of wear damage in optically-opaque contacts by means of CT imaging and X-ray diffraction. Tribology International, 2022, 175, 107809.	3.0	0
736	Comparison between physical and machine learning modeling to predict fretting wear volume. Tribology International, 2023, 177, 107936.	3.0	7
737	Full-scale dynamometer tests of composite railway brake shoes including latxa sheep wool fibers. Journal of Cleaner Production, 2022, 379, 134533.	4.6	7
738	Modeling and Simulation of Macroscopic Friction Coefficient of Brake Pair Considering Particle Flows and Interface Parameters. Journal of Vibration Engineering and Technologies, 0, , .	1.3	0
740	Use of synthetic Fe ₃ O ₄ -rich tribofilms to investigate the effect of microconstituents, temperature and atmosphere on the friction coefficient during pin-on-disc tribotest. Surface Topography: Metrology and Properties, 2022, 10, 044009.	0.9	1
741	Effect of humid tropical climate and electrical current on the electrical sliding wear behavior of graphite brush in motor. Journal of Tribology, 0, , 1-19.	1.0	0
742	Finite element simulation of fretting wear on railway axle press-fit specimens. Tribology International, 2023, 178, 108024.	3.0	4
743	The effect of friction stir process on the mechanical, tribological, and biocompatibility properties of AZ31B magnesium alloy as a biomaterial: A pilot study. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 0, , 095441192211356.	1.0	0
744	The Combined Effects of Sliding Velocity and Martensite Volume Fraction on Tribological Behavior of a Dual-Phase Steel. Lubricants, 2022, 10, 303.	1.2	0
745	PHYSICOCHEMICAL ASPECTS OF THE WORK OF PASSENGER CAR BRAKE LININGS. PART II THE EFFECT OF LUBRICATING ADDITIVES. Tribologia, 2022, 301, 121-136.	0.0	0
746	The braking performance of pads for high-speed train with rigid and flexible structure on a full-scale flywheel brake dynamometer. Tribology International, 2023, 179, 108143.	3.0	12
747	Influence of contact pressure and velocity on the brake behaviour and particulate matter emissions. Wear, 2023, 514-515, 204579.	1.5	5
748	Physico-chemical characterisation and tribological behaviour of ground micro-arc oxidation coating on aluminium alloy – Comparison with hard anodised oxidation. Wear, 2023, 516-517, 204591.	1.5	5
749	Materials aspects in fretting. , 2023, , 173-199.		1

#	Article	IF	Citations
750	The role of tribologically transformed structures and debris in fretting of metals. , 2023, , 67-85.		1
751	Introduction to fretting fundamentals. , 2023, , 25-64.		0
752	Tribology of polymeric systems: theory, modeling, and simulation. , 2023, , 401-435.		0
753	The characterization of wear-causing particles and silica sand in particular. Wear, 2023, 530-531, 204872.	1.5	2
754	Effects of thermal cracks on friction and wear properties of forged steel used in railway brake discs. Wear, 2023, 520-521, 204650.	1.5	0
755	Size effect of CrFe particles on tribological behavior and airborne particle emissions of copper metal matrix composites. Tribology International, 2023, 183, 108376.	3.0	2
756	Assessment of improved tribocorrosion in novel in-situ Ti and β Ti–40Nb alloy matrix composites produced with NbC addition during arc-melting for biomedical applications. Materials Chemistry and Physics, 2023, 301, 127597.	2.0	6
757	Evolution of morphology, microstructure and hardness of bodies and debris during sliding wear of carbon steels in a closed tribosystem. Wear, 2023, 523, 204809.	1.5	4
758	Debris expulsion as a rate determining process in fretting – The effect of slip amplitude on debris expulsion behaviour and rates. Wear, 2023, 523, 204818.	1.5	1
759	Topography rules the ultra-mild wear regime under boundary lubricated gross-slip fretting corrosion. Wear, 2023, 522, 204716.	1.5	4
760	Relationships between third body flows, load-bearing mechanisms and particle emissions in automotive braking. Wear, 2023, 524-525, 204855.	1.5	0
761	Wear resistance and friction analysis of Ti6Al4V cylindrical ball-burnished specimens with and without vibration assistance. International Journal of Advanced Manufacturing Technology, 2024, 131, 551-562.	1.5	3
762	Laboratory Earthquakes Simulations—Typical Events, Fault Damage, and Gouge Production. Journal of Geophysical Research: Solid Earth, 2023, 128, .	1.4	2
763	Micro-Arcs Oxidation Layer Formation on Aluminium and Coatings Tribological Properties—A Review. Coatings, 2023, 13, 373.	1.2	8
764	A Multiscale Strengthened Friction Film Enabling the Stable Braking Performance of a Copper-Based Brake Pad in High-Speed Emergency Braking. Tribology Transactions, 2023, 66, 519-529.	1.1	2
765	State-of-Art on Self-Lubricating Ceramics and Application of Cu/CuO as Solid Lubricant Material. Transactions of the Indian Ceramic Society, 2023, 82, 1-13.	0.4	5
766	Influence of iron dilution on plastic deformation mechanisms in cobalt-based alloys: Consequence of phase transformations on tribological behavior. Wear, 2023, 524-525, 204845.	1.5	1
767	Effect of Third-Particle Material and Contact Mode on Tribology Contact Characteristics at Interface. Lubricants, 2023, 11, 184.	1.2	0

ARTICLE

IF CITATIONS