Complete nucleotide sequence of a cloned cDNA derive mRNA ofX. laevis

Nucleic Acids Research 11, 1537-1542

DOI: 10.1093/nar/11.5.1537

Citation Report

#	Article	IF	CITATIONS
1	Molecular cloning and sequencing of mRNAs coding for minor adult globin polypeptides of Xenopus laevis. Nucleic Acids Research, 1983, 11, 1543-1553.	14.5	22
2	The primary structure of the larval \hat{l}^2l gene of Xenopus laevisand its flanking regions. Nucleic Acids Research, 1984, 12, 7705-7719.	14.5	14
3	Cloning and sequence analysis of a cDNA for the $\hat{1}\pm$ -globin mRNA of carp, Cyprinus carpio. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1984, 783, 265-271.	2.4	13
4	Comparative analysis of the cDNA sequences derived from the larval and the adult αI-globin mRNAs of Xenopus laevis. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1984, 781, 294-301.	2.4	11
5	The Î-globin gene. Journal of Molecular Biology, 1984, 180, 803-823.	4.2	145
6	Species adaptation in a protein molecule Molecular Biology and Evolution, 1984, 1, 1-28.	8.9	280
7	Species Adaptation in a Protein Molecule. Advances in Protein Chemistry, 1984, 36, 213-244.	4.4	31
8	Comparative nucleotide sequence analysis of two types of larval \hat{I}^2 -globin mRNAs ofXenopus laevis. Nucleic Acids Research, 1985, 13, 7899-7908.	14.5	12
9	The pattern of expression of the <i>Xenopus laevis tadpole </i> α-globin genes and the amino acid sequence of the three major tadpole α-globin polypeptides. Nucleic Acids Research, 1985, 13, 5407-5421.	14.5	47
10	Developmental changes in the pattern of larval \hat{l}^2 -globin gene expression in Xenopus laevis. Journal of Molecular Biology, 1985, 184, 611-620.	4.2	33
11	Cloning and sequencing of mRNAs coding for two adult $\hat{l}\pm$ globin chains of the salamander Pleurodeles waltlii. Gene, 1986, 42, 159-168.	2.2	4
12	Nucleotide sequence of the goat embryonic $\hat{l}\pm$ globin gene ($\hat{l}\P$) and linkage and evolutionary analysis of the complete $\hat{l}\pm$ globin cluster. Journal of Molecular Biology, 1986, 192, 457-471.	4.2	11
13	Globin evolution in the genusXenopus: Comparative analysis of cDNAs coding for adult globin polypeptides ofXenopus borealis andXenopus tropicalis. Journal of Molecular Evolution, 1986, 23, 211-223.	1.8	55
14	Primary structure and evolutionary relationship between the adult α-globin genes and their 5′-flanking regions ofXenopus laevis andXenopus tropicalis. Journal of Molecular Evolution, 1988, 28, 64-71.	1.8	8
15	Evidence from nuclear sequences that invariable sites should be considered when sequence divergence is calculated Molecular Biology and Evolution, 1989, 6, 270-89.	8.9	80
16	Intracellular signals for developmental hemoglobin switching. Developmental Biology, 1989, 133, 262-271.	2.0	6
17	Identification and characterization of the ribosomal RNA-encoding genes in Clavibacter xyli subsp. cynodontis. Gene, 1991, 108, 47-53.	2.2	9
18	Hemoglobin switching inRana/Xenopus erythroid heterokaryons: Factors mediating the metamorphic hemoglobin switch are conserved. Genesis, 1994, 15, 347-355.	2.1	8

#	Article	IF	CITATIONS
19	Genomic remnants of alpha-globin genes in the hemoglobinless antarctic icefishes Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 1817-1821.	7.1	162
20	Switching of Globin Genes during Anuran Metamorphosis. , 1996, , 567-597.		12
21	Axolotl hemoglobin: cDNA-derived amino acid sequences of two \hat{l}_{\pm} globins and a \hat{l}^2 globin from an adult Ambystoma mexicanum. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2005, 142, 258-268.	1.6	1
22	A Phylogeny of Rodentia and Other Eutherian Orders: Parsimony Analysis Utilizing Amino Acid Sequences of Alpha and Beta Hemoglobin Chains. , 1985, , 191-210.		19
23	The Amino Acid Sequences of the $\hat{l}\pm$ and \hat{l}^2 Chains of Hemoglobin from the Snake, Liophis Miliaris. Journal of Biological Chemistry, 1989, 264, 5515-5521.	3.4	25
24	The hemoglobins of the bullfrog, Rana catesbeiana. The cDNA-derived amino acid sequences of the alpha chains of adult hemoglobins B and C: their roles in deoxygenation-induced aggregation Journal of Biological Chemistry, 1993, 268, 26961-26971.	3.4	11
25	Other Vertebrate Sequences. , 1987, , 1-167.		0