Rapid accumulation of inositol trisphosphate reveals the polyphosphoinositides instead of phosphatidylinositol

Biochemical Journal 212, 849-858 DOI: 10.1042/bj2120849

Citation Report

#	Article	IF	CITATIONS
1	Biochemistry: Inositol trisphosphate: link or liability?. Nature, 1983, 306, 16-17.	13.7	11
2	Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature, 1983, 306, 67-69.	13.7	2,623
3	Breakdown of polyphosphoinositides and not phosphatidylinositol accounts for muscarinic agonist-stimulated inositol phospholipid metabolism in rat parotid glands. Biochemical Journal, 1983, 216, 633-640.	1.7	224
4	Characterization of the cholinergic stimulation of phosphoinositide hydrolysis in rat brain slices. Journal of Neuroscience, 1984, 4, 3120-3127.	1.7	171
5	Further Studies on myo-Inositol-1-phosphatase from the Pollen of Lilium longiflorum Thunb. Plant Physiology, 1984, 76, 40-44.	2.3	41
6	The Application of HPLC Methodology for the Analysis of Receptor Mediated Changes in Phosphoinositide Metabolism. Journal of Receptors and Signal Transduction, 1984, 4, 505-520.	1.2	1
7	Lens lipids. Current Eye Research, 1984, 3, 1337-1359.	0.7	97
8	Oncogenes, Inositol Lipids and Cellular Proliferation. Nature Biotechnology, 1984, 2, 541-546.	9.4	32
9	Modulation of cytosolic-free calcium transients by changes in intracellular calcium-buffering capacity: correlation with exocytosis and O2-production in human neutrophils Journal of Cell Biology, 1984, 99, 1212-1220.	2.3	270
10	Cellular Calcium Metabolism: Activation and Antagonism. Journal of Asthma, 1984, 21, 375-385.	0.9	6
11	Stimulus-Secretion Coupling in Pancreatic Acinar Cells. Journal of Pediatric Gastroenterology and Nutrition, 1984, 3, S1-10.	0.9	26
12	Mechanisms of secretion from adrenal chromaffin cells. BBA - Biomembranes, 1984, 779, 201-216.	7.9	154
13	Oncogenic intelligence: Oncogenes and inositol lipids. Nature, 1984, 308, 770-770.	13.7	37
14	The second messenger linking receptor activation to internal Ca release in liver. Nature, 1984, 309, 63-66.	13.7	580
15	Cyclic nucleotides control a system which regulates Ca2+ sensitivity of platelet secretion. Nature, 1984, 309, 66-68.	13.7	153
16	Rapid mobilization of Ca2+ from rat insulinoma microsomes by inositol-1,4,5-trisphosphate. Nature, 1984, 309, 562-564.	13.7	421
17	Correlation between inositol phospholipid hydrolysis and substance P receptors in rat CNS. Nature, 1984, 309, 795-797.	13.7	172
18	Photoreceptor excitation and adaptation by inositol 1,4,5-trisphosphate. Nature, 1984, 311, 157-160.	13.7	337

TION REI

#	Article	IF	Citations
19	myo-inositol polyphosphate may be a messenger for visual excitation in Limulus photoreceptors. Nature, 1984, 311, 160-163.	13.7	318
20	Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature, 1984, 312, 315-321.	13.7	6,124
21	Mitogens increase phosphorylation of phosphoinositides in thymocytes. Nature, 1984, 312, 462-465.	13.7	229
22	Inositol 1,4,5-trisphosphate microinjection activates sea urchin eggs. Nature, 1984, 312, 636-639.	13.7	322

Acetylcholine-like effects of 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine ('platelet-activating) Tj ETQq0 0 0 rgBT $O_{0.2}^{O}$ Prove 10 fg Tf 50 58 $O_{0.2}^{O}$

24	Prostaglandin F2? stimulates phosphatidylinositol turnover and increases the cellular content of 1,2-diacylglycerol in confluent resting swiss 3T3 cells. Journal of Cellular Physiology, 1984, 119, 35-40.	2.0	104
25	Cytosolic free Ca2+ in insulin secreting cells and its regulation by isolated organelles. Experientia, 1984, 40, 1052-1060.	1.2	102
26	Phospholipid metabolism in pancreatic islets. Experientia, 1984, 40, 1085-1091.	1.2	39
27	Effect of inositol-1,4,5-trisphosphate on isolated subcellular fractions of rat pancreas. Journal of Membrane Biology, 1984, 81, 241-253.	1.0	307
28	The mechanism by which cholecystokinin peptides excite their target cells. Bioscience Reports, 1984, 4, 275-283.	1.1	6
29	Inositol(1,4,5)trisphosphate-promoted Ca2+ release from microsomal fractions of rat liver. Biochemical and Biophysical Research Communications, 1984, 120, 858-864.	1.0	200
30	Salmon calcitonin inhibits human sperm motility in vitro. Biochemical and Biophysical Research Communications, 1984, 125, 199-204.	1.0	21
31	Hormone action at membranes. Trends in Biochemical Sciences, 1984, 9, 3-4.	3.7	16
32	Possible mechanisms involved in the release and modulation of release of neuroactive agents. Neurochemistry International, 1984, 6, 419-433.	1.9	56
33	Characteristics of the adenohypophyseal Ca2+-phospholipid-dependent protein kinase. Molecular and Cellular Endocrinology, 1984, 34, 107-112.	1.6	58
34	Relationship of polyphosphoinositide metabolism to the hormonal activation of the inset salivary gland by 5-hydroxytryptamine. Molecular and Cellular Endocrinology, 1984, 36, 37-42.	1.6	40
35	Changes in [3H]inositol-labelled phosphoinositides of pig platelets in response to thrombin. Biochimica Et Biophysica Acta - Molecular Cell Research, 1984, 805, 285-290.	1.9	7
36	The Role of Phosphatidylinositol 4,5 Bisphosphate Breakdown in Cell-Surface Receptor Activation. Journal of Receptors and Signal Transduction, 1984, 4, 489-504.	1.2	31

		CITATION REPORT		
#	Article		IF	Citations
37	THE MECHANISM OF Î \pm -ADRENERGIC AGONIST ACTION IN LIVER. Biological Reviews, 1984, 59, 5	511-557.	4.7	22
38	Effects of lithium on angiotensin-stimulated phosphatidylinositol turnover and aldosterone production in adrenal glomerulosa cells: a possible causal relationship. FEBS Letters, 1984, 171,	179-182.	1.3	40
39	Phosphoinositide breakdown in isolated rat parotid membranes. FEBS Letters, 1984, 178, 278-28	82.	1.3	6
40	Activation of phospholipase C in thrombin-stimulated platelets does not depend on cytoplasmic calcium concentration. FEBS Letters, 1984, 170, 43-48.	free	1.3	40
41	Lysophosphatidic acid can activate platelets without increasing 32P-labelling of phosphatidic aci Lipids and Lipid Metabolism, 1984, 795, 487-492.	d.	2.6	28
42	Enhanced turnover of arachidonic acid-containing species of phosphatidylinositol and phosphati acid of concanavalin astimulated lymphocytes. Lipids and Lipid Metabolism, 1984, 796, 190-198	dic •	2.6	23
43	αLatrotoxin of black widow spider venom binds to a specific receptor coupled to phosphoinositi breakdown in PC12 cells. Biochemical and Biophysical Research Communications, 1984, 121, 53	de 8-544.	1.0	60
44	Gonadotropin-releasing hormone rapidly alters polyphosphoinositide metabolism in rat granulos cells. Biochemical and Biophysical Research Communications, 1984, 122, 1289-1295.	a	1.0	25
45	A direct demonstration that inositol-trisphosphate induces an increase in intracellular calcium in limulus photoreceptors. Biochemical and Biophysical Research Communications, 1984, 125, 113	37-1142.	1.0	113
46	Neurotensin stimulates inositol phospholipid hydrolysis in rat brain slices. Brain Research, 1984, 193-197.	323,	1.1	115
47	Phospholipids as intermediates in hormone action. Molecular and Cellular Endocrinology, 1984, 1-14.	35,	1.6	73
48	Activation of Plasma Membrane Phosphatidylinositol Turnover by Hormones. Vitamins and Horm 1984, 41, 117-160.	iones,	0.7	25
49	Chapter 21. Phospholipases. Annual Reports in Medicinal Chemistry, 1984, 19, 213-221.		0.5	9
50	Leukotriene B4 mobilizes calcium without the breakdown of polyphosphoinositides and the production of phosphatidic acid in rabbit neutrophils Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 5966-5969.		3.3	89
51	Phorbol 12-myristate 13-acetate, ionomycin or ouabain, and raised extracellular magnesium indu proliferation of chicken heart mesenchymal cells Proceedings of the National Academy of Scien of the United States of America, 1984, 81, 6418-6421.	ice ces	3.3	16
52	Pharmacomechanical coupling in smooth muscle may involve phosphatidylinositol metabolism Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 689	99-6903.	3.3	157
53	Evidence that the Rous sarcoma virus transforming gene product phosphorylates phosphatidylinositol and diacylglycerol Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 2117-2121.	2	3.3	474
54	Effects of carbachol and pancreozymin (cholecystokinin-octapeptide) on polyphosphoinositide metabolism in the rat pancreas in vitro. Biochemical Journal, 1984, 217, 281-287.		1.7	48

#	Article	IF	CITATIONS
55	Phosphatidylinositol-4,5-bisphosphate phosphodiesterase and phosphomonoesterase activities of rat brain. Some properties and possible control mechanisms. Biochemical Journal, 1984, 218, 177-185.	1.7	213
56	Secretagogue-induced formation of inositol phosphates in rat exocrine pancreas. Implications for a messenger role for inositol trisphosphate. Biochemical Journal, 1984, 219, 655-659.	1.7	79
57	Thromboxane-induced phosphatidate formation in human platelets. Relationship to receptor occupancy and to changes in cytosolic free calcium. Biochemical Journal, 1984, 219, 833-842.	1.7	123
58	Inositol trisphosphate and diacylglycerol as second messengers. Biochemical Journal, 1984, 220, 345-360.	1.7	3,655
59	Rapid accumulation of inositol phosphates in isolated rat superior cervical sympathetic ganglia exposed to V1-vasopressin and muscarinic cholinergic stimuli. Biochemical Journal, 1984, 221, 803-811.	1.7	230
60	Multiple forms of phosphoinositide-specific phospholipase C of different relative molecular masses in animal tissues. Evidence for modification of the platelet enzyme by Ca2+-dependent proteinase. Biochemical Journal, 1984, 221, 813-820.	1.7	78
61	Tight coupling of thrombin-induced acid hydrolase secretion and phosphatidate synthesis to receptor occupancy in human platelets. Biochemical Journal, 1984, 222, 157-167.	1.7	84
62	Secretagogue-induced phosphoinositide metabolism in human leucocytes. Biochemical Journal, 1984, 222, 307-314.	1.7	157
63	Phosphoinositide synthesis and Ca2+ gating in blowfly salivary glands exposed to 5-hydroxytryptamine. Biochemical Journal, 1984, 222, 327-334.	1.7	15
64	A transient increase in diacylglycerols is associated with the action of vasopressin on hepatocytes. Biochemical Journal, 1984, 222, 535-540.	1.7	54
65	The role of calcium ions in the mechanism of action of α-adrenergic agonists in rat liver. Biochemical Journal, 1984, 223, 1-13.	1.7	207
66	Inositol trisphosphates in carbachol-stimulated rat parotid glands. Biochemical Journal, 1984, 223, 237-243.	1.7	312
67	Inositol 1,4,5-trisphosphate mobilizes intracellular Ca2+ from permeabilized insulin-secreting cells. Biochemical Journal, 1984, 223, 467-473.	1.7	195
68	Carbachol causes rapid phosphodiesteratic cleavage of phosphatidylinositol 4,5-bisphosphate and accumulation of inositol phosphates in rabbit iris smooth muscle; prazosin inhibits noradrenaline- and ionophore A23187-stimulated accumulation of inositol phosphates. Biochemical Journal, 1984, 224, 291-300.	1.7	96
69	Accumulation of the inositol phosphates in thrombin-stimulated, washed rabbit platelets in the presence of lithium. Biochemical Journal, 1984, 224, 399-405.	1.7	51
70	Actions of inositol phosphates on Ca2+ pools in guinea-pig hepatocytes. Biochemical Journal, 1984, 224, 741-746.	1.7	166
71	Inositol trisphosphate formation and calcium mobilization in Swiss 3T3 cells in response to platelet-derived growth factor. Biochemical Journal, 1984, 222, 195-201.	1.7	525
72	Specificity of inositol trisphosphate-induced calcium release from permeabilized Swiss-mouse 3T3 cells. Biochemical Journal, 1984, 222, 269-272.	1.7	199

# 73	ARTICLE Muscarinic-receptor stimulation enhances polyphosphoinositide breakdown in guinea-pig ileum smooth muscle. Biochemical Journal, 1984, 223, 527-531.	IF 1.7	CITATIONS 30
74	Breakdown of phosphatidylinositol 4,5-bisphosphate in a T-cell leukaemia line stimulated by phytohaemagglutinin is not dependent on Ca2+ mobilization. Biochemical Journal, 1985, 227, 971-979.	1.7	38
75	Inositol phosphate formation in fMet-Leu-Phe-stimulated human neutrophils does not require an increase in the cytosolic free Ca2+ concentration. Biochemical Journal, 1985, 229, 361-367.	1.7	90
76	Properties of receptor-controlled inositol trisphosphate formation in parotid acinar cells. Biochemical Journal, 1985, 225, 263-266.	1.7	82
77	Gonadotropin releasing hormone stimulates the formation of inositol phosphates in rat anterior pituitary tissue. Biochemical Journal, 1985, 226, 563-569.	1.7	69
78	Stimulation of inositol trisphosphate formation in hepatocytes by vasopressin, adrenaline and angiotensin II and its relationship to changes in cytosolic free Ca2+. Biochemical Journal, 1985, 227, 79-90.	1.7	218
79	Metabolism of inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate in rat parotid glands. Biochemical Journal, 1985, 229, 505-511.	1.7	478
80	Inositol 1,4,5-trisphosphate and inositol 1,3,4-trisphosphate formation in Ca2+-mobilizing-hormone-activated cells. Biochemical Journal, 1985, 232, 237-243.	1.7	248
81	Guanine nucleotides stimulate production of inositol trisphosphate in rat cortical membranes. Biochemical Journal, 1985, 232, 799-804.	1.7	127
82	Hormone Secretion by Exocytosis with Emphasis on Information from the Chromaffin Cell System. Vitamins and Hormones, 1985, 42, 109-196.	0.7	42
83	[41] Direct chemical measurement of receptor-mediated changes in phosphatidylinositol levels in isolated rat liver plasma membranes. Methods in Enzymology, 1985, 109, 504-513.	0.4	2
84	Pertussis toxin inhibits chemotactic peptide-stimulated generation of inositol phosphates and lysosomal enzyme secretion in human leukemic (HL-60) cells Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 3277-3280.	3.3	189
85	Rapid formation of inositol 1,3,4,5-tetrakisphosphate following muscarinic receptor stimulation of rat cerebral cortical slices. Biochemical Journal, 1985, 232, 211-215.	1.7	660
86	Adrenergic regulation of gluconeogenesis: possible involvement of two mechanisms of signal transduction in alpha 1-adrenergic action Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 6727-6730.	3.3	36
87	Inhibition of polyphosphoinositide phosphodiesterase by aminoglycoside antibiotics. Neurochemical Research, 1985, 10, 1019-1024.	1.6	32
88	Inositol 1,4,5-trisphosphate mimics muscarinic response in Xenopus oocytes. Nature, 1985, 313, 141-143.	13.7	255
89	Specific interaction between phosphatidylinositol 4,5-bisphosphate and profilactin. Nature, 1985, 314, 472-474.	13.7	832
90	Calcium content of mitochondria and endoplasmic reticulum in liver frozen rapidly in vivo. Nature, 1985, 314, 622-625.	13.7	359

#	Article	IF	CITATIONS
91	Muscarinic Receptors and Hydrolysis of Inositol Phospholipids in Rat Cerebral Cortex and Parotid Gland. Journal of Neurochemistry, 1985, 44, 465-472.	2.1	100
92	Tetraenoic Species Are Conserved in Muscarinically Enhanced Inositide Turnover. Journal of Neurochemistry, 1985, 44, 540-543.	2.1	21
93	Calcium- and Calmodulin-Dependent Phosphorylation of Diphosphoinositide in Acetylcholine Receptor-Rich Membranes from Electroplax of Narke japonica. Journal of Neurochemistry, 1985, 45, 124-131.	2.1	6
94	Cholinergic- and Adrenergic-Stimulated Inositide Hydrolysis in Brain: Interaction, Regional Distribution, and Coupling Mechanisms. Journal of Neurochemistry, 1985, 45, 1076-1084.	2.1	100
95	Regional Differences in the Coupling of Muscarinic Receptors to Inositol Phospholipid Hydrolysis in Guinea Pig Brain. Journal of Neurochemistry, 1985, 45, 1085-1095.	2.1	149
96	Manganese Stimulates the Incorporation of [3H]Inositol into a Pool of Phosphatidylinositol in Brain That Is Not Coupled to Agonist-Induced Hydrolysis. Journal of Neurochemistry, 1985, 45, 1481-1486.	2.1	37
97	Differential Effects of Lithium on Muscarinic Receptor Stimulation of Inositol Phosphates in Rat Cerebral Cortex Slices. Journal of Neurochemistry, 1985, 45, 1514-1521.	2.1	98
98	Effects of Systemically Administered Lithium on Phosphoinositide Metabolism in Rat Brain, Kidney, and Testis. Journal of Neurochemistry, 1985, 44, 798-807.	2.1	179
99	The biochemical basis of transmembrane signalling by B lymphocyte surface immunoglobulin. Trends in Immunology, 1985, 6, 218-222.	7.5	70
100	Substance P action on phosphoinositides in guinea-pig intestinal muscle: a possible transduction mechanism?. Naunyn-Schmiedeberg's Archives of Pharmacology, 1985, 329, 50-55.	1.4	35
101	Inositol phosphates in the insect nervous system. Insect Biochemistry, 1985, 15, 811-815.	1.8	26
102	Phosphatidylinositol metabolism during fertilization in the sea urchin egg. Lipids, 1985, 20, 350-356.	0.7	72
103	Separation of inositol phosphates and glycerophosphoinositol phosphates by high-performance liquid chromatography. Analytical Biochemistry, 1985, 148, 220-227.	1.1	57
104	Oncogenes, ions, and phospholipids. American Journal of Physiology - Cell Physiology, 1985, 248, C3-C11.	2.1	164
105	Phosphatidylinositol turnover and transformation of cells by Abelson murine leukaemia virus EMBO Journal, 1985, 4, 3173-3178.	3.5	55
106	Mechanisms involved in alpha-adrenergic phenomena. American Journal of Physiology - Endocrinology and Metabolism, 1985, 248, E633-E647.	1.8	81
107	Inositol trisphosphate and diacylglycerol as intracellular second messengers in liver. American Journal of Physiology - Cell Physiology, 1985, 248, C203-C216.	2.1	406
108	Thyrotropin-Releasing Hormone Action: Mechanism of Calcium-Mediated Stimulation of Prolactin Secretion. , 1985, 41, 607-653.		23

#	Article	IF	CITATIONS
109	Luteinizing Hormone-Releasing Hormone Stimulates Arachidonic Acid Release in Rat Granulosa Cells*. Endocrinology, 1985, 117, 2001-2007.	1.4	28
110	Molecular characterization of adrenergic receptors Circulation Research, 1985, 56, 635-650.	2.0	42
111	Transmembrane signalling by the T cell antigen receptor. Perturbation of the T3-antigen receptor complex generates inositol phosphates and releases calcium ions from intracellular stores Journal of Experimental Medicine, 1985, 161, 446-456.	4.2	736
112	Cellular Mechanisms in the Actions of Antiglaucoma Drugs. Journal of Ocular Pharmacology and Therapeutics, 1985, 1, 397-422.	0.6	18
113	The role of calcium in diuretic hormone action on locust Malpighian tubules. Molecular and Cellular Endocrinology, 1985, 40, 221-231.	1.6	19
114	Metabolism of phosphoinositides and inositol polyphosphates in rabbit corneal epithelium. Current Eye Research, 1985, 4, 793-801.	0.7	17
115	Histamineâ€induced inositol phospholipid breakdown in the longitudinal smooth muscle of guineaâ€pig ileum. British Journal of Pharmacology, 1985, 85, 499-512.	2.7	58
116	A role for inositol 1,4,5â€ŧrisphosphate in the initiation of agonistâ€induced contractions of dog tracheal smooth muscle. British Journal of Pharmacology, 1985, 86, 191-199.	2.7	135
118	Studies on Cell Proliferation and Mevalonic Acid Metabolism in Cultured Human Fibroblastsa. Annals of the New York Academy of Sciences, 1985, 454, 261-269.	1.8	13
119	Structural analogies between protein kinase C activators. Biochemical and Biophysical Research Communications, 1985, 127, 969-976.	1.0	19
120	Mechanism of action of gonadotropin-releasing hormone stimulated Leydig cell steroidogenesis III. The role of arachidonic acid and calcium/phospholipid dependent protein kinase. Life Sciences, 1985, 36, 1255-1264.	2.0	46
121	Regulation of protein kinases in exocrine secretory cells during agonist-induced exocytosis. Advances in Enzyme Regulation, 1985, 23, 141-156.	2.9	11
122	Effect of activation of muscarinic receptors on intracellular free calcium and secretion in bovine adrenal chromaffin cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 1985, 846, 167-173.	1.9	105
123	Neurotensin stimulates polyphosphoinositide breakdown and prolactin release in anterior pituitary cells in culture. Molecular and Cellular Endocrinology, 1985, 42, 215-220.	1.6	22
124	Phosphoinositide turnover provides a link in stimulus—response coupling. Trends in Biochemical Sciences, 1985, 10, 168-171.	3.7	190
125	Hormone-mediated inositol lipid breakdown in hepatocytes and WRK1 cells: relationship to receptor function. Biochimie, 1985, 67, 1161-1167.	1.3	13
126	Protein kinase C: properties and possible role in cellular division and differentiation. Biochimie, 1985, 67, 1103-1110.	1.3	19
127	Prostacyclin synthesis and deacylation of phospholipids in human endothelial cells: Comparison of thrombin, histamine and ionophore A23187. Thrombosis Research, 1985, 38, 1-10.	0.8	69

#	Article	IF	CITATIONS
128	Subcellular localization and enzymatic properties of rat liver phosphatidylinositol-4-phosphate kinase. Biochimica Et Biophysica Acta - Molecular Cell Research, 1985, 846, 379-387.	1.9	48
129	Protein kinase C activation leading to protein F1 phosphorylation may regulate synaptic plasticity by presynaptic terminal growth. Behavioral and Neural Biology, 1985, 44, 186-200.	2.3	102
130	A tumor promoter enhances the phosphorylation of polyphosphoinositides while decreasing phosphatidylinositol labelling in lymphocytes. Biochemical and Biophysical Research Communications, 1985, 129, 431-438.	1.0	23
131	Inhibition of phosphatidylinositol-4-phosphate kinase by its product phosphatidylinositol-4,5-bisphosphate. Biochemical and Biophysical Research Communications, 1985, 126, 150-155.	1.0	57
132	Luteinizing hormone-releasing hormone enhances polyphosphoinositide breakdown in rat granulosa cells. Biochemical and Biophysical Research Communications, 1985, 130, 1201-1208.	1.0	34
133	Calcium sequestration activity in rat liver microsomes. Evidence for a cooperation of calcium transport with glucose-6-phosphatase. Biochimica Et Biophysica Acta - Biomembranes, 1985, 816, 267-277.	1.4	48
134	Co-mitogenic tumor promoters suppress the phosphatidylinositol response in lymphocytes during early mitogenesis. Lipids and Lipid Metabolism, 1985, 833, 181-188.	2.6	13
135	Molecular species of phosphatidylinositol, phosphatidic acid and diacylglycerol in a phytohemagglutinin-stimulated T-cell leukemia line. Lipids and Lipid Metabolism, 1985, 833, 316-322.	2.6	22
136	Thrombin induces the rapid formation of inositol bisphosphate and inositol trisphosphate in human platelets. FEBS Letters, 1985, 180, 107-112.	1.3	21
137	Regulation of a liver plasma membrane phosphoinositide phosphodiesterase by guanine nucleotides and calcium. FEBS Letters, 1985, 188, 317-320.	1.3	83
138	Acetylcholine stimulates phosphatidylinositol turnover at nicotinic receptors of cultured myotubes. FEBS Letters, 1985, 190, 161-164.	1.3	43
139	Polyphosphoinositide hydrolysis is associated with exocytosis in adrenal medullary cells. FEBS Letters, 1985, 189, 137-140.	1.3	15
140	Calcium-dependent polyphosphoinositide hydrolysis is associated with exocytosis in vitro. FEBS Letters, 1985, 182, 119-124.	1.3	114
141	Phosphoinositide hydrolysis is correlated with agonist-induced calcium flux and contraction in the rabbit aorta. European Journal of Pharmacology, 1985, 116, 129-136.	1.7	61
142	Activation of α1-adrenoceptors increases [3H]inositol metabolism in rat vas deferens and caudal artery. European Journal of Pharmacology, 1985, 116, 145-152.	1.7	59
143	Evidence of phosphorylated phosphatidylinositols in the growth cycle of suspension cultured plant cells. Biochemical and Biophysical Research Communications, 1986, 134, 1175-1181.	1.0	83
144	Partial purification of phosphoinositide phospholipase C from human platelet cytosol; characterization of its three forms. Biochemical and Biophysical Research Communications, 1986, 136, 713-721.	1.0	73
145	Enhanced inositide turnover in brain during bicuculline-induced status epilepticus. Biochemical and Biophysical Research Communications, 1986, 136, 827-834.	1.0	29

# 146	ARTICLE Intracellular Ca2+ requirements for zymosan-stimulated phosphoinositide hydrolysis in mouse peritoneal macrophages. Biochemical and Biophysical Research Communications, 1986, 134, 367-371.	IF 1.0	CITATIONS
147	Inositol 1,4,5-trisphosphate-induced Ca2+ release from permeabilized mastocytoma cells. Biochemical and Biophysical Research Communications, 1986, 135, 46-51.	1.0	9
148	Rapid increases in inositol trisphosphate and intracellular Ca++ after heat shock. Biochemical and Biophysical Research Communications, 1986, 137, 826-833.	1.0	110
149	Increased labelling of polyphosphoinositide in chemically transformed cell line C3H10T1/2 CL8. Lipids and Lipid Metabolism, 1986, 875, 1-5.	2.6	6
150	Studies of endogenous polyphosphoinositide hydrolysis in human platelet membranes. Evidence that polyphosphoinositides remain inaccessible to phosphodiesterase in the native membrane. Lipids and Lipid Metabolism, 1986, 875, 147-156.	2.6	18
151	Selective inhibition of human platelet phospholipase A2 by buffering cytoplasmic calcium with the fluorescent indicator quin 2. Evidence for different calcium sensitivities of phospholipases A2 and C. Lipids and Lipid Metabolism, 1986, 875, 157-164.	2.6	39
152	Synthesis of polyphosphoinositides in vertebrate photoreceptor membranes. Lipids and Lipid Metabolism, 1986, 877, 440-446.	2.6	23
153	Incorporation of synthetic 1,2-diacylglycerol into platelet phosphatidylinositol is increased by cyclic AMP. FEBS Letters, 1986, 195, 111-114.	1.3	36
154	Platelet-activating factor mobilises intracellular calcium in vascular smooth muscle cells. FEBS Letters, 1986, 197, 13-16.	1.3	19
155	Acetylcholine- and inositol 1,4,5-trisphosphate-induced calcium mobilization inXenopus laevisoocytes. FEBS Letters, 1986, 199, 208-212.	1.3	39
156	Membrane protein-lipid hydrogen bonding: evidence from protein kinase C, diglyceride, and tumor promotors. FEBS Letters, 1986, 201, 1-4.	1.3	23
157	The effects of phospholipase C on the voltage-gated Ca current in Lymnaea stagnalis mollusc neurons. FEBS Letters, 1986, 205, 261-264.	1.3	4
158	Use of fluoride ion as a probe for the guanine nucleotide-binding protein involved in the phosphoinositide-dependent neutrophil transduction pathway. FEBS Letters, 1986, 206, 20-24.	1.3	67
159	Histamine-induced hydrolysis of polyphosphoinositides in guinea-pig ileum and brain. European Journal of Pharmacology, 1986, 124, 255-265.	1.7	33
160	Receptor-mediated inositol phospholipid hydrolysis in astrocytes. European Journal of Pharmacology, 1986, 121, 231-243.	1.7	105
161	Stimulation of phosphatidylinositol metabolism in atrial and ventricular myocytes. Life Sciences, 1986, 39, 2215-2220.	2.0	31
162	The inositide cycle in bovine photoreceptor membranes. Life Sciences, 1986, 38, 1685-1693.	2.0	9
163	Regulation of phosphoinositide breakdown by guanine nucleotides. Life Sciences, 1986, 39, 187-194.	2.0	160

ARTICLE IF CITATIONS Gonadotropin releasing hormone enhances polyphosphoinositide hydrolysis in rat pituitary cells. 1.0 61 164 Biochemical and Biophysical Research Communications, 1986, 134, 861-867. Electron-Probe X Ray Microanalysis of In Situ Calcium and Other Ion Movements in Muscle and Liver. 1.8 Annals of the New York Academy of Sciences, 1986, 483, 229-240. Agonist-stimulated phosphatidylinositol 4,5-bisphosphate metabolism in the nervous system. 166 1.9 44 Neurochemistry International, 1986, 9, 211-230. Autonomous control of phosphatidylinositol turnover by histamine and acetylcholine receptors in the N1E-115 neuron-like cell line. Néuroscience Letters, 1986, 66, 31-38. Differential effects of spermine on aggregation, inositol phosphate formation and protein phosphorylation in human platelets in response to thrombin, arachidonic acid and lysophosphatidic 168 1.1 15 acid. Biochimica Et Biophysica Acta - General Subjects, 1986, 883, 247-252. Chapter 11 The arachidonic acid cascade and phospholipid and docosahexaenoic acid metabolism in the retina. Progress in Retinal and Eye Research, 1986, 5, 309-335. 0.8 Effects of bombesin and insulin on inositol (1,4,5) trisphosphate and inositol (1,3,4) trisphosphate 170 13.5 196 formation in Swiss 3T3 cells. Cell, 1986, 47, 703-709. Inositol tetrakisphosphate: recent developments in phosphoinositide metabolism and receptor 171 4.0 function. Trends in Pharmacological Sciences, 1986, 7, 83-85. Bradykinin-induced changes in myo-inositol 1,2-(cyclic)phosphate in rabbit papillary collecting tubule 172 1.9 16 cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 1986, 888, 171-175. Action of TMB-8 (8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate) on cytoplasmic free calcium in adrenal glomerulosa cell. Biochimica Et Biophysica Acta - Molecular Cell Research, 1986, 888, 25-29. Alpha adrenoceptorsâ€"An overview. Journal of Molecular and Cellular Cardiology, 1986, 18, 1-15. 174 21 0.9 Stimulus–Response Coupling Mechanisms. , 1986, , 1-68. 28 Metabolism of the phospholipid precursor inositol and its relationship to growth and viability in the 177 1.0 39 natural auxotroph Schizosaccharomyces pombe. Journal of Bacteriology, 1986, 166, 779-786. Does Receptor-Linked Phosphoinositide Metabolism Provide Messengers Mobilizing Calcium in 178 Nervous Tissue?. International Review of Neurobiology, 1986, 28, 241-273. Chapter 1 Ligand-stimulated turnover of inositol lipids in the nervous system. Progress in Brain 179 0.9 3 Research, 1986, 69, 3-14. Chapter 2 The role of inositol phosphates in intracellular calcium mobilization. Progress in Brain Research, 1986, 69, 15-28. Chapter 6 Pharmacological aspects of the inositide response in the central nervous system: the 181 0.9 3 muscarinic acetylcholine receptor. Progress in Brain Research, 1986, 69, 65-74. Chapter 18 Synaptic plasticity and protein kinase C. Progress in Brain Research, 1986, 69, 211-234.

	Сіт	ation Report	
#	Article	IF	CITATIONS
183	Chapter 15 Neuronal cell membranes and brain aging. Progress in Brain Research, 1986, 70, 239-254.	0.9	15
184	Activation of V1-receptors by vasopressin stimulates inositol phospholipid hydrolysis and arachidonate metabolism in human platelets. Biochemical Journal, 1986, 233, 83-91.	1.7	100
185	Binding of inositol trisphosphate by a liver microsomal fraction. Biochemical Journal, 1986, 233, 929-932.	1.7	154
186	Role of phospholipase C and protein kinase C in vasoconstrictor-induced prostaglandin synthesis in cultured rat renal mesangial cells. Biochemical Journal, 1986, 234, 125-130.	1.7	81
187	Lithium-induced reduction in intracellular inositol supply in cholinergically stimulated parotid gland. Biochemical Journal, 1986, 234, 199-204.	1.7	129
188	Activation of muscarinic receptors in PC12 cells. Correlation between cytosolic Ca2+ rise and phosphoinositide hydrolysis. Biochemical Journal, 1986, 234, 555-562.	1.7	53
189	The phosphatidylinositide-Ca2+ hypothesis does not apply to the steroidogenic action of corticotropin. Biochemical Journal, 1986, 236, 53-59.	1.7	16
190	Glucose-induced accumulation of inositol trisphosphates in isolated pancreatic islets. Predominance of the 1,3,4-isomer. Biochemical Journal, 1986, 237, 259-263.	1.7	73
191	The decrease in phosphatidylinositol 4,5-bisphosphate in ADP-stimulated washed rabbit platelets is not primarily due to phospholipase C activation. Biochemical Journal, 1986, 237, 327-332.	1.7	41
192	Ionophore A23187 induces a refractory state in thrombin-activated release of inositol phosphates. Biochemical Journal, 1986, 238, 709-714.	1.7	12
193	Stimulation, by vasopressin and other agonists, of inositol-lipid breakdown and inositol phosphate accumulation in WRK 1 cells. Biochemical Journal, 1986, 240, 197-204.	1.7	58
194	Activation of two different but complementary biochemical pathways stimulates release of hypothalamic luteinizing hormone-releasing hormone Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 4932-4936.	3.3	53
195	Role of inositol lipid breakdown in the generation of intracellular signals. State of the art lecture Hypertension, 1986, 8, 11140-56.	1.3	59
196	Cell Signalling Through Phospholipid Metabolism. Journal of Cell Science, 1986, 1986, 137-153.	1.2	107
197	Inositol 1,4,5â€ŧrisphosphate activates pharmacomechanical coupling in smooth muscle of the rabbit mesenteric artery Journal of Physiology, 1986, 370, 605-618.	1.3	224
198	Ca2+-translocation activities of phosphatidylinositol, diacylglycerol and phosphatidic acid inferred by quin-2 in artiifical membrane systems. Chemistry and Physics of Lipids, 1986, 39, 237-249.	1.5	14
199	Hypothesis: Control of intracellular calcium level. Chemistry and Physics of Lipids, 1986, 39, 83-92.	1.5	15
200	Modulation of protein kinase C and Ca2+ lipid-independent protein kinase in lymphoma induced by moloney murine leukemia virus in BALB/c mice. International Journal of Cancer, 1986, 37, 589-593.	2.3	6

#	Article	IF	CITATIONS
201	Signal transducing mechanisms involved in human T cell activation via surface T44 molecules. Comparison with signals transduced via the T cell receptor complex. European Journal of Immunology, 1986, 16, 1639-1642.	1.6	32
202	Protein kinase C activation induces conductance changes in Hermissenda photoreceptors like those seen in associative learning. Nature, 1986, 319, 220-223.	13.7	290
203	A saturable receptor for 32P-inositol-1,4,5-trisphosphate in hepatocytes and neutrophils. Nature, 1986, 319, 514-516.	13.7	306
204	STIMULATION OF PHOSPHATIDYLINOSITOL METABOLISM IN THE HEART. Clinical and Experimental Pharmacology and Physiology, 1986, 13, 359-363.	0.9	4
205	Phosphatidylinositol-4-phosphate kinase from rat brain. Activation by polyamines and inhibition by phosphatidylinositol 4,5-bisphosphate. FEBS Journal, 1986, 161, 257-262.	0.2	38
206	A model for receptor-regulated calcium entry. Cell Calcium, 1986, 7, 1-12.	1.1	2,462
207	Activation of phospholipase C as a function of ionized free Ca2+ in isolated hepatocytes. Fresenius Zeitschrift F¼r Analytische Chemie, 1986, 324, 344-345.	0.7	0
208	Serotonin increases the production of inositol phosphates and mobilises calcium via the 5-HT2 receptor in A7r5 smooth muscle cells. Naunyn-Schmiedeberg's Archives of Pharmacology, 1986, 333, 98-103.	1.4	69
210	The role of phosphoinositiees in signal transduction. Journal of Membrane Biology, 1986, 89, 193-210.	1.0	230
211	ras-transformed cells: altered levels of phosphatidylinositol-4,5-bisphosphate and catabolites. Science, 1986, 231, 407-410.	6.0	465
212	Inositol Trisphosphate and Calcium Mobilization. Journal of Cardiovascular Pharmacology, 1986, 8, S85-S90.	0.8	25
213	Translocation of protein kinase C activity may mediate hippocampal long-term potentiation. Science, 1986, 231, 587-589.	6.0	551
214	Receptor-coupled activation of phosphoinositide-specific phospholipase C by an N protein. Science, 1986, 232, 97-100.	6.0	323
215	Angiotensin Peptides Stimulate Phosphoinositide Breakdown and Prolactin Release in Anterior Pituitary Cells in Culture*. Endocrinology, 1986, 118, 233-238.	1.4	54
216	Induction of Polyphosphoinositide Breakdown in Rat Corpus Luteum by Prostaglandin F2α*. Endocrinology, 1986, 119, 12-18.	1.4	92
217	The metabolism of phosphoinositide-derived messenger molecules. Science, 1986, 234, 1519-1526.	6.0	744
218	Excitation and adaptation of Limulus ventral photoreceptors by inositol 1,4,5 triphosphate result from a rise in intracellular calcium Journal of General Physiology, 1986, 88, 127-142.	0.9	142
219	Antibody-induced modulation of the CD3/T cell receptor complex causes T cell refractoriness by inhibiting the early metabolic steps involved in T cell activation Journal of Experimental Medicine, 1987, 166, 619-624.	4.2	72

#	Article	IF	CITATIONS
220	The Molecular Basis of Gonadotropin-Releasing Hormone (GnRH) Action in the Pituitary Gonadotrope1. Biology of Reproduction, 1987, 36, 17-35.	1.2	119
221	Inositol 1,4,5 trisphosphate releases calcium from specialized sites within Limulus photoreceptors. Journal of Cell Biology, 1987, 104, 933-937.	2.3	113
222	Hypersensitivity of phospholipase C in platelets of spontaneously hypertensive rats Hypertension, 1987, 10, 497-504.	1.3	32
223	Mobilization of Intracellular Calcium by Methacholine and Inositol 1,4,5-Trisphosphate in Rat Parotid Acinar Cells. Journal of Dental Research, 1987, 66, 547-551.	2.5	25
224	myo-Inositol Trisphosphate Mobilizes Calcium from Fusogenic Carrot (Daucus carota L.) Protoplasts. Plant Physiology, 1987, 83, 395-398.	2.3	73
225	Zymosan-induced release of inositol phosphates at resting cytosolic Ca2+ concentrations in macrophages. Biochemical Journal, 1987, 242, 441-445.	1.7	19
226	Inositol 1,2-cyclic 4,5-trisphosphate is not a product of μscarinic receptor-stimulated phosphatidylinositol 4,5-bisphosphate hydrolysis in rat parotid glands. Biochemical Journal, 1987, 243, 211-218.	1.7	54
227	Activation of phospholipase C associated with isolated rabbit platelet membranes by guanosine 5′-[γ-thio]triphosphate and by thrombin in the presence of GTP. Biochemical Journal, 1987, 243, 457-465.	1.7	54
228	Binding of inositol phosphates and induction of Ca2+ release from pituitary microsomal fractions. Biochemical Journal, 1987, 244, 493-496.	1.7	71
229	Evidence for two distinct phosphatidylinositol kinases in fibroblasts. Implications for cellular regulation. Biochemical Journal, 1987, 247, 165-174.	1.7	344
230	Different effects of phorbol ester on angiotensin II- and stable GTP analogue-induced activation of polyphosphoinositide phosphodiesterase in membranes isolated from rat renal mesangial cells. Biochemical Journal, 1987, 248, 209-215.	1.7	50
231	Guanine-nucleotide and hormone regulation of polyphosphoinositide phospholipase C activity of rat liver plasma membranes. Bivalent-cation and phospholipid requirements. Biochemical Journal, 1987, 248, 791-799.	1.7	116
232	Measurement of capillary gas chromatography of mass changes in myo-Inositol trisphosphate. Methods in Enzymology, 1987, 141, 143-149.	0.4	7
233	Measurement of inositol phospholipid metabolites by one-dimensional thin-layer chromatography. Methods in Enzymology, 1987, 141, 156-168.	0.4	21
234	Measurement of inositol phospholipid turnover in platelets. Methods in Enzymology, 1987, 141, 176-192.	0.4	34
235	Chapter 22 Regulation of Phospholipase A2. Annual Reports in Medicinal Chemistry, 1987, 22, 223-233.	0.5	3
236	2 Histamine Receptors in the Mammalian Central Nervous System: Biochemical Studies. Progress in Medicinal Chemistry, 1987, 24, 29-84.	4.1	18
237	Purification of phosphatidylinositol kinase from bovine brain myelin. Biochemical Journal, 1987, 241, 759-763.	1.7	58

#	Article	IF	CITATIONS
238	Cell Surface Molecules and Early Events Involved in Human T Lymphocyte Activation. Advances in Immunology, 1987, 41, 1-38.	1.1	269
239	Molecular events in the induction of a nonresponsive state in interleukin 2-producing helper T-lymphocyte clones Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 5409-5413.	3.3	289
241	Dissociation of bradykinin-induced prostaglandin formation from phosphatidylinositol turnover in Swiss 3T3 fibroblasts: evidence for G protein regulation of phospholipase A2 Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 6374-6378.	3.3	355
242	Light-stimulated inositolphospholipid turnover in Samanea saman leaf pulvini. Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 7075-7078.	3.3	146
243	Low density lipoprotein modulation of porcine coronary artery contractile response to histamine. Atherosclerosis, 1987, 64, 21-25.	0.4	9
244	Update on oncogenes and relevance in urology. Urology, 1987, 29, 121-130.	0.5	6
245	Calcium-mobilizing receptors. Trends in Pharmacological Sciences, 1987, 8, 481-486.	4.0	107
246	α1-Adrenergic inositol trisphosphate production in brown adipocytes is Na+ dependent. Biochimica Et Biophysica Acta - Molecular Cell Research, 1987, 930, 438-445.	1.9	10
247	Inositol Trisphosphate as a Second Messenger in Signal Transduction. Annals of the New York Academy of Sciences, 1987, 494, 39-49.	1.8	36
248	Identification of a Receptor for [32P]Inositol-1,4,5-trisphosphate in Saponin-Permeabilized Rabbit Peritoneal Neutrophils. Annals of the New York Academy of Sciences, 1987, 494, 91-93.	1.8	0
249	Receptor-Coupled Hydrolysis of Phosphoinositides in Rat Hippocampal Slices: Muscarinic Versus Adrenergic. Annals of the New York Academy of Sciences, 1987, 494, 129-131.	1.8	0
251	Adenosine and neuropeptide Y enhance α1-adrenoceptor-induced accumulation of inositol phosphates and attenuate forskolin-induced accumulation of cyclic AMP in rat vas deferens. Neuroscience Letters, 1987, 82, 211-216.	1.0	70
252	Changes in membrane potential and phosphoinositides during $\hat{I}\pm 1$ -adrenoceptor stimulation in smooth muscle cells of guinea-pig taenia caeci. European Journal of Pharmacology, 1987, 133, 215-223.	1.7	12
253	Nerve growth factor potentiates the agonist-stimulated accumulation of inositol phosphates in PC-12 pheochromocytoma cells. European Journal of Pharmacology, 1987, 135, 259-260.	1.7	16
254	Effects of calcium depletion on norepinephrine- and A23187-induced stimulation of inositol phosphate formation. Biochemical Pharmacology, 1987, 36, 3043-3050.	2.0	11
255	Polyphosphoinositide metabolism in canine tracheal smooth muscle (CTSM) in response to a cholinergic stimulus. Biochemical Pharmacology, 1987, 36, 307-310.	2.0	44
256	Inhibition of phosphatidylinositol kinase in vascular smooth muscle membranes by adenosine and related compounds. Biochemical Pharmacology, 1987, 36, 2255-2262.	2.0	22
257	Activation of polyphosphoinositide phospholipase C by guanosine 5â€2-O-(3-thio)triphosphate and fluoroaluminate in membranes prepared from a human T cell leukemia line, JURKAT. FEBS Letters, 1987, 218, 87-92.	1.3	25

#	Article	IF	CITATIONS
258	The developmental regulation of phosphatidylinositol kinase inDictyostelium discoideum. FEBS Letters, 1987, 211, 64-68.	1.3	11
259	Carbachol and sodium fluoride, but not TSH, stimulate the generation of inositol phosphates in the dog thyroid. FEBS Letters, 1987, 210, 204-210.	1.3	51
260	Mitogen-stimulated release of inositol phosphates in human fibroblasts. Archives of Biochemistry and Biophysics, 1987, 252, 478-486.	1.4	32
261	Ethanol induces release of arachidonic acid but not synthesis of eicosanoids in mouse peritoneal macrophages. Lipids and Lipid Metabolism, 1987, 921, 82-89.	2.6	58
262	Phospholipase C from human sperm specific for phosphoinositides. Lipids and Lipid Metabolism, 1987, 919, 245-254.	2.6	44
263	Production of inositol pentakisphosphate in a human T lymphocyte cell line. Biochemical and Biophysical Research Communications, 1987, 145, 895-902.	1.0	23
264	Mitogenic activity and inositide metabolism in thrombin-stimulated pig aorta endothelial cells. Biochemical and Biophysical Research Communications, 1987, 145, 1302-1309.	1.0	22
266	The role of phospholipid-derived mediators including arachidonic acid, its metabolites, and inositol triphosphate and of intracellular Ca2+ in glucose-induced insulin secretion by pancretic islets. Progress in Lipid Research, 1987, 26, 125-181.	5.3	133
267	Nucleocytoplasmic Interactions in Morphogenesis. International Review of Cytology, 1987, 100, 249-318.	6.2	6
268	Reduction of inositol triphosphate in retinal microvessels by glucose and restimulation by myo-inositol. Experimental Eye Research, 1987, 45, 517-524.	1.2	6
269	Mechanisms of phospholipase C activation: a comparison with the adenylate cyclase system. Biochimie, 1987, 69, 351-363.	1.3	18
270	Externally applied adenosine-5′-triphosphate causes inositol triphosphate accumulation in cultured chick myotubes. Neuroscience Letters, 1987, 74, 199-204.	1.0	39
271	Stimulation of inositol phosphate formation in FRTL-5 rat thyroid cells by catecholamines and its relationship to changes in 45Ca2+ efflux and cyclic AMP accumulation. Molecular and Cellular Endocrinology, 1987, 54, 151-163.	1.6	26
272	Kinetic analysis of guanosine 5'-O-(3-thiotriphosphate) effects on phosphatidylinositol turnover in NRK cell homogenates. Biochemistry, 1987, 26, 612-622.	1.2	26
273	Labeling of phosphoinositides in rat brain membranes: an assessment of changes due to post-decapitative ischemic treatment. Neurochemistry International, 1987, 10, 361-369.	1.9	16
274	Epidermal growth factor and insulin stimulate nuclear pore-mediated macromolecular transport in isolated rat liver nuclei. Journal of Cell Biology, 1987, 104, 849-853.	2.3	40
275	Protein kinase C activators suppress stimulation of capillary endothelial cell growth by angiogenic endothelial mitogens Journal of Cell Biology, 1987, 104, 679-687.	2.3	95
276	Sodium fluoride mimics effects of both agonists and antagonists on intact human platelets by simultaneous modulation of phospholipase C and adenylate cyclase activity. Blood, 1987, 69, 859-866.	0.6	31

#	Article	IF	Citations
277	Ionic mechanism of the outward current induced by intracellular injection of inositol trisphosphate into Aplysia neurons. Journal of Neuroscience, 1987, 7, 1470-1483.	1.7	33
278	The Molecular Mechanism of Action of Gonadotropin Releasing Hormone (GnRH) in the Pituitary. , 1987, 43, 29-68.		104
279	Central serotonin receptors: effector systems, physiological roles and regulation. Psychopharmacology, 1987, 92, 267-277.	1.5	134
280	Synthesis of DLinositol 1,4,5-triphosphate. Tetrahedron Letters, 1987, 28, 2305-2308.	0.7	62
281	Dynamics of chemotactic peptide-induced superoxide generation by human monocytes. Inflammation, 1987, 11, 229-240.	1.7	25
282	Inositol 1,4,5-trisphosphate induced mobilization of Ca2+ from rat brain synaptosomes. Neurochemical Research, 1987, 12, 67-72.	1.6	29
283	Muscarinic, α1 and peptidergic agonists stimulate phosphoinositide hydrolysis and regulate mucin secretion in rat submandibular gland cells. Pflugers Archiv European Journal of Physiology, 1987, 409, 416-421.	1.3	30
284	Effects of anticonvulsant drugs on calcium transport and polyphosphoinositide metabolism in rat cortical synaptosomes. International Journal of Biochemistry & Cell Biology, 1987, 19, 1113-1117.	0.8	3
285	Enzymatic fluorometric assay for myo-inositol trisphosphate. Analytical Biochemistry, 1987, 162, 562-568.	1.1	31
286	Heat stress stimulates inositol trisphosphate release and phosphorylation of phosphoinositides in CHO and Balb C 3T3 cells. Journal of Cellular Physiology, 1987, 130, 369-376.	2.0	60
287	Transmembrane signalling via the T11-dependent pathway of human T cell activation. Evidence for the involvement of 1,2-diacylglycerol and inositol phosphates. European Journal of Immunology, 1987, 17, 55-60.	1.6	141
288	Effect of the tachykinin antagonist, [abetd-Pro4, abetd-Trp7,9,10] substance P-(4?11), on tachykinin- and histamine-induced inositol phosphate generation in intestinal smooth muscle. Naunyn-Schmiedeberg's Archives of Pharmacology, 1987, 335, 296-300.	1.4	8
289	Mechanism of alpha blockade for blood pressure control. American Journal of Cardiology, 1987, 59, G18-G28.	0.7	28
290	Calcium regulation in vascular smooth muscle contractility. American Journal of Cardiology, 1987, 59, A18-A23.	0.7	46
291	Effects of phorbol esters, A23187 and vasopressin on oleate metabolism in isolated rat hepatocytes. Lipids, 1987, 22, 474-479.	0.7	11
292	Aminoglycoside–induced alterations of phosphoinositide metabolism. Kidney International, 1987, 31, 59-64.	2.6	22
293	Effects of Cerebral Ischemia on [3H]Inositol Lipids and [3H]Inositol Phosphates of Gerbil Brain and Subcellular Fractions. Journal of Neurochemistry, 1987, 48, 943-948.	2.1	33
294	Effect of Lithium on Schwann Cell Proliferation Stimulated by Axolemma- and Myelin-Enriched Fractions. Journal of Neurochemistry, 1987, 48, 1270-1277.	2.1	7

#	Article	IF	CITATIONS
295	Enhanced Coupling of Neonatal Muscarinic Receptors in Rat Brain to Phosphoinositide Turnover. Journal of Neurochemistry, 1987, 48, 1904-1911.	2.1	82
296	STUDY OF RECEPTOR-STIMULATED PHOSPHATIDYLINOSITOL HYDROLYSIS IN INTACT, PERFUSED RAT HEARTS. Clinical and Experimental Pharmacology and Physiology, 1987, 14, 209-213.	0.9	5
297	A human embryonic lung fibroblast with a high density of muscarinic acetylcholine receptors. FEBS Journal, 1988, 171, 401-407.	0.2	16
298	Effects of guanosine 5'-[gamma-thio]triphosphate and thrombin on the phosphoinositide metabolism of electropermeabilized human platelets. FEBS Journal, 1988, 171, 523-533.	0.2	22
299	Dual mechanism of phosphatidylinositol hydrolysis by substance P in brain. FEBS Journal, 1988, 172, 547-552.	0.2	13
300	35S-labelled thiophosphorylated derivative of inositol trisphosphate. Journal of Labelled Compounds and Radiopharmaceuticals, 1988, 25, 793-803.	0.5	8
301	Inositol phospholipid hydrolysis may mediate the action of proctolin on insect visceral muscle. Archives of Insect Biochemistry and Physiology, 1988, 9, 201-209.	0.6	39
302	Differential response of normal human fibroblasts to bombesin versus thrombin. Journal of Cellular Physiology, 1988, 136, 486-492.	2.0	7
303	The signal transducing system coupled to serotonin-S2 receptors. Experientia, 1988, 44, 131-133.	1.2	14
304	Influence of "calcium2+-channel blockers―on exocrine pancreatic secretion by isolated rat acini. Research in Experimental Medicine, 1988, 188, 255-265.	0.7	4
305	Effect of atropine and gammahydroxybutyrate on inschemically induced changes in the level of radioactivity in [3H]inositol phosphates in gerbil brain in vivo. Neurochemical Research, 1988, 13, 443-448.	1.6	1
306	Role of inositol trisphosphate as a second messenger in signal transduction processes: An essay. Neurochemical Research, 1988, 13, 177-191.	1.6	38
307	Dissociation of phosphoinositide hydrolysis and Ca2+ fluxes from the biological responses of a T-cell hybridoma. Nature, 1988, 334, 625-628.	13.7	104
308	A PDGF receptor domain essential for mitogenesis but not for many other responses to PDGF. Nature, 1988, 335, 85-87.	13.7	198
309	Lithium Selectively Inhibits Muscarinic Receptor-Stimulated Inositol Tetrakisphosphate Accumulation in Mouse Cerebral Cortex Slices. Journal of Neurochemistry, 1988, 51, 258-265.	2.1	73
310	Intracellular Ca2+ mobilization in immature and more mature U937 induced to differentiate by dimethyl sulfoxide or phorbol myristate acetate. Cellular Immunology, 1988, 111, 390-397.	1.4	16
311	Phosphoinositide breakdown and evidence for protein kinase C involvement during human NK killing. Cellular Immunology, 1988, 114, 96-103.	1.4	42
312	Does phospholipase C inhibit fusion between hamster sperm and zona-free eggs?. Gamete Research, 1988, 19, 339-348.	1.7	4

#	Article	IF	CITATIONS
313	New alpha1-adrenergic receptor antagonists for the treatment of hypertension: Role of vascular alpha receptors in the control of peripheral resistance. American Heart Journal, 1988, 116, 133-162.	1.2	52
314	A common PDGF receptor is activated by homodimeric A and B forms of PDGF. Science, 1988, 240, 1532-1534.	6.0	82
315	Cellular mechanism of action by a novel vasoconstrictor endothelin in cultured rat vascular smooth muscle cells. Biochemical and Biophysical Research Communications, 1988, 154, 868-875.	1.0	400
316	Regulation of diacylglycerol kinase in the transition from quiescence to proliferation in Dictyostelium discoideum. Biochemical and Biophysical Research Communications, 1988, 150, 118-125.	1.0	16
317	The separation of myo-inositol phosphates by ion-pair chromatography. Biochemical and Biophysical Research Communications, 1988, 151, 114-122.	1.0	31
318	SECOND MESSENGERS AND THE REGULATION OF CA 2+ FLUXES BY CA 2+ -MOBILIZING AGONISTS IN RAT LIVER. Biological Reviews, 1988, 63, 551-611.	4.7	39
319	Epidermal growth factor-induced phosphoinositide hydrolysis Modulation by protein kinase C. FEBS Letters, 1988, 228, 346-350.	1.3	14
320	Inositol trisphosphatase and bisphosphatase activities in the retina of crab. FEBS Letters, 1988, 238, 281-284.	1.3	12
321	Modulation of protein kinase C activity by NaF in bone marrow derived macrophages. FEBS Letters, 1988, 230, 121-124.	1.3	14
322	Phosphoinositide breakdown and superoxide anion release in formyl-peptide-stimulated human alveolar macrophages Comparison between quiescent and activated cells. FEBS Letters, 1988, 239, 169-173.	1.3	7
323	P2-purinoceptor-stimulated phosphoinositide turnover in chick myotubes calcium mobilization and the role of guanyl nucleotide-binding proteins. FEBS Letters, 1988, 235, 133-136.	1.3	52
324	Signal Transduction of Auxin on Isolated Plant Cell Membranes: Indications for a Rapid Polyphosphoinositide Response Stimulated by Indoleacetic Acid. Journal of Plant Physiology, 1988, 133, 353-360.	1.6	65
325	Protein kinase C from rat renal mesangial cells: Its role in homologous desensitization of angiotensin II-induced polyphosphoinositide hydrolysis. Biochimica Et Biophysica Acta - Molecular Cell Research, 1988, 969, 263-270.	1.9	38
326	Modulation of octopamine-mediated production of cyclic AMP by phorbol-ester-sensitive protein kinase C in an insect cell line. Biochimica Et Biophysica Acta - Molecular Cell Research, 1988, 970, 324-332.	1.9	9
327	Polyphosphoinositide hydrolysis in response to light stimulation of rat and chick retina and retinal rod outer segments. Biochimica Et Biophysica Acta - Molecular Cell Research, 1988, 970, 205-211.	1.9	57
328	Inositol phosphates: proliferation, metabolism and function. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 1988, 320, 281-298.	2.4	182
329	Evidence for a GTP-Binding Protein Involved in Interferon-Î ³ Transduction Signal. Journal of Interferon Research, 1988, 8, 463-472.	1.2	21
330	The regulation of mitotic spindle function. Biochemistry and Cell Biology, 1988, 66, 490-514.	0.9	32

	CITATION REPORT		
Article		IF	CITATIONS
Involvement of Ca2+ influx in Fâ ^{^,} -stimulated pepsinogen release from guinea pig gast Biochemical and Biophysical Research Communications, 1988, 152, 161-168.	ric chief cells.	1.0	11
The platelet insulin receptor: Detection, partial characterization, and search for a func Biochemical and Biophysical Research Communications, 1988, 157, 1190-1196.	ion.	1.0	83
Phorbol ester modulates serotonin-stimulated phosphoinositide breakdown in culture smooth muscle cells. Biochemical and Biophysical Research Communications, 1988, 1	d vascular 53, 51-58.	1.0	22
A novel human plasma factor(S) capable of mobilizing intracellular Ca2+ in cultured ra smooth muscle cells. Biochemical and Biophysical Research Communications, 1988, 1	t vascular 53, 1068-1075.	1.0	3
Role of proteinkinase C and phosphatidylinositol metabolism in lipopeptide-induced le activation as signal transducing mechanism. Molecular Immunology, 1988, 25, 1081-	ukocyte 1086.	1.0	9
The role of receptor-stimulated inositol phospholipid hydrolysis in the autonomic nerv 1988, 38, 387-417.	ous system. ,		22
Inositol polyphosphates regulate excitability. Trends in Neurosciences, 1988, 11, 338-	339.	4.2	14
Transport of Inositol into the Distal Cauda Epididymidis of the Rat. Journal of Androlog 403-407.	y, 1988, 9,	2.0	1
POSTER COMMUNICATIONS. British Journal of Pharmacology, 1988, 95, 792P.		2.7	19
Cloning and expression of the human and rat m5 muscarinic acetylcholine receptor ge 1988, 1, 403-410.	nes. Neuron,	3.8	769
Phosphoinositides in the retina. Progress in Retinal and Eye Research, 1988, 8, 211-22	8.	0.8	11
Turnover of inositol phosphates in brain during ischemia-induced breakdown of		10	97

344	Turnover of inositol phosphates in brain during ischemia-induced breakdown of polyphosphoinositides. Neurochemistry International, 1988, 13, 63-68.	1.9	27
345	Phosphatidylinositol Metabolism and Protein Kinase C Activation in Leukocytes by Lipopeptides. Immunobiology, 1988, 177, 267-277.	0.8	3
346	Evolution of neurotransmitter receptor systems. Progress in Neurobiology, 1988, 30, 105-169.	2.8	99
347	The Pharmacology of Peripheral at and α2-Andrenoceptors. Journal of Basic and Clinical Physiology and Pharmacology, 1988, 7, 129-206.	0.7	6
348	Alterations in Phosphoinositide Metabolism Associated with 17β-Estradiol and Growth Factor Treatment of MCF-7 Breast Cancer Cells. Molecular Endocrinology, 1988, 2, 159-166.	3.7	55
349	Endothelial cell growth factor and ionophore A23187 stimulation of production of inositol phosphates in porcine aorta endothelial cells Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 659-663.	3.3	25
350	The roles of calcium and phosphoinositides in the mechanisms of $\hat{I}\pm$ 1-adrenergic and other agonists. , 1988, 111, 117-224.		39

#

331

333

335

337

339

342

343

#	Article	IF	CITATIONS
351	Desensitization and recovery of muscarinic and histaminergic Ca2+ mobilization in 1321N1 astrocytoma cells. Biochemical Journal, 1988, 249, 135-141.	1.7	60
352	Phosphoinositide metabolism and the calcium response to concanavalin A in S49 T-lymphoma cells. A comparison with thymocytes. Biochemical Journal, 1988, 249, 847-855.	1.7	11
353	Potassium-channel blockers inhibit inositol trisphosphate-induced calcium release in the microsomal fractions isolated from the rat brain. Biochemical Journal, 1988, 250, 617-620.	1.7	50
354	Thrombin-induced inositol trisphosphate production by rabbit platelets is inhibited by ethanol. Biochemical Journal, 1988, 251, 279-284.	1.7	36
355	The α1-adrenergic transduction system in hamster brown adipocytes. Release of arachidonic acid accompanies activation of phospholipase C. Biochemical Journal, 1988, 253, 93-102.	1.7	13
356	Early events in inositol phosphate metabolism in longitudinal smooth muscle from guinea-pig intestine stimulated with carbachol. Biochemical Journal, 1988, 254, 553-557.	1.7	24
357	Ca2+-induced changes in the secondary structure of a 60 kDa phosphoinositide-specific phospholipase C from bovine brain cytosol. Biochemical Journal, 1988, 255, 807-812.	1.7	16
358	Polyamines inhibit phospholipase C-catalysed polyphosphoinositide hydrolysis. Studies with permeabilized GH3 cells. Biochemical Journal, 1988, 255, 1015-1021.	1.7	53
359	Role of Activation of Protein Kinaso C in the Stimulation of Colonic Epithelial Proliferation by Unsaturated Fatty Acids. Gastroenterology, 1988, 95, 676-685.	0.6	85
360	Role of a Guanine Nucleotideâ€Binding Regulatory Protein in the Hydrolysis of Phosphatidylinositol 4,5â€Bisphosphate in a Human T Cell Line. Microbiology and Immunology, 1988, 32, 293-304.	0.7	2
363	Chapter 2 Cortical Exocytosis in the Sea Urchin Egg. Current Topics in Membranes and Transport, 1988, , 45-85.	0.6	4
364	Chapter 11 Mechanism of action of angiotensin II. New Comprehensive Biochemistry, 1988, , 211-229.	0.1	2
365	Role of tyrosine kinase and membrane-spanning domains in signal transduction by the platelet-derived growth factor receptor Molecular and Cellular Biology, 1988, 8, 5126-5131.	1.1	127
366	Subsecond calcium dynamics in ADP- and thrombin-stimulated platelets: a continuous-flow approach using indo-1. Blood, 1988, 71, 1539-1543.	0.6	36
367	Recent data on the structure of rabbit milk protein genes and on the mechanism of the hormonal control of their expression. Reproduction, Nutrition, Development, 1988, 28, 1145-1164.	1.9	63
368	G protein in stimulation of PI hydrolysis by CCK in isolated rat pancreatic acinar cells. American Journal of Physiology - Endocrinology and Metabolism, 1988, 255, E652-E659.	1.8	11
369	Second messengers involved in the mechanism of action of bradykinin in sensory neurons in culture. Journal of Neuroscience, 1989, 9, 3314-3325.	1.7	245
370	How do inositol phosphates regulate calcium signaling?. FASEB Journal, 1989, 3, 1899-1905.	0.2	173

ARTICLE IF CITATIONS Intracellular calcium oscillators., 1989, , 435-447. 371 8 Potassium Transport in Roots. Advances in Botanical Research, 1989, 15, 93-178. Physiology of the Male Reproductive System: Endocrine, Paracrine and Autocrine Regulation. 373 0.9 52 Toxicologic Pathology, 1989, 17, 411-445. Dissociation of inositol trisphosphate from diacylglycerol production in Rous sarcoma 374 virus-transformed fibroblasts.. Journal of Cell Biology, 1989, 108, 683-691. Phosphoinositides in Barley Aleurone Layers and Gibberellic Acid-Induced Changes in Metabolism. 375 2.3 36 Plant Physiology, 1989, 91, 1266-1269. Adrenergic Stimulation of Inositol-Phosphate Production in a Genital Tract Smooth Muscle Cell1. Biology of Reproduction, 1989, 41, 49-53. 1.2 Inositol Trisphosphate, Calcium, Lithium, and Cell Signaling. JAMA - Journal of the American Medical 377 3.8 158 Association, 1989, 262, 1834. Histamine stimulation of inositol phosphate metabolism in cultured human non-pigmented ciliary 378 epithelial cells. Current Eye Research, 1989, 8, 415-422. Antagonism of Contractants and Relaxants at the Level of Intracellular Calcium and Phosphoinositide 379 1.4 74 Turnover in the Rat Uterus*. Endocrinology, 1989, 124, 2995-3002. The DNA synthesis of leukemic (L2C) guinea pig B lymphocytes involves a permanent activation of protein kinase C without corresponding phosphoinositide hydrolysis. Leukemia Research, 1989, 13, 0.4 583-594. Inhibition of PI-kinase in rat liver membranes by Fâ[^]. Cellular Signalling, 1989, 1, 283-287. 381 3 1.7 Role of cell calcium in alpha-1 adrenergic receptor control of arachidonic acid release from brown adipocytes. Cellular Signalling, 1989, Ĭ, 607-616. Phosphoinositide metabolism and the control of cell proliferation. Biochimica Et Biophysica Acta: 383 3.3 76 Reviews on Cancer, 1989, 948, 327-344. Gonadotropin secretion from perifused tilapia pituitary in relation to gonadotropin-releasing hormone, extracellular calcium, and activation of protein kinase C. General and Comparative Endocrinology, 1989, 75, 187-194. 384 0.8 Brain factor induced formation of inositol phosphates in tick salivary glands. Insect Biochemistry, 385 22 1.8 1989, 19, 343-349. Release of phospholipase A2 activity from rat vascular smooth muscle cells mediated by cAMP. FEBS Journal, 1989, 181, 237-242. Extracellular ATP stimulates poly(inositol phospholipid) hydrolysis and eicosanoid synthesis in 387 0.2 29 mouse peritoneal macrophages in culture. FEBS Journal, 1989, 186, 509-513. The ontogenesis of lithium-induced effects on suckling: Inhibition and facilitation. Developmental 388 Psychobiology, 1989, 22, 803-815.

ARTICLE IF CITATIONS The role of neutrophils in vascular injury: a summary of signal transduction mechanisms in cell/cell 389 4.0 22 interactions. Seminars in Immunopathólogy, 1989, 11, 235-58. Inositol Phospholipid Metabolism During and Following Synaptic Activation: Role of Adenosine. 2.1 Journal of Neurochemistry, 1989, 52, 797-806. Kinetic Analysis of A23187-Mediated Polyphosphoinositide Breakdown in Rat Cortical Synaptosomes Suggests that Inositol Bisphosphate Does Not Arise Primarily by Degradation of Inositol 391 2.1 30 Trisphosphate. Journal of Neurochemistry, 1989, 53, 399-407. Activation of Guanylate Cyclase by Bradykinin in Rat Sensory Neurones Is Mediated by Calcium Influx: Possible Role of the Increase in Cýclic CMP. Journal of Neurochemistry, 1989, 53, 1212-1218. Role of protein kinase C in U46619-induced platelet shape change, aggregation and secretion. 393 0.8 14 Thrombosis Research, 1989, 56, 299-306. Human α-thrombin induces phosphoinositide turnover and Ca2+ movements in cultured human umbilical vein endothelial cells. Thrombosis Research, 1989, 54, 75-87. 394 0.8 Profile of phosphatidylinositol metabolism stimulated by carbachol and glutamate in primary 395 2.0 8 cultures of rat cerebellar neurons. Neuropharmacology, 1989, 28, 1309-1315. Relationship between desensitization and sequestration of muscarinic cholinergic receptors in two 396 2.0 21 neuronal cell lines. Neuropharmacology, 1989, 28, 1253-1261. Regulation of Phospholipase A2and Phospholipase C in Rod Outer Segments of Bovine Retina Involves a Common GTP-binding Protein but Different Mechanisms of Action. Annals of the New York Academy of 397 1.8 19 Sciences, 1989, 559, 158-177. Functional endothelin/sarafotoxin receptors in the rat uterus. Biochemical and Biophysical Research 1.0 Communications, 1989, 162, 952-957 The inhibitory effect of PGE2 on T cell activation is not associated with inhibition of PKC 399 3 1.0 translocation. Biochemical and Biophysical Research Communications, 1989, 161, 1299-1305. Inositol trisphosphate independent increase of intracellular free calcium and amylase secretion in 1.0 pancreatic acini. Biochemical and Biophysical Research Communications, 1989, 164, 8-13. Guanine nucleotides stimulate hydrolysis of phosphatidyl inositol bis phosphate in human myelin 401 1.0 18 membranes. Biochemical and Biophysical Research Communications, 1989, 162, 282-287. Functional endothelin/sarafotoxin receptors in rat heart myocytes: Structure-activity relationships 1.0 60 and receptor subtypes. Biochemical and Biophysical Research Communications, 1989, 163, 936-943. 403 Clinical Pharmacotherapeutics of Doxazosin. American Journal of Medicine, 1989, 87, S2-S11. 0.6 16 Pharmacologic basis for the use of doxazosin in the treatment of essential hypertension. American 404 Journal of Medicine, 1989, 87, S36-S44. Inositol polyphosphate production and regulation of cytosolic calcium during the biphasic activation 405 of adrenal glomerulosa cells by angiotensin II. Archives of Biochemistry and Biophysics, 1989, 270, 1.4 39 398-403. Characterization of phospholipase C-mediated polyphosphoinositide hydrolysis in rat heart 1.4 ventricles. Archives of Biochemistry and Biophysics, 1989, 269, 137-147.

#	Article	IF	CITATIONS
407	signal transduction in the sertoli cell: Serum modulation of the response to FSH. The Journal of Steroid Biochemistry, 1989, 32, 129-134.	1.3	12
408	Sarafotoxin receptors mediate phosphoinositide hydrolysis in various rat brain regions. FEBS Letters, 1989, 242, 387-390.	1.3	33
409	Coupling of viral membrane proteins to phosphatidylinositide signalling system. FEBS Letters, 1989, 247, 185-188.	1.3	18
410	Pharmacological differences between muscarinic receptors coupled to phosphoinositide turnover and those coupled to adenylate cyclase inhibition. Biochemical Pharmacology, 1989, 38, 1605-1616.	2.0	29
411	Retinoic acid treatment of fibroblasts causes a rapid decrease in [3H]inositol uptake. Experimental Cell Research, 1989, 181, 385-399.	1.2	5
412	Competitive interaction between endothelin and sarafotoxin: Binding and phosphoinositides hydrolysis in rat atria and brain. Biochemical and Biophysical Research Communications, 1989, 158, 195-201.	1.0	154
413	B cell activation by synthetic lipopeptide analogues of bacterial lipoprotein bypassing phosphatidylinositol metabolism and proteinkinase C translocation. Molecular Immunology, 1989, 26, 897-904.	1.0	13
414	The metabolism of glycerophospholipid and its regulation in monocytes and macrophages. Progress in Lipid Research, 1989, 28, 205-243.	5.3	39
416	Commentary on â€~Effects of acetylcholine on the turnover of phosphoryl units in individuals phospholipids of pancreas slices and brain cortex slices' by L.E. Hokin and M.R. Hokin Biochim. Biophys. Acta 18 (1955) 102–110. Biochimica Et Biophysica Acta - General Subjects, 1989, 1000, 465-478.	1.1	84
421	Capacitative calcium entry in parotid acinar cells. Biochemical Journal, 1989, 258, 409-412.	1.7	223
422	Down-regulation of protein kinase C potentiates angiotensin II-stimulated polyphosphoinositide hydrolysis in vascular smooth-muscle cells. Biochemical Journal, 1989, 262, 285-291.	1.7	71
424	Overexpression of phospholipase C-gamma in NIH 3T3 fibroblasts results in increased phosphatidylinositol hydrolysis in response to platelet-derived growth factor and basic fibroblast growth factor Molecular and Cellular Biology, 1990, 10, 6069-6072.	1.1	34
425	Comparison of extracellular ATP and UTP signalling in rat renal mesangial cells. No indications for the involvement of separate purino- and pyrimidino-ceptors. Biochemical Journal, 1990, 272, 469-472.	1.7	95
426	Chapter 16 Alterations in Cyclic Nucleotides and the Activation of Neutrophils. Current Topics in Membranes and Transport, 1990, 35, 399-424.	0.6	9
427	Control of Phospholipid Turnover and Prolactin Release in a Dopamine-Sensitive, Prolactin-Secreting Rat Pituitary Adenoma and in Two Dopamine-Resistant, Prolactin-Secreting Rat Pituitary Tumors. Journal of Neuroendocrinology, 1990, 2, 833-838.	1.2	4
428	Production of 1,2-Diacylglycerol in PC12 Cells by Nerve Growth Factor and Basic Fibroblast Growth Factor. Journal of Neurochemistry, 1990, 54, 1666-1676.	2.1	60
429	Retinoic Acid Rapidly Decreases Phosphatidylinositol Turnover During Neuroblastoma Cell Differentiation. Journal of Neurochemistry, 1990, 54, 540-546.	2.1	22
430	Inhibition of inositol 1,4,5-trisphosphate metabolism in permeabilised SH-SY5Y human neuroblastoma cells by a phosphorothioate-containing analogue of inositol 1,4,5-trisphosphate. FEBS Journal, 1990, 192, 459-467.	0.2	11

#	ARTICLE	IF	CITATIONS
431	Alpha-1, alpha-2, and beta adrenergic signal transduction in cultured uterine myocytes. In Vitro Cellular & Developmental Biology, 1990, 26, 369-378.	1.0	3
432	Second messengers in thrombin-stimulated bone resorption. Journal of Bone and Mineral Research, 1990, 5, 443-449.	3.1	18
433	Receptor-effector coupling by G proteins. BBA - Biomembranes, 1990, 1031, 163-224.	7.9	1,024
434	Extracellular ATP stimulates polyphosphoinositide hydrolysis and prostaglandin synthesis in rat renal mesangial cells. Cellular Signalling, 1990, 2, 129-138.	1.7	65
435	Influence of adenosine deaminase inhibition on the phosphoinositide turnover in the initial stages of human T cell activation. European Journal of Immunology, 1990, 20, 611-615.	1.6	9
436	Epoxyeicosatrienoic acids activate Na+/H+ exchange and are mitogenic in cultured rat glomerular mesangial cells. Journal of Cellular Physiology, 1990, 144, 429-437.	2.0	94
437	TGF-? inhibits the platelet-derived growth factor-induced formation of inositol trisphosphate in MG-63 human osteosarcoma cells. Journal of Cellular Physiology, 1990, 145, 488-495.	2.0	9
438	Receptor-triggered polyphosphoinositide turnover produces less cytosolic free calcium in cultured dysgenic myotubes than in normal myotubes. Muscle and Nerve, 1990, 13, 142-145.	1.0	10
439	Phosphatidylinositol turnover in Brassica cultures and its stimulation by amino acids and polyamines. Phytochemistry, 1990, 29, 825-828.	1.4	7
440	Phytochrome in control of differentiation and phosphatidylinositol turnover in Brassica oleracea cultures. Phytochemistry, 1990, 29, 1539-1541.	1.4	6
441	High-performance reversed-phase ion-pair chromatographic study of myo-inositol phosphates. Journal of Chromatography A, 1990, 523, 201-216.	1.8	21
442	A23187 increases permeability of MDCK monolayers independent of phospholipase activation. American Journal of Physiology - Cell Physiology, 1990, 259, C69-C76.	2.1	17
443	Inositol phosphate formation and its relationship to calcium signaling Environmental Health Perspectives, 1990, 84, 141-147.	2.8	31
444	Roles of G Proteins in Coupling of Receptors to Ionic Channels and Other Effector System. Critical Reviews in Biochemistry and Molecular Biology, 1990, 25, 225-244.	2.3	75
445	Inositol Phosphate Metabolism and Platelet Activation. Platelets, 1990, 1, 117-126.	1.1	12
446	Taste transduction mechanisms. Neuroscience Research Supplement: the Official Journal of the Japan Neuroscience Society, 1990, 12, S63-S72.	0.0	5
447	Thyrotropin activates both the cyclic AMP and the PIP2casades in CHO cells expressing the human cDNA of TSH receptor. Molecular and Cellular Endocrinology, 1990, 74, R1-R6.	1.6	181
448	Chapter 3 Agonist-stimulated inositol phospholipid hydrolysis in the mammalian retina. Progress in Retinal and Eye Research, 1990, 9, 101-134.	0.8	12

#	Article	IF	CITATIONS
449	The actin-binding protein profilin binds to PIP2 and inhibits its hydrolysis by phospholipase C. Science, 1990, 247, 1575-1578.	6.0	477
450	Phosphatidylinositol-Derived Precursors and Signals. Annual Review of Cell Biology, 1990, 6, 41-67.	26.0	101
451	Diets rich in n-9, n-6 and n-3 fatty acids differentially affect the generation of inositol phosphates and of thromboxane by stimulated platelets, in the rabbit. Biochemical Pharmacology, 1990, 39, 129-133.	2.0	33
452	Myo-inositol transport into endothelial cells derived from nervous system microvessels. Brain Research, 1990, 511, 259-264.	1.1	25
453	Potentiation of angiotensin II-stimulated phosphoinositide hydrolysis, calcium mobilization and contraction of renal mesangial cells upon down-regulation of protein kinase C. FEBS Letters, 1990, 261, 307-311.	1.3	34
454	Alteration of human granulocyte functional responses by menadione. Archives of Biochemistry and Biophysics, 1990, 283, 1-11.	1.4	9
455	Glycerol-3-phospho-d-myo-inositol 4-phosphate (Gro-PIP) is an inhibitor of phosphoinositide-specific phospholipase C. Lipids and Lipid Metabolism, 1990, 1042, 113-118.	2.6	14
456	Endothelin/sarafotoxin receptor induced phosphoinositide turnover: Effects of pertussis and cholera toxins and of phorbol ester. Biochemical and Biophysical Research Communications, 1990, 171, 949-954.	1.0	37
457	Tumor necrosis factor-α/cachectin activates the O2â^'-generating system of human neutrophils independently of the hydrolysis of phosphoinositides and the release of arachidonic acid. Biochemical and Biophysical Research Communications, 1990, 166, 308-315.	1.0	48
458	A competition binding assay for determination of the inositol (1,4,5)-trisphosphate content of human leucocytes. Biochemical and Biophysical Research Communications, 1990, 170, 755-762.	1.0	19
459	Muscarinic acetylcholine receptor subtypes which selectively couple to phospholipase C: Pharmacological and biochemical properties. Biochemical and Biophysical Research Communications, 1990, 173, 666-672.	1.0	33
460	Regulation of phosphoinositide-specific phospholipase C. Biochimica Et Biophysica Acta - Molecular Cell Research, 1990, 1053, 81-88.	1.9	105
461	P ₂ â€, but not P ₁ â€purinoceptors mediate formation of 1,4,5â€inositol trisphosphate and its metabolites via a pertussis toxinâ€insensitive pathway in the rat renal cortex. British Journal of Pharmacology, 1990, 100, 63-68.	2.7	36
462	Mastoparan increases membrane bound phosphatidylinositol kinase and phosphatidylinositol 4-monophosphate kinase activities in Madin-Darby canine kidney cells. Life Sciences, 1990, 46, 273-279.	2.0	9
463	Determination of second messengers and protein kinase C in bone marrow derived macrophages stimulated with a bacterial lipopeptide. Molecular Immunology, 1990, 27, 473-479.	1.0	16
464	Structure and function of inositol triphosphate receptors. , 1991, 51, 97-137.		154
465	Prolonged administration in vivo of alpha and beta adrenergic agonists decreases insulin binding to rat myocardial membranes in vitro by different mechanisms. Life Sciences, 1991, 48, 2249-2258.	2.0	4
466	Rat growth hormone-releasing factor stimulates cyclic GMP formation and phosphatidylinositol metabolism in the median eminence. Life Sciences, 1991, 49, 67-74.	2.0	4

ARTICLE IF CITATIONS # Î $\pm \hat{a} \in A$ drenoceptor subtypes in dog saphenous vein that mediate contraction and inositol phosphate 2.7 22 467 production. British Journal of Pharmacology, 1991, 102, 151-161. Evidence for an inositol lipid signal pathway in the yeast-mycelium transition of Ophiostoma ulmi, the Dutch elm disease fungus. Mycological Research, 1991, 95, 484-491. 468 2.5 29 Cellular mechanisms of bradykinin-induced hyperpolarization in renal epitheloid MDCK-cells. 469 19 1.1 Biochimica Et Biophysica Acta - General Subjects, 1991, 1073, 600-608. Phosphatidylinositol 4,5-bisphosphate (PIP2) is present in Fusarium graminearum. Mycological Research, 1991, 95, 1082-1084. Muscarinic receptor antagonist effects in parotid acini and M1-CHO cells: Evidence of G protein 471 1.0 5 involvement. Biochemical and Biophysical Research Communications, 1991, 177, 784-789. Mastoparan increases membrane permeability in rat parotid cells independently of action on C-proteins. Biochemical and Biophysical Research Communications, 1991, 177, 802-808. 1.0 Mastoparan induces oscillations of cytosolic Ca2+ in rat pancreatic acinar cells. Biochemical and 473 1.0 24 Biophysical Research Communications, 1991, 177, 159-165. Staurosporine, a protein kinase inhibitor, attenuates intracellular Ca2+ -dependent contractions of 474 1.7 strips of rabbit aorta. European Journal of Pharmacology, 1991, 202, 367-372. Basal and ATP-stimulated phosphoinositol metabolism in fusing rat skeletal muscle cells in culture. 475 1.2 12 Experimental Cell Research, 1991, 196, 362-364. Effect of protein kinase C modulation on outcome of experimental CNS ischemia. Brain Research, 1991, 1.1 547, 193-198. The PtdIns-PLC superfamily and signal transduction. Biochimica Et Biophysica Acta - Molecular Cell 477 181 1.9 Research, 1991, 1092, 49-71. Effects of chlorpromazine on phosphatidylinositol turnover following thrombin stimulation of 478 human platelets. Biological Psychiatry, 1991, 29, 965-978. NaF-induced amylase release from rat parotid cells is mediated by PI breakdown leading to Ca2+ 479 2.1 32 mobilization. American Journal of Physiology - Cell Physiology, 1991, 260, C194-C200. Effects of a Muscarinic Agonist on Octopamine-stimulated Cyclic AMP Production in American Cockroach (Periplaneta americana) Nerve Cords.. Agricultural and Biological Chemistry, 1991, 55, 480 0.3 2547-2552. INOSITOL PHOSPHOLIPID AND INVERTEBRATE PHOTORECEPTORS. Photochemistry and Photobiology, 1991, 481 1.3 21 53, 871-875. Histamine H₁receptor occupancy triggers inositol phosphates and intracellular calcium 482 14 mobilization in human non-pigmented ciliary épithélial cells. Current Eye Research, 1991, 10, 593-600. Biophysical processes in invertebrate photoreceptors: recent progress and a critical overview based 483 2.4 71 on ki>Limulus ki> photoreceptors. Quarterly Reviews of Biophysics, 1991, 24, 165-226. Relationship between the calcium-mobilizing action of inositol 1,4,5-trisphosphate in permeable AR4-2J 484 cells and the estimated levels of inositol 1,4,5-trisphosphate in intact AR4-2J cells. Biochemical Journal, 1991, 273, 541-546.

#	Article	IF	CITATIONS
485	Cellular mechanisms of adrenaline-induced hyperpolarization in renal epitheloid MDCK cells. Biochemical Journal, 1991, 274, 243-248.	1.7	13
486	Metabolism of inositol phosphates in ATP-stimulated vascular endothelial cells. Biochemical Journal, 1991, 277, 103-110.	1.7	15
487	Endotoxic lipid A induces intracellular Ca2+ increase in human platelets. Biochemical Journal, 1991, 278, 75-80.	1.7	11
488	Possible regulatory functions of protein kinase C-α and -ε isoenzymes in rat renal mesangial cells. Stimulation of prostaglandin synthesis and feedback inhibition of angiotensin II-stimulated phosphoinositide hydrolysis. Biochemical Journal, 1991, 279, 441-445.	1.7	89
489	Relationship between Substance P-Induced Initial Transient Contractions and Inositol Phospholipid Hydrolysis in Guinea Pig Ileum Journal of Pharmacobio-dynamics, 1991, 14, 393-397.	0.5	6
490	Biochemical signal transduction of mechanical strain in osteoblast-like cells. Biomaterials, 1991, 12, 101-110.	5.7	271
491	T-cell development and transmembrane signaling: changing biological responses through an unchanging receptor. Trends in Immunology, 1991, 12, 79-85.	7.5	122
492	Implications of prostaglandin E2 synthesis and phospholipase C activation in potentiation of T-cell proliferation by LF 1695. International Journal of Immunopharmacology, 1991, 13, 555-563.	1.1	0
493	Comparison of calcium ionophore and receptor-activated inositol phosphate formation in primary glial cell cultures. European Journal of Pharmacology, 1991, 208, 239-247.	2.7	8
494	ACh and 5-HT induced changes in the concentration of cytosolic inositol trisphosphate (InsP3) and inositol bisphosphate (InsP2) in the abrm of Mytilus edulis L Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1991, 100, 343-348.	0.2	1
495	Dieldrin effects on phospholipid and phosphoinositide metabolism in Bufo arenarum oocytes. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 1991, 98, 287-292.	0.2	6
496	ADH-dependent phosphoinsitide signalling system and prostaglandin E production in the frog urinary bladder. Cellular Signalling, 1991, 3, 135-143.	1.7	8
497	Effects of homo- and heterodimeric isoforms of PDGF on signalling events in rat renal mesangial cells. Cellular Signalling, 1991, 3, 413-424.	1.7	27
498	Neuroparsins stimulate inositol phosphate formation in locust rectal cells. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1991, 99, 57-64.	0.2	5
499	Effect of Retinoic Acid on Platelet-Derived Growth Factor (PDGF) Bioactivity and Type-B PDGF Receptors in Normal and Psoriatic Human Fibroblasts. Journal of Investigative Dermatology, 1991, 96, 111-115.	0.3	8
500	Inositol Phosphate Formation in the Human Squamous Cell Carcinoma Line SCC-12 F: Studies with Bradykinin, the Calcium Ionophore A23187, and Sodium Fluoride. Journal of Investigative Dermatology, 1991, 96, 116-122.	0.3	13
501	Stimulation of human platelets with low concentrations of thrombin: Evidence for equimolar accumulation of inositol trisphosphates and phosphatidic acid. International Journal of Biochemistry & Cell Biology, 1991, 23, 305-310.	0.8	3
502	Cellular mechanisms of ATP-induced hyperpolarization in renal epitheloid MDCK-cells. Journal of Cellular Physiology, 1991, 147, 68-75.	2.0	34

#	Article	IF	CITATIONS
503	Effects of protein kinase C activators and inhibitors on membrane properties, synaptic responses, and cholinergic actions in CA1 subfield of rat hippocampus in situ an in vitro. Synapse, 1991, 7, 193-206.	0.6	23
504	Manganese neurotoxicity: Cellular effects and blood-brain barrier transport. Neuroscience and Biobehavioral Reviews, 1991, 15, 333-340.	2.9	253
505	Effects of protein I of Neisseria gonorrhoeae on neutrophil activation: generation of diacylglycerol from phosphatidylcholine via a specific phospholipase C is associated with exocytosis Journal of Cell Biology, 1991, 114, 433-442.	2.3	46
506	Endothelin-1 induces hypertrophy with enhanced expression of muscle-specific genes in cultured neonatal rat cardiomyocytes Circulation Research, 1991, 69, 209-215.	2.0	479
507	Activation of phospholipase D: a signaling system set in motion by perturbation of the T lymphocyte antigen receptor/CD3 complex Molecular Biology of the Cell, 1991, 2, 841-850.	6.5	37
508	Differential signal transduction via T-cell receptor CD3 zeta 2, CD3 zeta-eta, and CD3 eta 2 isoforms Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 3842-3846.	3.3	37
509	Testosterone increases thromboxane A2 receptors in cultured rat aortic smooth muscle cells Circulation Research, 1991, 69, 638-643.	2.0	76
510	Tyrosine phosphorylation of phospholipase C induced by membrane immunoglobulin in B lymphocytes Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 2745-2749.	3.3	192
511	U-73122, an aminosteroid phospholipase C antagonist, noncompetitively inhibits thyrotropin-releasing hormone effects in GH3 rat pituitary cells Endocrinology, 1992, 131, 1883-1888.	1.4	127
512	Endothelins and Sarafotoxins: Effects on Motility, Binding Properties and Phosphoinositide Hydrolysis During the Estrous Cycle of the Rat Uterus. Journal of Basic and Clinical Physiology and Pharmacology, 1992, 3, 41-57.	0.7	12
513	Sphingosine 1-phosphate, a specific endogenous signaling molecule controlling cell motility and tumor cell invasiveness Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 9686-9690.	3.3	237
514	Modified kinetics of platelet-derived growth factor-induced Ca2+ increases in NIH-3T3 cells overexpressing phospholipase C <i>γ</i> 1. Biochemical Journal, 1992, 281, 775-784.	1.7	23
515	The inositol phosphates in WRK1 rat mammary tumour cells. Biochemical Journal, 1992, 286, 459-468.	1.7	47
516	Phosphoinositide Hydrolysis and Calcium Mobilization Induced by Vasopressin and Angiotensin II in Cultured Vascular Smooth Muscle Cells Tohoku Journal of Experimental Medicine, 1992, 166, 107-122.	0.5	11
517	Noradrenalineâ€stimulated inositol phosphate accumulation in arteries from spontaneouslyâ€hypertensive rats. British Journal of Pharmacology, 1992, 106, 859-864.	2.7	13
518	Stimulation of inositol phosphate formation in cultured human retinal pigment epithelium. Brain Research, 1992, 583, 23-30.	1.1	10
519	Thyroid stimulating immunoglobulins, like thyrotropin activate both the cyclic AMP and the PIP2 cascades in CHO cells expressing the TSH receptor. Molecular and Cellular Endocrinology, 1992, 88, R1-R5.	1.6	37
520	Increased turnover of platelet phosphatidylinositol in schizophrenia. Prostaglandins Leukotrienes and Essential Fatty Acids, 1992, 46, 39-46.	1.0	44

#	Article	IF	CITATIONS
521	Formation of gastrocnemius [3H]polyinositol phosphates in response to burn trauma. Burns, 1992, 18, 381-386.	1.1	7
522	Inositol polyphosphates and calcium signaling. Molecular and Cellular Neurosciences, 1992, 3, 1-10.	1.0	18
523	Mechanisms by which extracellular ATP and UTP stimulate the release of prostacyclin from bovine pulmonary artery endothelial cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 1992, 1134, 61-72.	1.9	67
524	Endothelin increases [Ca2+]i in rat pancreatic acinar cells by intracellular release but fails to increase amylase secretion. Biochimica Et Biophysica Acta - Molecular Cell Research, 1992, 1136, 175-180.	1.9	8
525	Molecular characterization of angiotensin II type II receptors in rat pheochromocytoma cells. Peptides, 1992, 13, 499-508.	1.2	54
526	Effect of Prostaglandins, Inositol 1,4,5-Trisphosphate, and Phorbol Esters on Radiation-Induced Decreases in Calcium Influx in Rat Brain Synaptosomes. Radiation Research, 1992, 131, 43.	0.7	6
527	Molecular cloning, functional expression and pharmacological characterization of a human bradykinin B2 receptor gene. Biochemical and Biophysical Research Communications, 1992, 187, 1306-1313.	1.0	120
528	The endothelin receptor antagonist, BQ-123, inhibits angiotensin II-induced contractions in rabbit aorta. Biochemical and Biophysical Research Communications, 1992, 185, 887-892.	1.0	53
529	Changes in protein kinase C activity in rat calvarial bone cells cultured in a low-calcium environment. Archives of Oral Biology, 1992, 37, 695-698.	0.8	4
530	Effect of Ca2+ modulators on acetylcholine-induced phasic and tonic contractions and A23187-induced contractions in ileal longitudinal muscle and IP3 production. European Journal of Pharmacology, 1992, 218, 27-33.	1.7	8
531	Influence of stress and antidepressant treatment on 5-HT-stimulated phosphoinositide hydrolysis in rat brain. European Journal of Pharmacology, 1992, 216, 385-392.	1.7	10
532	Thrombin stimulates inositol phosphate formation, intracellular calcium fluxes and DNA synthesis in cultured fetal human non-pigmented ciliary epithelial cells. Experimental Eye Research, 1992, 55, 785-795.	1.2	6
533	Changes in cyclic strain increase inositol trisphosphate and diacylglycerol in endothelial cells. American Journal of Physiology - Cell Physiology, 1992, 262, C956-C962.	2.1	93
534	Angiotensin II Receptors Are Coupled to ?-Conotoxin-Sensitive Calcium Influx in Bovine Adrenal Medullary Chromaffin Cells. Journal of Neurochemistry, 1992, 58, 1285-1291.	2.1	18
535	Mechanical and biochemical effects of individual coâ€ŧransmitters in rat tail arteries. Autonomic and Autacoid Pharmacology, 1992, 12, 245-252.	0.7	1
536	Signal transduction pathways in keratinocytes. Experimental Dermatology, 1992, 1, 59-66.	1.4	7
537	Interaction between mitogens upon intracellular Ca2+ pools in murine fibroblasts. Cell Calcium, 1992, 13, 603-614.	1.1	5
538	Autoregulation of prostaglandin E2-induced Ca2+ influx in osteoblast-like cells: Inhibition by self-induced activation of protein kinase C. Cellular Signalling, 1992, 4, 261-266.	1.7	25

ARTICLE IF CITATIONS # Intracellular free calcium and phosphatidyl inositol — 1,4,5 — triphosphate in bone cells cultured in a 539 1.3 5 low calcium environment. Journal of Bone and Mineral Metabolism, 1992, 10, 1-7. Synthesis of enantiomerically pure lysophosphatidylinositols and alkylphosphoinositols. Chemistry and Physics of Lipids, 1992, 60, 253-261. 540 1.5 Inducers of the heat shock response stimulate phospholipase C and phospholipase A2 activity in 541 2.0 34 mammalian cells. Journal of Cellular Physiology, 1993, 155, 248-256. Activation of phospholipase C by heat shock requires GTP analogs and is resistant to pertussis toxin. 542 Journal of Cellular Physiology, 1993, 156, 153-159. Cyclic AMP is not a direct regulator of calcium flux and hydrolysis of phosphoinositides in human 543 2.0 4 lymphocytes. Immunopharmacology, 1993, 25, 37-49. Cell adhesion and metastasis: is the site specificity of cancer metastasis determined by 544 leukocyte-endothelial cell recognition and adhesion?. Critical Reviews in Oncology/Hematology, 1993, 14, 229-278. Synthesis and binding studies of an optically pure hexadeoxy-1,4,5-tris(methylenesulfonic acid) 545 0.7 11 analogue of IP3. Tetrahedron Letters, 1993, 34, 219-222. Inositol phosphate formation and release of intracellular free calcium by bradykinin in HaCaT 546 1.1 21 keratinocytes. Archives of Dermatological Research, 1993, 285, 393-396. Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. 547 13.7 927 Nature, 1993, 365, 649-651. Purification and Characterization of Phospholipase C Preferentially Hydrolysing Phosphatidylcholine 548 0.8 inTetrahymenaMembranes. Journal of Eukaryotic Microbiology, 1993, 40, 775-781. Combined effects of adrenergic and intravenous anesthetic agents on inositol monophosphate levels 549 0.7 1 in rat liver prisms. Acta Anaesthesiologica Scandinavica, 1993, 37, 303-306. Activation of phospholipase D following perturbation of the human T lymphocyte antigen receptor/CD3 complex is dependent upon protein kinase C. Cellular Signalling, 1993, 5, 315-323. Endothelin receptors in rat cerebellum: Activation of phosphoinositide hydrolysis is transduced by 551 1.7 15 multiple G-proteins. Cellular Signalling, 1993, 5, 473-483. Role of protein kinase C in bradykinin-induced prostaglandin formation in osteoblasts. European Journal of Pharmacology, 1993, 244, 111-117. 2.7 Protein kinase C inhibitors potentiate angiotensin II-induced phosphoinositide hydrolysis and intracellular Ca2+ mobilization in renal mesangial cells. European Journal of Pharmacology, 1993, 245, 553 2.7 32 15-21. Membrane potential regulates Ca2+ uptake and inositol phosphate generation in rat sublingual 554 mucous acini. Cell Calcium, 1993, 14, 551-562. Partial characterization of protein kinase C from an insect cell line. BBA - Proteins and Proteomics, 555 2.13 1993, 1203, 210-214. Glycodeterminants of melanoma cell adhesion: a model for antimetastatic drugs design. Critical Reviews in Oncology/Hematology, 1993, 14, 1-13.

#	Article	IF	CITATIONS
557	Inhibitors of the intracellular Ca2+release mechanism prevent muscarinicinduced Ca2+influx in rat sublingual mucous acini. FEBS Letters, 1993, 327, 1-6.	1.3	24
558	Effects of thrombin receptor activating peptide on phosphoinositide hydrolysis and protein kinase C activation in cultured rat aortic smooth muscle cells: evidence for "tethered-ligand―activation of smooth muscle cell thrombin receptors. Biochemical Pharmacology, 1993, 45, 1577-1582.	2.0	19
560	MMQ cells: a model for evaluating the role of g proteins in the modulation of prolactin release. Molecular and Cellular Endocrinology, 1993, 93, 125-133.	1.6	10
561	Myocardial [3H]polyinositol phosphates and their response to burn trauma. Burns, 1993, 19, 379-386.	1.1	5
562	The Inositol Phosphate-Calcium Signaling System in Nonexcitable Cells. Endocrine Reviews, 1993, 14, 610-631.	8.9	497
563	Receptor-recognized <i>α</i> 2-macroglobulin-methylamine elevates intracellular calcium, inositol phosphates and cyclic AMP in murine peritoneal macrophages. Biochemical Journal, 1993, 290, 885-891.	1.7	75
564	Effect of heat shock, [Ca2+]i, and cAMP on inositol trisphosphate in human epidermoid A-431 cells. American Journal of Physiology - Cell Physiology, 1993, 264, C1561-C1569.	2.1	22
565	Sphingolipids as mediators of effects of platelet-derived growth factor in vascular smooth muscle cells. American Journal of Physiology - Cell Physiology, 1993, 265, C740-C747.	2.1	50
566	Altered Responses to Agonists after Chronic In Vivo Atropine Administration in Rat Parotid Acini. Critical Reviews in Oral Biology and Medicine, 1993, 4, 427-434.	4.4	5
567	Bradykinin and angiotensin II: activation of protein kinase C in arterial smooth muscle. American Journal of Physiology - Cell Physiology, 1994, 266, C1406-C1420.	2.1	88
568	The Discovery of Marine Natural Products with Therapeutic Potential. , 1994, , 109-174.		8
569	Identification and functional characterization of two new somatic mutations causing constitutive activation of the thyrotropin receptor in hyperfunctioning autonomous adenomas of the thyroid Journal of Clinical Endocrinology and Metabolism, 1994, 79, 1785-1789.	1.8	114
570	α-adrenoceptors: Recent developments. Medicinal Research Reviews, 1994, 14, 229-270.	5.0	54
571	Anaphylatoxin C3a induces rapid protein phosphorylation in guinea pig platelets. Immunopharmacology, 1994, 28, 95-104.	2.0	5
572	Characterization of phosphatidylinositol synthase and evidence of a polyphosphoinositide cycle in Plasmodium-infected erythrocytes. Molecular and Biochemical Parasitology, 1994, 63, 179-192.	0.5	43
573	Corticotropin-releasing factor increases [Ca2+]i via receptor-mediated Ca2+ channels in human epidermoid A-431 cells. European Journal of Pharmacology, 1994, 267, 135-142.	2.7	24
574	Discrete activation of transduction pathways associated with acetylcholine m1 receptor by several muscarinic ligands. European Journal of Pharmacology, 1994, 267, 21-31.	2.7	121
575	Activation of human platelet phospholipases C and A2 by various oxygenated triterpenes. European Journal of Pharmacology, 1994, 267, 33-42.	2.7	10

#	Article	IF	CITATIONS
576	Vascular receptors for 5-hydroxytryptamine: Distribution, function and classification. , 1994, 62, 283-324.		148
577	α-Adrenoceptors. , 1994, 61, 1-64.		125
578	Germline mutations in the thyrotropin receptor gene cause non–autoimmune autosomal dominant hyperthyroidism. Nature Genetics, 1994, 7, 396-401.	9.4	371
579	Chronic Lâ€Î±â€Glycerylâ€phosphorylâ€choline Increases Inositol Phosphate Formation in Brain Slices and Neuronal Cultures. Basic and Clinical Pharmacology and Toxicology, 1994, 74, 95-100.	0.0	13
580	Dynamic changes of myocardial inositoltrisphosphate and cyclic nucleotides: relationship to contractile response in the perfused working rat heart after adrenergic and muscarinic agonist stimulation. Acta Physiologica Scandinavica, 1994, 150, 133-139.	2.3	7
581	Historical Perspectives on Cholecystokinin Research. Annals of the New York Academy of Sciences, 1994, 713, 1-10.	1.8	23
582	Cellular pharmacology ofd-3-azido-3-deoxy-myo-inositol, an inhibitor of phosphatidylinositol signaling having antiproliferative activity. Cancer Chemotherapy and Pharmacology, 1994, 35, 71-79.	1.1	14
583	Effects of lymphokines and mitogens on a histamine derivative-induced intracellular calcium mobilization and inositol phosphate production. Biochemical Pharmacology, 1994, 47, 2097-2103.	2.0	4
584	Early nutritional changes modify the kinetics and phosphorylation capacity of tryptophan-5-hydroxylase. International Journal of Developmental Neuroscience, 1994, 12, 695-702.	0.7	25
585	A phospholipase C inhibitor, U-73122, blocks TSH-induced inositol trisphosphate production, Ca2+ increase and arachidonic acid release in FRTL-5 thyroid cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 1994, 1223, 101-106.	1.9	19
586	BMSâ€180560, an insurmountable inhibitor of angiotensin IIâ€stimulated responses: comparison with Iosartan and EXP3174. British Journal of Pharmacology, 1994, 113, 179-189.	2.7	34
587	PHOSPHATIDYLINOSITOL RESPONSES ARE INVOLVED IN THE VASCULAR EFFECTS OF THIAMYLAL AND FENTANYL. Anesthesiology, 1994, 81, A882.	1.3	0
588	Delineation of a region in the B2 bradykinin receptor that is essential for high-affinity agonist binding Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 4417-4421.	3.3	59
589	Identification of a B2 bradykinin receptor expressed by PC12 pheochromocytoma cells Proceedings of the United States of America, 1994, 91, 4412-4416.	3.3	32
590	Carbachol, Norepinephrine, and Hypocapnia Stimulate Phosphatidylinositol Turnover in Rat Tracheal SlicesÂ. Anesthesiology, 1995, 82, 102-107.	1.3	8
591	Early steps along the road to inositol-lipid-based signalling. Trends in Biochemical Sciences, 1995, 20, 326-329.	3.7	21
592	In Chinese Hamster Ovary K1 Cells Dog and Human Thyrotropin Receptors Activate Both the Cyclic AMP and the Phosphatidylinositol 4,5-Bisphosphate Cascades in the Presence of Thyrotropin and the Cyclic AMP Cascade in Its Absence. FEBS Journal, 1995, 229, 338-343.	0.2	52
593	Tissue Distribution and Intracellular Localisation of the 75-kDa Inositol Polyphosphate 5-Phosphatase. FEBS Journal, 1995, 234, 216-224.	0.2	34

			2
#	ARTICLE	IF	CITATIONS
594	Activated alpha2-Macroglobulin Promotes Mitogenesis in Rat Vascular Smooth Muscle Cells by a Mechanism that is Independent of Growth-Factor-Carrier Activity. FEBS Journal, 1995, 234, 714-722.	0.2	29
595	Phosphatidylinositol responses are involved in the vascular effects of thiamylal and fentanyl. Canadian Journal of Anaesthesia, 1995, 42, 1164-1170.	0.7	8
596	Impaired inositol trisphosphate generation in carbachol-stimulated submandibular gland acinar cells from ascorbate deficient guinea pigs. Journal of Nutritional Biochemistry, 1995, 6, 557-563.	1.9	4
597	Inhibitory effect of phorbol ester on carbachol-induced signal transduction in cultured canine tracheal smooth muscle cells. Journal of Biomedical Science, 1995, 2, 283-292.	2.6	4
598	Mystixin-7 and mystixin-11 increase cytosolic free Ca2+ and inositol trisphosphates in human A-431 cells. European Journal of Pharmacology, 1995, 291, 107-113.	2.7	8
599	Characterisation of an ATP receptor mediating mitogenesis in vascular smooth muscle cells. European Journal of Pharmacology, 1995, 289, 135-149.	2.7	68
600	Signal transduction mechanism in response to aflatoxin B1 exposure: phosphatidylinositol metabolism. Chemico-Biological Interactions, 1995, 98, 145-152.	1.7	13
601	Signaling and growth responses of LLC-PK1/Cl4 cells transfected with the rabbit AT1 ANG II receptor. American Journal of Physiology - Cell Physiology, 1995, 268, C925-C935.	2.1	26
602	Vasopressin activates phospholipase D through pertussis toxin-insensitive GTP-binding protein in aortic smooth muscle cells: function of Ca2+/calmodulin. Biochemistry and Cell Biology, 1995, 73, 191-199.	0.9	9
603	Signal Transduction In Fungi. , 1995, , 183-210.		33
604	Influence of Second and Third Cytoplasmic Loops on Binding, Internalization, and Coupling of Chimeric Bombesin/m3 Muscarinic Receptors. Journal of Biological Chemistry, 1995, 270, 17884-17891.	1.6	18
605	Effects of selective phosphodiesterase type IV inhibitor, rolipram, on signal transducing phospholipases in neutrophil: Inhibition of phospholipases A2, D but not C. Comparative Biochemistry and Physiology C, Comparative Pharmacology and Toxicology, 1995, 112, 137-143.	0.5	3
606	Effects of 8â€bromoguanosine 3′:5′â€cyclic monophosphate on phenylephrineâ€induced phosphatidylinosi hydrolysis and contraction in rat caudal artery. British Journal of Pharmacology, 1995, 116, 1697-1703.	tol 2.7	7
607	Inhibition of vascular contractions to α-adrenoceptor agonists by polymyxin B: impact of heart failure state. European Journal of Pharmacology, 1995, 283, 241-250.	1.7	4
608	Aspartate mutation distinguishes ETAbut not ETBreceptor subtype-selective ligand binding while abolishing phospholipase C activation in both receptors. FEBS Letters, 1995, 361, 243-249.	1.3	34
609	Ca2+ signaling through secretagogue and growth factor receptors on pancreatic AR42J cells. Regulatory Peptides, 1995, 55, 197-206.	1.9	25
610	Effects of Fatigue of Rat EDL In Situ on Metabolism of Phosphoinositides. Applied Physiology, Nutrition, and Metabolism, 1995, 20, 289-299.	1.7	1
611	Ovarian steroids modulate gonadotropin-releasing hormone-induced biphasic luteinizing hormone secretory responses and inositol phosphate accumulation in rat anterior pituitary cells and αT3-1 gonadotrophs. Journal of Steroid Biochemistry and Molecular Biology, 1995, 54, 101-109.	1.2	26

# 612	ARTICLE The mitogen-activated protein kinases system (MAP kinase cascade): its role in skin signal transduction. A review. Journal of Dermatological Science, 1996, 12, 255-262.	IF 1.0	Citations 39
613	Tyrphostin inhibition of ATPâ€stimulated DNA synthesis, cell proliferation and Fosâ€protein expression in vascular smooth muscle cells. British Journal of Pharmacology, 1996, 118, 1028-1034.	2.7	21
614	B ₁ bradykinin receptors and sensory neurones. British Journal of Pharmacology, 1996, 118, 1469-1476.	2.7	62
615	Calcium as a second messenger of the action of transforming growth factor-β on insulin secretion. Molecular and Cellular Endocrinology, 1996, 117, 1-6.	1.6	25
616	Specific activation of the thyrotropin receptor by trypsin. Molecular and Cellular Endocrinology, 1996, 119, 161-168.	1.6	73
617	Pharmacological basis for functional selectivity of partial muscarinic receptor agonists. European Journal of Pharmacology, 1996, 297, 283-291.	1.7	24
618	Mechanism of inhibition of platelet aggregation by rutaecarpine, an alkaloid isolated from Evodia rutaecarpa. European Journal of Pharmacology, 1996, 318, 469-475.	1.7	48
619	Signal transduction during exocytosis in Limulus polyphemus granulocytes. Developmental and Comparative Immunology, 1996, 20, 307-321.	1.0	24
620	Myocardial Contractile Response and IP3, cAMP and cGMP Interrelationships. Upsala Journal of Medical Sciences, 1996, 101, 1-34.	0.4	0
621	The Bradykinin B2 Receptor Is a Delayed Early Response Gene for Platelet-derived Growth Factor in Arterial Smooth Muscle Cells. Journal of Biological Chemistry, 1996, 271, 13324-13332.	1.6	22
622	Regulation of colonic ion transport by GRP. I. GRP stimulates transepithelial K and Na secretion. American Journal of Physiology - Cell Physiology, 1996, 270, C848-C858.	2.1	19
623	Underexpression of the 43 kDa inositol polyphosphate 5-phosphatase is associated with cellular transformation EMBO Journal, 1996, 15, 4852-4861.	3.5	49
624	Anticholinesterase Drugs Stimulate Phosphatidylinositol Response in Rat Tracheal Slices. Anesthesia and Analgesia, 1996, 82, 1211-1214.	1.1	0
625	Anticholinesterase Drugs Stimulate Phosphatidylinositol Response in Rat Tracheal Slices. Anesthesia and Analgesia, 1996, 82, 1211-1214.	1.1	14
626	Structure and functional expression of a complementary DNA for porcine parathyroid hormone /parathyroid hormone-related peptide receptor. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1996, 1307, 339-347.	2.4	31
627	Effect of a low-calcium environment on alkaline phosphatase activity in embryonic rat calvarial bone cells in culture. Archives of Oral Biology, 1996, 41, 41-45.	0.8	15
628	Signal transduction mechanism in response to aflatoxin B1 exposure: protein kinase C activity. Chemico-Biological Interactions, 1996, 100, 177-185.	1.7	12
629	Involvement of calcium in macrophage leukotriene release during experimental cirrhosis. Hepatology, 1996, 23, 614-622.	3.6	12

	Сітаті	on Report	
#	Article	IF	CITATIONS
630	24R,25-(OH)2 Vitamin D3 Inhibits 1α,25-(OH)2 Vitamin D3 and Testosterone Potentiation of Calcium Channels in Osteosarcoma Cells. Journal of Biological Chemistry, 1996, 271, 33335-33343.	1.6	36
631	Functional characteristics of three new germline mutations of the thyrotropin receptor gene causing autosomal dominant toxic thyroid hyperplasia Journal of Clinical Endocrinology and Metabolism, 1996, 81, 547-554.	1.8	128
632	Inositol 1,4,5-Trisphosphate Production. , 1996, , 269-282.		2
633	Cyclic adenosine 3',5'-monophosphate-independent regulation of cytosolic calcium in Sertoli cells Endocrinology, 1996, 137, 2617-2625.	1.4	12
634	Up-regulation of the α2-Macroglobulin Signaling Receptor on Rheumatoid Synovial Fibroblasts. Journal of Biological Chemistry, 1997, 272, 497-502.	1.6	33
635	Chapter 9 Inositol 1,4,5-trisphosphate receptors. Principles of Medical Biology, 1997, , 157-168.	0.1	0
636	Chapter 6 Talking to cells—cell membrane receptors and their modes of action. Foundations of Modern Biochemistry, 1997, , 173-201.	0.6	1
637	Corticotropin-releasing factor-like peptides increase cytosolic [Ca2+] in human epidermoid A-431 cells. European Journal of Pharmacology, 1997, 329, 237-244.	1.7	25
638	Mechanisms Involved in the Antiplatelet Activity of Tetramethylpyrazine in Human Platelets. Thrombosis Research, 1997, 88, 259-270.	0.8	52
639	Constitutive activation of the TSH receptor by spontaneous mutations affecting the N-terminal extracellular domain. FEBS Letters, 1997, 409, 469-474.	1.3	124
640	Modulation of aflatoxin B1 activated protein kinase C by phenolic compounds. Cancer Letters, 1997, 121, 99-104.	3.2	22
641	CCK-B receptors produce similar signals but have opposite growth effects in CHO and Swiss 3T3 cells. American Journal of Physiology - Cell Physiology, 1997, 273, C1449-C1457.	2.1	33
642	Feedback regulation of extracellular ATP-stimulated phosphoinositide hydrolysis by protein kinase C-α in bovine glomerular endothelial cells. Kidney International, 1997, 52, 329-337.	2.6	14
643	Altered phospholipid metabolism in sodium butyrate-induced differentiation of C6 glioma cells. Lipids, 1997, 32, 273-282.	0.7	9
644	Angiotensin II activates distinct signal transduction pathways in astrocytes isolated from neonatal rat brain. , 1997, 19, 333-342.		55
645	Mechanisms involved in the antiplatelet activity ofEscherichia colilipopolysaccharide in human platelets. British Journal of Haematology, 1998, 103, 29-38.	1.2	40
646	Contractile response of peritubular myoid cells to prostaglandin F2α. Molecular and Cellular Endocrinology, 1998, 138, 143-150.	1.6	31
647	The Antiplatelet Activity of Rutaecarpine, an Alkaloid Isolated from Evodia rutaecarpa, Is Mediated through Inhibition of Phospholipase C. Thrombosis Research, 1998, 92, 53-64.	0.8	45

#	Article	IF	CITATIONS
648	Phosphatidylinositol 4-kinases. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 1998, 1436, 69-85.	1.2	80
649	Sphingomyelin — a dietary component with structural and biological function. , 1998, , 119-128.		5
650	Measurement of Phosphoinositols and Phosphoinositides Using Radio High-Performance Liquid Chromatography Flow Detection. , 1998, 105, 47-63.		8
651	Residues Val254, His256, and Phe259 of the Angiotensin II AT1 Receptor Are Not Involved in Ligand Binding but Participate in Signal Transduction. Molecular Endocrinology, 1998, 12, 810-814.	3.7	31
652	Angiotensin II Type 2 Receptor Is Upregulated in Human Heart With Interstitial Fibrosis, and Cardiac Fibroblasts Are the Major Cell Type for Its Expression. Circulation Research, 1998, 83, 1035-1046.	2.0	223
653	Deletions in the Third Intracellular Loop of the Thyrotropin Receptor. Journal of Biological Chemistry, 1998, 273, 7900-7905.	1.6	68
655	Role of the Third Intracellular Loop for the Activation of Gonadotropin Receptors. Molecular Endocrinology, 1999, 13, 181-190.	3.7	65
656	A Novel Thyrotropin Receptor Mutation in an Infant with Severe Thyrotoxicosis. Thyroid, 1999, 9, 1005-1010.	2.4	51
657	The antiplatelet activity of PMC, a potent $\hat{l}\pm$ -tocopherol analogue, is mediated through inhibition of cyclo-oxygenase. British Journal of Pharmacology, 1999, 127, 1206-1212.	2.7	20
658	A novel subgroup of class I C-protein-coupled receptors. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1999, 1446, 57-70.	2.4	44
659	Effects of putative diuretic factors on intracellular second messenger levels in the Malpighian tubules of Aedes aegypti. Journal of Insect Physiology, 1999, 45, 327-337.	0.9	38
660	The mechanism mediating regenerative intercellular Ca2+ waves in the blowfly salivary gland. EMBO Journal, 1999, 18, 3222-3231.	3.5	49
661	Functional characterization of five constitutively activating thyrotrophin receptor mutations. Clinical Endocrinology, 2000, 53, 461-468.	1.2	27
662	The galanin receptor type 2 initiates multiple signaling pathways in small cell lung cancer cells by coupling to Gq, Gi and G12 proteins. Oncogene, 2000, 19, 4199-4209.	2.6	100
663	Stimulation by iodide of H ₂ O ₂ generation in thyroid slices from several species. American Journal of Physiology - Endocrinology and Metabolism, 2000, 278, E692-E699.	1.8	56
664	Ins(3,4,5,6)P sub4 inhibits an apical calcium-activated chloride conductance in polarized monolayers of a cystic fibrosis cell-line. Journal of Biological Chemistry, 2000, 275, 26906-13.	1.6	24
665	Mechanisms Involved in the Antiplatelet Activity of Staphylococcus aureus Lipoteichoic Acid in Human Platelets. Thrombosis and Haemostasis, 2000, 83, 777-784.	1.8	82
666	Characterization of Autonomous Thyroid Adenoma: Metabolism, Gene Expression, and Pathology. Thyroid, 2000, 10, 131-140.	2.4	61

ARTICLE IF CITATIONS Divergent responses of <i>ras</i>-transfected and non-<i>ras</i>-transfected human keratinocytes to 667 0.9 2 extracellular calcium. Biochemistry and Cell Biology, 2000, 78, 469-476. Requirement of Specific Intrahelical Interactions for Stabilizing the Inactive Conformation of 1.6 Clycoprotein Hormone Receptors. Journal of Biological Chemistry, 2000, 275, 37860-37869. Novel TSHR Germline Mutation (Met463Val) Masquerading as Graves' Disease in a Large Welsh Kindred 669 2.4 62 with Hyperthyroidism. Thyroid, 2000, 10, 1035-1041. Hyperactive phosphoinositide signaling pathway in platelets of depressed patients: effect of 670 désipramine treatment. Psychiatry Research, 2001, 105, 23-32. Nitric oxide and the pancreas: morphological base and role in the control of the exocrine pancreatic 671 1.4 18 secretion. Molecular and Cellular Biochemistry, 2001, 219, 107-120. Pharmacological Modulation of Intracellular Ca²⁺ Channels at the Single-Channel Level. Molecular Neurobiology, 2001, 24, 065-086. The cholecystokinin analogues JMV-180 and CCK-8 stimulate phospholipase C through the same binding 673 2.7 6 site of CCKA receptor in rat pancreatic acini. British Journal of Pharmacology, 2001, 133, 1227-1234. A Free Carboxylate Oxygen in the Side Chain of Position 674 in Transmembrane Domain 7 Is Necessary 674 3.7 47 for TSH Receptor Activation. Molecular Endocrinology, 2001, 15, 1294-1305. Structural Requirements for Mutational Lutropin/Choriogonadotropin Receptor Activation. Journal 675 1.6 44 of Biological Chemistry, 2002, 277, 47748-47755. The Extracellular N Terminus of the Endothelin B (ETB) Receptor Is Cleaved by a Metalloprotease in an 676 1.6 54 Agonist-dependent Process. Journal of Biological Chemistry, 2002, 277, 43933-43941. Strategies for mapping the binding site of the serotonin 5-HT2A receptor. Methods in Enzymology, 677 0.4 10 2002, 343, 123-136. Effects of vasopressors on contractile and phosphatidylinositol responses of rat trachea. Journal of 678 Anesthesia, 2002, 16, 289-293. Mechanisms involved in the antiplatelet activity of magnesium in human platelets. British Journal of 679 1.2 54 Haematology, 2002, 119, 1033-1041. Morphine-potentiated platelet aggregation in in vitro and platelet plug formation in in vivo experiments. Journal of Biomedical Science, 2003, 10, 292-301. 680 2.6 ï‰-3 vs. ï‰-6 lipid emulsions exert differential influence on neutrophils in septic shock patients: impact on 681 3.9 167 plasma fatty acids and lipid mediator generation. Intensive Care Medicine, 2003, 29, 1472-1481. Proper targeting and activity of a nonfunctioning thyroid-stimulating hormone receptor (TSHr) combining an inactivating and activating TSHr mutation in one receptor. FEBS Journal, 2003, 270, 3839-3847. 683 20 years of Ins(1,4,5)P3, and 40 years before. Nature Reviews Molecular Cell Biology, 2003, 4, 586-590. 16.1 83 Role of the Different Mitogen-Activated Protein Kinase Subfamilies in the Stimulation of Dog and Human Thyroid Epithelial Cell Proliferation by Cyclic Adenosine 5â€²-Monophosphate and Growth 684 1.4 Factors. Endocrinology, 2003, 144, 1341-1349.

#	Article	IF	CITATIONS
685	The antiplatelet activity of Geiji-Bokryung-Hwan, Korean traditional formulation, is mediated through inhibition of phospholipase C and inhibition of TxB2 synthetase activity. International Immunopharmacology, 2003, 3, 971-978.	1.7	11
686	The Antiplatelet Activity of Danggijakyaksan by Inhibition of Phospholipase C. Immunopharmacology and Immunotoxicology, 2003, 25, 561-571.	1.1	5
687	Serotonin 5-Hydroxytryptamine2AReceptor-Coupled Phospholipase C and Phospholipase A2Signaling Pathways Have Different Receptor Reserves. Journal of Pharmacology and Experimental Therapeutics, 2003, 304, 229-237.	1.3	142
688	The Structural Evolution of a P2Y-like G-protein-coupled Receptor. Journal of Biological Chemistry, 2003, 278, 35531-35541.	1.6	55
689	Inhibitory Mechanisms of Metallothionein on Platelet Aggregation in In Vitro and Platelet Plug Formation in In Vivo Experiments. Experimental Biology and Medicine, 2003, 228, 1321-1328.	1.1	5
690	How versatile are inositol phosphate kinases?. Biochemical Journal, 2004, 377, 265-280.	1.7	166
691	Identification of a Novel Epitope in the Thyroid-stimulating Hormone Receptor Ectodomain Acting as Intramolecular Signaling Interface. Journal of Biological Chemistry, 2004, 279, 51590-51600.	1.6	65
692	Expression of matrix metalloproteinase-9 in human platelets: regulation of platelet activation in in vitro and in vivo studies. British Journal of Pharmacology, 2004, 143, 193-201.	2.7	86
693	Cell signaling by a physiologically reversible inositol phosphate kinase/phosphatase. Advances in Enzyme Regulation, 2004, 44, 265-277.	2.9	6
694	Mechanisms involved in the antiplatelet activity of ketamine in human platelets. Journal of Biomedical Science, 2004, 11, 764-772.	2.6	23
695	Involvement of the antiplatelet activity of magnesium sulfate in suppression of protein kinase C and the Na+/H+ exchanger. Journal of Biomedical Science, 2004, 11, 19-26.	2.6	12
696	Reading the patterns in living cells —the physics of ca2+signaling. Advances in Physics, 2004, 53, 255-440.	35.9	317
697	Inhibitory effect of GBH on platelet aggregation through inhibition of intracellular Ca2+ mobilization in activated human platelets. Life Sciences, 2004, 75, 3063-3076.	2.0	21
698	Involvement of a cytoplasmic-tail serine cluster in urotensin II receptor internalization. Biochemical Journal, 2005, 385, 115-123.	1.7	17
699	Pharmacological characterization of ligand-receptor interactions at the zebrafish bradykinin receptor. British Journal of Pharmacology, 2005, 144, 11-16.	2.7	14
700	Inhibitory effects of lycopene on in vitro platelet activation and in vivo prevention of thrombus formation. Translational Research, 2005, 146, 216-226.	2.4	39
701	Methoctramine and gallamine inhibit PI hydrolysis in guinea-pig gallbladder. Vascular Pharmacology, 2005, 43, 242-246.	1.0	0
702	Morituri te salutant? Olfactory signal transduction and the role of phosphoinositides. Journal of Neurocytology, 2005, 34, 97-116.	1.6	14

ARTICLE IF CITATIONS # Interactions between the extracellular domain and the extracellular loops as well as the 6th transmembrane domain are necessary for TSH receptor activation. European Journal of 703 1.9 29 Endocrinology, 2005, 152, 625-634. Sialylation of Human Thyrotropin Receptor Improves and Prolongs Its Cell-Surface Expression. 704 1.0 Molecular Pharmacology, 2005, 68, 1106-1113. Structural Determinants for G Protein Activation and Selectivity in the Second Intracellular Loop of 705 1.4 38 the Thyrotropin Receptor. Endocrinology, 2005, 146, 477-485. A Hydrophobic Cluster in the Center of the Third Extracellular Loop Is Important for Thyrotropin 706 34 Receptor Signaling. Endocrinology, 2005, 146, 5197-5203. Novel Thyrotropin Receptor Germline Mutation (Ile568Val) in a Saxonian Family with Hereditary 707 2.4 37 Nonautoimmune Hyperthyroidism. Thyroid, 2005, 15, 1089-1094. The Rise and Fall of the Chemoattractant Receptor GPR33. Journal of Biological Chemistry, 2005, 280, 1.6 31068-31075. Two Novel Mutations in the Sixth Transmembrane Segment of the Thyrotropin Receptor Gene Causing 709 2.4 14 Hyperfunctioning Thyroid Nodules. Thyroid, 2005, 15, 389-397. UNLOCKING THE SECRETS OF CELL SIGNALING. Annual Review of Physiology, 2005, 67, 1-21. 5.6 A Novel Follicle-Stimulating Hormone-Induced Gαh/Phospholipase C-Î′I Signaling Pathway Mediating Rat 711 3.7 52 Sertoli Cell Ca2+-Influx. Molecular Endocrinology, 2006, 20, 2514-2527. ITP. Seminars in Cell and Developmental Biology, 2006, 17, 230-232. 2.3 Functional consequences of naturally occurring DRY motif variants in the mammalian 713 32 1.3 chemoattractant receptor GPR33. Génomics, 2006, 87, 724-732. N-ethyl-N-nitrosourea-based generation of mouse models for mutant G protein-coupled receptors. 714 1.0 Physiólogical Genomics, 2006, 26, 209-217. Stimulation of Phosphatidylinositol Hydrolysis by Brainâ€Derived Neurotrophic Factor and Neurotrophinâ€3 in Rat Cerebral Cortical Neurons Developing in Culture. Journal of Neurochemistry, 715 2.1 39 1992, 59, 2113-2124. S -nitrosylation of cysteine 289 of the AT1 receptor decreases its binding affinity for angiotensin II. 2.7 British Journal of Pharmacology, 2006, 148, 306-313. Structural determinants for G-protein activation and specificity in the third intracellular loop of the 717 30 1.7 thyroid-stimulating hormone receptor. Journal of Molecular Medicine, 2006, 84, 943-954. Function-specific blockage of M1 and M3 muscarinic acetylcholine receptors by VX and echothiophate. 1.1 Brain Research, 2006, 1085, 102-110. Thyrotropin Stimulates the Generation of Inositol 1,4,5-Trisphosphate in Human Thyroid Cells. Journal 719 1.8 33 of Clinical Endocrinology and Metabolism, 2006, 91, 1099-1107. An Aromatic Environment in the Vicinity of Serine 281 Is a Structural Requirement for Thyrotropin 1.4 Receptor Function. Endocrinology, 2006, 147, 1753-1760.

#	Article	IF	CITATIONS
721	cAMP regulates plasma membrane vacuolar-type H+-ATPase assembly and activity in blowfly salivary glands. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3926-3931.	3.3	69
722	Identification and Functional Analysis of Novel Inactivating Thyrotropin Receptor Mutations in Patients with Thyrotropin Resistance. Thyroid, 2006, 16, 471-479.	2.4	32
723	Case History: A Novel Activating Mutation in Transmembrane Helix 6 of the Thyrotropin Receptor as Cause of Hereditary Nonautoimmune Hyperthyroidism. Thyroid, 2006, 16, 505-512.	2.4	34
724	Contacts between Extracellular Loop Two and Transmembrane Helix Six Determine Basal Activity of the Thyroid-stimulating Hormone Receptor. Journal of Biological Chemistry, 2007, 282, 518-525.	1.6	54
725	Receptor Subtype-specific Docking of Asp6.59 with C-terminal Arginine Residues in Y Receptor Ligands. Journal of Biological Chemistry, 2007, 282, 7543-7551.	1.6	81
726	Role of Inositol 1,4,5-Triphosphate and p38 Mitogen-Activated Protein Kinase in Reactive Oxygen Species Generation by Granulocytes in a Cyclic AMP-Dependent Manner: An Age-Related Phenomenon. Gerontology, 2007, 53, 228-233.	1.4	16
727	Stressâ€inducible and constitutive phosphoinositide pools have distinctive fatty acid patterns in Arabidopsis thaliana. FASEB Journal, 2007, 21, 1958-1967.	0.2	81
728	Multiple Peptide Synthesis to Identify Bioactive Hormone Structures. , 2007, , 243-288.		4
729	Tracking of human Y receptors in living cells—A fluorescence approach. Peptides, 2007, 28, 226-234.	1.2	30
730	Synthesis and function of membrane phosphoinositides in budding yeast, Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2007, 1771, 353-404.	1.2	258
731	Biology-enabling inositol phosphates, phosphatidylinositol phosphates and derivatives. Natural Product Reports, 2007, 24, 687.	5.2	65
732	The V2 vasopressin receptor stimulates ERK1/2 activity independently of heterotrimeric G protein signalling. Cellular Signalling, 2007, 19, 32-41.	1.7	68
733	Identification of the dimerisation interface of human interleukin-8 by IL-8-variants containing the photoactivatable amino acid benzoyl-phenylalanine. European Biophysics Journal, 2007, 36, 385-391.	1.2	9
734	Preferences of transmembrane helices for cooperative amplification of Cî±s and Cî±q signaling of the thyrotropin receptor. Cellular and Molecular Life Sciences, 2008, 65, 4028-4038.	2.4	20
735	GPC Receptors and Not Ligands Decide the Binding Mode in Neuropeptide Y Multireceptor/Multiligand System. Biochemistry, 2008, 47, 5905-5914.	1.2	25
736	Artificial Chemokines: Combining Chemistry and Molecular Biology for the Elucidation of Interleukin-8 Functionality. Journal of the American Chemical Society, 2008, 130, 15311-15317.	6.6	72
737	Phosphoinositide and Inositolpolyphosphate Signalling in Defense Responses of Arabidopsis thaliana Challenged by Mechanical Wounding. Molecular Plant, 2008, 1, 249-261.	3.9	78
738	The Third Intracellular Loop Stabilizes the Inactive State of the Neuropeptide Y1 Receptor. Journal of Biological Chemistry, 2008, 283, 33337-33346.	1.6	32

ARTICLE IF CITATIONS # Hormone-induced assembly and activation of V-ATPase in blowfly salivary glands is mediated by protein 739 2.1 49 kinase A. American Journal of Physiology - Cell Physiology, 2008, 294, C56-C65. The Type B Phosphatidylinositol-4-Phosphate 5-Kinase 3 Is Essential for Root Hair Formation 740 3.1 170 in<i>Árabidopsis thaliana</i>. Plant Cell, 2008, 20, 124-141. Generation of an agonistic binding site for blockers of the M3 muscarinic acetylcholine receptor. 741 1.7 14 Biochemical Journal, 2008, 412, 103-112. Correlation Between ROS Production and InsP3 Released by Granulocytes from Type 1 Diabetic Patients 742 in a cAMP-Dependent Manner. Current Aging Science, 2008, 1, 51-55. Type B Phosphatidylinositol-4-Phosphate 5-Kinases Mediate<i>Arabidopsis</i>and<i>Nicotiana 743 3.1 169 tábacum </i>Pollen Tube Growth by Regulating Apical Pectin Secretion. Plant Cell, 2009, 20, 3312-3330. Current aspects on human platelet activation and responses. European Journal of Haematology, 1987, 38, 383-399. 1.1 44 Inositol trisphosphate and calcium signalling mechanisms. Biochimica Et Biophysica Acta - Molecular 745 1.9 650 Cell Research, 2009, 1793, 933-940. First came the link between phosphoinositides and Ca2+ signalling, and then a deluge of other 746 1.1 14 phosphoinositide functions. Cell Calcium, 2009, 45, 521-526. Regulation of Ca2+ entry by inositol lipids in mammalian cells by multiple mechanisms. Cell Calcium, 747 1.1 32 2009, 45, 527-534. Functional role of the extracellular N-terminal domain of neuropeptide Y subfamily receptors in 748 1.7 29 membrane integration and agonist-stimulated internalization. Cellular Signalling, 2009, 21, 61-68. Luciferase activity under direct ligand-dependent control of a muscarinic acetylcholine receptor. 749 4 1.7 BMC Biotechnology, 2009, 9, 46. Capacitative calcium entry: from concept to molecules. Immunological Reviews, 2009, 231, 10-22. 2.8 206 Bradykinin induces formation of inositol phosphates and causes an increase in cytoplasmic Ca2+ in 751 3.1 25 the osteoblastic cell line MC3T3-E1. Journal of Bone and Mineral Research, 1991, 6, 443-452. Pl–PLC signal pathway: A possible pathogenesis link post-myocardial infarction to depression. Medical 0.8 Hypotheses, 2009, 73, 156-157. Phosphoinositide Signaling: New Tools and Insights. Physiology, 2009, 24, 231-244. 753 140 1.6 Clonidine Attenuates the Carbachol-induced Contractile and Phosphatidylinositol Responses of Rat 754 1.2 Trachea. Journal of Pharmacy and Pharmacology, 2010, 52, 1523-1528. Selegiline, an MAO-B inhibitor, attenuates airway smooth muscle contraction in the rat tracheaâ€. 755 1.2 2 Journal of Pharmacy and Pharmacology, 2010, 56, 935-939. Identification of a potential modification site in human stromal cellâ€derived factorâ€1. Biopolymers, 1.2 2010, 94, 771-778.

#	Article	IF	CITATIONS
757	IP3 Receptors: Toward Understanding Their Activation. Cold Spring Harbor Perspectives in Biology, 2010, 2, a004010-a004010.	2.3	238
758	Species specific thyroid signal transduction: Conserved physiology, divergent mechanisms. Molecular and Cellular Endocrinology, 2010, 319, 56-62.	1.6	29
759	PIP-Kinases as Key Regulators of Plant Function. Plant Cell Monographs, 2010, , 79-93.	0.4	4
760	Functional reconstitution of human neuropeptide Y (NPY) Y2and Y4receptors in Sf9 insect cells. Journal of Receptor and Signal Transduction Research, 2011, 31, 271-285.	1.3	10
761	Incorporation of <i>ortho</i> -Carbaboranyl- <i>N</i> _ε -Modified <scp>l</scp> -Lysine into Neuropeptide Y Receptor Y ₁ - and Y ₂ -Selective Analogues. Journal of Medicinal Chemistry, 2011, 54, 2368-2377.	2.9	60
762	Cell biology of H2O2 generation in the thyroid: Investigation of the control of dual oxidases (DUOX) activity in intact ex vivo thyroid tissue and cell lines. Molecular and Cellular Endocrinology, 2011, 343, 32-44.	1.6	38
763	The Interaction between Noradrenaline and ATP upon Polyphosphoinositide Metabolism and Contraction in Tail Arteries from Normo- and Hypertensive Rats. Journal of Pharmacy and Pharmacology, 2011, 44, 836-840.	1.2	4
764	PIPKs are essential for rhizoid elongation and caulonemal cell development in the moss <i>Physcomitrella patens</i> . Plant Journal, 2011, 67, 635-647.	2.8	26
765	The Physiological Function of Store-operated Calcium Entry. Neurochemical Research, 2011, 36, 1157-1165.	1.6	87
766	Structure–Activity Studies of RFamide Peptides Reveal Subtypeâ€Selective Activation of Neuropeptide FF1 and FF2 Receptors. ChemMedChem, 2011, 6, 1081-1093.	1.6	37
767	The Hinge Region of the TSH Receptor Stabilizes Ligand Binding and Determines Different Signaling Profiles of Human and Bovine TSH. Endocrinology, 2011, 152, 3986-3996.	1.4	12
768	Defining Structural and Functional Dimensions of the Extracellular Thyrotropin Receptor Region. Journal of Biological Chemistry, 2011, 286, 22622-22631.	1.6	25
769	Cell Adhesion Receptor GPR133 Couples to Gs Protein. Journal of Biological Chemistry, 2011, 286, 41912-41916.	1.6	94
770	Altered Immune Response in Mice Deficient for the G Protein-coupled Receptor GPR34. Journal of Biological Chemistry, 2011, 286, 2101-2110.	1.6	87
771	The ligand specificity of the G-protein-coupled receptor GPR34. Biochemical Journal, 2012, 443, 841-850.	1.7	26
772	Pyridine Nucleotide Metabolites and Calcium Release from Intracellular Stores. Advances in Experimental Medicine and Biology, 2012, 740, 305-323.	0.8	10
773	Phospholipase C signaling and calcium influx. Advances in Biological Regulation, 2012, 52, 152-164.	1.4	137
774	Phosphoinositides at the Neuromuscular Junction of Drosophila melanogaster: A Genetic Approach. Methods in Cell Biology, 2012, 108, 227-247.	0.5	5

#	Δρτιςι ε	IF	CITATIONS
775	Phosphatidylinositol 4, 5 Bisphosphate and the Actin Cytoskeleton. Sub-Cellular Biochemistry, 2012, 59,	1.0	57
	177-215.	1.0	
776	Phosphoinositide 3-Kinases—A Historical Perspective. Sub-Cellular Biochemistry, 2012, 58, 95-110.	1.0	18
777	Inositol 1,4,5-Trisphosphate and Its Receptors. Advances in Experimental Medicine and Biology, 2012, 740, 255-279.	0.8	98
778	Stimulus-secretion Coupling in Pancreatic Acinar Cells. , 2012, , 1361-1398.		16
779	Arabidopsis phosphatidylinositol monophosphate 5-kinase 2 is involved in root gravitropism through regulation of polar auxin transport by affecting the cycling of PIN proteins. Cell Research, 2012, 22, 581-597.	5.7	120
781	Manipulating Y receptor subtype activation of short neuropeptide Y analogs by introducing carbaboranes. Neuropeptides, 2013, 47, 59-66.	0.9	31
782	2-Aminoethyl diphenylborinate (2-APB) analogues: Regulation of Ca2+ signaling. Biochemical and Biophysical Research Communications, 2013, 441, 286-290.	1.0	23
783	Identification of Determinants Required for Agonistic and Inverse Agonistic Ligand Properties at the ADP Receptor P2Y ₁₂ . Molecular Pharmacology, 2013, 83, 256-266.	1.0	33
784	Phosphoinositides: Tiny Lipids With Giant Impact on Cell Regulation. Physiological Reviews, 2013, 93, 1019-1137.	13.1	1,281
785	Gpr126 Functions in Schwann Cells to Control Differentiation and Myelination via G-Protein Activation. Journal of Neuroscience, 2013, 33, 17976-17985.	1.7	159
786	The activity of prolactin releasing peptide correlates with its helicity. Biopolymers, 2013, 99, 314-325.	1.2	7
787	Determinants involved in subtypeâ€specific functions of rat trace amineâ€associated receptors 1 and 4. British Journal of Pharmacology, 2013, 168, 1266-1278.	2.7	5
788	Impact of the Proline Residue on Ligand Binding of Neurotensin Receptorâ€2 (NTS2)‣elective Peptide–Peptoid Hybrids. ChemMedChem, 2013, 8, 772-778.	1.6	18
789	Oxidative <i>in vitro</i> folding of a cysteine deficient variant of the G protein-coupled neuropeptide Y receptor type 2 improves stability at high concentration. Biological Chemistry, 2013, 394, 1045-1056.	1.2	18
790	Cinderella story: PI4P goes from precursor to key signaling molecule. Critical Reviews in Biochemistry and Molecular Biology, 2014, 49, 33-58.	2.3	87
791	A Newly Discovered TSHR Variant (L665F) Associated With Nonautoimmune Hyperthyroidism in an Austrian Family Induces Constitutive TSHR Activation by Steric Repulsion Between TM1 and TM7. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E2051-E2059.	1.8	6
792	Mutations in arrestin-3 differentially affect binding to neuropeptide Y receptor subtypes. Cellular Signalling, 2014, 26, 1523-1531.	1.7	43
793	Inhibition of diacylglycerol kinases as a physiological way to promote diacylglycerol signaling. Advances in Biological Regulation, 2014, 55, 39-49.	1.4	25

	CITATION REI	PORT	
#	Article	IF	CITATIONS
794	Toward a high-resolution structure of IP3R channel. Cell Calcium, 2014, 56, 125-132.	1.1	37
795	Calcium signaling in lacrimal glands. Cell Calcium, 2014, 55, 290-296.	1.1	19
796	High metabolic in vivo stability and bioavailability of a palmitoylated ghrelin receptor ligand assessed by mass spectrometry. Bioorganic and Medicinal Chemistry, 2015, 23, 3925-3932.	1.4	18
797	Identification of the tethered peptide agonist of the adhesion G protein-coupled receptor GPR64/ADGRG2. Biochemical and Biophysical Research Communications, 2015, 464, 743-747.	1.0	101
798	A novel fluorescence-based biosynthetic trafficking method provides pharmacologic evidence that PI4-kinase IIIα is important for protein trafficking from the endoplasmic reticulum to the plasma membrane. BMC Cell Biology, 2015, 16, 5.	3.0	5
799	A cleavable cytolysin–neuropeptide Y bioconjugate enables specific drug delivery and demonstrates intracellular mode of action. Journal of Controlled Release, 2015, 209, 170-178.	4.8	11
800	Receptorâ€Mediated Uptake of Boronâ€Rich Neuropeptideâ€Y Analogues for Boron Neutron Capture Therapy. ChemMedChem, 2015, 10, 164-172.	1.6	52
801	Homeostatic regulation of the PI(4,5)P 2 –Ca 2+ signaling system at ER–PM junctions. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 862-873.	1.2	49
802	A tale of two inositol trisphosphates. Biochemical Society Transactions, 2016, 44, 202-211.	1.6	6
803	A short history of inositol lipids. Journal of Lipid Research, 2016, 57, 1987-1994.	2.0	24
804	Deciphering and modulating G protein signalling in C. elegans using the DREADD technology. Scientific Reports, 2016, 6, 28901.	1.6	7
805	Chargeâ€Compensated Metallacarborane Building Blocks for Conjugation with Peptides. ChemBioChem, 2016, 17, 308-317.	1.3	28
806	Calcium signalling in health and disease. Biochemical and Biophysical Research Communications, 2017, 485, 5.	1.0	17
807	ORAI Calcium Channels. Physiology, 2017, 32, 332-342.	1.6	68
808	The functions of store-operated calcium channels. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 900-906.	1.9	92
809	Introduction. Advances in Experimental Medicine and Biology, 2017, 993, 3-13.	0.8	2
810	Endogenous Gαq-Coupled Neuromodulator Receptors Activate Protein Kinase A. Neuron, 2017, 96, 1070-1083.e5.	3.8	53
811	Amino acid metabolites that regulate G protein signaling during osmotic stress. PLoS Genetics, 2017, 13, e1006829.	1.5	16

#	Article	IF	CITATIONS
812	Structural Insights into IP3R Function. Advances in Experimental Medicine and Biology, 2017, 981, 121-147.	0.8	14
813	Store-Operated Calcium Entry: An Historical Overview. Advances in Experimental Medicine and Biology, 2017, 981, 205-214.	0.8	26
814	Phosphatidylinositol Kinases and Phosphatases in Entamoeba histolytica. Frontiers in Cellular and Infection Microbiology, 2019, 9, 150.	1.8	30
815	Modulation of Human CXCL12 Binding Properties to Glycosaminoglycans To Enhance Chemotactic Gradients. ACS Biomaterials Science and Engineering, 2019, 5, 5128-5138.	2.6	10
816	The interface between phosphatidylinositol transfer protein function and phosphoinositide signaling in higher eukaryotes. Journal of Lipid Research, 2019, 60, 242-268.	2.0	59
817	One recombinant C-type lectin (LvLec) from white shrimp Litopenaeus vannamei affected the haemocyte immune response in vitro. Fish and Shellfish Immunology, 2019, 89, 35-42.	1.6	23
818	Cholecystokinin (CCK) Regulation of Pancreatic Acinar Cells: Physiological Actions and Signal Transduction Mechanisms. , 2019, 9, 535-564.		19
819	IP3 receptors – lessons from analyses <i>ex cellula</i> . Journal of Cell Science, 2019, 132, .	1.2	16
820	Signalling Properties of Inositol Polyphosphates. Molecules, 2020, 25, 5281.	1.7	9
821	Calcium Permeable Channels in Cancer Hallmarks. Frontiers in Pharmacology, 2020, 11, 968.	1.6	61
822	In Memoriam Sir Michael Berridge 1938 – 2020. Cell Calcium, 2020, 88, 102209.	1.1	2
823	Three-dimensional cytoplasmic calcium propagation with boundaries. Communications in Theoretical Physics, 2021, 73, 015601.	1.1	2
824	A tribute to Professor Sir Michael J. Berridge FRS (1938–2020). Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 119014.	1.9	2
825	Chemical Synthesis of TFF3 Reveals Novel Mechanistic Insights and a Gut-Stable Metabolite. Journal of Medicinal Chemistry, 2021, 64, 9484-9495.	2.9	8
826	Dual Mode of Action of Acetylcholine on Cytosolic Calcium Oscillations in Pancreatic Beta and Acinar Cells In Situ. Cells, 2021, 10, 1580.	1.8	9
827	Calcium-release channels: structure and function of IP ₃ receptors and ryanodine receptors. Physiological Reviews, 2022, 102, 209-268.	13.1	93
828	Inositol Trisphosphate and Calcium Mobilization. Novartis Foundation Symposium, 1986, 122, 39-57.	1.2	3
829	A Short Historical Perspective of Methods in Inositol Phosphate Research. Methods in Molecular Biology, 2020, 2091, 1-28.	0.4	5

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
830	Receptors and the Inositol Phosphate-Calcium Signaling System. Receptors, 1994, , 257	'-283.	0.2	8
831	Muscarinic Cholinergic Receptor Regulation of Inositol Phospholipid Metabolism and Ca Mobilization. , 1989, , 259-307.	lcium		5
832	5-HT Receptors Coupled to Phosphoinositide Hydrolysis. , 1988, , 181-198.			11
833	Phosphoinositides and alpha-1 Adrenergic Receptors. Receptors, 1987, , 189-208.		0.2	4
834	Polyphosphoinositides and Muscarinic Cholinergic and $\hat{I}\pm 1$ -Adrenergic Receptors in the I Muscle. , 1985, , 275-298.	ris Smooth		12
835	Inositol Trisphosphate and Calcium Mobilization. , 1985, , 351-366.			2
836	Calcium-Phosphatidylinositol Interactions in Secretory Cells and the Role of Arachidonic , 367-383.	Acid. , 1985,		1
837	Polyphosphoinositide Turnover in the Nervous System. , 1985, , 621-635.			1
838	The Enzymology of Phosphoinositide Catabolism, with Particular Reference to Phosphat 4,5-Bisphosphate Phosphodiesterase. , 1985, , 123-135.	idyl-Inositol		4
839	Synthesis, Separation, and Identification of Different Inositol Phosphates. Sub-Cellular B 1996, 26, 371-413.	iochemistry,	1.0	5
840	G Protein Regulation of Phospholipase A2: Partial Reconstitution of the System in Cells. Experimental Medicine and Biology, 1990, 279, 185-195.	Advances in	0.8	8
841	Regulation of Intracellular Free Calcium. , 1996, , 427-446.			5
842	Mechanisms of ${\rm \hat{l}}\pm 1$ -Adrenergic and Related Responses. , 1987, , 113-182.			5
843	Regulation of Protein Kinase C by Lipid Cofactors. , 1987, , 183-214.			1
844	Protein Kinase C and its Role in Cell Growth. , 1987, , 215-340.			30
845	Inositol Trisphosphate and Diacylglycerol as Intracellular Second Messengers. , 1985, , 1	11-130.		3
846	Calcium-Mobilizing Receptors. , 1985, , 37-44.			6
847	Cyclic ADP-Ribose and NAADP. , 2002, , 1-21.			6

# 848	ARTICLE Separate but Interacting Calcium Stores. , 2002, , 143-166.	IF	CITATIONS 3
849	Regulation of Cytoplasmic Free Ca2+ in Insulin-Secreting Cells. Advances in Experimental Medicine and Biology, 1993, 334, 25-45.	0.8	15
850	Energy Requirements for Stimulus-Response Coupling. Advances in Experimental Medicine and Biology, 1985, 192, 215-233.	0.8	2
851	Amine Transmitters and their Associated Second Messenger Systems. , 1988, , 124-174.		22
852	Control of Ca2+ Mobilization and Polyphosphoinositide Metabolism in Platelets by Prostacyclin. , 1985, , 345-356.		1
853	Hormone-Induced Inositol Lipid Breakdown and Calcium-Mediated Cellular Responses in Liver. , 1986, , 217-247.		6
854	Regulation of Phosphoinositide Breakdown. , 1988, , 229-263.		2
855	Triggering and Activation of Human Neutrophils. , 1988, , 31-40.		1
856	Inositol Phosphate Metabolism and Cellular Signal Transduction. Advances in Experimental Medicine and Biology, 1989, 255, 37-48.	0.8	4
857	Volatile Anesthetics and Second Messengers in Cardiac Tissue. Advances in Experimental Medicine and Biology, 1991, 301, 169-180.	0.8	1
858	General Aspects of Calcium Signaling. Molecular Biology Intelligence Unit, 1997, , 1-52.	0.2	5
859	Capacitative Calcium Entry. Molecular Biology Intelligence Unit, 1997, , 53-75.	0.2	2
860	Protein F1 and Protein Kinase C May Regulate the Persistence, Not the Initiation, of Synaptic Potentiation in the Hippocampus. Advances in Experimental Medicine and Biology, 1987, 221, 313-330.	0.8	2
861	The Serotonin-Norepinephrine Link Hypothesis of Affective Disorders: Receptor-Receptor Interactions in Brain. Advances in Experimental Medicine and Biology, 1987, 221, 489-502.	0.8	8
862	Role of Receptor Coupling to Phosphoinositide Metabolism in the Therapeutic Action of Lithium. Advances in Experimental Medicine and Biology, 1987, 221, 515-530.	0.8	16
863	Agonist-Stimulation of Cerebral Phosphoinositide Turnover Following Long-Term Treatment with Antidepresants. Advances in Experimental Medicine and Biology, 1987, 221, 531-547.	0.8	9
864	Muscarinic Acetylcholine Receptor-Linked Inositide Cycle in the Central Nervous System. Advances in Experimental Medicine and Biology, 1987, 221, 81-93.	0.8	3
865	Correlation between the Binding Parameters of Muscarinic Agonists and thier Inhibition of Adenylate Cyclase Activity. Advances in Experimental Medicine and Biology, 1988, 236, 265-276.	0.8	5

#	Δρτιςι ε	IF	CITATIONS
866	Effects of Ethanol on Brain Phospholipids. , 1986, , 133-146.	··	2
867	Identification of AT1 Receptors on Cultured Astrocytes. Advances in Experimental Medicine and Biology, 1996, 396, 121-129.	0.8	18
868	Pyridine Nucleotide Metabolites and Calcium Release from Intracellular Stores. Advances in Experimental Medicine and Biology, 2020, 1131, 371-394.	0.8	15
869	Drug receptors and control of the cardiovascular system: Recent advances. , 1991, 36, 117-360.		10
870	Light-transduction in photoreceptors. , 1995, , 57-133.		1
873	Calcium and Platelet Function. , 1985, , 345-376.		5
874	Biogenic Amines and Second Messenger Systems in Insects. Proceedings in Life Sciences, 1985, , 117-131.	0.5	2
875	Arachidonic Acid Metabolism in Cerebral Ischemia. , 1987, , 272-279.		4
876	Phototransduction in Limulus Ventral Photoreceptors: Roles of Calcium and Inositol Trisphosphate. , 1989, , 173-185.		17
877	Prostaglandins (Eicosanoids) and Their Role in Ectothermic Organisms. Advances in Comparative and Environmental Physiology, 1989, , 157-207.	0.5	105
878	Effect of Histamine on Smooth Muscle. Handbook of Experimental Pharmacology, 1994, , 193-225.	0.9	4
879	Cerebral Metabolism and Free Radical Pathology. , 1987, , 102-157.		1
880	Ca2+ Signalling by IP3 Receptors. Sub-Cellular Biochemistry, 2012, 59, 1-34.	1.0	13
881	Second messengers derived from inositol lipids. Journal of Bioenergetics and Biomembranes, 1991, 23, 7-27.	1.0	27
882	STRUCTURE AND FUNCTION OF INOSITOL TRISPHOSPHATE RECEPTORS. , 1993, , 199-254.		2
883	MOLECULAR DYNAMICS OF THE ROD CELL. , 1986, , 207-237.		5
884	The Integration of Receptor-Regulated Intracellular Calcium Release and Calcium Entry across the Plasma Membrane. Current Topics in Cellular Regulation, 1990, 31, 111-127.	9.6	16
885	Phosphoinositides and Calcium Signaling. , 1987, , 1-38.		3

#	Article	IF	CITATIONS
886	Receptor Regulation of Phosphoinositides and Calcium: A Mechanism for Thyrotropin-Releasing Hormone Action. , 1986, , 173-212.		2
887	Selective Cholecystokinin A and Cholecystokinin B/Gastrin Receptor Agonists. Methods in Neurosciences, 1993, 13, 164-175.	0.5	1
888	Receptor Regulation of Cell Calcium. , 1990, , 503-519.		1
889	SIGNALLING SYSTEMS IN STIMULUS-RESPONSE COUPLING. , 1987, , 29-80.		14
890	Calcium and Cyclic AMP: Antagonistic Modulators of Platelet Function. , 1985, , 237-269.		13
891	Stimulus-Secretion Coupling in Pancreatic Acinar Cells. , 2006, , 1337-1369.		8
892	Polyphosphoinositide hydrolysis in endothelial cells and carotid artery segments. Bradykinin-2 receptor stimulation is calcium-independent Journal of Biological Chemistry, 1986, 261, 3831-3837.	1.6	174
893	Quantitative relationships between aggregation of IgE receptors, generation of intracellular signals, and histamine secretion in rat basophilic leukemia (2H3) cells. Enhanced responses with heavy water Journal of Biological Chemistry, 1986, 261, 2583-2592.	1.6	124
894	Thyrotropin-releasing hormone and GTP activate inositol trisphosphate formation in membranes isolated from rat pituitary cells Journal of Biological Chemistry, 1986, 261, 2712-2717.	1.6	158
895	Thyrotropin-releasing hormone activates a Ca2+-dependent polyphosphoinositide phosphodiesterase in permeable GH3 cells. GTP gamma S potentiation by a cholera and pertussis toxin-insensitive mechanism Journal of Biological Chemistry, 1986, 261, 2918-2927.	1.6	186
896	Hormone-stimulated polyphosphoinositide breakdown in rat liver plasma membranes. Roles of guanine nucleotides and calcium Journal of Biological Chemistry, 1986, 261, 2140-2146.	1.6	368
897	Inhibitory effect of prostaglandin E2, forskolin, and dibutyryl cAMP on arachidonic acid release and inositol phospholipid metabolism in guinea pig neutrophils Journal of Biological Chemistry, 1986, 261, 1092-1098.	1.6	153
898	5-Methyltryptamine decreases net accumulation of 32P into the polyphosphoinositides from [gamma-32P]ATP in a cell-free system from blowfly salivary glands. Activation of breakdown of the newly synthesized [32P]polyphosphoinositides Journal of Biological Chemistry, 1986, 261, 638-643.	1.6	24
899	Lack of association of epidermal growth factor-, insulin-, and serum-induced mitogenesis with stimulation of phosphoinositide degradation in BALB/c 3T3 fibroblasts Journal of Biological Chemistry, 1986, 261, 723-727.	1.6	152
900	Role of a guanine nucleotide-binding regulatory protein in the hydrolysis of hepatocyte phosphatidylinositol 4,5-bisphosphate by calcium-mobilizing hormones and the control of cell calcium. Studies utilizing aluminum fluoride Journal of Biological Chemistry, 1985, 260, 14477-14483.	1.6	265
901	Cyclosporine augments receptor-mediated cellular Ca2+ fluxes in isolated hepatocytes Journal of Biological Chemistry, 1985, 260, 13613-13618.	1.6	88
902	Coated vesicles contain a phosphatidylinositol kinase Journal of Biological Chemistry, 1985, 260, 10948-10951.	1.6	39
903	Insulin-stimulated phosphoinositide metabolism in isolated fat cells Journal of Biological Chemistry, 1985, 260, 11039-11045.	1.6	68

#	Article	IF	CITATIONS
904	Inositol 1,4,5-trisphosphate and the endoplasmic reticulum Ca2+ cycle of a rat insulinoma cell line Journal of Biological Chemistry, 1985, 260, 9185-9190.	1.6	83
905	Separation and characterization of a phosphatidylinositol kinase activity that co-purifies with the epidermal growth factor receptor Journal of Biological Chemistry, 1985, 260, 8824-8830.	1.6	62
906	Molecular alteration of a muscarinic acetylcholine receptor system during synaptogenesis Journal of Biological Chemistry, 1985, 260, 8873-8881.	1.6	31
907	Isolation of a phosphomonoesterase from human platelets that specifically hydrolyzes the 5-phosphate of inositol 1,4,5-trisphosphate Journal of Biological Chemistry, 1985, 260, 7868-7874.	1.6	223
908	Relationship between secretagogue-induced Ca2+ release and inositol polyphosphate production in permeabilized pancreatic acinar cells Journal of Biological Chemistry, 1985, 260, 7309-7315.	1.6	167
909	Evidence that phospholipid turnover is the signal transducing system coupled to serotonin-S2 receptor sites Journal of Biological Chemistry, 1985, 260, 7603-7608.	1.6	200
910	Growth factors immediately raise cytoplasmic free Ca2+ in human fibroblasts Journal of Biological Chemistry, 1984, 259, 8066-8069.	1.6	373
911	The role of calcium in phospholipid turnover following glucose stimulation in neonatal rat cultured islets Journal of Biological Chemistry, 1984, 259, 8407-8411.	1.6	38
912	The calcium signal and phosphatidylinositol breakdown in 2H3 cells Journal of Biological Chemistry, 1984, 259, 7137-7142.	1.6	206
913	The relationship of hormone-sensitive and hormone-insensitive phosphatidylinositol to phosphatidylinositol 4,5-bisphosphate in the WRK-1 cell Journal of Biological Chemistry, 1986, 261, 88-91.	1.6	86
914	Isolation and characterization of the inositol cyclic phosphate products of phosphoinositide cleavage by phospholipase C. Metabolism in cell-free extracts Journal of Biological Chemistry, 1986, 261, 122-126.	1.6	88
915	Effects of luteinizing hormone on phosphoinositide metabolism in rat granulosa cells Journal of Biological Chemistry, 1984, 259, 15028-15034.	1.6	58
916	The temporal integration of the aldosterone secretory response to angiotensin occurs via two intracellular pathways Journal of Biological Chemistry, 1984, 259, 14448-14457.	1.6	313
917	Subcellular incorporation of 32P into phosphoinositides and other phospholipids in isolated hepatocytes Journal of Biological Chemistry, 1984, 259, 7659-7665.	1.6	65
918	Lithium-induced accumulation of inositol 1-phosphate during cholecystokinin octapeptide- and acetylcholine-stimulated phosphatidylinositol breakdown in dispersed mouse pancreas acinar cells Journal of Biological Chemistry, 1984, 259, 4346-4352.	1.6	39
919	Ligand activation causes a phosphorylation-dependent change in platelet-derived growth factor receptor conformation Journal of Biological Chemistry, 1988, 263, 12805-12808.	1.6	75
920	Pathway of phospholipase C activation initiated with platelet-derived growth factor is different from that initiated with vasopressin and bombesin Journal of Biological Chemistry, 1988, 263, 12970-12976.	1.6	76
921	Possible involvement of two signaling pathways in induction of neuron-associated properties by v-Ha-ras gene in PC12 cells Journal of Biological Chemistry, 1988, 263, 12102-12108.	1.6	39

#	Article	IF	CITATIONS
922	Agonist-regulated alteration of the affinity of pancreatic muscarinic cholinergic receptors Journal of Biological Chemistry, 1993, 268, 22436-22443.	1.6	10
923	Inositol metabolism in WRK-1 cells. Relationship of hormone-sensitive to -insensitive pools of phosphoinositides Journal of Biological Chemistry, 1987, 262, 13001-13006.	1.6	43
924	T cell receptor tyrosine phosphorylation. Variable coupling for different activating ligands Journal of Biological Chemistry, 1987, 262, 12654-12659.	1.6	85
925	Multiple kinases and signal transduction. Phosphorylation of the T cell antigen receptor complex Journal of Biological Chemistry, 1987, 262, 5831-5838.	1.6	158
926	Acetylcholine stimulates selective liberation and re-esterification of arachidonate and accumulation of inositol phosphates and glycerophosphoinositol in C62B glioma cells Journal of Biological Chemistry, 1987, 262, 8077-8083.	1.6	46
927	Inositol polyphosphate 1-phosphatase from calf brain. Purification and inhibition by Li+, Ca2+, and Mn2+ Journal of Biological Chemistry, 1987, 262, 15946-15952.	1.6	123
928	Manoalide, a natural sesterterpenoid that inhibits calcium channels Journal of Biological Chemistry, 1987, 262, 6531-6538.	1.6	58
929	The Calcium Signal for Balb/MK Keratinocyte Terminal Differentiation Induces Sustained Alterations in Phosphoinositide Metabolism without Detectable Protein Kinase C Activation. Journal of Biological Chemistry, 1989, 264, 11228-11235.	1.6	42
930	Source of 3H-Labeled Inositol Bis- and Monophosphates in Agonist-activated Rat Parotid Acinar Cells. Journal of Biological Chemistry, 1989, 264, 9400-9407.	1.6	40
931	Metabolism of inositol 1,3,4-trisphosphate to a new tetrakisphosphate isomer in angiotensin-stimulated adrenal glomerulosa cells Journal of Biological Chemistry, 1987, 262, 9952-9955.	1.6	114
932	Interleukin 2 rapidly stimulates synthesis and breakdown of polyphosphoinositides in interleukin 2-dependent, murine T-cell lines Journal of Biological Chemistry, 1987, 262, 4160-4164.	1.6	41
933	The metabolism of tris- and tetraphosphates of inositol by 5-phosphomonoesterase and 3-kinase enzymes Journal of Biological Chemistry, 1987, 262, 2146-2149.	1.6	159
934	Bradykinin stimulation of inositol polyphosphate production in porcine aortic endothelial cells Journal of Biological Chemistry, 1986, 261, 15288-15293.	1.6	217
935	Studies on the hepatic calcium-mobilizing activity of aluminum fluoride and glucagon. Modulation by cAMP and phorbol myristate acetate Journal of Biological Chemistry, 1986, 261, 11056-11063.	1.6	188
936	Changes in diacylglycerol labeling, cell shape, and protein phosphorylation distinguish "triggering― from "activation―of human neutrophils Journal of Biological Chemistry, 1988, 263, 6322-6328.	1.6	71
937	Inhibition of phosphoinositide metabolism in human polymorphonuclear leukocytes by S-adenosylhomocysteine Journal of Biological Chemistry, 1988, 263, 3592-3599.	1.6	23
938	Insulin and oxytocin effects on phosphoinositide metabolism in adipocytes Journal of Biological Chemistry, 1988, 263, 3600-3609.	1.6	56
939	Regulation of erythrocyte Ca2+ pump activity by protein kinase C Journal of Biological Chemistry, 1988, 263, 2195-2202.	1.6	148

#	Article	IF	CITATIONS
940	Protein Kinase C Activity Can Desensitize the Gonadotropin-responsive Adenylate Cyclase in Leydig Tumor Cells. Journal of Biological Chemistry, 1989, 264, 8504-8508.	1.6	22
941	Short Chain Alcohols Activate Guanine Nucleotide-dependent Phosphoinositidase C in Turkey Erythrocyte Membranes. Journal of Biological Chemistry, 1989, 264, 6817-6822.	1.6	36
942	1-O-Hexadecyl-2-O-methylglycerol, a Novel Inhibitor of Protein Kinase C, Inhibits the Respiratory Burst in Human Neutrophils. Journal of Biological Chemistry, 1989, 264, 5876-5884.	1.6	85
943	Thrombin induces serotonin secretion and aggregation independently of inositol phospholipids hydrolysis and protein phosphorylation in human platelets permeabilized with saponin Journal of Biological Chemistry, 1985, 260, 7078-7083.	1.6	61
944	Chemoattractant receptor-induced hydrolysis of phosphatidylinositol 4,5-bisphosphate in human polymorphonuclear leukocyte membranes. Requirement for a guanine nucleotide regulatory protein Journal of Biological Chemistry, 1985, 260, 5875-5878.	1.6	341
945	5-Hydroxytryptamine stimulates inositol phosphate production in a cell-free system from blowfly salivary glands. Evidence for a role of GTP in coupling receptor activation to phosphoinositide breakdown Journal of Biological Chemistry, 1985, 260, 5464-5471.	1.6	412
946	Inhibition of phosphatidylinositol synthase and other membrane-associated enzymes by stereoisomers of hexachlorocyclohexane Journal of Biological Chemistry, 1985, 260, 2687-2693.	1.6	47
947	Insulin and epidermal growth factor do not affect phosphoinositide metabolism in rat liver plasma membranes and hepatocytes Journal of Biological Chemistry, 1985, 260, 2011-2014.	1.6	85
948	Exogenous sn-1,2-diacylglycerols containing saturated fatty acids function as bioregulators of protein kinase C in human platelets Journal of Biological Chemistry, 1985, 260, 1358-1361.	1.6	289
949	Inositol 1,4,5-trisphosphate stimulates phosphorylation of a 62,000-dalton protein in monkey fibroblast and bovine brain cell lysates Journal of Biological Chemistry, 1984, 259, 13652-13655.	1.6	26
950	Ca2+ homeostasis in permeabilized human neutrophils. Characterization of Ca2+-sequestering pools and the action of inositol 1,4,5-triphosphate Journal of Biological Chemistry, 1984, 259, 13777-13782.	1.6	251
951	Inositol trisphosphate mediates thyrotropin-releasing hormone mobilization of nonmitochondrial calcium in rat mammotropic pituitary cells Journal of Biological Chemistry, 1984, 259, 10675-10681.	1.6	153
952	The effect of inositol trisphosphate on Ca2+ fluxes in insulin-secreting tumor cells Journal of Biological Chemistry, 1984, 259, 12952-12955.	1.6	99
953	The rapid formation of inositol phosphates in human platelets by thrombin is inhibited by prostacyclin Journal of Biological Chemistry, 1984, 259, 13199-13203.	1.6	291
954	Bradykinin-induced rapid breakdown of phosphatidylinositol 4,5-bisphosphate in neuroblastoma X glioma hybrid NG108-15 cells Journal of Biological Chemistry, 1984, 259, 10201-10207.	1.6	204
955	Relationship between inositol polyphosphate production and the increase of cytosolic free Ca2+ induced by vasopressin in isolated hepatocytes Journal of Biological Chemistry, 1984, 259, 5574-5584.	1.6	349
956	The fucose-sulfate glycoconjugate that induces an acrosome reaction in spermatozoa stimulates inositol 1,4,5-trisphosphate accumulation Journal of Biological Chemistry, 1988, 263, 690-695.	1.6	72
957	Type IV collagen stimulates an increase in intracellular calcium. Potential role in tumor cell motility Journal of Biological Chemistry, 1992, 267, 21928-21935.	1.6	50

#	Article	IF	CITATIONS
958	Two functionally distinct cholecystokinin receptors show different modes of action on Ca2+ mobilization and phospholipid hydrolysis in isolated rat pancreatic acini. Studies using a new cholecystokinin analog, JMV-180 Journal of Biological Chemistry, 1990, 265, 6247-6254.	1.6	159
959	A Functional Cell Surface Type Receptor Is Required for the Early Action of 1,25-Dihydroxyvitamin D3 on the Phosphoinositide Metabolism in Rat Enterocytes. Journal of Biological Chemistry, 1989, 264, 20403-20406.	1.6	125
960	U73122 inhibits Ca2+ oscillations in response to cholecystokinin and carbachol but not to JMV-180 in rat pancreatic acinar cells Journal of Biological Chemistry, 1992, 267, 13830-13835.	1.6	284
961	myo-Inositol 3,4,5,6-Tetrakisphosphate Inhibits an Apical Calcium-activated Chloride Conductance in Polarized Monolayers of a Cystic Fibrosis Cell Line. Journal of Biological Chemistry, 2000, 275, 26906-26913.	1.6	44
962	Regulation of phosphoinositide phosphorylation in Swiss 3T3 cells stimulated by platelet-derived growth factor Journal of Biological Chemistry, 1987, 262, 1105-1110.	1.6	27
963	Ethanol-induced mobilization of calcium by activation of phosphoinositide-specific phospholipase C in intact hepatocytes Journal of Biological Chemistry, 1987, 262, 682-691.	1.6	186
964	Observation of myo-inositol 1,2-(cyclic) phosphate in a Morris hepatoma by 31P NMR Journal of Biological Chemistry, 1987, 262, 35-37.	1.6	38
965	Changes in the concentration and fatty acid composition of phosphoinositides induced by hormones in hepatocytes. Journal of Biological Chemistry, 1989, 264, 2574-2580.	1.6	72
966	Calcitonin gene-related peptide and cyclic AMP stimulate phosphoinositide turnover in skeletal muscle cells. Journal of Biological Chemistry, 1989, 264, 2683-2689.	1.6	73
967	Adenosine and 5â€~-chloro-5â€~-deoxyadenosine inhibit the phosphorylation of phosphatidylinositol and myosin light chain in calf aorta smooth muscle Journal of Biological Chemistry, 1985, 260, 3469-3476.	1.6	20
968	Second messenger function of inositol 1,4,5-trisphosphate. Early changes in inositol phosphates, cytosolic Ca2+, and insulin release in carbamylcholine-stimulated RINm5F cells Journal of Biological Chemistry, 1986, 261, 8314-8319.	1.6	144
969	Intracellular Ca2+ mobilization activated by extracellular ATP in Ehrlich ascites tumor cells Journal of Biological Chemistry, 1985, 260, 10653-10661.	1.6	158
970	Inositol 1,4,5-trisphosphate releases Ca2+ from a Ca2+-transporting membrane vesicle fraction derived from human platelets Journal of Biological Chemistry, 1985, 260, 956-962.	1.6	251
971	Phosphoinositide interconversion in thrombin-stimulated human platelets Journal of Biological Chemistry, 1985, 260, 1046-1051.	1.6	195
972	Hydrolysis of polyphosphoinositides by purified sheep seminal vesicle phospholipase C enzymes Journal of Biological Chemistry, 1984, 259, 11718-11724.	1.6	220
973	Modification of Phospholipase C and Phospholipase A2 Activities during Poliovirus Infection. Journal of Biological Chemistry, 1989, 264, 21923-21927.	1.6	23
974	A Receptor-G Protein Coupling-independent Step in the Internalization of the Thyrotropin-releasing Hormone Receptor. Journal of Biological Chemistry, 1997, 272, 2326-2333.	1.6	44
975	Roles of Lipid Turnover in Transmembrane Signal Transduction. American Journal of the Medical Sciences, 1991, 302, 304-312.	0.4	13

#	Article	IF	CITATIONS
976	Rho-dependent kinase is involved in agonist-activated calcium entry in rat arteries. Journal of Physiology, 2003, 551, 855-867.	1.3	86
977	Altered diacylglycerol level and metabolism in neutrophils from patients with localized juvenile periodontitis. Infection and Immunity, 1992, 60, 2481-2487.	1.0	46
978	Bradykinin-induced changes in phosphatidyl inositol turnover in cultured rabbit papillary collecting tubule cells Journal of Clinical Investigation, 1985, 76, 978-984.	3.9	57
979	Diminished agonist-stimulated inositol trisphosphate generation blocks stimulus-secretion coupling in mouse pancreatic acini during diet-induced experimental pancreatitis Journal of Clinical Investigation, 1986, 77, 1668-1674.	3.9	49
980	Enhancement of secretagogue-induced phosphoinositide turnover and amylase secretion by bile acids in isolated rat pancreatic acini Journal of Clinical Investigation, 1986, 78, 1604-1611.	3.9	15
981	Stimulation of inositol trisphosphate and diacylglycerol production in renal tubular cells by parathyroid hormone Journal of Clinical Investigation, 1987, 79, 230-239.	3.9	228
982	Role of activation of protein kinase C in the stimulation of colonic epithelial proliferation and reactive oxygen formation by bile acids Journal of Clinical Investigation, 1987, 79, 532-541.	3.9	183
983	Modulation of human platelet protein kinase C by endotoxic lipid A Journal of Clinical Investigation, 1988, 82, 964-971.	3.9	32
984	Differential inhibitory effects of forskolin, isoproterenol, and dibutyryl cyclic adenosine monophosphate on phosphoinositide hydrolysis in canine tracheal smooth muscle Journal of Clinical Investigation, 1988, 82, 1462-1465.	3.9	91
985	Bacterial toxins affect early events of T lymphocyte activation Journal of Clinical Investigation, 1989, 83, 234-242.	3.9	41
986	Inositol 1,4,5-trisphosphate may regulate rat brain Cai++ by inhibiting membrane bound Na(+)-Ca++ exchanger Journal of Clinical Investigation, 1990, 86, 2169-2173.	3.9	17
987	Cyclic AMP selectively enhances bradykinin receptor synthesis and expression in cultured arterial smooth muscle. Inhibition of angiotensin II and vasopressin response Journal of Clinical Investigation, 1994, 93, 2535-2544.	3.9	17
988	Familial congenital hypothyroidism due to inactivating mutation of the thyrotropin receptor causing profound hypoplasia of the thyroid gland Journal of Clinical Investigation, 1997, 99, 3018-3024.	3.9	224
989	B Cell Receptor Signaling. , 2014, , 108-133.		1
990	A Ca2+-Sensing Receptor Mutation Causes Hypoparathyroidism by Increasing Receptor Sensitivity to Ca2+ and Maximal Signal Transduction1. Pediatric Research, 1997, 42, 443-447.	1.1	31
991	Underexpression of the 43 kDa inositol polyphosphate 5-phosphatase is associated with spontaneous calcium oscillations and enhanced calcium responses following endothelin-1 stimulation. Journal of Cell Science, 1999, 112, 669-679.	1.2	28
992	Sustained elevation in inositol 1,4,5-trisphosphate results in inhibition of phosphatidylinositol transfer protein activity and chronic depletion of the agonist-sensitive phosphoinositide pool. Journal of Cell Science, 2000, 113, 2631-2638.	1.2	16
993	Studies on the Mode of Action of Octopamine, 5-Hydroxytryptamine And Proctolin on A Myogenic Rhythm in the Locust. Journal of Experimental Biology, 1984, 110, 231-251.	0.8	73

#	Article	IF	CITATIONS
994	Inositol Lipid Metabolism and Signal Transduction in Clonal Pituitary Cells. Journal of Experimental Biology, 1986, 124, 337-358.	0.8	70
995	The role of phosphoinositide metabolism in signal transduction in secretory cells. Journal of Experimental Biology, 1988, 139, 135-150.	0.8	36
996	Inositol-1,4,5-trisphosphate and inositol-1,3,4,5-tetrakisphosphate are second messenger targets for cardioactive neuropeptides encoded on the fmrfamide gene. Journal of Experimental Biology, 1999, 202, 2581-2593.	0.8	20
997	Principles and Determinants of G-Protein Coupling by the Rhodopsin-Like Thyrotropin Receptor. PLoS ONE, 2010, 5, e9745.	1.1	54
998	Characterization of cholinergic receptors in Madin-Darby canine kidney cells Journal of the American Society of Nephrology: JASN, 1992, 3, 170-181.	3.0	11
999	Possible Roles of Sphingosine and N, N-Dimethylsphingosine as Modulators in Membrane Signal Transduction Systems. Trends in Glycoscience and Glycotechnology, 1990, 2, 319-332.	0.0	5
1002	Regulation of Type-2 Diabetes through IP3R and MTrs along with SERCA and CRAC Channels by Agomelatine, Luzindol, 2-APB and Thapsigargin: A Computational Exploration. Journal of Diabetes & Metabolism, 2013, 04, .	0.2	1
1003	PtdIns4P and PtdIns(4,5)P 2 as Signalling Phosphoinositides Involved in Tip Growth. , 2014, , 75-91.		0
1004	2-Aminoethyl Diphenylborinate (2-APB) Analogues: Part 4 - Poly-Boron Compounds: Regulators of Ca2+ Release and Consequent Cellular Processes. Journal of Bioengineering & Biomedical Science, 2014, 04, .	0.2	0
1005	2-Aminoethyl Diphenylborinate (2-APB) Analogues: Part 3 - Regulators of Huntington Aggregation and Transglutaminase. Journal of Bioengineering & Biomedical Science, 2014, 04, .	0.2	1
1006	2-Aminoethyl diphenylborinate (2-APB) analogues: part 2. regulators of Ca2+ release and consequent cellular processes. Archives of Physiology, 2014, 1, 1.	0.0	2
1007	Structure and Expression Pattern Analysis of Arabidopsis PIP5K2. Springer Theses, 2014, , 17-28.	0.0	0
1008	The role of inositol phospholipid turnover in the actions of peptide secretagogues. , 1984, , 157-162.		0
1009	Phosphatidylinositol Kinase, a Key Enzyme of Phosphatidylinositol Metabolism: Its Role in an Intracellular Second Messenger System. , 1985, , 45-56.		0
1010	Receptor-Controlled Phosphatidylinositol 4,5-Bisphosphate Hydrolysis in the Control of Rapid Receptor-Mediated Cellular Responses and of Cellular Proliferation. , 1985, , 75-94.		2
1011	Receptor-Mediated Changes in Hepatocyte Phosphoinositide Metabolism. , 1985, , 53-60.		1
1012	Messages of the Phosphoinositide Effect. , 1985, , 337-349.		0
1013	Calcium and Receptor-Mediated Phosphoinositide Breakdown in Exocrine Gland Cells. , 1985, , 73-79.		0

#	Article	IF	CITATIONS
1014	Angiotensin increases inositol phosphate content in anterior pituitary cells in culture: A relationship with its prolactin-stimulating activity. Regulatory Peptides, 1985, 10, 225.	1.9	0
1015	POSSIBLE MECHANISMS INVOLVED IN THE RELEASE AND MODULATION OF RELEASE OF NEUROACTIVE AGENTS. , 1985, , 63-83.		0
1016	Purification of Protein Kinase C and Phorbol Ester Receptor Using Polyacrylamide-Immobilized Phosphatidylserine. , 1985, , 415-422.		0
1017	Drug-Induced Modifications of Phosphoinositide Metabolism. , 1985, , 207-212.		0
1018	The Control and Function of Inositide-Metabolizing Enzymes. , 1986, , 161-167.		1
1019	Polyphosphoinositide Breakdown without Calcium Mobilization: Studies with Adrenal Chromaffin Cells and Retina. , 1986, , 1-8.		0
1020	Phospholipid Turnover and Receptor Function. , 1986, , 213-241.		0
1021	Metabolism of Inositol-Glycerophospholipids in Relation to Transmembrane Signalling and Calcium Mobilization. , 1986, , 681-692.		0
1022	Mechanisms of Neutrophil Activation: Phosphoinositides, Protein Kinase C and Calcium Movements. , 1986, , 193-200.		0
1023	Properties of Cytoplasmic Transmitters of Excitation in Vertebrate Rods and Evaluation of Candidate Intermediary Transmitters. , 1986, , 127-158.		1
1024	Metabolism and role of phosphoinositide Blood & Vessel, 1987, 18, 299-314.	0.0	0
1025	Inositol Lipid Metabolism: Generation of Second Messengers. , 1987, , 27-49.		0
1026	Oncogenes and genitourinary neoplasia. Cancer Treatment and Research, 1987, , 101-119.	0.2	0
1027	Phosphoinositides in Cell Suspension Cultures of Glycine Max. , 1987, , 151-155.		0
1028	Transmembrane Signaling Reactions Generated in B Cells in Response to ANTI-IgM or Lipopolysaccharide. Advances in Experimental Medicine and Biology, 1987, 213, 189-193.	0.8	0
1029	Effect of Lithium in Stimulus — Response Coupling. Handbook of Experimental Pharmacology, 1988, , 217-240.	0.9	2
1030	Detection of Free Radicals in Cerebral Tissue and their Relation to Cerebral Hypoxia/Ischemia. Advances in Behavioral Biology, 1988, , 321-335.	0.2	0
1031	Regulation of Inositol Trisphosphate Formation and Action. , 1988, , 287-302.		0

~			~	
(11	ΓΔΤΙ	ON	KEDUD.	Т
\sim			NEFOR	

#	Article	IF	CITATIONS
1032	Phosphorylation of parotid and submandibular gland protein by calcium/phospholipid dependent protein kinase Japanese Journal of Oral Biology, 1989, 31, 618-621.	0.1	0
1033	Polyphosphoinositide Turnover and Signal Transduction of Auxin on Isolated Membranes of Daucus carota L , 1990, , 122-129.		0
1034	Cellular Recognition and Transduction of Fluid Mechanical Shear Stress Signals. , 1990, , 183-191.		0
1035	Calcium Control Mechanisms in the Myometrial Cell and the Role of the Phosphoinositide Cycle. , 1990, , 121-167.		0
1036	Control by TSH of the Production by Thyroid Cells of an Inositol Phosphateglycan, Putative Mediator of the cAMP-Independent Effects in the Gland. , 1990, , 401-409.		0
1037	Phosphatidylinositol Derivatives as Cell Signalling Molecules. , 1990, , 233-240.		0
1038	Overexpression of Phospholipase C-γ in NIH 3T3 Fibroblasts Results in Increased Phosphatidylinositol Hydrolysis in Response to Platelet-Derived Growth Factor and Basic Fibroblast Growth Factor. Molecular and Cellular Biology, 1990, 10, 6069-6072.	1.1	16
1039	Cerebral Ischemia and Polyphosphoinositide Metabolism. , 1992, , 219-244.		1
1040	Membrane Receptor Regulation in Inositol Polyphosphate Metabolism. Desensitization of Substance P Response Membrane, 1992, 17, 360-368.	0.0	0
1043	Role of Calcium in Stimulus-Secretion Coupling in Exocrine Glands. E&M Endocrinology and Metabolism, 1994, , 59-90.	0.1	0
1044	Effect of ursodeoxycholate on phospholipase C-mediated intracellular signal transduction by ethanol and vasopressin in intact rat hepatocytes Acta Hepatologica Japonica, 1994, 35, 146-156.	0.0	0
1045	Diglyceride, Protein Kinase C and Force Maintenance of Airways Smooth Muscle. , 1994, , 137-151.		0
1046	Membrane Receptors. Comprehensive Chemical Kinetics, 1995, 39, 187-230.	2.3	0
1047	Phosphoinositides and Synaptic Transmission. Sub-Cellular Biochemistry, 1996, 26, 43-57.	1.0	0
1048	Signaling observed with intracellular dyes. , 1996, , 1259-V.		0
1049	Signal Transduction, a Step Forward in Medicine Regarding Regulators of Cellular Process. Biology and Medicine (Aligarh), 2015, 07, .	0.3	0
1052	Acid Tests and the Hope for Adequate Oxygen Intake in 2021. Function, 2020, 2, zqaa035.	1.1	0
1053	Role of Tyrosine Kinase and Membrane-Spanning Domains in Signal Transduction by the Platelet-Derived Growth Factor Receptor. Molecular and Cellular Biology, 1988, 8, 5126-5131.	1.1	46

#	Article	IF	CITATIONS
1055	Underexpression of the 43 kDa inositol polyphosphate 5-phosphatase is associated with cellular transformation. EMBO Journal, 1996, 15, 4852-61.	3.5	21
1056	Phosphatidylinositol turnover and transformation of cells by Abelson murine leukaemia virus. EMBO Journal, 1985, 4, 3173-8.	3.5	23
1057	Neomycin induces stimulatory and inhibitory effects on leukotriene generation, guanine triphosphatase activity, and actin polymerization within human neutrophils. Immunology, 1992, 75, 150-6.	2.0	6
1058	Studies on fenestral contraction in rat liver endothelial cells in culture. American Journal of Pathology, 1996, 148, 2027-41.	1.9	70
1060	ls prostaglandin E2 involved in the pathogenesis of fever? Effects of interleukin-1 on the release of prostaglandins. Yale Journal of Biology and Medicine, 1986, 59, 151-8.	0.2	46
1061	The reliability of biomedical science: A case history of a maturing experimental field. BioEssays, 2022, 44, e2200020.	1.2	1
1062	Novel Role of Prereplication Complex Component Cell Division Cycle 6 in Retinal Neovascularization. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, 42, 407-427.	1.1	1
1063	Neurophysiological functions and pharmacological tools of acidic and non-acidic Ca2+ stores. Cell Calcium, 2022, 104, 102582.	1.1	8
1075	Affinity Proteomics Identifies Interaction Partners and Defines Novel Insights into the Function of the Adhesion GPCR VLGR1/ADGRV1. Molecules, 2022, 27, 3108.	1.7	8
1077	Apolipoprotein E and mimetic peptide initiate a calcium-dependent signaling response in macrophages. Journal of Leukocyte Biology, 2001, 70, 677-683.	1.5	57
1078	Class I PI3K Biology. Current Topics in Microbiology and Immunology, 2022, , 3-49.	0.7	0