Turfgrass Evapotranspiration. 11. Responses to Deficit I

Agronomy Journal 76, 85-89 DOI: 10.2134/agronj1984.00021962007600010022x

Citation Report

#	Article	IF	CITATIONS
1	Response of Cynodon dactylon to prolonged water deficits under saline conditions. Plant and Soil, 1993, 148, 239-251.	3.7	19
2	Response of Buffalograss and Bermudagrass to Reduced Irrigation Practices Under Semiarid Conditions. Journal of Turfgrass Management, 1997, 2, 45-54.	0.1	0
3	Estimation of pasture drought severity using canopy red-to-far-red radiance. Environmental and Experimental Botany, 1997, 38, 81-86.	4.2	3
4	Turfgrass Evaluation of Native Grasses for the Northern Great Plains Region. Crop Science, 2002, 42, 2018-2024.	1.8	39
5	The effects of different irrigation levels applied in golf courses on some quality characteristics of turfgrass. Irrigation Science, 2003, 22, 87-93.	2.8	36
6	Evaluation of Microlysimeters Used in Turfgrass Evapotranspiration Studies Using the Dualâ€Probe Heatâ€Pulse Technique. Agronomy Journal, 2003, 95, 1625-1632.	1.8	28
7	Minimum Water Requirements for Creeping, Colonial, and Velvet Bentgrasses under Fairway Conditions. Crop Science, 2006, 46, 81-89.	1.8	66
8	The most economical irrigation amount and evapotranspiration of the turfgrasses in Beijing City, China. Agricultural Water Management, 2007, 89, 98-104.	5.6	14
9	Water-use patterns of tall fescue and hybrid bluegrass cultivars subjected to ET-based irrigation scheduling. Irrigation Science, 2009, 27, 377-391.	2.8	10
10	Seasonal contributions of vegetation types to suburban evapotranspiration. Journal of Geophysical Research, 2011, 116, .	3.3	80
11	Turfgrass Growth, Quality, and Reflective Heat Load in Response to Deficit Irrigation Practices. , 0, , .		4
12	Temperature influences the ability of tall fescue to control transpiration in response to atmospheric vapour pressure deficit. Functional Plant Biology, 2012, 39, 979.	2.1	33
13	Summer Percent Green Cover among Kentucky Bluegrass Cultivars, Accessions, and Other <i>Poa</i> Species Managed under Deficit Irrigation. Crop Science, 2012, 52, 400-407.	1.8	12
14	Continuous measurements of net CO ₂ exchange by vegetation and soils in a suburban landscape. Journal of Geophysical Research, 2012, 117, .	3.3	23
15	Optical and Thermal Remote Sensing of Turfgrass Quality, Water Stress, and Water Use under Different Soil and Irrigation Treatments. Remote Sensing, 2013, 5, 2327-2347.	4.0	21
16	Morphological and Physiological Responses of St. Augustine Grass Cultivars to Different Levels of Soil Moisture. Journal of Crop Improvement, 2013, 27, 291-308.	1.7	2
17	Plant Growth Regulator and Soil Surfactants' Effects on Saline and Deficit Irrigated Warmâ€Season Grasses: I. Turf Quality and Soil Moisture. Crop Science, 2014, 54, 2815-2826.	1.8	29
18	Supplemental Irrigation Requirements of Zoysiagrass and Bermudagrass Cultivars. Crop Science, 2014, 54, 1823-1831.	1.8	25

# 19	ARTICLE Water Requirements and Irrigation. Agronomy, 2015, , 441-472.	IF 0.2	CITATIONS 20
20	Energy Conservation and Efficient Turfgrass Maintenance. Agronomy, 0, , 473-500.	0.2	5
21	Field Research. Agronomy, 2015, , 589-614.	0.2	0
22	Ecological Aspects of Turf Communities. Agronomy, 0, , 129-174.	0.2	23
23	Irrigation Science and Technology. , 2015, , 1075-1131.		19
24	Performance of warm-season turfgrasses under different water regimes in the Mediterranean climate conditions of Southern Italy. Italian Journal of Agronomy, 2016, 11, 158-163.	1.0	3
25	Deficit Irrigation and Simulated Traffic on â€~Tifway' Bermudagrass Summer Performance and Autumn Recovery. Crop Science, 2016, 56, 809-817.	1.8	18
26	Evapotranspiration and quality characteristics of some bermudagrass turf cultivars under deficit irrigation. Grassland Science, 2016, 62, 224-232.	1.1	7
27	Crop Coefficients, Growth Rates and Quality of Coolâ€ S eason Turfgrasses. Journal of Agronomy and Crop Science, 2016, 202, 69-80.	3.5	15
28	Deficit Irrigation and Fertility Effects on NO ₃ –N Exports from St. Augustinegrass. Journal of Environmental Quality, 2017, 46, 793-801.	2.0	5
29	Playing quality, growth rate, thatch accumulation and tolerance to moss and annual bluegrass invasion as influenced by irrigation strategies on red fescue putting greens. Journal of Agronomy and Crop Science, 2018, 204, 185-195.	3.5	20
30	Assessing evidence on the agronomic and environmental impacts of turfgrass irrigation management. Journal of Agronomy and Crop Science, 2018, 204, 333-346.	3.5	13
31	Potential of summer-active temperate (C3) perennial forages to mitigate the detrimental effects of supraoptimal temperatures on summer home-grown feed production in south-eastern Australian dairying regions. Crop and Pasture Science, 2018, 69, 808.	1.5	40
32	Effect of stubble-height management on crown temperature of perennial ryegrass, tall fescue and chicory. Crop and Pasture Science, 2019, 70, 183.	1.5	12
33	Optimizing Irrigation Rates and Frequency for Perennial Ryegrass in Western Oregon. Crop, Forage and Turfgrass Management, 2019, 5, 180094.	0.6	4
34	Kentucky Bluegrass Performance Under Chronic Drought Stress. Crop, Forage and Turfgrass Management, 2019, 5, 180089.	0.6	6
35	Drought Stress Response of Turf-Type Perennial Ryegrass Genotypes in a Mediterranean Environment. Agronomy, 2020, 10, 1810.	3.0	13
36	Identification of wetting agents for water conservation on deficitâ€irrigated hybrid bermudagrass fairways. Agronomy Journal, 2020, , .	1.8	5

CITATION REPORT

#	Article	IF	CITATIONS
37	Drought avoidance of warmâ€season turfgrasses affected by irrigation system, soil surfactant revolution, and plant growth regulator trinexapacâ€ethyl. Crop Science, 2020, 60, 485-498.	1.8	11
38	Can irrigating more frequently mitigate detrimental heat wave effects on perennial ryegrass growth and persistence?. Agricultural and Forest Meteorology, 2020, 291, 108074.	4.8	3
39	Water requirements influenced by turfgrass species and mowing height in western Oregon. Crop, Forage and Turfgrass Management, 2020, 6, e20020.	0.6	4
40	Irrigation requirements for establishing seeded tall fescue and bermudagrass cultivars in the transition zone. Crop, Forage and Turfgrass Management, 0, , e20108.	0.6	1
41	Response of Hybrid Bermudagrass and Manilagrass to Soil Moisture Using Water-table Depth Gradient Tanks. Hortscience: A Publication of the American Society for Hortcultural Science, 2021, 56, 1034-1040.	1.0	0
42	Irrigation Scheduling on Sandâ€Based Creeping Bentgrass: Evaluating Evapotranspiration Estimation, Capacitance Sensors, and Deficit Irrigation in the Upper Midwest. , 2006, 3, 1-14.		8
43	Irrigation Requirements of Tall Fescue and Kentucky Bluegrass Cultivars Selected Under Acute Drought Stress. , 2012, 9, 1-13.		10
44	Growth and Quality Responses of Tall Fescue (Festuca arundinacea Schreb.) to Different Irrigation Levels and Nitrogen Rates. Turkish Journal of Field Crops, 2014, 19, 142.	0.8	4
45	Minimum Water Requirements of Four Turfgrasses in the Transition Zone. Hortscience: A Publication of the American Society for Hortcultural Science, 2004, 39, 1740-1744.	1.0	74
46	Growth and Carbon Metabolism of Tall Fescue and Zoysiagrass as Affected by Deficit Irrigation. Hortscience: A Publication of the American Society for Hortcultural Science, 2007, 42, 378-381.	1.0	17
47	Tall Fescue Rooting as Affected by Deficit Irrigation. Hortscience: A Publication of the American Society for Hortcultural Science, 2007, 42, 688-691.	1.0	17
49	References no. 12912-14765/ABD-ZUR. , 1986, , 1-121.		0
50	Effects of St. Augustinegrass genotype and irrigation frequency on turfgrass quality in a subtropical environment. Itsrj, 2022, 14, 683-693.	0.3	2
51	Review of coolâ€season turfgrass water use and requirements: I. Evapotranspiration and responses to deficit irrigation. Crop Science, 2022, 62, 1661-1684.	1.8	12
52	Qualityâ€Based Field Research Indicates Fertilization Reduces Irrigation Requirements of Four Turfgrass Species. Itsrj, 2017, 13, 761-767.	0.3	3
53	The Effects of Different Irrigation Levels and Nitrogen Doses on Growth, Quality and Physiological Parameters of Warm-Season Turfgrasses. Tarim Bilimleri Dergisi, 0, , .	0.4	0
54	Variation for turfgrass performance in a set of <i>Lolium perenne</i> germplasm evaluated under limited irrigation. Crop Science, 0, , .	1.8	0
55	Strategies for reducing inputs and emissions in turfgrass systems. Crop, Forage and Turfgrass Management, 2023, 9, .	0.6	0

CITATION REPORT

#	Article	IF	CITATIONS
56	Potential Use of Subsurface Drip Irrigation Systems in Landscape Irrigation under Full and Limited Irrigation Conditions. Sustainability, 2023, 15, 15053.	3.2	1
57	Parameters of nitrogen use efficiency of Kentucky bluegrass cultivars at different N levels under deficit irrigation. Grass and Forage Science, 0, , .	2.9	1
58	Patterns of water-wise residential landscaping in a drought-prone city. Journal of Urban Ecology, 2024, 10, .	1.5	0
59	Mowing Height Effects on †̃TifTuf' Bermudagrass during Deficit Irrigation. Agronomy, 2024, 14, 628.	3.0	0