Semiempirical, Quantum Mechanical Calculation of Hydrogenetics and the semigroup of the sem

Physical Review Letters 50, 1285-1288 DOI: 10.1103/physrevlett.50.1285

Citation Report

#	Article	IF	CITATIONS
1	A simple empirical <i>N</i> -body potential for transition metals. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1984, 50, 45-55.	0.8	2,878
2	Dynamical calculation of low energy hydrogen reflection. Journal of Nuclear Materials, 1984, 128-129, 676-680.	1.3	35
3	Model studies of the interaction of h atoms with bcc iron. Surface Science, 1984, 143, 188-203.	0.8	33
4	Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Physical Review B, 1984, 29, 6443-6453.	1.1	6,059
5	Theory of hydrogen and helium impurities in metals. Physical Review B, 1984, 29, 5382-5397.	1.1	146
6	Simulation of Equilibrium Segregation in Alloys Using the Embedded Atom Method. Materials Research Society Symposia Proceedings, 1985, 63, 61.	0.1	10
7	Unified empirical formulas for the backscattering coefficients of light ions. Nuclear Instruments & Methods in Physics Research B, 1985, 9, 113-122.	0.6	18
8	Application of the embedded atom method to phonons in transition metals. Solid State Communications, 1985, 56, 697-699.	0.9	138
9	Application of the embedded-atom method to liquid transition metals. Physical Review B, 1985, 32, 3409-3415.	1.1	398
10	Calculation of the surface segregation of Ni-Cu alloys with the use of the embedded-atom method. Physical Review B, 1985, 32, 7685-7693.	1.1	500
11	On the reconciliation of reduced cohesion and enhanced plasticity mechanisms for hydrogen embrittlement. Scripta Metallurgica, 1985, 19, 543-545.	1.2	3
12	On interfacial adhesion. Scripta Metallurgica, 1985, 19, 371-375.	1.2	2
13	Surface segregation in a dilute copper–silver alloy. Journal of Materials Research, 1986, 1, 646-651.	1.2	22
14	Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Physical Review B, 1986, 33, 7983-7991.	1.1	4,002
15	Phase diagrams for H/Ni(111) based on model interactions: Effects of strong long-range attractions. Surface Science, 1986, 176, 295-318.	0.8	32
16	Order-disorder transitions and subsurface occupation for hydrogen on Pd(111). Surface Science, 1986, 171, L379-L386.	0.8	115
17	Semi-empirical calculation of solid surface tensions in body-centred cubic transition metals. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1986, 54, 301-315.	0.8	176
18	Order-disorder transitions and subsurface occupation for hydrogen on Pd(111). Surface Science Letters, 1986, 171, L379-L386.	0.1	1

ARTICLE IF CITATIONS # Theoretical studies of hydrogen storage in binary Ti-Ni, Ti-Cu, and Ti-Fe alloys. Theoretica Chimica Acta, 19 0.9 6 1986, 70, 265-296. The influence of applied stress on precipitate shape and stability. Journal of Materials Research, 1986, 1, 1.2 635-645. 21 Recent Advances in Understanding Helium Embrittlement in Metals. MRS Bulletin, 1986, 11, 14-18. 1.7 29 Thermodynamic properties of liquid transition metals. Journal of Physics F: Metal Physics, 1986, 16, 1419-1428. Effective interatomic potentials in strong-scattering open shell metals: application to bonding force 23 1.6 8 in d-band metals. Journal of Physics F: Metal Physics, 1986, 16, 1705-1724. Interatomic interactions in solids: An effective-medium approach. Physical Review B, 1986, 34, 8486-8495. 1.1 25 Photoemission from H adsorbed on Ni(111) and Pd(111) surfaces. Physical Review B, 1986, 33, 736-746. 1.1 90 Energy and angular distributions of Rh atoms ejected due to ion bombardment from $Rh{111}$: A 1.1 26 44 theoretical study. Physical Review B, 1987, 36, 3516-3521. Simulation of Au(100) reconstruction by use of the embedded-atom method. Physical Review B, 1987, 35, 27 1.1 60 880-882. New Approach to Calculation of Total Energies of Solids with Defects: Surface-Energy Anisotropies. Physical Review Letters, 1987, 59, 2451-2454. Effects of segregation on grain-boundary cohesion: A density-functional cluster model of boron and 29 2.9 96 sulfur in nickel. Physical Review Letters, 1987, 58, 234-237. Hydrogen in transition metals., 1987, , 146-163. Ordered surface phases of Au on Cu. Surface Science, 1987, 191, 329-338. $\mathbf{31}$ 0.8 163 Interatomic interactions in the effective-medium theory. Physical Review B, 1987, 35, 7423-7442. 1.1 868 Theory of subsurface occupation, ordered structures, and order-disorder transitions for hydrogen 33 98 1.1 on Pd(111). Physical Review B, 1987, 35, 2128-2136. New classical models for silicon structural energies. Physical Review B, 1987, 36, 6434-6445. 197 Calculation of hydrogen dissociation pathways on nickel using the embedded atom method. Journal 35 0.9 42 of the Less Common Metals, 1987, 130, 465-473. Application of the Embedded-Atom Method to Covalent Materials: A Semiempirical Potential for 459 Silicon. Physical Review Letters, 1987, 59, 2666-2669.

#	Article	IF	Citations
37	Energy cost to sputter an atom from a surface in keV ion bombardment processes. Surface Science, 1987, 180, L129-L133.	0.8	46
38	Simple <i>N</i> -body potentials for the noble metals and nickel. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1987, 56, 735-756.	0.8	558
39	Surface segregation and relaxation calculated by the embedded-atom method: Application to face-related segregation on platinum-nickel alloys. Physical Review B, 1987, 36, 4692-4699.	1,1	99
40	Dynamics of Atoms in Low-Symmetry Systems. Physica Scripta, 1987, T19A, 320-325.	1.2	3
41	Surface segregation from gold alloys. Gold Bulletin, 1987, 20, 54-65.	3.2	24
42	The thermodynamics of dilute solutions of hydrogen in palladium and its substitutional alloys. Acta Metallurgica, 1987, 35, 197-225.	2.1	59
43	The diffusion of hydrogen in b.c.c. Vî—,Ti solid solutions. Journal of Physics and Chemistry of Solids, 1987, 48, 661-665.	1.9	10
44	Energy cost to sputter an atom from a surface in keV ion bombardment processes. Surface Science Letters, 1987, 180, L129-L133.	0.1	2
45	Dynamical calculation of low energy hydrogen reemission off hydrogen covered surfaces. Journal of Nuclear Materials, 1987, 145-147, 339-343.	1.3	19
46	Scratching the surface. Nuclear Instruments & Methods in Physics Research B, 1987, 27, 221-225.	0.6	2
47	The thermodynamics of hydrogen in palladium-yttrium solid solutions. Acta Metallurgica, 1988, 36, 385-391.	2.1	13
48	Quantum-chemical methods and materials science problems. Journal of Structural Chemistry, 1988, 28, 590-595.	0.3	0
49	Interaction of hydrogen with solid surfaces. Surface Science Reports, 1988, 9, 1-163.	3.8	1,051
50	On the diffusion mechanisms of helium in nickel. Journal of Nuclear Materials, 1988, 158, 25-29.	1.3	44
51	The quantum simulation of hydrogen in metals. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1988, 58, 257-283.	0.8	119
53	Interatomic forces in transition metals. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1988, 58, 143-163.	0.8	63
54	Many-body embedded-atom potential for describing the energy and angular distributions of Rh atoms desorbed from ion-bombarded Rh{111}. Physical Review B, 1988, 37, 7197-7204.	1.1	108
55	Analytic nearest-neighbor model for fcc metals. Physical Review B, 1988, 37, 3924-3931.	1.1	616

#	Article	IF	CITATIONS
56	Multilayer relaxation at the surface of fcc metals: Cu, Ag, Au, Ni, Pd, Pt, Al. Surface Science, 1988, 206, L857-L863.	0.8	119
57	Calculation of the anisotropy of equilibrium surface composition in metallic solid solutions using the embedded atom method. Surface Science, 1988, 193, 287-303.	0.8	23
58	Electronic properties. Topics in Applied Physics, 1988, , 139-217.	0.4	32
59	Effect of Impurity Bonding on Grain-Boundary Embrittlement. Physical Review Letters, 1988, 60, 2050-2053.	2.9	50
60	Interionic potentials, pseudopotentials, and the structure factor of liquid lead. Physical Review A, 1988, 37, 4500-4503.	1.0	11
61	Kiloâ€electronâ€volt Ar–ionâ€induced neutral atom desorption from Rh{331}: Relation of angular distributions to surface structure. Journal of Chemical Physics, 1988, 89, 2539-2543.	1.2	14
62	Application of molecular dynamics simulations to the study of ion-bombarded metal surfaces. Critical Reviews in Solid State and Materials Sciences, 1988, 14, s1-s78.	6.8	168
63	Simple embedded atom method model for fcc and hcp metals. Journal of Materials Research, 1988, 3, 471-478.	1.2	425
64	Theoretical Studies of Ni3Al and Nial with Impurities. Materials Research Society Symposia Proceedings, 1988, 133, 149.	0.1	3
65	Correlation Between the Structure, Energy, and Local Elastic Properties of Grain Boundaries in Metals. Materials Research Society Symposia Proceedings, 1988, 138, 389.	0.1	0
66	Calculation of the Structure of Au Grain Boundaries Using the Embedded Atom Method. Materials Research Society Symposia Proceedings, 1988, 138, 471.	0.1	0
67	A Computer Calorimetry Study of Segregation Free Energy: Cu in a Ni Grain Boundary. Materials Research Society Symposia Proceedings, 1988, 122, 275.	0.1	1
68	The effective-medium theory beyond the nearest-neighbour interaction. Journal of Physics Condensed Matter, 1989, 1, 9765-9777.	0.7	27
69	Semiempirical model of covalent bonding in silicon. Physical Review B, 1989, 40, 10351-10355.	1.1	35
70	Rh atom ejection from keV ionâ€bombarded p(2×2)O/Rh{111}: Adsorption site and coverage determination from angleâ€resolved desorption measurements. Journal of Chemical Physics, 1989, 90, 2027-2034.	1.2	38
71	Surface stress effects on the critical film thickness for epitaxy. Applied Physics Letters, 1989, 55, 1197-1198.	1.5	45
72	Interference of surface relaxations in unsupported thin films. Physical Review B, 1989, 39, 1395-1398.	1.1	15
73	Molecular dynamics of a dilute solution of hydrogen in palladium. Physical Review B, 1989, 39,	1.1	18

#	Article	IF	CITATIONS
74	Location of hydrogen adsorbed on palladium (111) studied by low-energy electron diffraction. Physical Review B, 1989, 40, 891-899.	1.1	112
75	An embedded atom analysis of Au and Pt substitutional atoms in Ni. Journal of Materials Research, 1989, 4, 552-556.	1.2	5
76	A many-body embedded atom potential for describing ejection of atoms from surfaces. Radiation Effects and Defects in Solids, 1989, 109, 287-292.	0.4	3
77	Cleavage and Shear Stresses in Impurity-Promoted Embrittlement. Europhysics Letters, 1989, 9, 551-556.	0.7	4
78	Molecular-dynamics simulation of amorphous alloys. II. Self-diffusion. Journal of Physics Condensed Matter, 1989, 1, 10003-10014.	0.7	8
79	Monte Carlo simulations of supported bimetallic catalysts. Journal of Catalysis, 1989, 116, 540-555.	3.1	104
80	Formation energies of helium-void complexes in nickel. Journal of Nuclear Materials, 1989, 166, 235-242.	1.3	56
81	Ion-beam studies of hydrogen-metal interactions. Journal of Nuclear Materials, 1989, 165, 9-64.	1.3	179
82	Structure-energy correlation for grain boundaries in F.C.C. metals—I. Boundaries on the (111) and (100) planes. Acta Metallurgica, 1989, 37, 1983-1993.	2.1	170
83	Comparative behavior of carbon in b.c.c. and f.c.c. iron. Acta Metallurgica, 1989, 37, 2759-2763.	2.1	58
84	Calculation of the atomic structure of the â~ = 13 (Î, = 22.6°) [001] twist boundary in gold. Acta Metallurgica, 1989, 37, 2815-2821.	2.1	26
85	Role of the densest lattice planes in the stability of crystalline interfaces: A computer simulation study. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1989, 107, 3-14.	2.6	54
86	Theoretical examination of the effect of hydrogen on the mechanical properties of iron. Soviet Materials Science, 1989, 25, 231-235.	0.0	5
87	Ion-electron interaction in molecular-dynamics cascades. Physical Review A, 1989, 40, 2287-2291.	1.0	187
88	Self-diffusion and impurity diffusion of fee metals using the five-frequency model and the Embedded Atom Method. Journal of Materials Research, 1989, 4, 102-112.	1.2	318
89	Correlation between the energy and structure of grain boundaries in b.c.c. metals I. Symmetrical boundaries on the (110) and (100) planes. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1989, 59, 667-680.	0.6	79
90	On the relevance of extrinsic defects to melting: A molecular dynamics study using an embedded atom potential. Scripta Metallurgica, 1989, 23, 333-338.	1.2	1
91	Molecular-dynamics simulation of amorphous alloys. I. Atomic structure of fully relaxed systems. Journal of Physics Condensed Matter, 1989, 1, 9985-10001.	0.7	6

#	ARTICLE	IF	CITATIONS
92	Elastic constants of nickel: Variations with respect to temperature and pressure. Physical Review B, 1989, 39, 12484-12491.	1.1	34
93	Analytic embedded atom method model for bcc metals. Journal of Materials Research, 1989, 4, 1195-1201.	1.2	479
94	Calculation of grain-boundary segregation in Ni-Cu alloys. Physical Review B, 1989, 40, 11502-11506.	1.1	64
95	Computer simulation on surfaces and [001] symmetric tilt grain boundaries in Ni, Al, and Ni ₃ Al. Journal of Materials Research, 1989, 4, 62-77.	1.2	163
96	Thermodynamic properties of fcc transition metals as calculated with the embedded-atom method. Physical Review B, 1989, 40, 5909-5915.	1.1	208
97	Model of metallic cohesion: The embedded-atom method. Physical Review B, 1989, 39, 7441-7452.	1.1	285
98	Semiempirical modified embedded-atom potentials for silicon and germanium. Physical Review B, 1989, 40, 6085-6100.	1.1	421
99	Relationship between the embedded-atom method and Tersoff potentials. Physical Review Letters, 1989, 63, 1022-1022.	2.9	117
100	Effects of surface stress on the elastic moduli of thin films and superlattices. Physical Review Letters, 1989, 62, 2005-2008.	2.9	228
101	Non-Equilibrium Molecular Dynamics Simulation of the Rapid Solidification of Metals. Materials Research Society Symposia Proceedings, 1989, 159, 331.	0.1	3
102	On the stability of random cubic alloys in the framework of pair potentials. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1990, 62, 149-158.	0.6	5
103	Calculation of the Atomic Structure of Grain Boundaries in Metals and Alloys. Materials Research Society Symposia Proceedings, 1990, 193, 247.	0.1	0
104	Order/Disorder and Phase Diagram of H on Pd(100). Materials Research Society Symposia Proceedings, 1990, 193, 289.	0.1	0
105	Two-Dimensional Phase Transitions Associated with a Surface Miscibility Gap in Cu-Ag Alloys. Materials Research Society Symposia Proceedings, 1990, 202, 421.	0.1	3
106	Monte Carlo Modeling of Interphase Boundaries in Cu-Ag and Cu-Ag-Au Alloys. Materials Research Society Symposia Proceedings, 1990, 205, 375.	0.1	1
107	Effect of Hydrogen on The Electronic Structure of a Grain Boundary In Iron. Materials Research Society Symposia Proceedings, 1990, 209, 53.	0.1	1
108	Antiphase Boundary Calculations for the L12 Structure Using an Embedded Atom Method Model. Materials Research Society Symposia Proceedings, 1990, 209, 71.	0.1	0
109	Deformation Mechanisms and Solid-Solution Strengthening in Ordered Alloys. Materials Research Society Symposia Proceedings, 1990, 213, 499.	0.1	4

		CITATION I	Report	
#	Article		IF	Citations
110	Atomic Structure and Positron States at Dislocation Loops in Al. Physica Scripta, 1990,	F33, 206-209.	1.2	5
111	Molecular Dynamics of Metals with Many-Atom Interactions. Physica Scripta, 1990, T33	, 210-215.	1.2	9
112	Dynamic Simulations of Partial Dislocation Core Structures in Gold Using Many-Body Int Physica Scripta, 1990, T33, 216-218.	eractions.	1.2	2
113	Computer applications to materials research Bulletin of the Japan Institute of Metals, 1 327-336.	990, 29,	0.1	0
114	Grain Boundaries in Silicon from Zero Temperature through Melting. Journal of the Amer Society, 1990, 73, 933-937.	ican Ceramic	1.9	13
115	Electronic fluctuation, the nature of interactions and the structure of liquid metals. Nuo Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical P Biophysics, 1990, 12, 597-618.	vo Cimento hysics,	0.4	38
116	Energetics of nickel and palladium. Surface and Interface Analysis, 1990, 15, 73-78.		0.8	4
117	Embedded atom calculations of the Cu (001), (111), and (110) surface phonon spectra. Microstructures, 1990, 7, 259-267.	Superlattices and	1.4	5
118	Model studies of composition-modulated Cuî—,Ni superlattices. Materials Science & Structural Materials: Properties, Microstructure and Processing, 1990, 126, 29-31.); Engineering A:	2.6	8
119	Structural transitions in aluminum clusters. Chemical Physics Letters, 1990, 174, 461-46	56.	1.2	66
120	Experimental and theoretical strain distributions for stationary and growing cracks. Jour Mechanics and Physics of Solids, 1990, 38, 87-113.	nal of the	2.3	53
121	Anharmonic lattice vibrations in palladium. Journal of Physics Condensed Matter, 1990,	2, 8859-8868.	0.7	6
122	Quantum-chemical molecular dynamics applied toS-Pmetals. Physical Review B, 1990, 4	1, 913-919.	1.1	12
123	Phase stability of fcc alloys with the embedded-atom method. Physical Review B, 1990, 4	41, 9717-9720.	1.1	176
124	Generalized embedded-atom format for semiconductors. Physical Review B, 1990, 41, 1	247-1250.	1.1	45
125	Surface relaxation of \hat{I}_{\pm} -iron and the embedded-atom method. Physical Review B, 1990,	42, 11540-11552.	1.1	60
126	Angular distribution of Rh atoms desorbed from ion-bombarded Rh{100}: Effect of local Physical Review B, 1990, 42, 7311-7316.	environment.	1.1	39
127	The effects of steps, coupling to substrate vibrations, and surface coverage on surface c rates and kinetic isotope effects: Hydrogen diffusion on Ni. Journal of Chemical Physics, 2125-2138.	liffusion 1990, 93,	1.2	22

#	Article	IF	CITATIONS
128	Correlation between structure, energy, and ideal cleavage fracture for symmetrical grain boundaries in fcc metals. Journal of Materials Research, 1990, 5, 1708-1730.	1.2	87
129	Atomic structure of a Σ99 grain boundary in aluminium: A comparison between atomic-resolution observation and pair-potential and embedded-atom simulations. Philosophical Magazine Letters, 1990, 62, 327-335.	0.5	48
130	Interatomic potential for silicon clusters, crystals, and surfaces. Physical Review B, 1990, 41, 10568-10585.	1.1	111
131	Structure-energy correlation for grain boundaries in F.C.C. metals—III. Symmetrical tilt boundaries. Acta Metallurgica Et Materialia, 1990, 38, 781-790.	1.9	224
132	Thermodynamic parallels between solid-state amorphization and melting. Journal of Materials Research, 1990, 5, 286-301.	1.2	199
133	Structure-energy correlation for grain boundaries in f.c.c. metals—IV. Asymmetrical twist (general) boundaries. Acta Metallurgica Et Materialia, 1990, 38, 791-798.	1.9	116
134	Monte Carlo simulation of the Cuî—,Ag (001) semicoherent interphase boundary. Acta Metallurgica Et Materialia, 1990, 38, 177-184.	1.9	41
135	Beyond Pair Potentials in Elemental Transition Metals and Semiconductors. Solid State Physics, 1990, 43, 1-91.	1.3	207
136	Edge dislocations in fcc metals: Microscopic calculations of core structure and positron states in Al and Cu. Physical Review B, 1990, 41, 12441-12453.	1.1	123
137	Quantum mechanics and mechanical properties: Towards twenty-first century materials. Contemporary Physics, 1990, 31, 73-97.	0.8	9
138	Many-body potentials and atomic-scale relaxations in noble-metal alloys. Physical Review B, 1990, 41, 10324-10333.	1.1	241
139	Atomistic Modeling of Extended Defects in Metalic Alloys: Dislocations and Grain Boundaries in Ll ₂ Compounds. Materials Research Society Symposia Proceedings, 1990, 186, 237.	0.1	45
140	Molecular-dynamics studies of the thermal properties of the solid and liquid fcc metals Ag, Au, Cu, and Ni using many-body interactions. Physical Review B, 1990, 41, 8054-8061.	1.1	53
141	Computer simulation of elastic and structural properties of thin films. Surface Science, 1990, 225, 117-129.	0.8	21
142	Surface composition of dilute copper-gold alloys. Surface Science, 1990, 236, 369-376.	0.8	18
143	Computer simulation of phase transitions associated with surface miscibility gaps. Surface Science, 1990, 240, 245-252.	0.8	54
144	A new method for the simulation of alloys: Application to interfacial segregation. Acta Metallurgica Et Materialia, 1991, 39, 3071-3082.	1.9	53
145	On the existence of surface miscibility gaps in Cuî—,Ag alloys. Surface Science, 1991, 241, L21-L24.	0.8	48

#	Article	IF	CITATIONS
146	EAM study of surface self-diffusion of single adatoms of fcc metals Ni, Cu, Al, Ag, Au, Pd, and Pt. Surface Science, 1991, 253, 334-344.	0.8	530
147	The migration of a Si atom adsorbed on the Si(100)-2 × 1 surface. Surface Science, 1991, 257, 199-209.	0.8	39
148	Monte Carlo simulations of segregation at [001] twist boundaries in a Pt(Au) alloy—I. Results. Acta Metallurgica Et Materialia, 1991, 39, 3167-3177.	1.9	53
149	HREM study of a â~= 3{112} twin boundary in aluminium. Philosophical Magazine Letters, 1991, 64, 277-283.	0.5	42
150	<i>N</i> -body interatomic potentials for hexagonal close-packed metals. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1991, 63, 603-627.	0.6	145
151	Picosecond Laser Processing of Copper and Gold. Molecular Simulation, 1991, 7, 335-355.	0.9	23
152	Interaction Potentials. Springer Series in Materials Science, 1991, , 40-62.	0.4	10
153	Crack propagation in b.c.c. crystals studied with a combined finite-element and atomistic model. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1991, 64, 851-878.	0.8	403
154	Tight-Binding Potentials. , 1991, , 233-253.		8
155	The Pseudopotential Approach to the Interatomic Interaction Problem. , 1991, , 209-232.		0
156	The Determination of the Elastic Properties of Inhomogeneous Systems by Computer Simulation. , 1991, , 335-348.		1
157	A Monte Carlo study of the structur and composition of (001) semicoherent interphase boundaries in Cuî—,Agî—,Au alloys. Acta Metallurgica Et Materialia, 1991, 39, 2681-2691.	1.9	40
158	Computer Applications to Materials Science and Engineering. Materials Transactions, JIM, 1991, 32, 105-113.	0.9	0
159	Surface Reconstruction of Platinum and Cold and the Embedded Atom Model. Materials Research Society Symposia Proceedings, 1991, 238, 229.	0.1	2
160	An Atomistic Study of the Equilibrium Segregation of Hydrogen to Tilt Boundaries in Nickel. Materials Research Society Symposia Proceedings, 1991, 229, 179.	0.1	4
161	An Atomistic Study of Hydrogen Effects on the Fracture of Tilt Boundaries in Nickel Materials Research Society Symposia Proceedings, 1991, 238, 381.	0.1	1
162	Environment Sensitive Embedding Energies of Impurities, and Grain Boundary Relaxation in Iron. Materials Research Society Symposia Proceedings, 1991, 238, 481.	0.1	1
163	Effect of hydrogen on the electronic structure of a grain boundary in iron. Solid State Communications, 1991, 79, 113-117.	0.9	37

	CHAILON		
#	Article	IF	CITATIONS
164	On the existence of surface miscibility gaps in Cuî—,Ag alloys. Surface Science Letters, 1991, 241, L21-L24.	0.1	1
165	Surface composition of ternary cu-ag-au alloys: part i. experimental results. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1991, 22, 1833-1840.	1.4	17
166	Surface composition of ternary cu-ag-au alloys: part ii. a comparison of experiment with theoretical models. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1991, 22, 1841-1848.	1.4	7
167	Surface stress effects on the thermodynamics of epitaxy. Journal of Electronic Materials, 1991, 20, 815-817.	1.0	2
168	States of surface hydrogen under reaction conditions of the Fischer-Tropsch synthesis. Catalysis Letters, 1991, 7, 15-25.	1.4	3
169	The effects of many-body interactions on point-defect generation. Journal of Nuclear Materials, 1991, 179-181, 909-912.	1.3	4
170	COMPUTER APPLICATIONS TO MATERIALS SCIENCE. , 1991, , 67-75.		0
171	Many-body effects on calculated defect properties in h.c.p. metals. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1991, 63, 865-872.	0.8	37
172	Density and one-matrix functionals generated by constrained-search theory. Physical Review B, 1991, 44, 1509-1522.	1.1	19
173	Analytic embedded-atom potentials for fcc metals: Application to liquid and solid copper. Physical Review B, 1991, 43, 4653-4658.	1.1	175
174	Efficient determiniation of multilayer relaxation in the Pt(210) stepped and densely kinked surface. Physical Review Letters, 1991, 67, 1298-1301.	2.9	59
175	Molecular dynamics of collision cascades with composite pair–many-body potentials. Physical Review B, 1991, 43, 2490-2495.	1.1	10
176	Interatomic potential for directional bonding: The rotated-second-moment approximation. Physical Review B, 1991, 43, 12607-12610.	1.1	12
177	Surface diffusion modes for Pt dimers and trimers on Pt(001). Physical Review Letters, 1991, 67, 622-625.	2.9	94
178	The dislocation core in crystalline materials. Critical Reviews in Solid State and Materials Sciences, 1991, 17, 1-46.	6.8	153
179	On The Study Of Grain Boundary Segregation Using X-Ray Diffraction And Computer Simulation. Materials Research Society Symposia Proceedings, 1991, 238, 499.	0.1	3
180	Modelling the growth of NiAl epilayer on zinc-blende substrate. Philosophical Magazine Letters, 1991, 63, 249-256.	0.5	3
181	Vacancy properties in Cu ₃ Au-type ordered fcc alloys. Journal of Materials Research, 1991, 6, 1455-1460.	1.2	30

#	Article	IF	CITATIONS
182	Optimized and transferable densities from first-principles local density calculations. Journal of Physics Condensed Matter, 1991, 3, 5437-5443.	0.7	34
183	A model for ideal cleavage fracture of grain boundaries in b.c.c. metals. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1991, 63, 1117-1136.	0.8	9
184	The application of the analytic embedded atom method to bcc metals and alloys. Journal of Materials Research, 1992, 7, 639-652.	1.2	143
185	Effective pair potential and structural phase transitions of Cr, Mo, and W. Physical Review B, 1992, 46, 90-97.	1.1	9
186	Temperature dependence of elastic constants of embedded-atom models of palladium. Physical Review B, 1992, 46, 8027-8035.	1.1	49
187	Embedded-atom-method study of (110) surface relaxation and bulk vibrations in Pb. Physical Review B, 1992, 45, 6289-6292.	1.1	13
188	(100) surface segregation in Cu-Ni alloys. Physical Review B, 1992, 45, 12028-12042.	1.1	34
189	Molecularâ€dynamics simulations of bulk and surface damage production in lowâ€energy Cu→Cu bombardment. Journal of Applied Physics, 1992, 71, 5410-5418.	1.1	69
190	Ab initiopotential for solids. Physical Review B, 1992, 46, 3798-3809.	1.1	43
191	Adhesive avalanche in covalently bonded materials. Physical Review B, 1992, 45, 4439-4444.	1.1	23
192	Structural and elastic properties of transition-metal superlattices. Physical Review B, 1992, 45, 13624-13630.	1.1	17
193	Contribution of thermal conductivity to the crystal-regrowth velocity of embedded-atom-method-modeled metals and metal alloys. Physical Review B, 1992, 45, 12260-12268.	1.1	21
194	Molecular-dynamics simulation of hydrogen diffusion in palladium. Physical Review B, 1992, 46, 14528-14542.	1.1	55
195	Site preference of ternary additions in Î ³ -TiAl: A density-functional cluster-model study. Physical Review B, 1992, 46, 13709-13712.	1.1	21
196			
170	Stability of tight-packed metals with the embedded-atom method. Journal of Materials Research, 1992, 7, 883-887.	1.2	10
190	Stability of tight-packed metals with the embedded-atom method. Journal of Materials Research, 1992, 7, 883-887. Effects of Hydrogen on the Fracture Properties of Σ9 and Σ11 Tilt Boundaries in Nickel. Materials Research Society Symposia Proceedings, 1992, 278, 159.	1.2 0.1	10 0
197 198	Stability of tight-packed metals with the embedded-atom method. Journal of Materials Research, 1992, 7, 883-887.Effects of Hydrogen on the Fracture Properties of Σ9 and Σ11 Tilt Boundaries in Nickel. Materials Research Society Symposia Proceedings, 1992, 278, 159.Monte Carlo Simulations of Solute-Atom Segregation at [001] Symmetrical Twist Boundaries in the Ni-Pi System. Materials Research Society Symposia Proceedings, 1992, 278, 278, 278, 278, 278, 278, 278, 27	1.2 0.1 0.1	10 0 3

#	Article	IF	CITATIONS
200	Effect of Planar Fault Energies on Dislocation Core Structures and Mobilities in L10 Compounds. Materials Research Society Symposia Proceedings, 1992, 288, 335.	0.1	8
201	New Technique for AB Initio Atomistic Potentials and Application to Thermal Expansion of Ni/Cr Alloys. Materials Research Society Symposia Proceedings, 1992, 291, 15.	0.1	4
202	Real-Space Descriptions of Structural Energies in Metals. Materials Research Society Symposia Proceedings, 1992, 291, 183.	0.1	0
203	Extension of a New Semiempirical Method (BFS) and the Study of Ground State Properties of Binary Alloys. Materials Research Society Symposia Proceedings, 1992, 291, 389.	0.1	3
204	A Comparative Atomistic Study of the Structure of Grain Boundaries in Tungsten. Materials Research Society Symposia Proceedings, 1992, 291, 491.	0.1	0
205	H Motion in Pd and Nb: A Molecular-Dynamics Study. Materials Research Society Symposia Proceedings, 1992, 291, 537.	0.1	0
206	Quantitative Hrem Study of the Atomic Structure of the Σ(310)/[001] Symmetric Tilt Grain Boundary in Nb. Materials Research Society Symposia Proceedings, 1992, 295, 83.	0.1	8
207	Hrtem Observations Of A Σ=3 {112} Bicrystal Boundary In Aluminum. Materials Research Society Symposia Proceedings, 1992, 295, 91.	0.1	29
208	Atomic Structure of the (310) Twin in Niobium: Theoretical Predictions and Comparison with Experimental Observation. Materials Research Society Symposia Proceedings, 1992, 295, 97.	0.1	1
209	Grain boundaries as heterogeneous systems: atomic and continuum elastic properties. Philosophical Transactions of the Royal Society: Physical and Engineering Sciences, 1992, 339, 555-586.	1.0	82
210	A Mean-Field Approach to Segregation of Solute Atoms at [001] Large Angle Twist Grain Boundaries in Dilute Binary Alloys. Materials Transactions, JIM, 1992, 33, 1020-1026.	0.9	0
211	Molecular dynamics simulations of surface chemical reactions. Chemical Society Reviews, 1992, 21, 155.	18.7	57
212	Stress induced martensitic transition in a molecular dynamics model of αâ€iron. Journal of Applied Physics, 1992, 71, 4009-4014.	1.1	29
213	Sputtering of silver dimers: a molecular dynamics calculation using a many-body embedded-atom potential. Surface Science, 1992, 260, 257-266.	0.8	54
214	Diffusion mechanisms on Ni surfaces. Surface Science, 1992, 265, 262-272.	0.8	69
215	The formation of misfit dislocations by climb in pseudomorphic monolayers. Surface Science, 1992, 277, 193-206.	0.8	8
216	Effects of surface structure and of embedded-atom pair functionals on adatom diffusion on fcc metallic surfaces. Surface Science, 1992, 276, 226-240.	0.8	7
217	Structure and diffusion of clusters on Ni surfaces. Surface Science, 1992, 268, 73-86.	0.8	70

#	Article	IF	CITATIONS
218	A mean-field theory approach to solute atom segregation at the dislocation core in a dilute binary alloy. Scripta Metallurgica Et Materialia, 1992, 27, 1283-1288.	1.0	2
219	Hydrogen interactions with defects in crystalline solids. Reviews of Modern Physics, 1992, 64, 559-617.	16.4	471
220	Comparisons of the behavior of (111) and (001) interphase boundaries in Cuî—,Ag and Cuî—,Agî—,Au alloys. Computational Materials Science, 1992, 1, 42-50.	1.4	6
221	Ab initio pair potentials for FCC metals: an application of the method of Mobius transformation. Journal of Physics Condensed Matter, 1992, 4, 2439-2448.	0.7	17
222	Soluteâ€Atom Segregation at Symmetrical Twist Boundaries Studied by Monte Carlo Simulation. Physica Status Solidi (B): Basic Research, 1992, 172, 267-286.	0.7	37
223	Summary report: computational issues in the mechanical behavior of metals and intermetallics. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1992, 159, 1-34.	2.6	20
224	Surface properties and activation. Topics in Applied Physics, 1992, , 15-95.	0.4	34
225	Free-energy calculations and the melting point of Al. Physical Review B, 1992, 46, 21-25.	1.1	158
226	Modified embedded-atom potentials for cubic materials and impurities. Physical Review B, 1992, 46, 2727-2742.	1.1	1,703
227	High resolution transmission electron microscopy study of interfaces. Materials Chemistry and Physics, 1992, 32, 77-85.	2.0	3
228	A semi-empirical many-body interatomic potential for modelling dynamical processes in gallium arsenide. Nuclear Instruments & Methods in Physics Research B, 1992, 67, 335-339.	0.6	49
229	Pair versus many-body potentials in atomic emission processes from a Cu surface. Nuclear Instruments & Methods in Physics Research B, 1992, 69, 232-241.	0.6	64
230	Planar defect energies by the embedded atom method and dissociated superdislocation configurations in the L10-type TiAl compound. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1992, 152, 18-25.	2.6	8
231	Atomistic modeling of dislocations in Be12X compounds. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1992, 152, 103-107.	2.6	5
232	A report on current research on grain-boundary structure and chemistry. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1992, 154, 113-123.	2.6	11
233	Structure of dislocation cores in metallic materials and its impact on their plastic behaviour. Progress in Materials Science, 1992, 36, 1-27.	16.0	203
234	Stability of M@C60 endohedral complexes. Chemical Physics Letters, 1993, 208, 79-85.	1.2	62
235	Theoretical studies of adatom diffusion on metal surfaces. Physics Letters, Section A: General, Atomic and Solid State Physics, 1993, 180, 444-452.	0.9	26

#	Article	IF	CITATIONS
236	Chen-Möbius inversion theorem and a structural representation of crystallographic direction families. Physics Letters, Section A: General, Atomic and Solid State Physics, 1993, 184, 119-126.	0.9	7
237	High-resolution electron microscopy investigation of the (710) twin in Nb. Ultramicroscopy, 1993, 51, 247-263.	0.8	18
238	Elastic constants of fcc ã€^111〉 films 1. Free monolayers. Thin Solid Films, 1993, 226, 230-237.	0.8	6
239	Lattice dynamics of alkali metals in real space. Physica B: Condensed Matter, 1993, 192, 205-212.	1.3	10
240	Interfacial segregation in Ag-Au, Au-Pd, and Cu-Ni alloys: I. (100) surfaces. Journal of Materials Science, 1993, 1, 7.	1.2	10
241	Computer simulation of hydrogen embrittlement in metals. Nature, 1993, 362, 435-437.	13.7	55
242	Calculations of the thermodynamic properties for binary hcp alloys with simple embedded atom method model. European Physical Journal B, 1993, 92, 431-435.	0.6	3
243	Dissociative adsorption of H2 on Ni(111). Journal of Chemical Physics, 1993, 98, 5039-5049.	1.2	92
244	Atomistic simulation of the interaction of slow protons with an iron surface. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1993, 15, 1263-1272.	0.4	0
245	Comparison of semi-empirical potential functions for silicon and germanium. Physical Review B, 1993, 47, 7686-7699.	1.1	185
246	Simple model of stacking-fault energies. Physical Review B, 1993, 47, 4916-4921.	1.1	14
247	Diffusion behavior of single adatoms near and at steps during growth of metallic thin films on Ni surfaces. Surface Science, 1993, 294, 197-210.	0.8	36
248	Step and kink formation energies on fcc metal surfaces. Surface Science, 1993, 294, 211-218.	0.8	29
249	Embedded-atom method calculations applied to surface segregation of Ptî—,Ni single crystals. Surface Science, 1993, 287-288, 366-370.	0.8	29
250	Heat of segregation of single substitutional impurities. Surface Science, 1993, 289, 169-179.	0.8	31
251	Atomic mobilities on a stepped Cu(100) surface. Surface Science, 1993, 287-288, 881-885.	0.8	24
252	Multilayer relaxation and surface energies of fcc and bcc metals using equivalent crystal theory. Surface Science, 1993, 289, 100-126.	0.8	152
253	Molecular dynamics of nanoscale layered structures. Scripta Materialia, 1993, 3, 479-498.	0.5	0

		TION REPORT	
#	Article	IF	CITATIONS
254	Tight-binding potentials for transition metals and alloys. Physical Review B, 1993, 48, 22-33.	1.1	1,748
255	Molecular-dynamics study of the binding energy and melting of transition-metal clusters. Physical Review B, 1993, 48, 8253-8262.	1.1	132
256	Thermodynamic properties of small zinc clusters based on atomistic simulations. Modelling and Simulation in Materials Science and Engineering, 1993, 1, 189-201.	0.8	13
257	Calculations of systematics in B2 structure 3d transition metal aluminides. Journal of Alloys and Compounds, 1993, 197, 229-242.	2.8	42
258	Computational study of structural change through the glass transition in an amorphous and liquid Zrî—,Ni alloy. Scripta Metallurgica Et Materialia, 1993, 28, 1003-1008.	1.0	14
259	The embedded-atom method: a review of theory and applications. Materials Science and Engineering Reports, 1993, 9, 251-310.	5.8	1,343
260	Deformation and fracture of intermetallics. Acta Metallurgica Et Materialia, 1993, 41, 987-1002.	1.9	86
261	A quasifermion approach to modelling interatomic interactions in solids. Journal of Physics Condensed Matter, 1993, 5, 8839-8848.	0.7	5
262	Many-body potentials for Cu-Ti intermetallic alloys and a molecular dynamics study of vitrification and amorphization. Modelling and Simulation in Materials Science and Engineering, 1993, 1, 315-333.	0.8	17
263	Simulation of segregation at interphase boundaries in Ni-Ag-Cu alloys. Modelling and Simulation in Materials Science and Engineering, 1993, 1, 639-648.	0.8	7
264	Molecular-dynamics simulations of low-energy copper atom interaction with copper surfaces. Modelling and Simulation in Materials Science and Engineering, 1993, 1, 731-740.	0.8	8
265	Site preference of alloying additions in intermetallic compounds. Journal of Physics Condensed Matter, 1993, 5, 6653-6662.	0.7	13
266	Surface reconstruction of platinum and gold and the embedded-atom model. Physical Review B, 1993, 48, 2611-2622.	1.1	97
267	Accuracy of the chemical-pseudopotential method for tetrahedral semiconductors. Physical Review B, 1993, 48, 14216-14225.	1.1	23
268	Constant-volume pair potential for Al–transition-metal compounds. Physical Review B, 1993, 47, 2961-2969.	1.1	14
269	Molecular dynamics simulation of adatom diffusion on metal surfaces. Journal of Chemical Physics, 1993, 99, 9994-10000.	1.2	19
270	Effect of overlap on semiempirical potentials derived from tight binding. Physical Review B, 1993, 48, 10739-10750.	1.1	7
271	Model for energetics of solids based on the density matrix. Physical Review B, 1993, 47, 10895-10898.	1.1	206

#	Article	IF	CITATIONS
272	Self-consistent ordering energies and segregation profiles at binary-alloy surfaces. Physical Review B, 1993, 47, 62-75.	1.1	32
273	Surface effects on Pt-Ni single crystals calculated with the embedded-atom method. Physical Review B, 1993, 48, 11352-11360.	1.1	9
274	Quasiharmonic and molecular-dynamics study of the martensitic transformation in Ni-Al alloys. Physical Review B, 1993, 48, 99-111.	1.1	79
275	Cohesion in aluminum systems: A first-principles assessment of â€~â€~glue'' schemes. Physical Review Letters, 1993, 70, 1944-1947.	2.9	62
276	Atomic structure of the (310) twin in niobium: Experimental determination and comparison with theoretical predictions. Physical Review Letters, 1993, 70, 449-452.	2.9	59
277	Energetics of the formation and migration of defects in Pb(110). Physical Review B, 1993, 48, 8986-8992.	1.1	13
278	Critical Size of a Crossover from Noncrystalline Icosahedra to Crystalline Cuboctahedra Structure for Copper Clusters. Chinese Physics Letters, 1993, 10, 139-142.	1.3	0
279	Computer Simulations of Grain Boundaries by Embedded Atom Method Bulletin of the Japan Institute of Metals, 1993, 32, 14-20.	0.1	0
280	Planar defects in {113} planes of L10type TiAl their structures and energies. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1993, 68, 169-182.	0.8	2
281	Copper clusters simulated by a many-body tight-binding potential. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1993, 68, 903-911.	0.6	17
282	Molecular-Dynamics Simulations of Low-Energy Ion/Surface Interactions During Ion-Beam-Assisted Thin Film Deposition Materials Research Society Symposia Proceedings, 1993, 317, 609.	0.1	4
283	Computer Simulation of Free-Surfaces in Close-Packed Structures. Materials Research Society Symposia Proceedings, 1993, 318, 527.	0.1	0
284	Electrostatic Potentials for Metal Oxide Surfaces and Interfaces. Materials Research Society Symposia Proceedings, 1993, 318, 679.	0.1	0
285	Migration Dynamics of a $\hat{l} \pm 3$ {112} Boundary in Aluminum. Materials Research Society Symposia Proceedings, 1993, 319, 273.	0.1	6
286	Localized Influence of Solute on the Stacking Fault Energy of Dilute Al-Based Solid Solutions. Materials Research Society Symposia Proceedings, 1993, 319, 345.	0.1	0
287	Reconstruction of grain boundaries in copper and gold by simulation. Journal of Materials Research, 1994, 9, 582-591.	1.2	6
288	Model description of transition metals using the rotated second moment approximation. Radiation Effects and Defects in Solids, 1994, 129, 45-53.	0.4	1
289	Metal/oxide interfaces: an electrostatics-based model. Composite Interfaces, 1994, 2, 473-484.	1.3	14

#	Article	IF	CITATIONS
290	A molecular-dynamics simulation of crack-tip extension: The brittle-to-ductile transition. Modelling and Simulation in Materials Science and Engineering, 1994, 2, 865-892.	0.8	85
291	Interatomic potentials for Al-Cu-Ag solid solutions. Modelling and Simulation in Materials Science and Engineering, 1994, 2, 119-134.	0.8	22
292	A lattice inversion method to construct the alloy pair potential for the embedded-atom method. Journal of Physics Condensed Matter, 1994, 6, 11015-11025.	0.7	12
293	A first-principles study of compression twins in h.c.p. zirconium. Philosophical Magazine Letters, 1994, 69, 189-195.	0.5	16
294	Effective-medium tight-binding model for silicon. Physical Review B, 1994, 50, 10727-10741.	1.1	27
295	Density-functional calculations for grain boundaries in aluminum. Physical Review B, 1994, 50, 15248-15260.	1.1	60
296	Molecular dynamics observations of interdiffusion and Stranski-Krastanov growth in the early film deposition of Au on Ag(110). Physical Review Letters, 1994, 72, 1858-1861.	2.9	38
297	Effective cluster interactions at alloy surfaces and charge self-consistency: Surface segregation in Ni–10 at. % Al and Cu-Ni. Physical Review B, 1994, 50, 18564-18571.	1.1	24
298	Model for the shapes of islands and pits on (111) surfaces of fcc metals. Physical Review B, 1994, 50, 7946-7951.	1.1	11
299	Molecular-dynamics study of self-diffusion: Iridium dimers on iridium surfaces. Physical Review B, 1994, 49, 7670-7678.	1.1	26
300	One-dimensional ordering of In atoms in a Cu(100) surface. Physical Review B, 1994, 49, 4871-4880.	1.1	7
301	Electronic distortion in keV particle bombardment. Journal of Chemical Physics, 1994, 100, 8437-8443.	1.2	14
302	Application of Lattice Inversion Method to Embeddedâ€Atom Method. Physica Status Solidi (B): Basic Research, 1994, 186, 393-402.	0.7	11
303	Evolution of the structural stability of large Cu, Ni, Pd, and Ag clusters with size: An analysis within the embedded atom method. Journal of Cluster Science, 1994, 5, 287-302.	1.7	21
304	Molecular dynamics simulations of keV particle bombardment. Correlation of intact molecular ejection with adsorbate size. Chemical Physics Letters, 1994, 230, 495-500.	1.2	24
305	keV particle bombardment of solids: molecular dynamics simulations and beyond. Computer Physics Communications, 1994, 80, 259-273.	3.0	27
306	Lattice dynamics of transition metals in real space. Physica B: Condensed Matter, 1994, 202, 23-30.	1.3	1
307	Atomistic computer simulation for liquid-glass transition in Zrî—,Ni alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 179-180, 256-260.	2.6	13

#	Article	IF	CITATIONS
308	Embedded-atom/Monte Carlo study of short-range order in nitrogen strengthened Feî—,Niî—,Cr austenite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 177, 233-241.	2.6	6
309	The core structure of (a/2)ã€^110〉 screw dislocations in FeNiCrN austenite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 183, 223-232.	2.6	16
310	Field ion microscope studies of single-atom surface diffusion and cluster nucleation on metal surfaces. Surface Science Reports, 1994, 21, 1-88.	3.8	445
311	Phonon dispersions and elastic constants of Ni3Al and M¶bius inversion. Physics Letters, Section A: General, Atomic and Solid State Physics, 1994, 195, 135-143.	0.9	26
312	Analytic embedded-atom potentials for bcc metals: application to calculating the thermodynamic data of bcc alloys. Physics Letters, Section A: General, Atomic and Solid State Physics, 1994, 192, 79-86.	0.9	17
313	Elastic and structural properties of f.c.c. {111} thin films part 2. A monolayer on a {110} b.c.c. substrate. Thin Solid Films, 1994, 237, 297-309.	0.8	15
314	Electrostatic-based model for alumina surfaces. Thin Solid Films, 1994, 253, 179-184.	0.8	14
315	Atomic scale studies of solute-atom segregation at grain boundaries: Experiments and simulations. Journal of Physics and Chemistry of Solids, 1994, 55, 1035-1057.	1.9	61
316	Monte Carlo studies of the chemisorption and work function temperature effects on noble metals. Journal of Electroanalytical Chemistry, 1994, 373, 133-140.	1.9	8
317	Modified embedded atom potentials for HCP metals. Modelling and Simulation in Materials Science and Engineering, 1994, 2, 147-163.	0.8	343
318	Surface binding energies of alloys: a many-body approach. Nuclear Instruments & Methods in Physics Research B, 1994, 88, 218-228.	0.6	32
319	Collision cascades in Cu, Au and Cu3Au: a comparison between molecular dynamics and the binary collision approximation. Nuclear Instruments & Methods in Physics Research B, 1994, 90, 468-472.	0.6	12
320	Simulation of surface defects. Journal of Physics Condensed Matter, 1994, 6, 9495-9517.	0.7	289
321	Charge transfer and bonding in metallic oxides. Journal of Adhesion Science and Technology, 1994, 8, 853-864.	1.4	32
322	Melting line of aluminum from simulations of coexisting phases. Physical Review B, 1994, 49, 3109-3115.	1.1	438
323	Atomistic calculations of composite interfaces. Modelling and Simulation in Materials Science and Engineering, 1994, 2, 505-518.	0.8	159
324	Structural and dynamical properties of metastable Al:Si solid solutions calculated by the embedded-atom method. Physical Review B, 1994, 50, 9648-9651.	1.1	4
325	Properties of the Al-Si solid solution: Dynamical properties of the silicon substitutional and the aluminum vacancy. Physical Review B, 1994, 49, 6647-6654.	1.1	19

#	Article	IF	CITATIONS
326	The mobility of Pt atoms and small Pt clusters on Pt(111) and its implications for the early stages of epitaxial growth. Surface Science, 1994, 321, 161-171.	0.8	50
327	Convergence of surface diffusion parameters with model crystal size. Surface Science, 1994, 313, 439-447.	0.8	16
328	Energetics of diffusion processes during nucleation and growth for the Cu/Cu(100) system. Surface Science, 1994, 316, 294-302.	0.8	39
329	Theory of adsorption and adsorbate-induced reconstruction. Surface Science, 1994, 299-300, 690-705.	0.8	38
330	Molecular dynamics simulations of ion impact on a supported rhodium cluster. Surface Science, 1994, 306, 215-226.	0.8	10
331	A molecular dynamics study of self-diffusion on metal surfaces. Surface Science, 1994, 301, 136-150.	0.8	50
332	A molecular dynamics study of Cu dimer sputtering mechanisms. Nuclear Instruments & Methods in Physics Research B, 1994, 84, 453-464.	0.6	38
333	Electrostatic potentials for metal-oxide surfaces and interfaces. Physical Review B, 1994, 50, 11996-12003.	1.1	355
334	Role of misfit strain and proximity in epigrowth modes I. Strong epilayer-substrate interaction. Surface Science, 1994, 312, 387-398.	0.8	21
335	Solute-atom segregation at (002) twist boundaries in dilute Niî—,Pt alloys: Structural/chemical relations. Acta Metallurgica Et Materialia, 1994, 42, 1959-1972.	1.9	34
336	Computer applications to materials science and engineering emphasized on the Japanese point of view. Computational Materials Science, 1994, 2, 103-110.	1.4	0
337	Molecular dynamics simulations of consolidation processes during fabrication of nanophase palladium. Scripta Materialia, 1994, 4, 265-274.	0.5	22
338	Pressure-composition isotherms for nanocrystalline palladium hydride. Physical Review Letters, 1994, 73, 557-560.	2.9	73
339	Surface-stress effects on elastic properties. II. Metallic multilayers. Physical Review B, 1994, 49, 10707-10716.	1.1	73
340	Embedded-atom method applied to bimetallic clusters: The Cu-Ni and Cu-Pd systems. Physical Review B, 1994, 49, 16649-16658.	1.1	50
341	Material research with tight-binding molecular dynamics. Computational Materials Science, 1994, 2, 93-102.	1.4	23
342	Atomic Transport by Ion Beam Mixing in the Radiation Enhanced Diffusion Region. Materials Research Society Symposia Proceedings, 1994, 354, 21.	0.1	0
343	Atomic Scale Simulations of Tensile Failure in Metal Oxides. Materials Research Society Symposia Proceedings, 1994, 357, 459.	0.1	1

C1-		. D-	DODT
UI.	αποι	N KE	PORT

#	Article	IF	CITATIONS
344	Stucture of 1/2<110> Dislocations In γ-Tial by High Resolution Tem and Embedded Atom Method Modelling. Materials Research Society Symposia Proceedings, 1994, 364, 137.	0.1	4
345	Defect Production Mechanisms During keV Ion Irradiation: Results of Computer Simulations. Materials Research Society Symposia Proceedings, 1994, 373, 3.	0.1	4
346	Density functional theory of the structure of bimetallic clusters. Physica Scripta, 1994, T55, 177-182.	1.2	6
347	Mechanism of Hydrogen Embrittlement in Iron and Low Strength Steels Materia Japan, 1994, 33, 922-931.	0.1	17
348	Critical Evaluation of Atomistic Simulations of 3D Dislocation Configurations. Materials Research Society Symposia Proceedings, 1995, 409, 127.	0.1	0
349	Critical Evaluation of Atomistic Simulations of 3D Dislocation Configurations. Materials Research Society Symposia Proceedings, 1995, 408, 243.	0.1	0
350	Environment Sensitive Embedding Energies of Impurities, and Grain Boundary Stability in Tantalum. Materials Research Society Symposia Proceedings, 1995, 408, 291.	0.1	0
351	Surface Damage During Kev Ion Irradiation: Results of Computer Simulations. Materials Research Society Symposia Proceedings, 1995, 388, 337.	0.1	2
352	Computer simulation of martensitic transformation in Fe-Ni face-centered cubic alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1995, 201, 194-204.	2.6	53
353	Martensitic transformation and phonon localization in Ni-Al alloys by atomistic simulations. Meccanica, 1995, 30, 439-448.	1.2	4
354	The ionic model: Extension to spatial charge distributions, derivation of an interaction potential for silica polymorphs. Physics and Chemistry of Minerals, 1995, 22, 186.	0.3	5
355	Solute-atom segregation/structure relations at high-angle (002) twist boundaries in dilute Ni?Pt alloys. Journal of Materials Science, 1995, 3, 41.	1.2	18
356	The effect of nitrogen on the structure and mobility of dislocations in Fe-Ni-Cr austenite. Journal of Materials Science, 1995, 30, 5799-5807.	1.7	6
357	A microscopic view of particle bombardment of organic films. International Journal of Mass Spectrometry and Ion Processes, 1995, 143, 225-233.	1.9	23
358	Atomistic simulation of thermally activated glide of dislocations in Feî—,Nîî—,Crî—,N austenite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1995, 190, 87-98.	2.6	16
359	Molecular dynamics embedded atom method simulations of crack-tip transformation toughening in Feî—,Ni austenite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1995, 199, 173-182.	2.6	16
360	A new embedded-atom potential for metals and its applications. Solid State Communications, 1995, 94, 359-362.	0.9	1
361	Calculations of stacking fault energy for fcc metals and their alloys based on an improved embedded-atom method. Solid State Communications, 1995, 96, 729-734.	0.9	33

#	Article	IF	CITATIONS
362	A multisite interaction expansion of the total energy in metals. Nuclear Instruments & Methods in Physics Research B, 1995, 102, 1-2.	0.6	3
363	Cascade statistics in the binary collision approximation and in full molecular dynamics. Nuclear Instruments & Methods in Physics Research B, 1995, 102, 93-102.	0.6	13
364	Molecular-dynamics description of early film deposition of Au on Ag(110). Physical Review B, 1995, 51, 4426-4434.	1.1	60
365	Surface stress, surface elasticity, and the size effect in surface segregation. Physical Review B, 1995, 51, 10937-10946.	1.1	69
366	Indium adatom diffusion and clustering on stepped copper surfaces. Physical Review B, 1995, 51, 7796-7804.	1.1	13
367	Atomic Scale Structural Effects on Solute-Atom Segregation at Grain Boundaries. Physical Review Letters, 1995, 74, 1115-1118.	2.9	29
368	Mechanistic study of atomic desorption resulting from the keV-ion bombardment of fcc{001} single-crystal metals. Physical Review B, 1995, 52, 6006-6014.	1.1	37
369	Ab initioatomistic simulation of the strength of defective aluminum and tests of empirical force models. Physical Review B, 1995, 52, 15191-15207.	1.1	66
370	Molecular dynamics simulation of local structure of aluminium and copper in supercooled liquid and solid state by using EAM. Journal of Physics Condensed Matter, 1995, 7, 2379-2394.	0.7	36
371	Energetics and atomic steps in the reconstruction of the Pt(110) plane. Physical Review B, 1995, 51, 5522-5525.	1.1	7
372	Molecular-statics and molecular-dynamics study of diffusion along [001] tilt grain boundaries in Ag. Physical Review B, 1995, 51, 4523-4529.	1.1	27
373	Embedded-atom model of glass-forming Si-metal alloys. Physical Review B, 1995, 51, 14962-14975.	1.1	23
374	Anomalous Phonon Behavior and Phase Fluctuations in bcc Zr. Physical Review Letters, 1995, 74, 1375-1378.	2.9	28
375	Molecular-dynamics method for simulating heterogeneous condensed matter at constant pressure. Physical Review B, 1995, 51, 15559-15562.	1.1	6
376	Structures and energies of compression twin boundaries in <i>hcp</i> Ti and Zr. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1995, 72, 751-763.	0.8	25
377	Atomistic simulation of transformation toughening in Fe-Ni austenite. Modelling and Simulation in Materials Science and Engineering, 1995, 3, 811-828.	0.8	8
378	Tight-binding surface correction to the embedded-atom method embedding function. Journal of Physics Condensed Matter, 1995, 7, 9433-9438.	0.7	1
379	Molecular Dynamics Simulations of Metal Clusters and Metal Deposition on Metal Surfaces. Japanese Journal of Applied Physics, 1995, 34, 6866-6872.	0.8	12

#	Article	IF	CITATIONS
380	Cluster/dislocation interactions in dilute aluminum-based solid solutions. Journal of Materials Research, 1995, 10, 578-590.	1.2	7
381	Molecular dynamics simulations of grain boundary diffusion in Al using embedded atom method potentials. Journal of Materials Research, 1995, 10, 1589-1592.	1.2	13
382	Study of bimetallic Pd–Pt clusters in both free and supported phases. Journal of Chemical Physics, 1995, 102, 8574-8585.	1.2	80
383	Atomistic calculations of hydrogen loading in palladium. Journal of Alloys and Compounds, 1995, 231, 343-346.	2.8	22
384	Segregation to an edge dislocation in Cu0.1Ni0.9. Acta Metallurgica Et Materialia, 1995, 43, 3621-3632.	1.9	13
385	Assessment of thermodynamic properties of alloys by combining the embedded-atom and the quasiharmonic methods. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 1995, 19, 105-117.	0.7	3
386	Binding energies and stability of Cu-adatom clusters on Cu(100) and Cu(111). Surface Science, 1995, 323, 71-80.	0.8	47
387	Ab initio chemisorption studies of H on Fe(110). Surface Science, 1995, 330, 255-264.	0.8	24
388	On the continuum versus atomistic descriptions of dislocation nucleation and cleavage in nickel. Modelling and Simulation in Materials Science and Engineering, 1995, 3, 597-613.	0.8	65
389	Models of short-range order in a face-centered cubic Fe-Ni-Cr alloy with a high concentration of nitrogen. Acta Metallurgica Et Materialia, 1995, 43, 4201-4211.	1.9	47
390	Trapping of hydrogen to lattice defects in nickel. Modelling and Simulation in Materials Science and Engineering, 1995, 3, 289-307.	0.8	336
391	Molecular dynamics determination of defect energetics in beta -SiC using three representative empirical potentials. Modelling and Simulation in Materials Science and Engineering, 1995, 3, 615-627.	0.8	105
392	Low-order moment expansions to tight binding for interatomic potentials: Successes and failures. Physical Review B, 1995, 52, 8766-8775.	1.1	25
393	Molecular-dynamics simulation of thin-film growth by energetic cluster impact. Physical Review B, 1995, 51, 11061-11067.	1.1	315
394	3D modeling of sputter and reflow processes for interconnect metals. , 0, , .		4
395	Diffusion of Cu on Cu surfaces. Physical Review B, 1995, 52, 5364-5374.	1.1	143
396	Au overlayer structures on a Ni(110) surface. Physical Review B, 1995, 51, 4485-4496.	1.1	8
397	ã€^110〉 symmetric tilt grain-boundary structures in fcc metals with low stacking-fault energies. Physical Review B, 1996, 54, 6999-7015.	1.1	334

ARTICLE IF CITATIONS # Nucleation, Growth, and Kinetic Roughening of Metal(100) Homoepitaxial Thin Films. Langmuir, 1996, 398 31 1.6 12, 217-229. COMPUTATIONAL STUDIES OF CLUSTERS: Methods and Results. Annual Review of Physical Chemistry, 399 4.8 1996, 47, 43-80. Simple analytical embedded-atom-potential model including a long-range force for fcc metals and 400 1.1 367 their alloys. Physical Review B, 1996, 54, 8398-8410. Modeling of Surface Processes as Exemplified by Hydrocarbon Reactions. Chemical Reviews, 1996, 96, 1327-1342. Molecular Dynamics Simulations of Elastic Response and Tensile Failure of Aluminaâ€. Langmuir, 1996, 402 1.6 18 12, 4605-4609. Absolute composition depth-profiles in surface segregation of Ptî—Rh alloys. Surface Science, 1996, 345, 0.8 L29-L33. Forces of a Pt adatom on a Pt(100) surface by the embedded-atom method. Surface Science, 1996, 357-358, 404 0.8 1 900-904. Field ion microscope investigations of adatom and dimer diffusion along Rh(100) step edges. Surface 405 0.8 Science, 1996, 359, 237-244. Diffusion processes relevant to the epitaxial growth of Ag on Ag(110). Surface Science, 1996, 366, 406 0.8 56 306-316. Dynamic observation of the fcc to 9r shear transformation in a copper $\hat{a}^{\star} = 3$ incoherent twin 2.6 boundary. Scripta Materialia, 1996, 35, 837-842. A semi-empirical effective medium theory for metals and alloys. Surface Science, 1996, 366, 394-402. 408 205 0.8 Density-functional periodic study of the adsorption of hydrogen on a palladium (111) surface. Physical 409 1.1 120 Review B, 1996, 53, 8015-8027. Size dependence of the lattice parameter for Pd clusters: A molecular-dynamics study. Physical Review 410 1.1 20 B, 1996, 54, 17057-17060. Structure and thermodynamic properties of liquid transition metals: An embedded-atom-method approach. Physical Review B, 1996, 53, 636-645. 1.1 58 Quasicontinuum analysis of defects in solids. Philosophical Magazine A: Physics of Condensed Matter, 412 1,231 0.8 Structure, Defects and Mechanical Properties, 1996, 73, 1529-1563. Heat and Mass Transport Induced by Collision Cascades. Materials Research Society Symposia 0.1 Proceedings, 1996, 438, 125. Heat and Mass Transport Induced by Collision Cascades. Materials Research Society Symposia 414 0.1 0 Proceedings, 1996, 439, 113. Atomic-Scale Simulations of Structural Properties of Ceramics. Materials Research Society Symposia 0.1 Proceedings, 1996, 453, 209.

	Сітаті	on Report	
#	Article	IF	CITATIONS
416	Computer Simulation Method of Thin Film Formation Process Materia Japan, 1996, 35, 386-392.	0.1	0
417	A process model for sputter deposition of thin films using molecular dynamics. Thin Films, 1996, 22, 117-IN3.	0.2	2
418	High angle grain boundary diffusion of chromium in niobium bicrystals. Acta Materialia, 1996, 44, 3535-3541.	3.8	23
419	Monte Carlo simulations of film growth. Thin Solid Films, 1996, 272, 172-183.	0.8	19
420	Cold cracks in welded joints of structural steels. Materials Science, 1996, 32, 45-55.	0.3	10
421	Computer simulation of metal-on-metal epitaxy. Thin Solid Films, 1996, 272, 195-207.	0.8	37
422	Impurity induced correction to the embedded atom method embedding function. Physica A: Statistical Mechanics and Its Applications, 1996, 231, 337-345.	1.2	1
423	Rapid solidification of Cu25at.% Ni alloy: molecular dynamics simulations using embedded atom method. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 214, 139-145.	2.6	19
424	Interfacial effects during ion beam processing of metals. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1996, 37, 38-48.	1.7	7
425	Theory of chemisorption and reactions on metal surfaces. Surface Science Reports, 1996, 24, 55-124.	3.8	296
426	The dynamics of surfaces of metallic and monolayer systems: an embedded-atom molecular dynamics study. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 217-218, 112-115.	2.6	2
427	A molecular dynamics study of transformation toughening in the gamma TiAl/beta TiV system. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 219, 109-125.	2.6	1
428	Act locally and think globally. Journal of Computer-Aided Materials Design, 1996, 3, 117-127.	0.7	0
429	Tight-binding molecular dynamics for materials simulations. Journal of Computer-Aided Materials Design, 1996, 3, 139-148.	0.7	7
430	Atomistic simulation of point defects and dislocations in bcc transition metals from first principles. Journal of Computer-Aided Materials Design, 1996, 3, 245-252.	0.7	2
431	Diffusion mechanisms at metallic grain boundaries. Journal of Computer-Aided Materials Design, 1996, 3, 253-264.	0.7	0
432	Empirical nâ€body potential for cubic metals. Physica Status Solidi (B): Basic Research, 1996, 196, 145-15.	3. 0.7	4
433	Atom-specific thermal vibration amplitudes in stoichiometric NiAl: Agreement of neutron diffraction and <i>ab initio</i> -based molecular dynamics. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1996, 74, 169-175.	0.6	0

#	Article	IF	CITATIONS
434	Bond order potentials for the atomistic simulation of covalent systems. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1996, 73, 85-93.	0.6	2
435	From Gibbsian Thermodynamics to Electronic Structure: Nonempirical Studies of Alloy Phase Equilibria. MRS Bulletin, 1996, 21, 16-25.	1.7	12
436	Molecular-dynamics study of thermodynamical properties of liquid copper. Physical Review B, 1996, 54, 15742-15746.	1.1	50
437	Embedded-atom-method effective-pair-interaction study of the structural and thermodynamic properties of Cu-Ni, Cu-Ag, and Au-Ni solid solutions. Physical Review B, 1996, 53, 2389-2404.	1.1	66
438	Atomistic simulation of ideal shear strength, point defects, and screw dislocations in bcc transition metals: Mo as a prototype. Physical Review B, 1996, 54, 6941-6951.	1.1	139
439	Congruent Phase Transition at a Twist Boundary Induced by Solute Segregation. Physical Review Letters, 1996, 77, 3379-3382.	2.9	22
440	Grain-boundary dissociation by the emission of stacking faults. Physical Review B, 1996, 53, R4241-R4244.	1.1	106
441	Modeling of Ir adatoms on Ir surfaces. Physical Review B, 1996, 54, 17083-17096.	1.1	38
442	Roughening Transition of an Amorphous Metal Surface: A Molecular Dynamics Study. Physical Review Letters, 1996, 77, 3169-3172.	2.9	11
443	Deposition and Surface Dynamic of Metals Studied by the Embedded-Atom Molecular Dynamics Method. Molecular Simulation, 1996, 17, 1-19.	0.9	10
444	Temperature dependencies of the relaxation, order and segregation at a tilt grain boundary in. Journal of Physics Condensed Matter, 1996, 8, 6833-6849.	0.7	2
445	Calculation of the behaviour of Si ad-dimers on Si(001). Modelling and Simulation in Materials Science and Engineering, 1997, 5, 149-158.	0.8	26
446	Atomistics simulations of structures and properties of ½âϔ ⁻ 110⟩ dislocations using three different embedded-atom method potentials fit to γ-TiAl. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1997, 75, 1299-1328.	0.8	59
447	Equilibrium and Thermodynamic Properties of Grey, White, and Liquid Tin. Physical Review Letters, 1997, 79, 2482-2485.	2.9	136
448	Multiscale Approach to Determination of Thermal Properties and Changes in Free Energy: Application to Reconstruction of Dislocations in Silicon. Physical Review Letters, 1997, 79, 3006-3009.	2.9	10
449	Pushing the limits of classical modeling of bombardment events in solids. Radiation Effects and Defects in Solids, 1997, 142, 127-145.	0.4	9
450	Strain at the interface of Ni/Pd superlattices estimated from molecular dynamics (MD) simulation. IEEE Transactions on Magnetics, 1997, 33, 3658-3660.	1.2	4
451	Semiempirical tight-binding interatomic potentials based on the Hubbard model. Physical Review B, 1997, 56, 5235-5242.	1.1	8

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
452	Melting properties of fcc metals using a tight-binding potential. Physical Review B, 1997, 55, 6265-6271.	1.1	35
453	Calculations ofg(r) for Liquid Cu and Ni Using Many-Body. Physics and Chemistry of Liquids, 1997, 35, 153-163.	0.4	4
454	Chapter 13 Density-functional theory of epitaxial growth of metals. Chemical Physics of Solid Surfaces, 1997, 8, 490-544.	0.3	17
455	Dynamics of free surfaces in model fcc, hcp and L12 structures. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1997, 75, 283-292.	0.6	2
456	Atomic simulation of amorphization and crystallization of Ni ₃ Al during rapid solidification. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1997, 76, 75-89.	0.6	8
457	Finite-sized atomistic simulations of screw dislocations. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1997, 76, 367-385.	0.8	17
458	Properties of the liquid-vapour interface of fcc metals calculated using the tight-binding potential. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1997, 75, 1067-1074.	0.8	6
459	Strain At The Interface Of Ni/Pd Superlattices Estimated From Molecular Dynamics (MD) Simulation. , 0, , \cdot		0
460	Computer simulations study of iron–copper alloy. Radiation Effects and Defects in Solids, 1997, 141, 325-336.	0.4	5
461	The realization of atomic resolution with the electron microscope. Reports on Progress in Physics, 1997, 60, 1513-1580.	8.1	95
462	Effect of porosity on the elastic response of brittle materials: An embedded-atom method approach. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1997, 75, 1041-1055.	0.8	18
463	Epitaxial rotation of two-dimensional rare-gas lattices on Ag(111). Physical Review B, 1997, 56, 6970-6974.	1.1	26
464	Massively parallel molecular dynamics simulations with EAM potentials. Radiation Effects and Defects in Solids, 1997, 142, 9-21.	0.4	45
465	Atomistic Simulations of the Work of Adhesion at Metal Oxide Interfaces. Materials Research Society Symposia Proceedings, 1997, 492, 401.	0.1	4
466	Hydrogen related material problems. , 1997, , 215-278.		32
467	Ab-initio analysis of aluminum â~ = 5 grain boundaries — fundamental structures and effects of silicon impurity. Computational Materials Science, 1997, 7, 271-278.	1.4	23
468	Elastic properties of a bcc {110} monolayer on a fcc {111} substrate. Surface Science, 1997, 388, 33-49.	0.8	1
469	Interatomic potentials between distinct atoms from first-principles calculation and lattice-inversion method. Journal of Applied Physics, 1997, 82, 578-582.	1.1	49

#	Article	IF	CITATIONS
470	Workshop on thermodynamic modelling of solutions and alloys. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 1997, 21, 265-285.	0.7	8
471	The effect of crack-tip material evolution on fracture toughness—An atomistic simulation study of the Tiî—,V alloy system. Acta Materialia, 1997, 45, 75-87.	3.8	13
472	Cohesive energy effects on the atomic transport induced by ion beam mixing. Nuclear Instruments & Methods in Physics Research B, 1997, 121, 244-250.	0.6	9
473	Determination of modified embedded atom method parameters for nickel. Materials Chemistry and Physics, 1997, 50, 152-158.	2.0	262
474	Atomistic simulation of â~3 (111) grain boundary fracture in tungsten containing various impurities. International Journal of Refractory Metals and Hard Materials, 1997, 15, 341-355.	1.7	30
475	Applications of the embedded-atom method to glass formation and crystallization of liquid and glass transition-metal nickel. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1997, 75, 1057-1066.	0.8	36
476	Atomistic simulation of dislocation core structure and dynamics in Fe–Ni–Cr–N austenite. Journal of Materials Science, 1997, 32, 1749-1757.	1.7	6
477	Transformation toughening in the γ-TiAl–β-Ti–Vsystem: Part II A molecular dynamics study. Journal of Materials Science, 1997, 32, 4875-4887.	1.7	9
478	Material simulations with tight-binding molecular dynamics. Journal of Phase Equilibria and Diffusion, 1997, 18, 516-529.	0.3	17
479	The accommodation of lattice mismatch in Ag/Ni heterophase boundaries. Journal of Phase Equilibria and Diffusion, 1997, 18, 556-561.	0.3	5
480	Angular and torsional forces via quantum mechanics. Journal of Phase Equilibria and Diffusion, 1997, 18, 608-613.	0.3	0
481	Effect of elastic center on dislocation core structure in Ni3Al. Acta Materialia, 1997, 45, 1005-1008.	3.8	15
482	The local orientational orders and structures of liquid and amorphous metals Au and Ni during rapid solidification. Physica B: Condensed Matter, 1997, 239, 267-273.	1.3	24
483	Atomistic simulation study of the effect of martensitic transformation volume change on crack-tip material evolution and fracture toughness. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 231, 151-162.	2.6	17
484	Interfacial studies using the EAM and MEAM. Journal of Materials Science, 1997, 4, 47.	1.2	7
485	Solute-atom segregation at symmetric twist and tilt boundaries in binary metallic alloys on an atomic-scale. Journal of Materials Science, 1997, 4, 65.	1.2	5
486	Heat and mass transport in nanoscale phase transitions induced by collision cascades. Journal of Nuclear Materials, 1997, 251, 72-76.	1.3	6
487	Proximity Effects of the Vacuum and Substrate on the Behavior of Ultrathin Epilayers. Journal of Materials Science, 1998, 6, 225-233.	1.2	3

#	Article	IF	CITATIONS
488	Application of integrated computer simulation approach to solid surfaces and interfaces. Catalysis Surveys From Asia, 1998, 2, 133-153.	1.2	2
489	Effect of martensitic transformation in Ti–15 at % V β-phase particles on lamellar boundary decohesion in Â-TiAl Part I Derivation of interface decohesion potentials. Journal of Materials Science, 1998, 33, 4389-4400.	1.7	4
490	Segregation of niobium solute in nickel toward grain boundaries and free surfaces. Journal of Phase Equilibria and Diffusion, 1998, 19, 503-512.	0.3	3
491	MD simulation of atomic displacements in pure metals and metallic bilayers during low energy ion bombardment at 0 K. Nuclear Instruments & Methods in Physics Research B, 1998, 143, 455-472.	0.6	14
492	An atomistic study of the effects of stress and hydrogen on a dislocation lock in nickel. Scripta Materialia, 1998, 39, 417-422.	2.6	23
493	The {111}/{100} Interface in Cubic Materials and Related Systems. Physica Status Solidi A, 1998, 166, 37-55.	1.7	4
494	Atomic processes during damage production and defect retention. Journal of Nuclear Materials, 1998, 258-263, 113-123.	1.3	8
495	Al(f.c.c.):Al3Sc(L12) interphase boundary energy calculations. Acta Materialia, 1998, 46, 3667-3678.	3.8	44
496	Load-dependent electronic states at the crack tip in a semiconductor. Physics Letters, Section A: General, Atomic and Solid State Physics, 1998, 243, 345-350.	0.9	1
497	A Study of Vacancies in Pure Aluminium and Their Role in the Diffusion of Lithium in a Dilute Al-Li Alloy Using the Embedded Atom Model. Materials Research Society Symposia Proceedings, 1998, 538, 359.	0.1	1
498	Computer simulations of martensitic transformations in NiAl alloys. Computational Materials Science, 1998, 10, 10-15.	1.4	21
499	Hydrogen adsorption on palladium: a comparative theoretical study of different surfaces. Surface Science, 1998, 411, 123-136.	0.8	198
500	A Monte Carlo simulation of submonolayer homoepitaxial growth on Ag(110) and Cu(110). Surface Science, 1998, 417, 220-237.	0.8	81
501	Martensite-austenite transition and phonon dispersion curves ofFe1â^'xNixstudied by molecular-dynamics simulations. Physical Review B, 1998, 57, 5140-5147.	1.1	142
502	Atomistic computer study on Mg segregation in the Ni3Al grain boundary. Journal of Materials Research, 1998, 13, 1741-1744.	1.2	9
503	Multiple Scattering Approach to Pd L3-Edge X-Ray Absorption near Edge Structure Spectra for Small Pd Clusters with Hydrogen Adsorption and Absorption. Japanese Journal of Applied Physics, 1998, 37, 4134-4139.	0.8	13
504	Molecular dynamics simulation on a layer-by-layer homoepitaxial growth process of SrTiO3(001). Journal of Chemical Physics, 1998, 109, 8601-8606.	1.2	12
505	Computer simulation study of the dynamic properties of liquid Ni using the embedded-atom model. Physical Review B, 1998, 58, 685-693.	1.1	51

#	Article	IF	CITATIONS
506	Solid-state amorphization in Ni/Mo multilayers studied with molecular-dynamics simulation. Physical Review B, 1998, 58, 14020-14030.	1.1	31
507	Low-Symmetry Diffusion Barriers in Homoepitaxial Growth of Al(111). Physical Review Letters, 1998, 81, 637-640.	2.9	98
508	Angular Forces Around Transition Metals in Biomolecules. Physical Review Letters, 1998, 81, 477-480.	2.9	9
509	Environment-dependent tight-binding model for molybdenum. Physical Review B, 1998, 57, 1461-1470.	1.1	70
510	Analytic embedded atom method potentials for face-centered cubic metals. Journal of Materials Research, 1998, 13, 1919-1927.	1.2	14
511	Molecular Dynamics Study on Liquid-to-Amorphous Transition in Ti–Al Alloys. Materials Transactions, JIM, 1998, 39, 147-153.	0.9	35
512	Atomic Structure, Composition, Mechanisms and Dynamics of Transformation Interfaces in Diffusional Phase Transformations. Materials Transactions, JIM, 1998, 39, 3-23.	0.9	17
513	Defect Generation and Diffusion Mechanisms in Al and Al-Cu. Materials Research Society Symposia Proceedings, 1998, 516, 189.	0.1	3
514	Atomistic Studies of Generic Tilt Grain Boundary Structures. Materials Research Society Symposia Proceedings, 1998, 538, 383.	0.1	0
515	The embedded-atom model applied to vacancy formation in bulk aluminium and lithium. Journal of Physics Condensed Matter, 1999, 11, 3663-3677.	0.7	6
516	STRUCTURE AND DYNAMICS OF AI TRIMER ON AI(111) SURFACE. Surface Review and Letters, 1999, 06, 787-792.	0.5	0
517	ã€^331〉 slip on {013} planes in molybdenum disilicide. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1999, 79, 655-663.	0.8	14
518	Nanoindentation and incipient plasticity. Journal of Materials Research, 1999, 14, 2233-2250.	1.2	243
519	MOLECULAR-DYNAMICS STUDY OF THIN IRON FILMS ON COPPER. Surface Review and Letters, 1999, 06, 35-43.	0.5	24
520	Application of a Simple Semi-empirical Interatomic Potential Model to Phonon Density of States of Fe ₃ Al. Chinese Physics Letters, 1999, 16, 914-916.	1.3	2
521	Molecular-dynamics study of the structural rearrangements of Cu and Au clusters softly deposited on a Cu(001) surface. Physical Review B, 1999, 60, 2908-2915.	1.1	59
522	Slowing down of atoms in metals studied by the Doppler-broadened γ-ray line shapes produced after thermal-neutron capture in Fe and Cr crystals. Physical Review B, 1999, 60, 6476-6483.	1.1	3
523	Atomistic modeling of large-scale metal film growth fronts. Physical Review B, 1999, 59, R7856-R7859.	1.1	23

	CHAHON K	EPORT	
#	Article	IF	CITATIONS
524	Models for adatom diffusion on fcc (001) metal surfaces. Physical Review B, 1999, 60, 2106-2116.	1.1	71
525	Investigation of the interatomic potential using the crystal gamma-ray-induced Doppler-broadening method on oriented Ni single crystals. Physical Review B, 1999, 59, 6762-6773.	1.1	6
526	Quasiharmonic versus exact surface free energies of Al: A systematic study employing a classical interatomic potential. Physical Review B, 1999, 60, 5055-5064.	1.1	48
527	Defect generation and diffusion mechanisms in Al and Al–Cu. Applied Physics Letters, 1999, 74, 34-36.	1.5	36
528	Transferable potential for carbon without angular terms. Physical Review B, 1999, 59, 9259-9270.	1.1	11
529	Anharmonicity on Al(100) and Al(111) surfaces. Physical Review B, 1999, 59, 15959-15965.	1.1	22
530	General model for mechanical stress evolution during electromigration. Journal of Applied Physics, 1999, 86, 3068-3075.	1.1	147
531	Atomic defects in the ordered compoundB2-NiAl: A combination ofab initioelectron theory and statistical mechanics. Physical Review B, 1999, 59, 6072-6082.	1.1	160
532	The structure at the interface of Ni/Pd bilayer films with different deposition sequences estimated from molecular dynamics simulation. , 1999, , .		0
533	Determining surface free energies of crystals with highly disordered surfaces from simulation. Molecular Physics, 1999, 96, 1027-1032.	0.8	12
534	Cu double layer on Mo(110): phase transition. Thin Solid Films, 1999, 348, 285-293.	0.8	0
535	An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method. Journal of the Mechanics and Physics of Solids, 1999, 47, 611-642.	2.3	547
536	Semiclassical treatment of atom–surface scattering: He–Cu(001) collisions. Applied Surface Science, 1999, 142, 7-13.	3.1	4
537	Calculation of surface energy and simulation of reconstruction for Si(111) 3×3, 5×5, 7×7, and 9×9 DAS structure. Applied Surface Science, 1999, 151, 299-301.	3.1	27
538	Twin formation during the atomic deposition of copper. Acta Materialia, 1999, 47, 1063-1078.	3.8	51
539	A new investigation of copper's role in enhancing Al–Cu interconnect electromigration resistance from an atomistic view. Acta Materialia, 1999, 47, 3227-3231.	3.8	51
540	Atomic structure of the Σ5 (310)/[001] symmetric tilt grain boundary in molybdenum. Acta Materialia, 1999, 47, 3977-3985.	3.8	38
541	Co nanoprecipitates formed in Ag upon ion implantation: their lattice dynamical properties. , 1999, 120/121, 291-296.		4

#	Article	IF	CITATIONS
542	Ab initio calcuation of ideal strength for cubic crystals under three-axial tension. European Physical Journal D, 1999, 49, 1495-1501.	0.4	20
543	Many-Body Effects in fcc Metals: A Lennard-Jones Embedded-Atom Potential. Physical Review Letters, 1999, 83, 2592-2595.	2.9	77
544	The structure at the interface of Ni/Pd superlattices with different crystal orientations estimated from molecular dynamics simulation. Journal of Magnetism and Magnetic Materials, 1999, 198-199, 710-712.	1.0	2
545	Molecular dynamics simulation on phosphorus behavior at Ni grain boundary. Scripta Materialia, 1999, 42, 189-195.	2.6	15
546	Interatomic potentials for monoatomic metals from experimental data andab initiocalculations. Physical Review B, 1999, 59, 3393-3407.	1.1	1,231
547	Competing plastic deformation mechanisms in nanophase metals. Physical Review B, 1999, 60, 22-25.	1.1	319
548	The structure at the interface of Ni/Pd bilayer films with different deposition sequences estimated from molecular dynamics simulation. IEEE Transactions on Magnetics, 1999, 35, 2998-3000.	1.2	1
549	Hydrogen embrittlement of a single crystal of iron on a nanometre scale at a crack tip by molecular dynamics. Modelling and Simulation in Materials Science and Engineering, 1999, 7, 541-551.	0.8	38
550	Lattice dynamics of Co nanoparticles in Ag. Scripta Materialia, 1999, 12, 299-302.	0.5	2
551	Effective Lennard–Jones potential for cubic metals in the frame of embedded atom model. Computational Materials Science, 1999, 13, 211-217.	1.4	12
552	Alloy surfaces: segregation, reconstruction and phase transitions. Computational Materials Science, 1999, 15, 196-235.	1.4	118
553	Self-consistent density-functional calculations of the geometries, electronic structures, and magnetic moments of Ni-Al clusters. Physical Review B, 1999, 60, 2020-2024.	1.1	88
554	An embedded atom approach to underpotential deposition phenomena. Surface Science, 1999, 421, 59-72.	0.8	38
555	Structure and melting of small Ni clusters on Ni surfaces. Surface Science, 1999, 424, 311-321.	0.8	18
556	A theoretical and computer simulation study of the static structure and thermodynamic properties of liquid transition metals using the embedded atom model. Journal of Non-Crystalline Solids, 1999, 250-252, 53-58.	1.5	22
557	Empirical Methods and Coarse-Graining. Springer Series in Solid-state Sciences, 1999, , 171-194.	0.3	0
558	Jumps and concerted moves in Cu, Ag, and Au(110) adatom self-diffusion. Physical Review B, 1999, 59, 5881-5891.	1.1	131
559	Molecular dynamics simulation of copper using CHARMM: methodological considerations and initial results. Theoretical and Computational Chemistry, 1999, , 703-736.	0.2	1

#	Article	IF	CITATIONS
560	The Energetics of Dislocation-Obstacle Interactions by 3-D Quasicontinuum Simulations. Materials Research Society Symposia Proceedings, 1999, 578, 155.	0.1	1
561	Stress Effects on Al and Al(Cu) Thin Film Grain-Boundary Diffusion. Materials Research Society Symposia Proceedings, 1999, 594, 451.	0.1	0
562	Molecular Dynamics Simulation in Investigation on Material Strength Nippon Gomu Kyokaishi, 1999, 72, 639-646.	0.0	0
563	FCC-BCC Phase Transition in Iron under a Periodic Boundary Condition. Materials Transactions, JIM, 1999, 40, 1306-1313.	0.9	11
564	Force fields in close-packed crystals and their melts in relation to defects, surface energies and mechanical properties. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2000, 80, 1335-1348.	0.8	1
565	The Stability of the Low Temperature Surface Reconstruction in Au(111). Materials Research Society Symposia Proceedings, 2000, 648, 1.	0.1	1
566	Structure of Al ₃ Fe melt at different temperatures under conditions of rapid cooling. Materials Science and Technology, 2000, 16, 249-254.	0.8	0
567	Bond stretching and electronic correlation in relation to mechanical and tribological properties of solids. International Journal of Quantum Chemistry, 2000, 80, 193-200.	1.0	1
568	Influence of the interatomic potentials on molecular dynamics simulations of displacement cascades. Journal of Nuclear Materials, 2000, 280, 73-85.	1.3	120
569	A new, general model for mechanical stress evolution during electromigration. Thin Solid Films, 2000, 365, 211-218.	0.8	13
570	Orientational effects in dissociative adsorption/associative desorption dynamics of H2(D2) on Cu and Pd. Progress in Surface Science, 2000, 63, 63-134.	3.8	111
571	A Monte Carlo simulation on surface tension of liquid nickel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 292, 203-206.	2.6	14
572	Atomic-scale computational materials science. Acta Materialia, 2000, 48, 71-92.	3.8	163
573	Irradiation induced amorphization in metallic multilayers and calculation of glass-forming ability from atomistic potential in the binary metal systems. Materials Science and Engineering Reports, 2000, 29, 1-48.	14.8	206
574	Modelling the nano-scale phenomena in condensed matter physics via computer-based numerical simulations. Physics Reports, 2000, 325, 239-310.	10.3	153
575	New Structures and Atomistic Analysis of the Polymorphism for the â~ = 5 (210) [001] Tilt Boundary. Journal of Materials Science, 2000, 8, 55-69.	1.2	17
576	Atomistic simulation of texture competition during thin film deposition. Journal of Computer-Aided Materials Design, 2000, 7, 203-216.	0.7	16
577	Solid Friction studied via Nonâ€Equilibrium Molecular Dynamics Computer Simulations. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2000, 80, 49-52.	0.9	2

# 578	ARTICLE Atomistic model of plutonium. Physical Review B, 2000, 62, 15532-15537.	IF 1.1	CITATIONS 87
579	Alloy design of intermetallic dispersion strengthened aluminum systems by mechanical alloying for high temperature applications. Metals and Materials International, 2000, 6, 17-24.	0.2	0
580	Adatom self-diffusion on Pt (100) surface by an ad-dimer migrating. Science in China Series A: Mathematics, 2000, 43, 1108-1113.	0.5	4
581	Self-energy and interaction energy of stacking fault in fcc metals calculated by embedded-atom method. Science in China Series D: Earth Sciences, 2000, 43, 146-153.	0.9	8
582	Carbon-nanotube-based nanotechnology in an integrated modeling and simulation environment. , 2000, , 665-705.		2
583	Comparison between Cooling Rate Dependence of Macroscopic and Microscopic Quantities in Simulated Aluminium Glass. Chinese Physics Letters, 2000, 17, 821-823.	1.3	2
584	Solid-state amorphization in Ni/Nb mutilayers studied by molecular-dynamics simulation together with experiments. Journal of Physics Condensed Matter, 2000, 12, 6991-7004.	0.7	5
585	The energetics of surface-alloy formation: an embedded-atom-method, second-order-expansion study. Modelling and Simulation in Materials Science and Engineering, 2000, 8, 287-293.	0.8	0
586	Morphology and dynamics of 2D Sn-Cu alloys on (100) and (111) Cu surfaces. Modelling and Simulation in Materials Science and Engineering, 2000, 8, 335-344.	0.8	34
587	Epitaxial growth of Cu on Cu(001): Experiments and simulations. Physical Review B, 2000, 62, R10649-R10652.	1.1	31
588	Modeling of metal thin film growth: Linking angstrom-scale molecular dynamics results to micron-scale film topographies. Physical Review B, 2000, 62, 2869-2878.	1.1	32
589	Interfacial reaction, amorphization transition, and associated elastic instability studied by molecular dynamics simulations in the Ni-Ta system. Physical Review B, 2000, 61, 9345-9355.	1.1	22
590	Three-dimensional global optimization ofNan+sodium clusters in the rangen<~40. Physical Review B, 2000, 62, 10394-10404.	1.1	23
591	Deposition ofAuNclusters on Au(111) surfaces. I. Atomic-scale modeling. Physical Review B, 2000, 62, 2825-2834.	1.1	130
592	Bain transformation inCuxPd1â^'xâ€,(xâ^¼0.5)alloys: An embedded-atom study. Physical Review B, 2000, 61, 24-27.	1.1	16
593	Growth and lattice dynamics of Co nanoparticles embedded in Ag: A combined molecular-dynamics simulation and MA¶ssbauer study. Physical Review B, 2000, 62, 5117-5128.	1.1	64
594	Electromigration-induced flow of islands and voids on the Cu(001) surface. Physical Review B, 2000, 61, 4975-4982.	1.1	39
595	Highly optimized empirical potential model of silicon. Modelling and Simulation in Materials Science and Engineering, 2000, 8, 825-841.	0.8	151

#	ARTICLE	IF	CITATIONS
596	Monte Carlo simulation of Mg segregation to Ni3Al grain boundary. Materials Letters, 2000, 44, 319-324.	1.3	3
597	Environmental dependence of screened tight-binding parameters in La2Ni10H14. Journal of Alloys and Compounds, 2000, 306, 113-121.	2.8	12
598	Diffusion of Pd clusters on Pd(111) surfaces: a molecular dynamics study. Surface Science, 2000, 452, 239-246.	0.8	16
599	Energetics of surface defects: towards a simplified model. Surface Science, 2000, 459, 23-32.	0.8	8
600	Structural and dynamical behavior of Al trimer on Al(111) surface. Surface Science, 2000, 465, 65-75.	0.8	15
601	Thermodynamic approach to segregation at the interface of two condensed phases. Surface Science, 2000, 445, 60-64.	0.8	4
602	About new criteria of component activities at the interface between two condensed phases. Surface Science, 2000, 445, 65-70.	0.8	2
603	Modified embedded atom method calculations for reconstructed (110) surfaces of face-centered cubic metals. Surface Science, 2000, 445, 18-22.	0.8	21
604	Molecular dynamics simulations of surface diffusion and growth on silver and gold clusters. Surface Science, 2000, 446, 31-45.	0.8	106
605	Kinetic lattice Monte Carlo simulation of facet growth rate. Surface Science, 2000, 450, 51-63.	0.8	56
606	Fundamental Processes of Plasma–Surface Interactions. Advances in Atomic, Molecular and Optical Physics, 2000, 43, 341-371.	2.3	0
607	Dislocation nucleation from surface steps: Atomistic simulation in aluminium. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2000, 80, 503-524.	0.8	39
608	Low-energy-deposited Au clusters investigated by high-resolution electron microscopy and molecular dynamics simulations. Physical Review B, 2000, 62, 10383-10393.	1.1	111
609	Effect of Mo and Pd on the grain-boundary cohesion of Fe. Physical Review B, 2000, 62, 6208-6214.	1.1	92
610	Mechanisms of phase transitions in sodium clusters: From molecular to bulk behavior. Journal of Chemical Physics, 2000, 112, 2888-2908.	1.2	138
611	Properties of liquid nickel: A critical comparison of EAM and MEAM calculations. Physical Review B, 2001, 65, .	1.1	88
612	A semi-empirical atomic potential for the Fe-Cr binary system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2001, 25, 527-534.	0.7	38
613	Structural characteristics of Ag3Au alloy melt and crystal growth by molecular dynamics simulation. Materials Letters, 2001, 51, 7-13.	1.3	9

ARTICLE IF CITATIONS # Microstructure and shear strength of a Cuâ€"Ta interface. Computational Materials Science, 2001, 20, 1.4 35 614 157-167. Embedded-atom-method functions for the body-centered-cubic iron and hydrogen. Journal of 1.2 58 Materials Research, 2001, 16, 3496-3502. Orthogonal tight-binding molecular-dynamics simulations of silicon clusters. Physical Review B, 2001, 616 29 1.1 63, . Atomic simulation of amorphisation and crystallisation of Al₅₀Ni₅₀ during rapid solidification. Materials Science and Technology, 2001, 17, 663-667. Simulation of Hydrogen Embrittlement at Crack Tip in Nickel Single Crystal by Embedded Atom Method. 618 0.4 6 Materials Transactions, 2001, 42, 2283-2289. Superheating and melting behaviors of Ag clusters with Ni coating studied by molecular dynamics and experiments. Science in China Series D: Earth Sciences, 2001, 44, 432-440. Molecular dynamics simulations on specific heat capacity and glass transition temperature of liquid 620 1.7 5 silver. Science Bulletin, 2001, 46, 1051-1053. Magnetite scale cluster adhesion on metal oxides surfaces: atomistic simulation study. Applied 3.1 Surface Science, 2001, 171, 175-188. Molecular dynamics computation of clusters in liquid Feâ€"Al alloy. Physics Letters, Section A: General, 622 0.9 16 Atomic and Solid State Physics, 2001, 280, 325-332. Evolution of small nickel cluster during solidification. Solid State Communications, 2001, 120, 41-46. The role of Cu in displacement cascades examined by molecular dynamics. Journal of Nuclear 624 1.3 47 Materials, 2001, 294, 274-287. A dislocation-based description of grain boundary dissociation: application to a $90\hat{A}^\circ \tilde{a} \in 110\tilde{a} \in \infty$ tilt boundary in gold. Acta Materialia, 2001, 49, 3689-3697. 3.8 Molecular dynamics study on formation and crystallization of Ti–Al amorphous alloys. Materials 626 Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 2.6 42 304-306, 515-519. Reconstruction of Si(001): A Comparison Study of Many Body Potential Calculations. Physica Status Solidi (B): Basic Research, 2001, 223, 773-778. Atomic Computer Simulation: Large Scale Calculations of Defect Properties by Empirical Potentials. 628 0.7 1 Physica Status Solidi (B): Basic Research, 2001, 227, 151-175. Predicting the Liquid-Vapor Critical Point from the Crystal Anharmonicity. Contributions To Plasma Physics, 2001, 41, 183-186. Molecular dynamics simulation on the deposition behavior of nanometer-sized Au clusters on a Au 630 0.7 31 (001) surface. Journal of Crystal Growth, 2001, 223, 311-320. Solid-state crystal-to-amorphous transition in metalâ€metal multilayers and its thermodynamic and atomistic modelling. Advances in Physics, 2001, 50, 367-429.
#	Article	IF	CITATIONS
632	Surface Tension of Ni-Cu Alloys: A Molecular Simulation Approach. International Journal of Thermophysics, 2001, 22, 1295-1302.	1.0	10
633	Molecular Dynamics Simulation of the Specific Heat of Undercooled Fe-Ni Melts. International Journal of Thermophysics, 2001, 22, 1303-1309.	1.0	4
634	Rapid solidification and crystal growth of Au3Ag alloy by MD simulation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 298, 262-267.	2.6	7
635	Mobility of self-interstitial atom clusters in vanadium, tantalum and copper. Nuclear Instruments & Methods in Physics Research B, 2001, 180, 66-71.	0.6	10
636	Determining the range of forces in empirical many-body potentials using first-principles calculations. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2001, 81, 991-1008.	0.8	26
637	Cooling rate dependence of structural properties of aluminium during rapid solidification. Journal of Physics Condensed Matter, 2001, 13, 1873-1890.	0.7	31
638	Accurate atomistic simulation of (<i>a</i> /2) 〠î111〉 screw dislocations and other defects in bcc tantalum. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2001, 81, 1355-1385.	0.8	110
639	Influence of alloying additions on grain boundary cohesion of transition metals: First-principles determination and its phenomenological extension. Physical Review B, 2001, 63, .	1.1	135
640	Structure and energetics of long-period tilt grain boundaries using an effective Hamiltonian. Physical Review B, 2001, 63, .	1.1	9
641	Accelerated molecular dynamics of rare events using the local boost method. Physical Review B, 2001, 63, .	1.1	29
642	Spontaneous alloying in binary metal microclusters:â€,â€,A molecular dynamics study. Physical Review B, 2001, 64, .	1.1	35
643	Initial growth mode of ultrathin Ag films on an Al(111) surface. Physical Review B, 2001, 63, .	1.1	10
644	Chemical bonding, elasticity, and valence force field models: A case study forαâ^'Pt2Siand PtSi. Physical Review B, 2001, 64, .	1.1	26
645	Structures of Liquid Aluminium under High Pressure. Chinese Physics Letters, 2001, 18, 495-497.	1.3	11
646	Local cluster formation in a cobalt melt during the cooling process. Physical Review B, 2001, 65, .	1.1	19
647	Molecular dynamics simulation of stick-slip. Journal of Applied Physics, 2001, 90, 3090-3094.	1.1	41
648	Method for Computing the Anisotropy of the Solid-Liquid Interfacial Free Energy. Physical Review Letters, 2001, 86, 5530-5533.	2.9	431
649	Atomistic computation of liquid diffusivity, solid-liquid interfacial free energy, and kinetic coefficient in Au and Ag. Physical Review B, 2002, 65, .	1.1	171

#	Article	IF	CITATIONS
650	Relation between the interaction potential, replacement collision sequences, and collision cascade expansion in iron. Physical Review B, 2002, 66, .	1.1	29
651	Modeling the metal-semiconductor interaction: Analytical bond-order potential for platinum-carbon. Physical Review B, 2002, 65, .	1.1	144
652	First-principles study on3dtransition-metal dihydrides. Physical Review B, 2002, 65, .	1.1	110
653	Low-energy ion deposition of Co on Ag(001): A molecular dynamics study. Physical Review B, 2002, 65, .	1.1	9
654	Parallel-in-time molecular-dynamics simulations. Physical Review E, 2002, 66, 057701.	0.8	108
655	Atomic-scale modeling of cluster-assembledNixAl1â^²xthin films. Physical Review B, 2002, 66, .	1.1	38
656	Atomistic modeling of solid-state amorphization in an immiscible Cu-Ta system. Physical Review B, 2002, 66, .	1.1	56
657	Equivalent continuum for dynamically deforming atomistic particle systems. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2002, 82, 2547-2574.	0.8	49
658	Monte Carlo Simulation of Phase Separation Behavior in a Cu-Co Alloy Nanoparticle. Journal of Materials Research, 2002, 17, 925-928.	1.2	5
659	Testing interaction models by using x-ray absorption spectroscopy: solid Pb. Journal of Physics Condensed Matter, 2002, 14, 3365-3382.	0.7	15
660	Interfaces in copper nanoconnections. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 2052.	1.6	8
661	Surface tension of undercooled liquid cobalt. Journal of Physics Condensed Matter, 2002, 14, 7479-7485.	0.7	32
662	Atomistic potential for TaSi system: application to low-index interfaces. Modelling and Simulation in Materials Science and Engineering, 2002, 10, 403-412.	0.8	3
664	Molecular-Dynamics Study of the Mechanical Properties of Metallic Nanowires. Materials Research Society Symposia Proceedings, 2002, 739, 7411.	0.1	0
665	Subnanoscale Studies of Segregation at Grain Boundaries: Simulations and Experiments. Annual Review of Materials Research, 2002, 32, 235-269.	4.3	52
666	Atomistic model of gallium. Physical Review B, 2002, 66, .	1.1	56
667	The rigid-body displacement observed at the â´´ = 5, (310)-[001] symmetric tilt grain boundary in central transition bcc metals. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2002, 82, 1573-1594.	0.8	3
668	An Atomistic Modeling of Carbon Nanotube Tensile Strength. , 2002, , .		1

#	Article	IF	CITATIONS
669	A Computational Framework for a Multiscale Continuum-Atomistic Homogenization Method. , 2002, , .		0
670	Modeling the full monty: baring the nature of surfaces across time and space. Surface Science, 2002, 500, 323-346.	0.8	23
671	Quantum-based atomistic simulation of materials properties in transition metals. Journal of Physics Condensed Matter, 2002, 14, 2825-2857.	0.7	147
672	Interatomic potentials and atomistic calculations of some metal hydride systems. Journal of Alloys and Compounds, 2002, 330-332, 64-69.	2.8	18
673	Atomistic process on hydrogen embrittlement of a single crystal of nickel by the embedded atom method. Computational Materials Science, 2002, 23, 131-138.	1.4	21
674	Diffusion of clusters down aluminum islands. Computational Materials Science, 2002, 23, 85-94.	1.4	8
675	Point-defect properties in body-centered cubic transition metals with analytic EAM interatomic potentials. Computational Materials Science, 2002, 23, 175-189.	1.4	119
676	Multiscale approaches for metal thin film growth. Computational Materials Science, 2002, 24, 58-65.	1.4	13
677	Formation of an Icosahedral Structure during the Freezing of Gold Nanoclusters: Surface-Induced Mechanism. Physical Review Letters, 2002, 89, 275502.	2.9	165
678	Molecular dynamics study of Al and Ni3Al sputtering by Al clusters bombardment. Nuclear Instruments & Methods in Physics Research B, 2002, 193, 822-829.	0.6	15
679	Length scale effects in the simulation of deformation properties of nanocrystalline metals. Scripta Materialia, 2002, 47, 719-724.	2.6	95
680	Molecular Dynamics Simulation of Hydrogen-Edge Dislocation Interaction in BCC Iron. Physica Status Solidi A, 2002, 193, 26-34.	1.7	12
681	Effect of the substrate temperatures on the epitaxial rearrangement of the deposited Au nanoclusters. Metals and Materials International, 2002, 8, 423-426.	1.8	2
682	Competition between surface and strain energy during grain growth in free-standing and attached Ag and Cu films on Si substrates. Applied Surface Science, 2002, 187, 60-67.	3.1	63
683	Materials by design and the exciting role of quantum computation/simulation. Journal of Computational and Applied Mathematics, 2002, 149, 27-56.	1.1	26
684	Molecular dynamics simulation of vanadium using an interatomic potential fitted to finite temperature properties. Journal of Nuclear Materials, 2002, 307-311, 1007-1010.	1.3	5
685	Thermal stability of unsupported gold nanoparticle: a molecular dynamics study. Surface Science, 2002, 512, 262-268.	0.8	175
686	Molecular dynamics simulation of dislocation nucleation and motion at $\hat{1}^3/\hat{1}^3\hat{n}\in^2$ interface in Ni-based superalloy. International Journal of Mechanical Sciences, 2002, 44, 1845-1860.	3.6	58

#	Article	IF	CITATIONS
687	Molecular-dynamics study of martensitic transformations in sintered Feî—,Ni nanoparticles. Computer Physics Communications, 2002, 147, 126-129.	3.0	20
688	Recognition and analysis of local structure in polycrystalline configurations. Computer Physics Communications, 2002, 145, 371-384.	3.0	26
689	Effects of cluster size and substrate temperature on the homoepitaxial deposition of Au clusters. Journal of Crystal Growth, 2002, 242, 463-470.	0.7	23
690	Atomistic Simulation Methods for Computing the Kinetic Coefficient in Solid-Liquid Systems. Journal of Materials Science, 2002, 10, 181-189.	1.2	73
691	Atomic-Scale Simulation Study of Equilibrium Solute Adsorption at Alloy Solid-Liquid Interfaces. Journal of Materials Science, 2002, 10, 149-158.	1.2	62
692	Atomistic simulations of dislocations and defects. Journal of Computer-Aided Materials Design, 2002, 9, 99-132.	0.7	60
693	Title is missing!. Journal of Materials Science, 2003, 38, 307-322.	1.7	9
694	An Atomistic Study of Interfacial Diffusion in Lamellar TiAl Alloys. Journal of Materials Science, 2003, 11, 99-109.	1.2	4
695	Atomistic modeling of surface and bulk properties of Cu, Pd and the Cu–Pd system. Progress in Surface Science, 2003, 73, 79-116.	3.8	46
696	Structural simulation of super-cooled liquid Au–Cu, Au–Ag alloys. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 317, 489-494.	0.9	13
697	Ab initio lattice dynamics of metal surfaces. Physics Reports, 2003, 387, 151-213.	10.3	95
698	On higher gradients in continuum-atomistic modelling. International Journal of Solids and Structures, 2003, 40, 6877-6896.	1.3	130
699	Structure and energetics of Ni clusters with up to 150 atoms. Chemical Physics Letters, 2003, 375, 219-226.	1.2	61
700	Molecular dynamics calculation of heat dissipation during sliding friction. International Journal of Heat and Mass Transfer, 2003, 46, 37-43.	2.5	32
701	Molecular dynamics simulation of the crystallization of a liquid gold nanoparticle. Journal of Crystal Growth, 2003, 250, 558-564.	0.7	52
702	Surface science-based reaction design: increasing the ortho–para hydrogen conversion yield via molecular orientation, a case study. Progress in Surface Science, 2003, 72, 53-86.	3.8	24
703	Stress induced crystallization of amorphous materials and mechanical properties of nanocrystalline materials: a molecular dynamics simulation study. Acta Materialia, 2003, 51, 6233-6240.	3.8	42
704	Atomistic and continuum modeling of dendritic solidification. Materials Science and Engineering Reports, 2003, 41, 121-163.	14.8	381

#	Article	IF	CITATIONS
705	Calculation of the surface energy of bcc metals by using the modified embedded-atom method. Surface and Interface Analysis, 2003, 35, 662-666.	0.8	80
706	Anisotropy analysis of the surface energy of diamond cubic crystals. Surface and Interface Analysis, 2003, 35, 805-809.	0.8	79
707	A Peierls criterion for the onset of deformation twinning at a crack tip. Journal of the Mechanics and Physics of Solids, 2003, 51, 765-793.	2.3	257
708	Statistical mechanics of nucleation in solids: a kinetics driven morphological transition. Physica A: Statistical Mechanics and Its Applications, 2003, 318, 251-261.	1.2	6
709	Evolution of classical/quantum methodologies: applications to oxide surfaces and interfaces. Coordination Chemistry Reviews, 2003, 238-239, 31-53.	9.5	17
710	Deformation twinning at aluminum crack tips. Acta Materialia, 2003, 51, 117-131.	3.8	139
711	An embedded atom method interatomic potential for the CuÂPb system. Modelling and Simulation in Materials Science and Engineering, 2003, 11, 287-299.	0.8	64
712	Multiscale modelling of nanomechanics and micromechanics: an overview. Philosophical Magazine, 2003, 83, 3475-3528.	0.7	145
713	Interatomic potentials for atomistic simulations of the Ti-Al system. Physical Review B, 2003, 68, .	1.1	527
714	Development of modified embedded atom method for a bcc metal: lithium. Modelling and Simulation in Materials Science and Engineering, 2003, 11, 447-456.	0.8	16
715	Molecular dynamics simulations of asperity shear in aluminum. Journal of Applied Physics, 2003, 94, 4306-4314.	1.1	27
716	Modeling Structural and Magnetic Phase Transitions in Iron-Nickel Nanoparticles. Phase Transitions, 2003, 76, 355-365.	0.6	42
717	Towards Multiscale Modeling of Metals via Embedded Particle Computer Simulation. Multiscale Modeling and Simulation, 2003, 1, 25-39.	0.6	8
718	Atomistic simulations of effect of hydrogen on kink-pair energetics of screw dislocations in bcc iron. Acta Materialia, 2003, 51, 1767-1773.	3.8	77
719	The calculations of P?T diagrams of Ni and Al using molecular dynamics simulation. Materials Letters, 2003, 57, 4336-4343.	1.3	13
720	Trocadero: a multiple-algorithm multiple-model atomistic simulation program. Computational Materials Science, 2003, 28, 85-106.	1.4	75
721	3.5 Surface segregation of atomic species. , 0, , 62-111.		0
722	MD Simulation of Grain Boundary Fracture in Copper and Connections to Interface Separation Potentials. , 2003, , .		0

#	Article	IF	CITATIONS
723	The SlaterÂKoster tight-binding method: a computationally efficient and accurate approach. Journal of Physics Condensed Matter, 2003, 15, R413-R440.	0.7	153
724	Molecular dynamics studies of liquids using a Beowulf computer. Contemporary Physics, 2003, 44, 435-450.	0.8	1
725	Molecular-dynamics simulations of rapid alloying of microclusters using a many-body potential. Physical Review B, 2003, 67, .	1.1	5
726	Accurate method to calculate liquid and solid free energies for embedded atom potentials. Physical Review B, 2003, 67, .	1.1	17
727	Influence of the electrode potential on the Ehrlich-Schwoebel barrier. Physical Review B, 2003, 68, .	1.1	3
728	Molecular dynamics simulation of the early stage of thin film deposition: Al and Co on Co(111). , 0, , .		0
729	Bulk viscosity in the case of the interatomic potential depending on density. Physical Review E, 2003, 67, 021205.	0.8	7
730	Structure and energetics of clean and hydrogenated Ni surfaces and symmetrical tilt grain boundaries using the embedded-atom method. Physical Review B, 2003, 68, .	1.1	32
731	Bulk and surface ordering phenomena in binary metal alloys. Journal of Physics Condensed Matter, 2003, 15, R1429-R1500.	0.7	98
732	Surface alloying and mixing at the Mn/Fe(001) interface: Real-time photoelectron spectroscopy and modified embedded atom simulations. Physical Review B, 2003, 68, .	1.1	23
733	Relaxation, nucleation, and glass transition in supercooled liquid Cu. Physical Review B, 2003, 67, .	1.1	64
734	Predicted transport properties of liquid plutonium. Physical Review B, 2003, 67, .	1.1	14
735	Surface alloy formation of Co on Al surface: Molecular dynamics simulation. Journal of Applied Physics, 2003, 93, 8564-8566.	1.1	47
736	Molecular Dynamics Simulation of Martensitic Transformations in NiAl Alloy Using the Modified Embedded Atom Method. Journal of the Physical Society of Japan, 2003, 72, 2539-2545.	0.7	6
737	Construction of an Embedded-Atom Potential for an Immiscible Cu–V System. Journal of the Physical Society of Japan, 2003, 72, 464-467.	0.7	3
738	First principles force field for metallic tantalum. Modelling and Simulation in Materials Science and Engineering, 2004, 12, S445-S459.	0.8	34
739	Structural Stability and the Correlation of Lattice Constant versus Tantalum Concentration of the Ag-Based Fcc Solid Solutions Studied by Molecular Dynamics Simulation. Japanese Journal of Applied Physics, 2004, 43, 2589-2593.	0.8	3
740	Molecular dynamics simulation of thermophysical properties of undercooled liquid cobalt. Journal of Physics Condensed Matter, 2004, 16, 2565-2574.	0.7	23

ARTICLE IF CITATIONS # General relations between many-body potentials and cluster expansions in multicomponent systems. 741 0.7 21 Journal of Physics Condensed Matter, 2004, 16, 3843-3852. Molecular Dynamics Simulation at the Early Stage of Thin-Film Deposition: Al or Co on Co(111). Japanese Journal of Applied Physics, 2004, 43, 3818-3821. 742 0.8 Comparative study of metastable phase formation in the immiscible Cu–W system byab 743 0.7 18 initiocalculation and n-body potential. Journal of Physics Condensed Matter, 2004, 16, 5251-5258. A mesoscopic model of a two-dimensional solid state structural transformation: statics and 744 dynamics. Journal of Physics Condensed Matter, 2004, 16, 7733-7752. Calculating the Peierls energy and Peierls stress from atomistic simulations of screw dislocation 745 dynamics: application to bcc tantalum. Modelling and Simulation in Materials Science and Engineering, 0.8 31 2004, 12, S371-S389. 746 Atomistic investigations of alpha-Fe thin film growth on Al [100]., 2004, , . Molecular dynamics study of atomic transport properties in rapidly cooling liquid copper. Journal of 747 1.2 49 Chemical Physics, 2004, 120, 1826-1831. Structural and energetic properties of nickel clusters:â€∫2⩽N⩽150. Physical Review B, 2004, 70, . 748 1.1 749 Dislocation glide in modelNi(Al)solid solutions by molecular dynamics. Physical Review B, 2004, 70, . 1.1 71 Metastability of an immiscible Cu-Mo system calculated from first-principles and a derivedn-body 1.1 potential. Physical Review B, 2004, 69, Interlayer surface relaxations and energies of fcc metal surfaces by a tight-binding method. Physical 751 29 1.1 Review B, 2004, 70, . Structural changes and viscoplastic behavior of a generic embedded-atom model metal in steady shear 0.8 flow. Physical Review E, 2004, 69, 021509. Structural stability and magnetic properties of metastable Fe-Cu alloys studied byab 753 1.1 17 initiocalculations and molecular dynamics simulations. Physical Review B, 2004, 69, . Molecular dynamics simulations of the effects of defects on martensite nucleation. Journal of 754 1.1 34 Applied Physics, 2004, 95, 1698-1705. Diffusion and jump-length distribution in liquid and amorphousCu33Zr67. Physical Review B, 2004, 70, . 755 50 1.1 Computation of grain boundary energies. Modelling and Simulation in Materials Science and Engineering, 2004, 12, 621-632. 757 Multi-Scale Modeling of Nanocrystalline Materials. Materials Science Forum, 2004, 447-448, 19-26. 0.3 0 Atomistic Computer Simulation of Fracture Process at Nanoscale. Key Engineering Materials, 2004, 758 0.4 274-276, 349-354.

#	Article	IF	CITATIONS
759	A STATISTICAL MECHANICAL STUDY OF THERMODYNAMIC PROPERTIES OF SOLID SODIUM UNDER PRESSURE BASED ON AN EFFECTIVE INTERIONIC POTENTIAL. International Journal of Modern Physics B, 2004, 18, 2185-2194.	1.0	3
760	Molecular Simulation for Nanotechnologies: Application to Industry. Molecular Simulation, 2004, 30, 819-826.	0.9	2
761	Spatial transitions between local structures in condensed systems. Physics and Chemistry of Liquids, 2004, 42, 349-366.	0.4	0
762	Diffusion barriers on Cu surfaces and near steps. Modelling and Simulation in Materials Science and Engineering, 2004, 12, 1209-1225.	0.8	64
763	Simulation of dimer diffusion on metal fcc (001) surfaces by molecular dynamics. Science in China Series D: Earth Sciences, 2004, 47, 51.	0.9	1
764	MD simulation of the effect of contact area and tip radius on nanoindentation. Science in China Series G: Physics, Mechanics and Astronomy, 2004, 47, 101.	0.2	16
765	Glass-forming ability determined from inter-atomic potentials for some miscible/immiscible binary metal systems. Journal of Materials Science, 2004, 39, 5067-5070.	1.7	1
766	Monte Carlo simulations of segregation in Pt-Re catalyst nanoparticles. Journal of Chemical Physics, 2004, 121, 5410-5422.	1.2	62
767	Behavior of amorphous materials under hydrostatic pressures: A molecular dynamics simulation study. Metals and Materials International, 2004, 10, 467-474.	1.8	33
768	Atomic Mixing Behavior of Co/Al(001) vs. Al/fcc-Co(001): Molecular Dynamics Simulation. Journal of Electroceramics, 2004, 13, 315-320.	0.8	12
769	Molecular-dynamics study of mechanical deformation in nano-crystalline aluminum. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 2719-2723.	1.1	68
770	Molecular dynamics study on the coalescence of Cu nanoparticles and their deposition on the Cu substrate. Journal of Electronic Materials, 2004, 33, 1326-1330.	1.0	34
771	Theoretical analysis of interface energy for unrelaxed Ag(001)/Ni(001) twist interface boundaries with MAEAM. Surface and Interface Analysis, 2004, 36, 355-359.	0.8	40
772	Calculating the energies for Ag(001) twist boundaries utilizing the modified analytical embedded atom method. Surface and Interface Analysis, 2004, 36, 1500-1504.	0.8	36
773	The structure and transport property of liquid Al with different EAM model. Physica B: Condensed Matter, 2004, 351, 208-212.	1.3	6
774	MEAM molecular dynamics study of a gold thin film on a silicon substrate. Surface Science, 2004, 551, 39-58.	0.8	47
775	Off lattice Monte Carlo simulation study for different metal adlayers onto (111) substrates. Surface Science, 2004, 569, 76-88.	0.8	16
776	Predictive modeling of nanoindentation-induced homogeneous dislocation nucleation in copper. Journal of the Mechanics and Physics of Solids, 2004, 52, 691-724.	2.3	227

ARTICLE IF CITATIONS # Atomistic simulation of the structure and elastic properties of gold nanowires. Journal of the 2.3 300 777 Mechanics and Physics of Solids, 2004, 52, 1935-1962. Simulations of low energy cascades in fcc Pu metal at 300 K and constant volume. Journal of Nuclear Materials, 2004, 324, 41-51. 778 1.3 Pressure effect on the structural transition of liquid Au. Physics Letters, Section A: General, Atomic 779 0.9 19 and Solid State Physics, 2004, 320, 452-458. Molecular dynamic simulation studies of glass formation and atomic-level structures in $Pd\hat{e}^{(n)}$ in alloy. 0.9 Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 327, 506-511. Non-local separation constitutive laws for interfaces and their relation to nanoscale simulations. 781 1.7 88 Mechanics of Materials, 2004, 36, 825-847. Melting behavior of nanosized lead particles embedded in an aluminum matrix. Acta Materialia, 2004, 52, 2305-2316. 3.8 A kinetic Monte Carlo method for the simulation of massive phase transformations. Acta Materialia, 783 3.8 19 2004, 52, 3545-3554. Molecular dynamics simulation of single asperity contact. Acta Materialia, 2004, 52, 3983-3996. 784 3.8 Calculation of the surface energy of FCC metals with modified embedded-atom method. Applied 785 3.1267 Surface Science, 2004, 229, 34-42. Nano metal particles for low temperature interconnect technology., 0, , . Analytic Potential Energy Functions for Aluminum Clusters. Journal of Physical Chemistry B, 2004, 787 1.2 24 108, 8996-9010. Solvation of Metal Nanoparticles in a Subcritical â€" Supercritical Fluid:  A Computer Simulation Study. 788 1.2 30 Journal of Physical Chemistry B, 2004, 108, 6052-6061. Investigation of the formation of iron nanoparticles from the gas phase by molecular dynamics 789 1.3 98 simulation. Nanotechnology, 2004, 15, 525-533. On the Lennard–Jones EAM potential. Proceedings of the Royal Society A: Mathematical, Physical and 790 1.0 14 Engineering Sciences, 2004, 460, 1649-1672. Crystal-melt interfacial free energies in metals: fcc versus bcc. Physical Review B, 2004, 69, . 791 92 1.1 Kinetic coefficient of Ni solid-liquid interfaces from molecular-dynamics simulations. Physical Review 792 126 B, 2004, 69, . Hot-atom versus Eley–Rideal dynamics in hydrogen recombination on Ni(100). I. The single-adsorbate 793 1.2 34 case. Journal of Chemical Physics, 2004, 120, 8761-8771. Thermophysical properties of undercooled liquid Au–Cu alloys from molecular dynamics 794 19 simulations. Journal of Physics Condensed Matter, 2004, 16, 705-713.

#	Article	IF	Citations
795	Atomistic Simulations of Processes at Surfaces. Springer Series in Materials Science, 2004, , 39-72.	0.4	0
796	Rapid estimation of elastic constants by molecular dynamics simulation under constant stress. Physical Review B, 2004, 69, .	1.1	900
797	Multiscale modelling of nanostructures. Journal of Physics Condensed Matter, 2004, 16, R1537-R1576.	0.7	90
798	Shockley partial dislocations to twin: Another formation mechanism and generic driving force. Applied Physics Letters, 2004, 85, 5983-5985.	1.5	138
799	The rapid solidification of Ti3Al : a molecular dynamics study. Journal of Physics Condensed Matter, 2004, 16, 4203-4210.	0.7	20
800	Modeling of hydrogen embrittlement in single crystal Ni. Computational Materials Science, 2004, 30, 202-211.	1.4	23
801	A modified embedded atom method interatomic potential for the Cu–Ni system. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2004, 28, 125-132.	0.7	26
802	Molecular dynamic simulation of glass formation in binary liquid metal: Cu–Ag using EAM. Intermetallics, 2004, 12, 1191-1195.	1.8	44
803	Simulation of crystallization and glass formation of binary Pd–Ag metal alloys. Journal of Non-Crystalline Solids, 2004, 342, 6-11.	1.5	16
804	Structural phase transitions in the Cu-based Cu–V solid solutions studied by molecular dynamics simulation. Journal of Alloys and Compounds, 2004, 366, 205-212.	2.8	6
805	Charged clusters in thin film growth. International Materials Reviews, 2004, 49, 171-190.	9.4	68
806	Structural Stability of the Metastable Solid Solution in the Equilibrium Immiscible Ag–Mo System Predicted by anab InitioDerived Potential. Journal of the Physical Society of Japan, 2004, 73, 1222-1227.	0.7	5
807	Atomistic Modeling of Metastable Phase Selection of a Highly Immiscible Ag–W System. Journal of the Physical Society of Japan, 2004, 73, 2023-2027.	0.7	6
808	Computer Simulation of Formation Energy and Migration Energy of Vacancies under High Strain in Cu. Materials Transactions, 2004, 45, 833-838.	0.4	8
809	Dual-Phase Metallic Glass and its Two-Dimensional Fractal Morphology. Journal of the Physical Society of Japan, 2005, 74, 2937-2940.	0.7	3
810	Point Defects and Re in L1 ₂ Ni ₃ Al: Atomic Studies. Materials Science Forum, 2005, 475-479, 3091-3094.	0.3	1
811	Energy analysis for (111) twist grain boundary in noble metals. Applied Surface Science, 2005, 243, 1-6.	3.1	47
812	Quantitative prediction of surface segregation in bimetallic Pt–M alloy nanoparticles (M=Ni,Re,Mo). Progress in Surface Science, 2005, , .	3.8	17

ARTICLE IF CITATIONS # Atomic-level investigation of interface structure in Ni–Al multilayer system: molecular dynamics 813 1.0 27 simulation. Journal of Magnetism and Magnetic Materials, 2005, 286, 394-398. Dependence of stresses and strain energies on grain orientations in FCC metal films. Journal of 814 Crystal Growth, 2005, 285, 427-435. Molecular dynamics study of copper trench filling in damascene process. Materials Science in 815 1.9 8 Semiconductor Processing, 2005, 8, 587-601. A comparative molecular dynamics study of copper trench fill properties between Ta and Ti barrier 1.9 layers. Materials Science in Semiconductor Processing, 2005, 8, 622-629. A quantitative and comparative study of sputtering yields in Au. Nuclear Instruments & Methods in 817 0.6 58 Physics Research B, 2005, 239, 331-346. On the application of computer simulations to the study of electrochemical nanostructuring and surface phase formation. Electrochimica Acta, 2005, 50, 3161-3178. 2.6 The role of atomistic simulations in probing the small-scale aspects of fractureâ€"a case study on a 819 2.0 64 single-walled carbon nanotube. Engineering Fracture Mechanics, 2005, 72, 2037-2071. Molecular dynamics simulation of the solidification of liquid gold nanowires. Solid State 820 Communications, 2005, 136, 32-35. On the generation of metal clusters with the electrochemical scanning tunneling microscope. 821 0.8 28 Surface Science, 2005, 597, 133-155. Deformation of nanocrystalline materials by molecular-dynamics simulation: relationship to 3.8 experiments?. Acta Materialia, 2005, 53, 1-40. Grain boundary impurities in iron. Acta Materialia, 2005, 53, 2715-2726. 823 3.8 86 An atomistic analysis of the interface mobility in a massive transformation. Acta Materialia, 2005, 53, 824 3.8 5333-5341. Computational materials: Multi-scale modeling and simulation of nanostructured materials. 825 3.8 208 Composites Science and Technology, 2005, 65, 2416-2434. Surface-energy-driven abnormal grain growth in Cu and Ag films. Applied Surface Science, 2005, 242, 3.1 55-61. Off lattice Monte-Carlo simulations of low-dimensional surface defects and metal deposits on Pt(111). 827 2.32 Electrochemistry Communications, 2005, 7, 472-476. Structure and energetics of nickel, copper, and gold clusters. European Physical Journal D, 2005, 34, 34 187-190. Derivation of Higher Order Gradient Continuum Models from Atomistic Models for Crystalline 829 0.6 57 Solids. Multiscale Modeling and Simulation, 2005, 4, 531-562. Atomistics of Fracture., 2005, , 839-853.

		CITATION REF	PORT	
#	Article		IF	CITATIONS
831	Molecular dynamics modeling of diffusion bonding. Scripta Materialia, 2005, 52, 1135-1140		2.6	50
832	Molecular dynamics investigation for thin film growth morphology of Ni/Ni(111). IEEE Transa Magnetics, 2005, 41, 3431-3433.	actions on	1.2	7
833	Anisotropy analysis of the thermal stresses and strain energies in BCC metal films. Physica B Condensed Matter, 2005, 368, 215-222.	:	1.3	15
834	Molecular dynamics study of nanosilver particles for low-temperature lead-free interconnect applications. Journal of Electronic Materials, 2005, 34, 40-45.		1.0	33
835	Thermal behavior of silver nanoparticles for low-temperature interconnect applications. Journ Electronic Materials, 2005, 34, 168-175.	nal of	1.0	344
836	Molecular dynamics studies of atomic-scale tribological characteristics for different sliding systems. Tribology Letters, 2005, 18, 315-330.		1.2	25
837	A Molecular Dynamics Study for the Thermophysical Properties of Liquid Ti–Al Alloys. Inter Journal of Thermophysics, 2005, 26, 869-880.	national	1.0	11
838	Molecular dynamics study of the sputtering of Al cluster by Ar and Kr atoms. European Physi Journal D, 2005, 55, 497-502.	cal	0.4	1
839	Simulations of metal nanowires. International Journal of Quantum Chemistry, 2005, 105, 77	2-780.	1.0	6
840	Simulation calculations of surface segregation for Au-Cu alloys using an analytic embedded a model. Physica Status Solidi A, 2005, 202, 2686-2699.	atom	1.7	10
841	Thermodynamic properties from ab-initio calculations: New theoretical developments, and applications to various materials systems. Physica Status Solidi (B): Basic Research, 2005, 24	42, 1159-1173.	0.7	31
842	Anisotropy analysis of energy in Ag/Si twist interface. Surface and Interface Analysis, 2005, 3	87, 608-614.	0.8	18
843	Structural duality of 1/3⟨111⟩ twin-boundary disconnections. Philosophical Magazine I 387-394.	_etters, 2005, 85,	0.5	16
844	Surface Structures of Cubo-Octahedral Ptâ^'Mo Catalyst Nanoparticles from Monte Carlo Simulations. Journal of Physical Chemistry B, 2005, 109, 11683-11692.		1.2	35
845	A General Embedded Atom Method and Application to Prediction for Thermodynamic Proper Fe-Eu System. Materials Science Forum, 2005, 502, 57-62.	ties of	0.3	3
846	Molecular dynamics studies of atomic-scale friction for roller-on-slab systems with different rolling–sliding conditions. Nanotechnology, 2005, 16, 1941-1949.		1.3	19
847	The structure of small Ta clusters. Journal of Physics Condensed Matter, 2005, 17, 6111-612	21.	0.7	10
848	Molecular dynamics study of a nano-particle joint for potential lead-free anisotropic conduct adhesives applications. Journal of Adhesion Science and Technology, 2005, 19, 87-94.	ive	1.4	7

		LFORT	
#	Article	IF	Citations
849	Effects of morphology on phonons in nanoscopic silver grains. Physical Review B, 2005, 72, .	1.1	26
850	Construction ofn-body potentials for hcp-bcc metal systems within the framework of embedded atom method. Physical Review B, 2005, 71, .	1.1	10
851	On fitting a gold embedded atom method potential using the force matching method. Journal of Chemical Physics, 2005, 123, 204719.	1.2	227
852	Free energy approach to the formation of an icosahedral structure during the freezing of gold nanoclusters. Physical Review B, 2005, 71, .	1.1	19
853	Enhanced and correlated thermal vibrations of Cu(111) and Ni(111) surfaces. Physical Review B, 2005, 72, .	1.1	19
854	STRUCTURE AND DYNAMICAL PROPERTIES OF AuN, N = $12\hat{a}\in$ "14 CLUSTERS: MOLECULAR DYNAMICS SIMULATION. International Journal of Modern Physics C, 2005, 16, 99-116.	0.8	11
855	PARALLELIZATION OF A MOLECULAR DYNAMICS SIMULATION OF AN ION-SURFACE COLLISION SYSTEM: Ar–Ni(100). International Journal of Modern Physics C, 2005, 16, 969-990.	0.8	4
856	GLOBAL GEOMETRY OPTIMIZATION OF SILICON CLUSTERS EMPLOYING EMPIRICAL POTENTIALS, DENSITY FUNCTIONALS, AND AB INITIO CALCULATIONS. Journal of Theoretical and Computational Chemistry, 2005, 04, 1119-1151.	1.8	13
857	Effect of deformation path sequence on the behavior of nanoscale copper bicrystal interfaces. Journal of Engineering Materials and Technology, Transactions of the ASME, 2005, 127, 374-382.	0.8	19
858	Molecular dynamics investigation of homogeneous nucleation and cluster growth of platinum clusters from supersaturated vapour. Nanotechnology, 2005, 16, 2870-2877.	1.3	37
859	Atomistic simulation of Ag thin films on MgO(100) substrate: A template substrate for heterogeneous adsorption. Physical Review B, 2005, 72, .	1.1	27
860	Atomistic simulations of shock-induced transformations and their orientation dependence in bcc Fe single crystals. Physical Review B, 2005, 72, .	1.1	174
861	Molecular dynamics analysis for micro notch effects of single crystal silicon thin film. , 0, , .		1
862	Full-scale atomistic simulations of dislocations in Ni crystal by embedded-atom method. Philosophical Magazine, 2005, 85, 1917-1929.	0.7	7
863	Formation of Amorphous Alloys by Ion Beam Mixing and Its Multiscale Theoretical Modeling in the Equilibrium Immiscible Scâ^'W System. Journal of Physical Chemistry B, 2005, 109, 4391-4397.	1.2	13
864	Slater's Exchange Parameters α for Analytic and Variational Xα Calculations. Journal of Chemical Theory and Computation, 2005, 1, 1193-1200.	2.3	19
865	Structure and magnetic properties of small Fe clusters supported on the Ni(001) surface. Physical Review B, 2005, 71, .	1.1	16
866	Homogeneous nucleation of iron from supersaturated vapor investigated by molecular dynamics simulation. Journal of Aerosol Science, 2005, 36, 1409-1426.	1.8	39

#	Article	IF	CITATIONS
867	A modified embedded atom method interatomic potential for carbon. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2005, 29, 7-16.	0.7	74
868	Analytic Potential Energy Functions for Simulating Aluminum Nanoparticles. Journal of Physical Chemistry B, 2005, 109, 3915-3920.	1.2	36
869	Molecular dynamics investigations of the coalescence of iron clusters embedded in an inert-gas heat bath. Physical Review B, 2005, 71, .	1.1	37
870	Thermomechanical continuum representation of atomistic deformation at arbitrary size scales. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2005, 461, 3437-3472.	1.0	25
871	Crystallization of amorphous alloy during isothermal annealing: a molecular dynamics study. Journal of Physics Condensed Matter, 2005, 17, 1493-1504.	0.7	45
872	Development of atomistic MEAM potentials for the silicon–oxygen–gold ternary system. Modelling and Simulation in Materials Science and Engineering, 2005, 13, 1309-1329.	0.8	28
873	Modified embedded-atom method interatomic potential for theFeâ^'Cualloy system and cascade simulations on pure Fe andFeâ^'Cualloys. Physical Review B, 2005, 71, .	1.1	55
874	First-principles study on the effect of impurities at the front of cracks inαâ^'Fe. Physical Review B, 2005, 72, .	1.1	7
875	Quasiharmonic models for the calculation of thermodynamic properties of crystalline silicon under strain. Journal of Applied Physics, 2006, 99, 064314.	1.1	59
876	Surface characteristics of epitaxially grown Ni layers on Al surfaces: Molecular dynamics simulation. Journal of Applied Physics, 2006, 100, 074905.	1.1	25
877	Molecular Dynamics. , 2006, , 915-952.		1
878	Extended Finnis–Sinclair potential for bcc and fcc metals and alloys. Journal of Physics Condensed Matter, 2006, 18, 4527-4542.	0.7	119
879	Crystal-melt interfacial free energies in hcp metals: A molecular dynamics study of Mg. Physical Review B, 2006, 73, .	1.1	334
880	Nanostructure calculation of CoAg core-shell clusters. Journal of Applied Physics, 2006, 99, 08G706.	1.1	37
881	Molecular dynamics simulations of crack propagation in Ni with defects. Modelling and Simulation in Materials Science and Engineering, 2006, 14, 1409-1420.	0.8	37
882	Atomic simulation on evolution of nano-crystallizaion in amorphous metals. Transactions of Nonferrous Metals Society of China, 2006, 16, s327-s331.	1.7	5
883	Adsorption of hydrogen atoms on Pd (211), (311) and (511) stepped defective surfaces. Transactions of Nonferrous Metals Society of China, 2006, 16, s820-s823.	1.7	4
884	Amorphous systems in athermal, quasistatic shear. Physical Review E, 2006, 74, 016118.	0.8	513

#	Article	IF	CITATIONS
885	Phase Behavior of Elemental Aluminum Using Monte Carlo Simulations. Journal of Physical Chemistry B, 2006, 110, 26135-26142.	1.2	15
886	Analysis of energy and force of Pt adatom on Pt (001) surface by MAEAM. Applied Surface Science, 2006, 252, 5207-5214.	3.1	23
887	Atomistic modelling of fatigue crack growth and dislocation structuring in FCC crystals. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 462, 3707-3731.	1.0	35
888	Molecular dynamics simulation of interface dynamics during the fcc-bcc transformation of a martensitic nature. Physical Review B, 2006, 73, .	1.1	52
889	Stress and Morphology Evolution during Island Growth. Physical Review Letters, 2006, 96, 186103.	2.9	47
890	Atomistic model of helium bubbles in gallium-stabilized plutonium alloys. Physical Review B, 2006, 73, .	1.1	69
891	Influence of the carrier gas on the formation of iron nano-particles from the gas phase: A molecular dynamics simulation study. Computational Materials Science, 2006, 35, 210-215.	1.4	18
892	Numerical tensile tests of BCC iron crystal with various amounts of hydrogen near the crack tip. Computational Materials Science, 2006, 36, 272-280.	1.4	15
893	Multiscale modeling and related hybrid approaches. Current Opinion in Solid State and Materials Science, 2006, 10, 2-14.	5.6	14
894	First-principles modelling of Earth and planetary materials at high pressures and temperatures. Reports on Progress in Physics, 2006, 69, 2365-2441.	8.1	152
895	Vibrational modes and diffusion of self-interstitial atoms in body-centered-cubic transition metals: A tight-binding molecular-dynamics study. Physical Review B, 2006, 74, .	1.1	28
896	Molecular Dynamics Analysis for Effect of Defect Size on Fracture Behavior of Single Crystal Silicon. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2006, 72, 1131-1136.	0.2	0
897	A comparison between EAM interatomic potentials for Al and Ni: from bulk systems to nanowires. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 1248-1253.	0.8	8
898	A comparative study of helium atom diffusion via an interstitial mechanism in nickel and palladium. Physica Status Solidi (B): Basic Research, 2006, 243, 579-583.	0.7	22
899	A study of the behavior of helium atoms at Ni grain boundaries. Physica Status Solidi (B): Basic Research, 2006, 243, 2702-2710.	0.7	20
900	Atomistic simulation of tensile strength and toughness of cracked Cu nanowires. Fatigue and Fracture of Engineering Materials and Structures, 2006, 29, 615-622.	1.7	17
901	A modified embedded-atom method interatomic potential for the Fe–C system. Acta Materialia, 2006, 54, 701-711.	3.8	159
902	A modified embedded-atom method interatomic potential for the Fe–N system: A comparative study with the Fe–C system. Acta Materialia, 2006, 54, 4597-4607.	3.8	72

#	Article	IF	CITATIONS
903	Atomistic calculations of interfacial energies, nucleus shape and size of Î,′ precipitates in Al–Cu alloys. Acta Materialia, 2006, 54, 4699-4707.	3.8	137
904	Energy calculation of (011) twist grain boundary in noble metals. Applied Surface Science, 2006, 252, 7331-7336.	3.1	11
905	Calculation of the surface energy of bcc transition metals by using the second nearest–neighbor modified embedded atom method. Applied Surface Science, 2006, 252, 8217-8222.	3.1	49
906	Energy and volume expansion in Ag[1Â⁻ 1 0]STCB. Applied Surface Science, 2006, 253, 698-702.	3.1	6
907	The energy and structure of (0 0 1) twist grain boundary in noble metals. Applied Surface Science, 2006, 253, 854-858.	3.1	15
908	Energetic and entropic contributions to the underpotential/overpotential deposition shifts on single crystal surfaces from lattice dynamics. Electrochimica Acta, 2006, 51, 3526-3536.	2.6	19
909	MPM/MD handshaking method for multiscale simulation and its application to high energy cluster impacts. International Journal of Mechanical Sciences, 2006, 48, 145-159.	3.6	12
910	Temperature and pressure dependence of the some elastic and lattice dynamical properties of copper: a molecular dynamics study. Physica B: Condensed Matter, 2006, 381, 96-102.	1.3	10
911	Energy calculation for symmetrical tilt grain boundaries in iron. Applied Surface Science, 2006, 252, 4936-4942.	3.1	28
912	Calculation of the surface energy of hcp metals by using the modified embedded atom method. Applied Surface Science, 2006, 253, 2018-2024.	3.1	58
913	Dependence of the strain energies on grain orientations in HCP metal films. Applied Surface Science, 2006, 253, 2432-2436.	3.1	9
914	Structural transition of sheared-liquid metal in quenching state. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 355, 142-147.	0.9	14
915	Molecular dynamics simulation of primary irradiation defect formation in Fe–10%Cr alloy. Journal of Nuclear Materials, 2006, 351, 56-64.	1.3	71
916	Reconstructed (110) surfaces of FCC transition metals. Journal of Physics and Chemistry of Solids, 2006, 67, 1623-1628.	1.9	11
917	Surface effects at the nanoscale significantly reduce the effects of stress concentrators. Probabilistic Engineering Mechanics, 2006, 21, 277-286.	1.3	5
918	A study on mutual interaction between atomistic and macroscopic phenomena during electrochemical processes using coupled finite difference – kinetic Monte Carlo model: Application to potential step test in simple copper sulfate bath. Journal of Electroanalytical Chemistry, 2006, 588, 267-284.	1.9	13
919	The effects of stress concentrators on strength of materials at nanoscale: A molecular dynamics study. Mechanics Research Communications, 2006, 33, 352-358.	1.0	7
920	Multilayer relaxation of fcc metals (001) surface: A modified embedded atom method study. Solid State Communications, 2006, 137, 441-445.	0.9	13

#	Article	IF	CITATIONS
921	Freezing behavior of one-dimensional copper nanowires. Solid State Communications, 2006, 138, 399-403.	0.9	5
922	Dimension-induced structural stability transition: The stable and metastable phases of nanowires. Solid State Communications, 2006, 140, 487-490.	0.9	7
923	Surface properties of film deposition using molecular dynamics simulation. Surface and Coatings Technology, 2006, 201, 1796-1804.	2.2	20
924	Anisotropy analysis of the surface energy of hcp (c/a<1.633) metals. Surface Science, 2006, 600, 2990-2996.	0.8	25
925	Low-dimensional metallic nanostructures and their electrochemical relevance: Energetics and phenomenological approach. Surface Science, 2006, 600, 4475-4483.	0.8	7
926	Diluting and annealing effects on electromigration and morphology of chemical vapor-deposited copper films. Vacuum, 2006, 80, 850-854.	1.6	2
927	Modified embedded-atom method interatomic potentials for Ti and Zr. Physical Review B, 2006, 74, .	1.1	174
928	Structure and energetics ofCuNclusters with(2⩽N⩽150): An embedded-atom-method study. Physical Review B, 2006, 73, .	1.1	87
929	Interatomic potentials and the simulation of fracture: C15 NbCr2. International Journal of Fracture, 2006, 139, 517-526.	1.1	11
930	Sum Rules for the Quasi-Static and Visco-Elastic Response of Disordered Solids at Zero Temperature. Journal of Statistical Physics, 2006, 123, 415-453.	0.5	151
931	Co/CoAl/Co trilayer fabrication using spontaneous intermixing of Co and Al: Molecular dynamics simulation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 135, 25-29.	1.7	4
932	The Incident Angle Effect of Al Adatom on the Growth Morphology of Al/Ni. IEEE Transactions on Magnetics, 2006, 42, 2939-2941.	1.2	1
933	Theoretical Study of Structure and Energetics of Gold Clusters with the EAM Method. Zeitschrift Fur Physikalische Chemie, 2006, 220, 811-829.	1.4	16
934	Heat conduction in one-dimensional oscillator lattices using Nosé–Hoover chain thermostats. Journal of Physics A, 2006, 39, 11155-11170.	1.6	5
935	Homogeneous melting of metals with different crystalline structure. Journal of Physics Condensed Matter, 2006, 18, 5639-5653.	0.7	14
936	Deformation analysis of amorphous metals based on atomic elastic stiffness coefficients. Modelling and Simulation in Materials Science and Engineering, 2006, 14, 597-605.	0.8	28
937	Atomic Investigation of Al/Ni(001) by Molecular Dynamics Simulation. Japanese Journal of Applied Physics, 2006, 45, 99-101.	0.8	12
938	Angular-dependent matrix potentials for fast molecular-dynamics simulations of transition metals. Journal of Physics Condensed Matter, 2006, 18, S447-S461.	0.7	5

		CITATION REPORT		
#	Article		IF	CITATIONS
939	Effect of element Re on the grain boundary cohesion of α-Fe. Chinese Physics B, 2006,	, 15, 604-609.	1.3	27
940	Modified embedded-atom method interatomic potential for the Fe–Pt alloy system. J Materials Research, 2006, 21, 199-208.	ournal of	1.2	36
941	Local Acceleration Effects of Adatom at the Vicinity on the Surface: Case of Co Nano T Surface. Key Engineering Materials, 2006, 317-318, 581-584.	hin-Films on Al	0.4	0
942	Embedded atom method potentials employing a faithful density representation. Model Simulation in Materials Science and Engineering, 2006, 14, 721-731.	ling and	0.8	9
943	Multi-lattice kinetic Monte Carlo simulation of interphase kinetics for an iron fcc to bcc transformation. Modelling and Simulation in Materials Science and Engineering, 2006,	: 14, 273-282.	0.8	10
944	Differences in melting behaviours of disordered and symmetric clusters: AuN(N= 54â€ and Simulation in Materials Science and Engineering, 2006, 14, 947-961.	'56). Modelling	0.8	16
945	On stress calculations in atomistic simulations. Modelling and Simulation in Materials S Engineering, 2006, 14, 423-431.	Science and	0.8	28
946	Simulating solidification in metals at high pressure: The drive to petascale computing. J Physics: Conference Series, 2006, 46, 254-267.	ournal of	0.3	22
947	A Procedure of Determining Parameters to Expand Applicability of Modified Embedded Non-bulk Systems. Materials Research Society Symposia Proceedings, 2006, 978, .	Atom Method to	0.1	0
948	Calculation of phonon spectrum for noble metals by modified analytic embedded atom (MAEAM). Chinese Physics B, 2006, 15, 2108-2113.	ı method	1.3	12
949	Valence-dependent analytic bond-order potential for transition metals. Physical Review	[•] B, 2006, 74, .	1.1	77
950	Uniform accuracy of the quasicontinuum method. Physical Review B, 2006, 74, .		1.1	86
951	Electron correlation, reference states and empirical potentials. Philosophical Magazine 2683-2711.	, 2006, 86,	0.7	17
952	Adsorbate vibration and resonance lifetime broadening of a cobalt adatom on a Cu(11 Physical Review B, 2006, 74, .	1) surface.	1.1	10
953	Role of charge localization on the Coulomb fragmentation of large metal clusters: A me Physical Review A, 2006, 74, .	odel study.	1.0	14
954	Novel deformation mechanism of twinned nanowires. Applied Physics Letters, 2006, 84	8, 203112.	1.5	118
955	Equilibrium adsorption at crystal-melt interfaces in Lennard-Jones alloys. Journal of Che 2006, 124, 164708.	mical Physics,	1.2	36
956	Correlation between lattice-strain energetics and melting properties: Molecular dynam dynamics using EAM models of Al. Physical Review B, 2006, 74, .	ics and lattice	1.1	18

#	Article	IF	CITATIONS
957	Modeling metallic island coalescence stress via adhesive contact between surfaces. Physical Review B, 2006, 73, .	1.1	14
958	Molecular dynamics analysis for fracture behaviour of single crystal silicon thin film with micro notch. Modelling and Simulation in Materials Science and Engineering, 2006, 14, S73-S83.	0.8	14
959	Molecular dynamics simulations of the crystal–melt interfacial free energy and mobility in Mo and V. Philosophical Magazine, 2006, 86, 3651-3664.	0.7	48
960	Size-dependent structural phase transition of face-centered-cubic metal nanowires. Journal of Materials Research, 2007, 22, 1299-1305.	1.2	4
961	MONTE CARLO SIMULATION OF THE SURFACE SEGREGATION OF Au75Pd25 AT (110) SURFACE USING AN ANALYTIC EMBEDDED ATOM METHOD. Surface Review and Letters, 2007, 14, 411-417.	0.5	3
962	Computational modeling of nanorod growth. Journal of Chemical Physics, 2007, 127, 194707.	1.2	49
963	Highly under-coordinated atoms at Rh surfaces: interplay of strain and coordination effects on core level shift. New Journal of Physics, 2007, 9, 143-143.	1.2	45
964	Mechanism of Material Removal and the Generation of Defects by MD Analysis in Three-Dimensional Simulation in Abrasive Processes. Key Engineering Materials, 2008, 359-360, 6-10.	0.4	5
965	Formation of stable products from cluster–cluster collisions. Journal of Physics Condensed Matter, 2007, 19, 346204.	0.7	5
966	Molecular dynamics simulation of melting behaviour of small gold clusters: AuN (N=12–14). Physica Scripta, 2007, 75, 111-118.	1.2	17
967	Atomic Investigation of Fe–Cu Magnetic Thin Films by Molecular Dynamics Simulation. Japanese Journal of Applied Physics, 2007, 46, 6309-6311.	0.8	4
968	Activation volume and incipient plastic deformation of uniaxially-loaded gold nanowires at very high strain rates. Nanotechnology, 2007, 18, 455702.	1.3	10
969	Energy anisotropy of bimetal core–shell nanorods and its effects on morphology. Nanotechnology, 2007, 18, 445101.	1.3	3
970	MD Simulation of Effect of Crystal Orientation and Cutting Direction on Nanometric Cutting Using AFM Pin Tool. Chinese Journal of Chemical Physics, 2007, 20, 619-624.	0.6	4
971	The calculation of some thermoelastic properties and pressure–temperature (<i>P</i> – <i>T</i>) diagrams of Rh and Sr using molecular dynamics simulation. Journal of Physics Condensed Matter, 2007, 19, 326204.	0.7	3
972	Distinct atomic structures of the Ni-Nb metallic glasses formed by ion beam mixing. Journal of Applied Physics, 2007, 102, .	1.1	9
973	Annihilation of craters: Molecular dynamic simulations on a silver surface. Physical Review B, 2007, 76, .	1.1	4
974	Molecular dynamics study of two-dimensional melting transition in copper via the embedded atom method. Physical Review B, 2007, 76, .	1.1	8

#	Article	IF	Citations
975	Large-scale molecular dynamics simulation of magnetic properties of amorphous iron under pressure. Journal of Applied Physics, 2007, 101, 073908.	1.1	17
976	Spontaneous reorientation of bimetal multilayer nanowires. Applied Physics Letters, 2007, 91, 253114.	1.5	14
977	Formation of a Metallic Contact: Jump to Contact Revisited. Physical Review Letters, 2007, 98, 206801.	2.9	73
978	Formation and atomic configuration of binary metallic glasses studied by ion beam mixing and molecular dynamics simulation. Journal of Applied Physics, 2007, 101, 124905.	1.1	4
979	Multistate modified embedded atom method. Physical Review B, 2007, 75, .	1.1	52
980	bulk, oxygen vacancies, and surfaces of rutile <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi mathvariant="normal">Ti<mml:msub><mml:mi mathvariant="normal">O<mml:mn>2</mml:mn></mml:mi </mml:msub></mml:mi </mml:mrow>' ―</mml:math 	1.1	2
981	Physical Review B, 2007, 76, . Ab initiostudy of tension-shear coupling in NiAl. Physical Review B, 2007, 75, .	1.1	20
982	Viscosity of liquid iron under high pressure and high temperature: Equilibrium and nonequilibrium molecular dynamics simulation studies. Physical Review B, 2007, 76, .	1.1	32
983	Proposed power-functionN-body potential for the fcc structured metals Ag, Au, Cu, Ni, Pd, and Pt. Physical Review B, 2007, 76, .	1.1	11
984	An investigation of nanoindentation tests on the single crystal copper thin film via an atomic force microscope and molecular dynamics simulation. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2007, 221, 259-266.	1.1	19
985	Study on Nanolithography Process of Polycrystalline Copper Using Molecular Dynamic Simulation. Key Engineering Materials, 2007, 340-341, 961-966.	0.4	0
986	Computer simulation of symmetrical tilt grain boundaries in noble metals with MAEAM. Chinese Physics B, 2007, 16, 210-216.	1.3	6
987	Chapter 8 The Role of Long-Time Correlation in Dissipative Adsorbate Dynamics on Metal Surfaces. Annual Reports in Computational Chemistry, 2007, 3, 137-151.	0.9	0
988	The Motion of Dislocation in Iron Pinning by Carbon Interstitials. Materials Science Forum, 2007, 561-565, 1865-1868.	0.3	2
989	A binomial truncation function proposed for the second-moment approximation of tight-binding potential and application in the ternary Ni–Hf–Ti system. Journal of Physics Condensed Matter, 2007, 19, 086228.	0.7	25
990	Quantum-Based Analytic Interatomic Forces and Materials Simulation. Reviews in Computational Chemistry, 2007, , 207-239.	1.5	17
991	The effect of Nb and V on the electronic structure of edge dislocation core in Fe. Computational Materials Science, 2007, 39, 557-562.	1.4	5
992	Atomistic modeling of an Fe system with a small concentration of C. Computational Materials Science, 2007, 40, 119-129.	1.4	165

#	Article	IF	CITATIONS
993	A modified embedded atom method interatomic potential for silicon. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2007, 31, 95-104.	0.7	85
994	Recent developments and outstanding challenges in theory and modeling of liquid metals. Journal of Non-Crystalline Solids, 2007, 353, 3444-3453.	1.5	22
995	Atomistic simulation of point defects in L12-type Au3Cu ordered alloy. Journal of Alloys and Compounds, 2007, 436, 23-29.	2.8	8
996	Atomistic simulations of homogeneous dislocation nucleation in single crystal copper. Modelling and Simulation in Materials Science and Engineering, 2007, 15, 693-709.	0.8	114
997	Effective anisotropies and energy barriers of magnetic nanoparticles with Néel surface anisotropy. Physical Review B, 2007, 76, .	1.1	122
998	Atomic-Level Simulation of Ferroelectricity in Oxides: Current Status and Opportunities. Annual Review of Materials Research, 2007, 37, 239-270.	4.3	29
999	Homogeneous nucleation and growth in supersaturated zinc vapor investigated by molecular dynamics simulation. Journal of Chemical Physics, 2007, 127, 234509.	1.2	38
1000	Homogeneous nucleation and growth from highly supersaturated vapor by molecular dynamics simulation. NATO Science Series Series II, Mathematics, Physics and Chemistry, 2007, , 351-377.	0.1	0
1001	Theoretical Analysis of the Nature of Hydrogen at the Electrochemical Interface Between Water and a Ni(111) Single-Crystal Electrode. Journal of the Electrochemical Society, 2007, 154, F55.	1.3	41
1002	Long-range empirical potential model: Application to fcc transition metals and alloys. Physical Review B, 2007, 75, .	1.1	43
1003	Upward self-diffusion of adatoms and small clusters on facets of fcc metal (110) surfaces. Physical Review B, 2007, 76, .	1.1	23
1004	Monte Carlo simulation for surface tension of liquid Co–Mo alloys. Philosophical Magazine Letters, 2007, 87, 613-623.	0.5	6
1005	Molecular Insight into the Pathway to Crystallization of Aluminum. Journal of the American Chemical Society, 2007, 129, 7012-7013.	6.6	64
1006	Theoretical Study of the Structure and Energetics of Silver Clusters. Journal of Physical Chemistry C, 2007, 111, 12577-12587.	1.5	32
1007	Solid-liquid phase diagrams for binary metallic alloys: Adjustable interatomic potentials. Physical Review B, 2007, 75, .	1.1	11
1008	Formation of metal nano-particles on and in polymer films investigated by molecular dynamics simulation. Nanotechnology, 2007, 18, 165706.	1.3	8
1009	A semi-local quasi-harmonic model to compute the thermodynamic and mechanical properties of silicon nanostructures. Journal of Physics Condensed Matter, 2007, 19, 226202.	0.7	2
1010	Energy and Structure of Copper Clusters(n=2-70,147,500) Studied by the Monte Carlo Method. Solid State Phenomena, 2007, 121-123, 607-610.	0.3	10

#	Article	IF	CITATIONS
1011	Stabilization of Cu nanostructures by grain boundary doping with Bi: Experiment versus molecular dynamics simulation. Physical Review B, 2007, 76, .	1.1	17
1012	Shock Waves in Polycrystalline Iron. Physical Review Letters, 2007, 98, 135701.	2.9	138
1013	Molecular simulation of the crystallization of aluminum from the supercooled liquid. Journal of Chemical Physics, 2007, 127, 144509.	1.2	41
1014	Size-dependent multilayer relaxation of nanowires and additional effect of surface stresses. Solid State Communications, 2007, 141, 273-278.	0.9	1
1015	The stability of FCC crystal Ni under uniaxial loading. Solid State Communications, 2007, 141, 535-540.	0.9	13
1016	Surface energy calculation of the fcc metals by using the MAEAM. Solid State Communications, 2007, 144, 163-167.	0.9	215
1017	Equation of state of ultra-narrow metallic nanowires. Surface Science, 2007, 601, 4163-4168.	0.8	4
1018	Calculation of the formation energies of isolated vacancy and adatom–vacancy pair at low-index surfaces of fcc metals with MAEAM. Applied Surface Science, 2007, 253, 3779-3784.	3.1	13
1019	Atomic-level investigation of Al and Ni thin film growth on Ni(111) surface: Molecular dynamics simulation. Applied Surface Science, 2007, 253, 8896-8900.	3.1	18
1020	Environment dependent dynamic charge potential for silica: Application to nanoscale silica structures. Chemical Physics Letters, 2007, 437, 92-98.	1.2	8
1021	A semi-analytical method to compute surface elastic properties. Acta Materialia, 2007, 55, 141-147.	3.8	86
1022	Stabilization of extended stacking faults by {111}/{112} twin junction interactions. Acta Materialia, 2007, 55, 5917-5923.	3.8	17
1023	A modified embedded-atom method interatomic potential for the Fe–H system. Acta Materialia, 2007, 55, 6779-6788.	3.8	75
1024	A semi-empirical interatomic potential for the Cu–Ti binary system. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 449-451, 733-736.	2.6	13
1025	Thermodynamic properties at constant volume around the solid–liquid phase transition in single metals by using molecular dynamics. Physica A: Statistical Mechanics and Its Applications, 2007, 374, 179-186.	1.2	4
1026	MAEAM simulation of phonons for BCC transition metals. Physica B: Condensed Matter, 2007, 391, 286-291.	1.3	7
1027	Self-diffusion in the intermetallic compounds NiAl and Ni3Al: An embedded atom method study. Physica B: Condensed Matter, 2007, 396, 138-144.	1.3	36
1028	Crater annihilation on silver by cluster ion impacts. Nuclear Instruments & Methods in Physics Research B, 2007, 255, 259-264.	0.6	9

#	Article	IF	CITATIONS
1029	Classical molecular dynamics study of primary damage created by collision cascade in a ZrC matrix. Nuclear Instruments & Methods in Physics Research B, 2007, 255, 141-145.	0.6	33
1030	Melting mechanisms of Nb(111) plane with molecular dynamics simulations. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 365, 161-165.	0.9	5
1031	Elementary atomistic mechanism of crystal plasticity. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 367, 250-253.	0.9	32
1032	An engineering-oriented embedded-atom-method potential fitting procedure for pure fcc and bcc metals. Journal of Materials Processing Technology, 2007, 182, 387-397.	3.1	17
1033	Using dangling bond density to characterize the surface energy of nanomaterials. Surface and Interface Analysis, 2007, 39, 611-614.	0.8	29
1034	Atomic simulation of the point defects in three low-index surfaces of BCC transition metals with the MAEAM. Surface and Interface Analysis, 2007, 39, 542-546.	0.8	0
1035	Missing row reconstructed (110), (211) and (311) surfaces for FCC transition metals. Surface and Interface Analysis, 2007, 39, 660-664.	0.8	11
1036	Where are nature's missing structures?. Nature Materials, 2007, 6, 941-945.	13.3	39
1037	Molecular dynamics simulation of crack tip blunting in opposing directions along a symmetrical tilt grain boundary of copper bicrystal. Fatigue and Fracture of Engineering Materials and Structures, 2007, 30, 1008-1015.	1.7	21
1038	Effect of temperature on single asperity contact and separation in Au. Scripta Materialia, 2007, 57, 885-888.	2.6	9
1039	Effects of surface anisotropy on the energy barrier in cobalt–silver core–shell nanoparticles. Journal of Magnetism and Magnetic Materials, 2007, 316, e791-e794.	1.0	15
1040	Vacancies and their complexes in FCC metals. Physics of the Solid State, 2007, 49, 1079-1085.	0.2	17
1041	Investigation of cohesive energy effects on size-dependent physical and chemical properties of nanocrystals. Physical Review B, 2007, 75, .	1.1	150
1042	Nanoscale alloys and core-shell materials: Model predictions of the nanostructure and mechanical properties. Physical Review B, 2007, 75, .	1.1	14
1043	Modified Lennard-Jones potentials for Cu and Ag based on the dense gaslike model of viscosity for liquid metals. Physical Review B, 2007, 75, .	1.1	9
1044	Modified embedded-atom method interatomic potentials for theMgâ^Alalloy system. Physical Review B, 2007, 75, .	1.1	60
1045	Homogeneous nucleation and growth in iron-platinum vapour investigated by molecular dynamics simulation. European Physical Journal D, 2007, 41, 247-260.	0.6	19
1046	Deposition of Ni 13 and Cu 13 clusters on Ni(111) and Cu(111) surfaces. European Physical Journal D, 2007, 45, 425-431.	0.6	3

#	Article	IF	CITATIONS
1047	Structure formation of metallic nano-particles in the vapour phase and in disperse materials. European Physical Journal: Special Topics, 2007, 149, 57-70.	1.2	4
1048	Polymorphism in ferroic functional elements. European Physical Journal: Special Topics, 2007, 149, 145-171.	1.2	4
1049	Cauchy–Born Rule and the Stability of Crystalline Solids: Static Problems. Archive for Rational Mechanics and Analysis, 2007, 183, 241-297.	1.1	163
1050	Determination of stiffness and higher gradient coefficients by means of the embedded-atom method. Continuum Mechanics and Thermodynamics, 2007, 18, 411-441.	1.4	16
1051	Surface segregation of the metal impurity to the (100) surface of fcc metals. Pramana - Journal of Physics, 2007, 69, 603-616.	0.9	3
1052	Three-dimensional interactive Molecular Dynamics program for the study of defect dynamics in crystals. Computer Physics Communications, 2007, 176, 38-47.	3.0	3
1053	The periodicity in translation of Ag (001) and (110) twist grain boundary. Applied Surface Science, 2007, 253, 4307-4310.	3.1	7
1054	Co-energy of surface and grain boundary in Ag film. Applied Surface Science, 2007, 253, 5214-5217.	3.1	7
1055	Generalized stacking fault energy in FCC metals with MEAM. Applied Surface Science, 2007, 254, 1489-1492.	3.1	28
1056	Million-atom molecular dynamics simulations of magnetic iron. Progress in Materials Science, 2007, 52, 299-318.	16.0	70
1057	BCC Fe surface and cluster magnetism using a magnetic potential. Surface Science, 2007, 601, 3512-3520.	0.8	13
1058	Atomistic modelling of crack propagation in a randomly rough nano-scale metallic surface. Journal of Molecular Graphics and Modelling, 2008, 27, 356-363.	1.3	6
1059	Formation mechanism of the di-vacancy in FCC metal Pt. Journal of Physics and Chemistry of Solids, 2008, 69, 1957-1962.	1.9	4
1060	Molecular dynamics simulation of subsurface deformed layers in AFM-based nanometric cutting process. Applied Surface Science, 2008, 254, 4774-4779.	3.1	89
1061	Surface effect on the GSF energy of Al. Applied Surface Science, 2008, 254, 6683-6686.	3.1	4
1062	Understanding behavior of machining interface and dielectric molecular medium in nanoscale electro-machining. CIRP Annals - Manufacturing Technology, 2008, 57, 199-202.	1.7	13
1063	Properties of mono-vacancy in L12-type Ni3Al ordered alloy. Superlattices and Microstructures, 2008, 44, 259-267.	1.4	7
1064	Structural and dynamical properties of Ru(0001) surface. Surface Science, 2008, 602, 3654-3659.	0.8	7

#	Article	IF	CITATIONS
1065	Microstructure evolution of Al–Si alloys under shear loading. International Journal of Mechanics and Materials in Design, 2008, 4, 197-203.	1.7	4
1066	Parametric variations of the interatomic potential in atomistic analysis of nano-scale metal plasticity. International Journal of Mechanics and Materials in Design, 2008, 4, 361-374.	1.7	2
1067	Large-Scale Molecular Dynamics Simulations of Energetic Ni Nanocluster Impact onto the Surface. Journal of Cluster Science, 2008, 19, 411-419.	1.7	4
1068	A Study About Nanocluster Deposition of Thin-film Formation by Molecular Dynamics Simulation. Journal of Cluster Science, 2008, 19, 623-629.	1.7	6
1069	MAEAM Investigation of Phonons for Alkali Metals. Journal of Low Temperature Physics, 2008, 150, 730-738.	0.6	6
1070	Transport Properties of Undercooled Liquid Copper: A Molecular Dynamics Study. International Journal of Thermophysics, 2008, 29, 1408-1421.	1.0	24
1071	Phonon Contribution to Thermal Boundary Conductance at Metal Interfaces Using Embedded Atom Method Simulations. International Journal of Thermophysics, 2008, 29, 1987-1996.	1.0	12
1072	Characterization of Open Volume Regions in a Simulated Cu-Zr Metallic Glass. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2008, 39, 1779-1785.	1.1	9
1073	Modeling of hydrogen-assisted cracking in iron crystal using a quasi-Newton method. Journal of Molecular Modeling, 2008, 14, 621-630.	0.8	4
1074	The formation of pentagonal Ni nanowires: dependence on the stretching direction and the temperature. Physica Status Solidi (A) Applications and Materials Science, 2008, 205, 1317-1323.	0.8	11
1075	Interatomic potentials of the binary transition metal systems and some applications in materials physics. Physics Reports, 2008, 455, 1-134.	10.3	112
1076	Self-diffusion of Ni in the intermetallic compound Ni3Al. Physica B: Condensed Matter, 2008, 403, 3538-3542.	1.3	15
1077	Influence of single crystal orientation on homogeneous dislocation nucleation under uniaxial loading. Journal of the Mechanics and Physics of Solids, 2008, 56, 1806-1830.	2.3	167
1078	Calculation of surface energy and simulation of reconstruction for diamond cubic crystals (001) surface. Applied Surface Science, 2008, 254, 4128-4133.	3.1	12
1079	Dislocation interaction with C in α-Fe: A comparison between atomic simulations and elasticity theory. Acta Materialia, 2008, 56, 3450-3460.	3.8	176
1080	Modified embedded-atom method interatomic potentials for the Ti–C and Ti–N binary systems. Acta Materialia, 2008, 56, 3481-3489.	3.8	127
1081	Nucleation of Ni–Fe alloy near the spinodal. Acta Materialia, 2008, 56, 4022-4027.	3.8	13
1082	Local order influences initiation of plastic flow in metallic glass: Effects of alloy composition and sample cooling history. Acta Materialia, 2008, 56, 5263-5275.	3.8	378

#	Article	IF	CITATIONS
1083	Molecular dynamics simulations of shock compression of nickel: From monocrystals to nanocrystals. Acta Materialia, 2008, 56, 5584-5604.	3.8	115
1084	MAEAM for phonon dispersion of noble metals in symmetry and off-symmetry directions. Solid State Communications, 2008, 145, 182-185.	0.9	5
1085	Deposition of copper clusters on the Cu(111) surface. Surface Science, 2008, 602, 1413-1422.	0.8	22
1086	Many-body effects on surface stress, surface energy and surface relaxation of fcc metals. Surface Science, 2008, 602, 2339-2347.	0.8	15
1087	Structural and dynamical properties of iridium surfaces: First principles and molecular dynamics investigations. Physica B: Condensed Matter, 2008, 403, 2748-2753.	1.3	0
1088	Dislocation nucleation in $\hat{l}\pm 3$ asymmetric tilt grain boundaries. International Journal of Plasticity, 2008, 24, 191-217.	4.1	111
1089	Deformation mechanism analysis of fcc metals by GPF. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 486, 540-544.	2.6	10
1090	Ternary alloying effect on the melting of metal clusters. European Physical Journal B, 2008, 66, 17-23.	0.6	14
1091	A modified embedded-atom method interatomic potential for the Cu–Zr system. Journal of Materials Research, 2008, 23, 1095-1104.	1.2	45
1092	An embedded-atom method interatomic potential for Pd–H alloys. Journal of Materials Research, 2008, 23, 704-718.	1.2	86
1093	Size Effect on the Thermodynamic Properties of Silver Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 2359-2369.	1.5	194
1094	Modelling Technologies and Applications. , 2008, , 15-38.		0
1095	A semi-analytical method for quantifying the size-dependent elasticity of nanostructures. Modelling and Simulation in Materials Science and Engineering, 2008, 16, 025002.	0.8	37
1096	Structural and Energetic Properties of Niâ^ Cu Bimetallic Clusters. Journal of Physical Chemistry A, 2008, 112, 7905-7915.	1.1	32
1097	Melting tungsten nanoparticles: a molecular dynamics study. Journal Physics D: Applied Physics, 2008, 41, 185406.	1.3	37
1098	A modified embedded-atom method interatomic potential for indium. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2008, 32, 82-88.	0.7	19
1099	A modified embedded-atom method interatomic potential for Germanium. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2008, 32, 34-42.	0.7	18
1100	Molecular-dynamics investigation of the fcc→bcc phase transformation in Fe. Computational Materials Science, 2008, 41, 297-304.	1.4	49

#	Article	IF	CITATIONS
1101	Surface energy calculation of the bcc metals by using the MAEAM. Computational Materials Science, 2008, 42, 281-285.	1.4	49
1102	Integrated MD simulation of scratching and shearing of 3D nanostructure. Computational Materials Science, 2008, 43, 1130-1140.	1.4	24
1103	Development of n-body potentials for hcp–bcc and fcc–bcc binary transition metal systems. Computational Materials Science, 2008, 43, 1207-1215.	1.4	18
1104	Effect of atomic scale plasticity on hydrogen diffusion in iron: Quantum mechanically informed and on-the-fly kinetic Monte Carlo simulations. Journal of Materials Research, 2008, 23, 2757-2773.	1.2	50
1105	Application of modified Lennard–Jones potentials to structural and dynamical studies for liquid Al. Journal of Non-Crystalline Solids, 2008, 354, 4970-4974.	1.5	2
1106	Error Estimation and Atomistic-Continuum Adaptivity for the Quasicontinuum Approximation of a Frenkel–Kontorova Model. Multiscale Modeling and Simulation, 2008, 7, 147-170.	0.6	30
1107	Reconsideration of Continuum Thermomechanical Quantities in Atomic Scale Simulations. Mathematics and Mechanics of Solids, 2008, 13, 221-266.	1.5	62
1108	Influence of Grain Boundary Structure on Dislocation Nucleation in FCC Metals. Dislocations in Solids, 2008, 14, 43-139.	1.6	57
1109	Experimental determination and molecular dynamics simulation of specific heat for high temperature undercooled liquid. Philosophical Magazine Letters, 2008, 88, 813-819.	0.5	2
1110	Surface Stability of Platinum Nanoparticles Surrounded by High-Index Facets. Journal of Physical Chemistry C, 2008, 112, 3247-3251.	1.5	10
1111	Solute mass diffusion coefficient: Comparison of microgravity experiments with molecular dynamic simulation and Enskog hard sphere corrected estimates. Journal of Applied Physics, 2008, 104, 043706.	1.1	2
1112	Molecular Dynamics Simulations of Helium Behaviour in Titanium Crystals. Chinese Physics Letters, 2008, 25, 1784-1787.	1.3	3
1113	Comparison of the Solid Solution Properties of Mg-RE (Gd, Dy, Y) Alloys with Atomistic Simulation. Research Letters in Physics, 2008, 2008, 1-4.	0.2	10
1114	Core level shifts of undercoordinated Pt atoms. Journal of Chemical Physics, 2008, 128, 114706.	1.2	41
1115	Atomic-Level Investigation for Surface Characteristics in a Co-Cu Multilayer System: Molecular Dynamics Simulation. IEEE Transactions on Magnetics, 2008, 44, 2903-2906.	1.2	4
1116	Tight-binding variable-charge model for insulating oxides: Application to TiO 2 and ZrO 2 polymorphs. Europhysics Letters, 2008, 83, 40001.	0.7	28
1117	Shear viscosity of liquid copper at experimentally accessible shear rates: Application of the transient-time correlation function formalism. Journal of Chemical Physics, 2008, 128, 084506.	1.2	21
1118	Atomistic simulation of phonon dispersion for body-centred cubic alkali metals. Canadian Journal of Physics, 2008, 86, 801-805.	0.4	7

#	Article	IF	CITATIONS
1119	Energy and structure of copper clusters (n = 70–150) studied by the Monte Carlo computer simulation. Chinese Physics B, 2008, 17, 3329-3335.	0.7	12
1120	Superheating of Ag nanowires studied by molecular dynamics simulations. Modelling and Simulation in Materials Science and Engineering, 2008, 16, 025009.	0.8	10
1121	Coalescence of heteroclusters Au ₇₆₇ and Ag ₇₆₇ : a molecular-dynamics study. Chinese Physics B, 2008, 17, 3343-3349.	0.7	18
1122	Statistical analysis of the breaking processes of Ni nanowires. Nanotechnology, 2008, 19, 225704.	1.3	22
1123	Gas adsorption on quasicrystalline surfaces. Journal of Physics Condensed Matter, 2008, 20, 314007.	0.7	11
1124	Theoretical Studies of Structural, Energetic, and Electronic Properties of Clusters. Zeitschrift Fur Physikalische Chemie, 2008, 222, 387-405.	1.4	3
1125	Solidification kinetics of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"> <mml:mrow> <mml:msub> <mml:mi mathvariant="normal"> Fe <mml:mn>0.5 </mml:mn> </mml:mi </mml:msub> <mml:msub> <mml:mi mathvariant="normal"> Pt <mml:mn>0.5 </mml:mn> </mml:mi </mml:msub> </mml:mrow> </mml:math> clusters	1.1	5
1126	in an Ar carrier gas: Molecular dynamics simulations. Physical Review B, 2008, 77, . Metastable phase formation and magnetic properties of the Fe–Nb system studied by atomistic modeling and ion beam mixing. Journal of Applied Physics, 2008, 104, 014914.	1.1	7
1127	Theoretical prediction and experimental evidence for thermodynamic properties of metastable liquid Fe–Cu–Mo ternary alloys. Applied Physics Letters, 2008, 93, .	1.5	11
1128	Rheology of liquid fcc metals: Equilibrium and transient-time correlation-function nonequilibrium molecular dynamics simulations. Physical Review B, 2008, 78, .	1.1	30
1129	Second-nearest-neighbor modified embedded-atom potential for binary Ta-W alloys based on first-principles calculations. Physical Review B, 2008, 77, .	1.1	8
1130	Kinetic Monte Carlo study on the decay of two-dimensional nanostructures: Influence of the activation energy of diffusion on kinetic and morphological properties. Physical Review E, 2008, 78, 031601.	0.8	5
1131	Molecular-dynamics investigation of the surface characteristics of Fe–Cu magnetic thin-film layers. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2008, 26, 1392-1396.	0.9	9
1132	Theory of depinning of monolayer films adsorbed on a quartz crystal microbalance. Physical Review E, 2008, 77, 042601.	0.8	1
1133	Phase transformation of iron under shock compression: Effects of voids and shear stress. Physical Review B, 2008, 78, .	1.1	31
1134	Interface-induced pseudoelastic behavior in Bi-metal multilayer nanowires. Applied Physics Letters, 2008, 92, 123103.	1.5	9
1135	Molecular dynamics calculation of thermophysical properties for a highly reactive liquid. Physical Review E, 2008, 78, 041204.	0.8	13
1136	Computational Study on Misfit Dislocation in Ni-Based Superalloys by Quasicontinuum Method. Materials Transactions, 2008, 49, 2507-2514.	0.4	6

#	Article	IF	CITATIONS
1137	Development of Efficient Instability Analysis Method for Atomic Structures Using Linear Elements and Its Application to Amorphous Metal. Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2008, 74, 1328-1335.	0.2	3
1138	Asperity contacts at the nanoscale: Comparison of Ru and Au. Journal of Applied Physics, 2008, 104, .	1.1	46
1139	Amorphous phase formation, spinodal decomposition, and fractal growth of nanocrystals in an immiscible Hf–Nb system studied by ion beam mixing and atomistic modeling. Journal of Applied Physics, 2008, 103, 084910.	1.1	1
1140	Statistical Molecular Dynamics Study of (111) and (100) Ni Nanocontacts: Evidences of Pentagonal Nanowires. Journal of Nanomaterials, 2008, 2008, 1-9.	1.5	8
1141	Density-gradient-corrected embedded atom method. Physical Review B, 2009, 79, .	1.1	9
1142	Effective coordination as a predictor of adsorption energies: A model study of NO on Rh(100) and Rh/MgO(100) surfaces. Physical Review B, 2009, 79, .	1.1	10
1143	Structures and Topological Transitions of Hydrocarbon Films on Quasicrystalline Surfaces. Physical Review Letters, 2009, 102, 055501.	2.9	8
1144	Contact configuration modification at carbon nanotube-metal interface during nanowelding. Journal of Applied Physics, 2009, 106, .	1.1	12
1145	Impurity effect on the melting of nickel clusters as seen via molecular dynamics simulations. Physical Review B, 2009, 79, .	1.1	34
1146	Martensitic transformation of Cu on Ag(001) and Cu on Au(001) studied with classical molecular dynamics. Physical Review B, 2009, 79, .	1.1	5
1147	Chapter 89 Dislocations in Shock Compression and Release. Dislocations in Solids, 2009, 15, 91-197.	1.6	41
1148	Canonical molecular dynamics simulations for crystallization of metallic nanodroplets on MgO(100). Physical Review B, 2009, 79, .	1.1	8
1149	Molecular dynamics investigation of interfacial mixing behavior in transition metals (Fe, Co, Ni)-Al multilayer system. Journal of Applied Physics, 2009, 105, 034902.	1.1	13
1150	Molecular dynamics simulation of the thin film deposition of Co/Cu(111) with Pb surfactant. Journal of Applied Physics, 2009, 106, 044304.	1.1	10
1151	Atomistic modeling of III–V nitrides: modified embedded-atom method interatomic potentials for GaN, InN and Ga _{1â~'<i>x</i>} In _{<i>x</i>} N. Journal of Physics Condensed Matter, 2009, 21, 325801.	0.7	22
1152	Comparison of embedded atom method potentials for small aluminium cluster simulations. Journal of Physics Condensed Matter, 2009, 21, 144206.	0.7	6
1153	Long-range empirical potential model: extension to hexagonal close-packed metals. Journal of Physics Condensed Matter, 2009, 21, 385402.	0.7	23
1154	Engineering size-scaling of plastic deformation in nanoscale asperities. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9580-9585.	3.3	21

		CITATION REPORT		
#	Article		IF	CITATIONS
1155	Asymmetrical reorientation of bimetallic core–shell nanowires. Nanotechnology, 200)9, 20, 045601.	1.3	3
1156	Semi-Empirical Potential Methods for Atomistic Simulations of Metals and Their Constr Procedures. Journal of Engineering Materials and Technology, Transactions of the ASM	uction E, 2009, 131, .	0.8	16
1157	Atomistic Modeling of Fatigue Crack Growth in Magnesium Single Crystals Under Cycli 2009, , .	c Loading. ,		0
1158	Role of phonon in the thermal and electrical transports in metallic nanofilms. Journal of Physics, 2009, 105, .	Applied	1.1	31
1159	CoAl(001) surface structures: a kinetic Monte Carlo simulation. Journal of Physics Con 2009, 21, 445005.	densed Matter,	0.7	2
1160	The early stage of deposition process for Fe–Cu magnetic multilayer systems: molec simulation. Journal Physics D: Applied Physics, 2009, 42, 135305.	ular dynamics	1.3	11
1161	First principles calculation of the effects of solute atom on electromigration resistance interconnects. Journal Physics D: Applied Physics, 2009, 42, 125501.	of Al	1.3	5
1162	Modeling the crystallization of gold nanoclusters—the effect of the potential energy Journal of Physics Condensed Matter, 2009, 21, 144207.	function.	0.7	5
1163	Thermophysical property of undercooled liquid binary alloy composed of metallic and s elements. Journal Physics D: Applied Physics, 2009, 42, 035414.	emiconductor	1.3	7
1164	Continuous and discrete modeling of the decay of two-dimensional nanostructures. Jo Physics Condensed Matter, 2009, 21, 263001.	urnal of	0.7	6
1165	Path integral evaluation of H diffusion on Ni(100) surface based on the quantum instal approximation. Journal of Chemical Physics, 2009, 130, 114708.	nton	1.2	29
1166	Atomistic simulation of sliding of [1010] tilt grain boundaries in Mg. Journal of Materia 2009, 24, 3446-3453.	ls Research,	1.2	10
1167	The kink-pair nucleation in edge dislocation motion. Solid State Sciences, 2009, 11, 73	3-739.	1.5	10
1168	Missing row reconstruction on three low index surfaces of ten FCC metals. Crystal Res Technology, 2009, 44, 275-280.	earch and	0.6	13
1169	Force field for copper clusters and nanoparticles. Journal of Computational Chemistry, 2255-2266.	2009, 30,	1.5	2
1170	Molecular statics simulations of buckling and yielding of gold nanowires deformed in a compression. Acta Materialia, 2009, 57, 4921-4932.	xial	3.8	26
1171	Competition between surface energy and interphase energy in transition region and diameter-dependent orientation of silicon nanowires. Applied Surface Science, 2009, 2	55, 4347-4350.	3.1	3
1172	Formation of hexagonal close packing at a grain boundary in gold by the dissociation c of crystal lattice dislocations. Journal of Materials Science, 2009, 44, 3608-3617.	f a dense array	1.7	4

#	Article	IF	CITATIONS
1173	Crystallization of Liquid Gold Nanoparticles by Molecular Dynamics Simulation. Journal of Cluster Science, 2009, 20, 661-670.	1.7	6
1174	Thermophysical properties of stable and metastable liquid copper and nickel by molecular dynamics simulation. Applied Physics A: Materials Science and Processing, 2009, 95, 661-665.	1.1	7
1175	A modified embedded atom method for the corundum and the bixbyite forms of alumina: Bulk and surface studies. Physica B: Condensed Matter, 2009, 404, 335-339.	1.3	7
1176	A modified embedded atom method interatomic potential for the Ti–N system. Physica B: Condensed Matter, 2009, 404, 1692-1694.	1.3	8
1177	Numerical simulation of hydrogen atom transport in thick nickel membrane using semi-empirical quantum model. International Journal of Hydrogen Energy, 2009, 34, 9824-9831.	3.8	2
1178	MEAM study of carbon atom interaction with Ni nano particle. Surface Science, 2009, 603, 1985-1998.	0.8	27
1179	Structures and stability of Ag clusters on Ag(111) and Ni(111) surfaces. Surface Science, 2009, 603, 3339-3345.	0.8	8
1180	Molecular dynamics study of scratching velocity dependency in AFM-based nanometric scratching process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 505, 65-69.	2.6	52
1181	Surface structure and solidification morphology of aluminum nanoclusters. Physica B: Condensed Matter, 2009, 404, 2489-2494.	1.3	8
1182	Molecular dynamics simulation of sphere indentation in a thin copper film. Physical Mesomechanics, 2009, 12, 117-123.	1.0	18
1183	Sample boundary effect in nanoindentation of nano and microscale surface structures. Journal of the Mechanics and Physics of Solids, 2009, 57, 812-827.	2.3	17
1184	Quasicontinuum simulation of single crystal nano-plate with a mixed-mode crack. International Journal of Solids and Structures, 2009, 46, 1975-1980.	1.3	14
1185	Modified embedded-atom method interatomic potentials for pure Mn and the Fe–Mn system. Acta Materialia, 2009, 57, 474-482.	3.8	67
1186	Solidification microstructures and solid-state parallels: Recent developments, future directions. Acta Materialia, 2009, 57, 941-971.	3.8	624
1187	Correlation between the elastic modulus and the intrinsic plastic behavior of metallic glasses: The roles of atomic configuration and alloy composition. Acta Materialia, 2009, 57, 3253-3267.	3.8	306
1188	Atomistic calculations on interfaces: Bridging the length and time scales. European Physical Journal: Special Topics, 2009, 177, 41-57.	1.2	9
1189	Fitting interatomic potentials consistent with thermodynamics: Fe, Cu, Ni and their alloys. Philosophical Magazine, 2009, 89, 3451-3464.	0.7	24
1190	Theoretical Investigation on the Thermal Stability of Hollow Gold Nanoparticles. Journal of Physical Chemistry C, 2009, 113, 20193-20197.	1.5	34

#	Article	IF	CITATIONS
1191	Modeling of the Phase Evolution in Mg1â^'xAlxB2 (0 < x < 0.5) and Its Experimental Signatures. Journal of Physical Chemistry B, 2009, 113, 11965-11976.	1.2	5
1192	Phase transitions in various kinds of clusters. Physics-Uspekhi, 2009, 52, 137-164.	0.8	60
1193	Atomistic Modeling of pure Mg and Mg–Al systems. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2009, 33, 650-657.	0.7	112
1194	Atomistic simulation of Fe–C austenite. Computational Materials Science, 2009, 45, 235-239.	1.4	23
1195	Semi-empirical atomistic study of point defect properties in BCC transition metals. Computational Materials Science, 2009, 47, 135-145.	1.4	61
1196	Phase-field simulations of nuclei and early stage solidification microstructures. Journal of Physics Condensed Matter, 2009, 21, 464107.	0.7	6
1197	Improved modified embedded-atom method potentials for gold and silicon. Modelling and Simulation in Materials Science and Engineering, 2009, 17, 075008.	0.8	40
1198	Calculation of the surface free energy of fcc copper nanoparticles. Modelling and Simulation in Materials Science and Engineering, 2009, 17, 015006.	0.8	30
1199	Molecular dynamic studies on materials under laser shocks. Phase Transitions, 2009, 82, 167-190.	0.6	2
1200	Molecular dynamics simulations of hcp/fcc nucleation and growth in bcc iron driven by uniaxial compression. Journal of Physics Condensed Matter, 2009, 21, 495702.	0.7	20
1201	Molecular Simulation of the Nucleation and Growth of Gold Nanoparticles. Journal of Physical Chemistry C, 2009, 113, 3607-3611.	1.5	40
1202	Molecular dynamics for low temperature plasma–surface interaction studies. Journal Physics D: Applied Physics, 2009, 42, 194011.	1.3	118
1203	Interatomic potentials for hydrogen in <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>α</mml:mi></mml:math> –iron based on density functional theory. Physical Review B, 2009, 79, .	1.1	166
1204	Parametrization of a reactive many-body potential for Mo–S systems. Physical Review B, 2009, 79, .	1.1	241
1205	Dynamic properties of structural transition in iron under uniaxial compression. Journal of Physics Condensed Matter, 2009, 21, 245703.	0.7	16
1206	Simulating Multifunctional Structures. Science, 2009, 325, 1634-1635.	6.0	34
1207	Phase diagrams of binary alloys calculated from a density functional theory. Physical Review B, 2009, 79, .	1.1	12
1208	Measurement and calculation of surface tension for undercooled liquid nickel and its alloy. Journal of Applied Physics, 2009, 106, .	1.1	39

#	Article	IF	CITATIONS
1209	Surface Self-Diffusion Behavior of a Pt Adatom on Wulff Polyhedral Clusters. Journal of Physical Chemistry C, 2009, 113, 21501-21505.	1.5	23
1210	On the origins of the Finnis–Sinclair potentials. Philosophical Magazine, 2009, 89, 3117-3131.	0.7	11
1211	Self-Adsorption on a Pt (111) Surface. Journal of Physical Chemistry C, 2009, 113, 16031-16035.	1.5	2
1212	Development of an EAM potential for zinc and its application to the growth of nanoparticles. Physical Chemistry Chemical Physics, 2009, 11, 4039.	1.3	10
1213	Implementation of a perturbation model for a dilute binary liquid and comparison of model mass diffusion coefficients with microgravity experiment results for liquid Pb 1 wt % Au. Canadian Journal of Physics, 2009, 87, 933-944.	0.4	0
1214	Orbital-free density functional theory simulations of dislocations in aluminum. Philosophical Magazine, 2009, 89, 3195-3213.	0.7	34
1215	Molecular dynamics simulations of damage and plasticity: The role of <i>ab initio</i> calculations in the development of interatomic potentials. Philosophical Magazine, 2009, 89, 3215-3234.	0.7	4
1217	Multiscale Modeling: A Review. , 2009, , 87-135.		98
1218	Development of Efficient Instability Analysis Method for Atomic Structures Using Linear Elements and Its Application to Amorphous Metal. Journal of Solid Mechanics and Materials Engineering, 2009, 3, 807-818.	0.5	3
1219	Simplified Analysis of Mechanical Instability in Three-dimensional Atomic Components and Its Application to Nanoscale Crack. Journal of Solid Mechanics and Materials Engineering, 2010, 4, 1071-1082.	0.5	1
1220	Understanding mixing of Ni and Pt in the Ni/Pt(111) bimetallic catalyst via molecular simulation and experiments. Journal of Chemical Physics, 2010, 133, 224503.	1.2	18
1221	Atomic structure of Pd n (4 ≤ ≤ 5) nanoclusters. Physics of the Solid State, 2010, 52, 426-430.	0.2	2
1222	Structure of pure metallic nanoclusters: Monte Carlo simulation and ab initio study. European Physical Journal D, 2010, 59, 215-221.	0.6	17
1223	Heterogeneous nucleation of solid Al from the melt by <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>Al</mml:mtext></mml:mrow><mml:mn>3< Molecular dynamics simulations, Physical Review B, 2010, 82</mml:mn></mml:msub></mml:mrow></mml:math 	/ <mark>1.1</mark> /mml:mn>	≺∤mml:msu
1224	A modified embedded atom method interatomic potential for alloy SiGe. Chemical Physics Letters, 2010, 493, 57-60.	1.2	6
1225	Investigation on sintering mechanism of nanoscale tungsten powder based on atomistic simulation. Acta Materialia, 2010, 58, 3939-3951.	3.8	75
1226	Dislocation depinning from ordered nanophases in a model fcc crystal: From cutting mechanism to Orowan looping. Acta Materialia, 2010, 58, 5565-5571.	3.8	74
1227	Interactions between carbon solutes and dislocations in bcc iron. Acta Materialia, 2010, 58, 5481-5490.	3.8	36

#	Article	IF	CITATIONS
1228	The DFT study on the structures and properties of (AgBr)n (n⩽6). Computational and Theoretical Chemistry, 2010, 959, 30-34.	1.5	6
1229	Temperature-dependent structural and transport properties of liquid transition metals. Metals and Materials International, 2010, 16, 921-929.	1.8	1
1230	Density functional theory (DFT)-based modified embedded atom method potentials: Bridging the gap between nanoscale theoretical simulations and DFT calculations. Science China Chemistry, 2010, 53, 411-418.	4.2	3
1231	Selfâ€Ðiffusion on Au(100): A Density Functional Theory Study. ChemPhysChem, 2010, 11, 1395-1404.	1.0	16
1234	A comparing study on the evolution of Pd/Ni (100) and Pt/Ni(100) heteroepitaxial systems. Physica B: Condensed Matter, 2010, 405, 29-33.	1.3	1
1235	Thermophysical properties and structure of stable and metastable liquid cobalt. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 1083-1087.	0.9	6
1236	Density and related thermophysical properties of metastable liquid Ni–Cu–Fe ternary alloys. Physics Letters, Section A: General, Atomic and Solid State Physics, 2010, 374, 2489-2493.	0.9	12
1237	Calculation of phase diagrams and simulation of segregation using Monte Carlo with lattice relaxation. Journal of Nuclear Materials, 2010, 406, 68-72.	1.3	0
1238	Real-space finite-difference calculations of XANES spectra along the aluminum Hugoniot from molecular dynamics simulations. High Energy Density Physics, 2010, 6, 357-364.	0.4	10
1239	Nanostructurally small cracks (NSC): A review on atomistic modeling of fatigue. International Journal of Fatigue, 2010, 32, 1473-1502.	2.8	71
1240	Premelting of Al nonperfect (111) surface. Physica B: Condensed Matter, 2010, 405, 1248-1252.	1.3	16
1241	Plastic deformation in bi-metal multilayer nanowires. Microelectronic Engineering, 2010, 87, 426-429.	1.1	5
1242	Atomistic theoretical models for nanoporous hybrid materials. Microporous and Mesoporous Materials, 2010, 129, 304-318.	2.2	46
1243	Surface self-diffusion of adatom on Pt cluster with truncated octahedron structure. Thin Solid Films, 2010, 518, 4041-4045.	0.8	7
1244	Effect of Re in γ phase, γ′γ′ phase and γ/γ′γ/γ′ interface of Ni-based single-crystal superalloys. Acta 2010, 58, 2045-2055.	Materialia	, 55
1245	Elastic limit for surface step dislocation nucleation in face-centered cubic metals: Temperature and step height dependence. Acta Materialia, 2010, 58, 4182-4190.	3.8	55
1246	The melting behaviors of the Nb(110) nanofilm: a molecular dynamics study. Applied Surface Science, 2010, 256, 3197-3203.	3.1	9
1247	Structural properties and diffusion processes of the Cu3Au (001) surface. Applied Surface Science, 2010, 256, 7083-7087.	3.1	5

#	Article	IF	CITATIONS
1248	Atomistic simulations for the non-equilibrium surface premelting and melting of Nb(110) plane. Current Applied Physics, 2010, 10, 436-443.	1.1	2
1249	Vapor–liquid equilibria of copper using hybrid Monte Carlo Wang—Landau simulations. Fluid Phase Equilibria, 2010, 287, 79-83.	1.4	43
1250	Molecular dynamics simulation of interfacial defects with modified potential based on the first-principle. Acta Mechanica Solida Sinica, 2010, 23, 400-406.	1.0	1
1251	Structural Transformation of Aluminum Nanowires during Solidification. Advanced Materials Research, 2010, 150-151, 160-163.	0.3	1
1252	Multi-scale modelling of irradiation effects in nuclear power plant materials. , 2010, , 456-543.		2
1253	Influences of Strain Rate on Copper Nanowire in Tension. Key Engineering Materials, 2010, 450, 153-156.	0.4	0
1254	Multiscale Modeling of Contact-Induced Plasticity in Nanocrystalline Metals. Challenges and Advances in Computational Chemistry and Physics, 2010, , 151-172.	0.6	1
1255	Linear-scaling moment-based electronic structure calculation. Physical Review B, 2010, 81, .	1.1	1
1256	Nucleation of hcp and fcc phases in bcc iron under uniform compression: classical molecular dynamics simulations. Journal of Physics Condensed Matter, 2010, 22, 435404.	0.7	17
1257	Bond-order potential for point and extended defect simulations in tungsten. Journal of Applied Physics, 2010, 107, .	1.1	76
1258	A gold–silicon potential fitted to the binary phase diagram. Journal of Physics Condensed Matter, 2010, 22, 055401.	0.7	17
1259	Effect of the stress field of an edge dislocation on carbon diffusion in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mi>α</mml:mi>-iron: Coupling molecular statics and atomistic kinetic Monte Carlo. Physical Review B. 2010. 82</mml:math 	1.1	42
1260	Reactive forcefield for simulating gold surfaces and nanoparticles. Physical Review B, 2010, 81, .	1.1	64
1261	Modified embedded atom method study of the mechanical properties of carbon nanotube reinforced nickel composites. Physical Review B, 2010, 81, .	1.1	31
1262	Force-matched embedded-atom method potential for niobium. Physical Review B, 2010, 81, .	1.1	120
1263	Molecular dynamics simulations of glide dislocations induced by misfit dislocations at the Ni/Al interface. Computational Materials Science, 2010, 48, 551-555.	1.4	16
1264	Embedded-atom-method interatomic potentials from lattice inversion. Journal of Physics Condensed Matter, 2010, 22, 375503.	0.7	17
1265	Modeling surface segregation phenomena in the (111) surface of ordered Pt3Ti crystal. Journal of Chemical Physics, 2010, 133, 114701.	1.2	25

#	Article	IF	CITATIONS	
1266	Atomic-scale models for hardening in fcc solid solutions. Physical Review B, 2010, 82, .	1.1	33	
1267	Computer Simulations of Nanometer-Scale Indentation and Friction. , 2010, , 955-1011.		2	
1268	Angular-dependent interatomic potential for the aluminum-hydrogen system. Physical Review B, 2010, 82, .	1.1	24	
1269	Validation of Density Functional Methods for the Calculation of Small Gold Clusters. Journal of Physical Chemistry A, 2010, 114, 10297-10308.	1.1	43	
1270	Crystal nucleation and growth in Pd–Ni alloys: a molecular simulation study. CrystEngComm, 2011, 13, 1132-1140.	1.3	14	
1271	Twinning in bcc metals under shock loading: a challenge to empirical potentials. Philosophical Magazine Letters, 2011, 91, 731-740.	0.5	54	
1272	Theoretical Determination of the Most Stable Structures of Ni _{<i>m</i>} Ag _{<i>n</i>} Bimetallic Nanoalloys. Journal of Physical Chemistry C, 2011, 115, 7179-7192.	1.5	64	
1273	Self-Assembly of Gold Nanowires along Carbon Nanotubes for Ultrahigh-Aspect-Ratio Hybrids. Chemistry of Materials, 2011, 23, 2760-2765.	3.2	20	
1274	Molecular dynamics study of the dewetting of copper on graphite and graphene: Implications for nanoscale self-assembly. Physical Review E, 2011, 83, 041603.	0.8	68	
1275	Atomistic Modeling of Ultrathin Surface Oxide Growth on a Ternary Alloy: Oxidation of Alâ^'Niâ^'Fe. Journal of Physical Chemistry C, 2011, 115, 6571-6580.	1.5	18	
1276	Ordering effects in disordered systems: the Au–Si system. Journal of Physics Condensed Matter, 2011, 23, 404205.	0.7	12	
1277	CALCULATION OF PHONON DISPERSION FOR TRANSITION METALS V, Nb AND Ta . International Journal of Modern Physics B, 2011, 25, 4047-4053.	1.0	3	
1278	Computer Simulations of Nanometer-Scale Indentation and Friction. , 2011, , 439-525.		4	
1279	THE MOBILITY OF THE EDGE DISLOCATION IN METAL: A MOLECULAR DYNAMICS SIMULATION. International Journal of Modern Physics B, 2011, 25, 3315-3324.	1.0	1	
1280	Chen's Lattice Inversion Embedded-Atom Method for FCC Metal. Advanced Materials Research, 2011, 320, 415-420.	0.3	7	
1281	A molecular dynamics study of the mechanical properties of graphene nanoribbon-embedded gold composites. Nanoscale, 2011, 3, 4307.	2.8	11	
1282	Interatomic potential for the Al-Cu system. Physical Review B, 2011, 83, .	1.1	123	
1283	Controlling the Velocity of Jumping Nanodroplets Via Their Initial Shape and Temperature. ACS Nano, 2011, 5, 7130-7136.	7.3	29	
		CITATION RE	EPORT	
------	---	---------------------------------------	-------	-----------
#	Article		IF	CITATIONS
1284	Prediction of high-frequency intrinsic localized modes in Ni and Nb. Physical Review B,	2011, 84, .	1.1	65
1285	Solubility of carbon in α-iron under volumetric strain and close to the Σ5(3 1 0)[0 0 1 Comparison of DFT and empirical potential methods. Computational Materials Science 1088-1096.] grain boundary: 2, 2011, 50,	1.4	47
1286	Molecular dynamic simulation of crack propagation in nanocrystalline Ni containing di and types of second phases. Computational Materials Science, 2011, 50, 3075-3079.	fferent shapes	1.4	16
1287	Interatomic potentials for Zirconium Diboride and Hafnium Diboride. Computational M Science, 2011, 50, 2828-2835.	laterials	1.4	15
1288	Hydrogen hardening effect in heavily deformed single crystal α-Fe. Computational Ma 2011, 50, 3397-3402.	terials Science,	1.4	21
1289	Structural and thermal properties of calcium using an MEAM potential. Calphad: Comp of Phase Diagrams and Thermochemistry, 2011, 35, 262-268.	outer Coupling	0.7	6
1290	Deformation behaviors under tension and compression: Atomic simulation of Cu65Zr3 Intermetallics, 2011, 19, 1168-1173.	35 metallic glass.	1.8	19
1291	Atomistic Model of Uranium. Chinese Journal of Chemical Physics, 2011, 24, 405-411.		0.6	6
1292	Atomistic Monte Carlo Simulations in Steelmaking: High Temperature Carburization an Decarburization of Molten Steel. , 2011, , .	nd		0
1293	Closing the Gap Between Nano- and Macroscale: Atomic Interactions vs. Macroscopic Behavior. , 0, , .	Materials		0
1294	Multiscale Modeling of Au-Island Ripening on Au(100). Advances in Physical Chemistry	[,] 2011, 2011, 1-11.	2.0	9
1295	Simple analytic embedded atom potential for FCC materials. International Journal of M and Materials Properties, 2011, 6, 378.	icrostructure	0.1	3
1296	Molecular dynamics investigation of incipient plasticity during nanomachining of Cu (International Journal of Nanomanufacturing, 2011, 7, 559.	111) surface.	0.3	1
1297	A Molecular Dynamics Study of the Effect of the Incidence Angle on the Dissociation P on Pt(111). Journal of Thermal Science and Technology, 2011, 6, 333-343.	robability of H2	0.6	0
1298	A Kinetic Monte Carlo Approach for Self-Diffusion of Pt Atom Clusters on a Pt(111) Su Communications in Computational Physics, 2011, 10, 920-939.	rface.	0.7	4
1299	Ab Initio Calculation of Interatomic Potentials in Ga-Stabilized δ-Pu Alloys. Rare Metal N Engineering, 2011, 40, 195-200.	Materials and	0.8	0
1300	Al–Pd interatomic potential and its application to nanoscale multilayer thin films. Ma & Engineering A: Structural Materials: Properties, Microstructure and Processing,	aterials Science 2011, 530, 73-86.	2.6	13
1301	A Novel Method to Improve Crystallinity of Supported Nanoparticles Using Low Meltin Journal of Physical Chemistry C, 2011, 115, 14591-14597.	g Point Metals.	1.5	13

#	Article	IF	CITATIONS
1302	Reparameterization of the REBO-CHO potential for graphene oxide molecular dynamics simulations. Physical Review B, 2011, 84, .	1.1	35
1303	Global Minimum Structures and Magic Clusters of Cu _{<i>m</i>} Ag _{<i>n</i>} Nanoalloys. Journal of Physical Chemistry C, 2011, 115, 22148-22162.	1.5	64
1304	Effects of grain boundary and boundary inclination on hydrogen diffusion in $\hat{I}\pm$ -iron. Journal of Materials Research, 2011, 26, 2735-2743.	1.2	32
1305	Molecular dynamics simulations of Ni/NiAl interfaces. European Physical Journal B, 2011, 82, 133-141.	0.6	10
1306	Influence of the environment on equilibrium properties of Au-Pd clusters. European Physical Journal D, 2011, 64, 37-44.	0.6	23
1307	Comparison of atomistic and elasticity approaches for carbon diffusion near line defects in α-iron. Acta Materialia, 2011, 59, 6963-6974.	3.8	49
1308	Atomic-level structure and structure–property relationship in metallic glasses. Progress in Materials Science, 2011, 56, 379-473.	16.0	1,364
1309	Diffusion of Pt dimers on a Wulff polyhedral surface. Science China: Physics, Mechanics and Astronomy, 2011, 54, 846-850.	2.0	1
1310	Atomistic simulation of interactions of fracture with defect clusters in delta-Pu. Science China: Physics, Mechanics and Astronomy, 2011, 54, 1805-1810.	2.0	1
1311	A Nanoscale Study of Dislocation Nucleation at the Crack Tip in the Nickel-Hydrogen System. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 340-347.	1.1	28
1312	Molecular Dynamics Simulation of MBE Growth of CdTe/ZnTe/Si. Journal of Electronic Materials, 2011, 40, 109-121.	1.0	6
1313	Force fields for metallic clusters and nanoparticles. Journal of Computational Chemistry, 2011, 32, 1711-1720.	1.5	10
1314	Ab initio study of the modification of elastic properties of α-iron by hydrostatic strain and by hydrogen interstitials. Acta Materialia, 2011, 59, 4255-4263.	3.8	45
1315	Molecular dynamics study of void effect on nanoimprint of single crystal aluminum. Applied Surface Science, 2011, 257, 7140-7144.	3.1	21
1316	Polymorph selection during the crystallization of iron under the conditions of Earth's inner core. Chemical Physics Letters, 2011, 511, 57-61.	1.2	13
1317	Structural stability and theoretical strength of the single crystal Ag under uniaxial loading. Physica B: Condensed Matter, 2011, 406, 1374-1378.	1.3	0
1318	Molecular dynamics simulations on local structure and diffusion in liquid TixAl1â^'x alloys. Physica B: Condensed Matter, 2011, 406, 3938-3941.	1.3	6
1319	Atomistic insights into dislocation-based mechanisms of void growth and coalescence. Journal of the Mechanics and Physics of Solids, 2011, 59, 1858-1871.	2.3	57

\sim		<u> </u>	
			ЪΤ
	ITAL	KLPU	IN I

#	Article	IF	CITATIONS
1320	Properties of rutile TiO2 surfaces from a Tight-Binding Variable-Charge model. Comparison with ab initio calculations. Surface Science, 2011, 605, 738-745.	0.8	20
1321	Dynamics of the contact between a ruthenium surface with a single nanoasperity and a flat ruthenium surface: Molecular dynamics simulations. Physical Review B, 2011, 83, .	1.1	4
1322	Low-temperature structure ofξ′-Al-Pd-Mn optimized byab initiomethods. Physical Review B, 2011, 84, .	1.1	14
1323	Design of high <i>T</i> _{<i>g</i>} Zr-based metallic glasses using atomistic simulation and experiment. Philosophical Magazine, 2011, 91, 3393-3405.	0.7	3
1324	Vibrational and thermodynamic properties of metal clusters with up to 150 atoms calculated by the embedded-atom method. Physical Review B, 2011, 83, .	1.1	16
1325	The dynamic effects on dissociation probability of H2–Pt(111) system by embedded atom method. Journal of Applied Physics, 2011, 109, 063509.	1.1	9
1327	Structural origin underlying poor glass forming ability of Al metallic glass. Journal of Applied Physics, 2011, 110, .	1.1	25
1328	Bayesian Inference of Atomic Diffusivity in a Binary Ni/Al System Based on Molecular Dynamics. Multiscale Modeling and Simulation, 2011, 9, 486-512.	0.6	29
1329	Temperature sensitivity of void nucleation and growth parameters for single crystal copper: a molecular dynamics study. Modelling and Simulation in Materials Science and Engineering, 2011, 19, 025007.	0.8	30
1330	Molecular dynamics study of the effects of translational energy and incident angle on dissociation probability of hydrogen/deuterium molecules on Pt(111). Journal of Applied Physics, 2011, 110, .	1.1	6
1331	Chen's Lattice Inversion Embedded-Atom Method for Nial and Ni ₃ Al Alloy. Applied Mechanics and Materials, 2011, 148-149, 766-772.	0.2	0
1332	Molecular Dynamics Simulation of Aluminium Thin Film Surface Activated Bonding. Key Engineering Materials, 2011, 486, 127-130.	0.4	0
1333	Calculation of Phonon Dispersion for 3d Transition Metals Cr and Fe by Modified Analytic Embedded Atom Method. Advanced Materials Research, 2011, 411, 532-536.	0.3	0
1334	Thermophysical Properties of Undercooled Alloys: An Overview of the Molecular Simulation Approaches. International Journal of Molecular Sciences, 2011, 12, 278-316.	1.8	21
1335	Lattice-Inversion Embedded-Atom-Method Interatomic Potentials for Group-VA Transition Metals. Chinese Physics Letters, 2011, 28, 123402.	1.3	1
1336	Icosahedral Ni Nanowires Formed from Nanocontacts Breaking: Identification and Characterization by Molecular Dynamics. Current Nanoscience, 2011, 7, 219-226.	0.7	9
1337	Molecular dynamics study of configuration and stability of vacancy clusters in fcc Ag. Philosophical Magazine, 2011, 91, 3793-3809.	0.7	2
1338	Stiffening and End Processing of MAEAM Pair Potential for FCC Metals. Advanced Materials Research, 2012, 424-425, 718-722.	0.3	0

#	Article	IF	CITATIONS
1339	End Processing of MAEAM Pair Potential for BCC Metals. Advanced Materials Research, 0, 424-425, 568-572.	0.3	0
1340	Advances in Electrocatalysis. Advances in Physical Chemistry, 2012, 2012, 1-4.	2.0	3
1341	Concepts for simulating and understanding materials at the atomic scale. MRS Bulletin, 2012, 37, 477-484.	1.7	10
1342	Molecular-dynamics study of the viscous to inertial crossover in nanodroplet coalescence. Physical Review B, 2012, 85, .	1.1	19
1343	Critical size of transitional copper clusters for ground state structure determination: empirical and <i>ab initio</i> study. Molecular Simulation, 2012, 38, 241-247.	0.9	9
1344	Study of Nb epitaxial growth on Cu(111) at sub-monolayer level. Journal of Applied Physics, 2012, 112, 074328.	1.1	1
1345	Modeling hydrogen induced damage mechanisms in metals. , 2012, , 209-246.		32
1346	Orbital-free density functional theory simulations of dislocations in magnesium. Modelling and Simulation in Materials Science and Engineering, 2012, 20, 015006.	0.8	46
1347	Construction of embedded-atom-method interatomic potentials for alkaline metals (Li, Na, and K) by lattice inversion. Chinese Physics B, 2012, 21, 053401.	0.7	1
1348	Contributions of the embedded-atom method to materials science and engineering. MRS Bulletin, 2012, 37, 485-491.	1.7	24
1349	Dynamics of virial stress in gold lattice after crack initiation. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2012, 226, 359-366.	1.1	2
1350	Study on MAEAM Multi-Body Potentials with Farther Neighbor Atoms for HCP Metals. Advanced Materials Research, 2012, 424-425, 581-585.	0.3	0
1351	Molecular Dynamics Simulation of Liquid-Vapor Coexistence Curves of Metals. Journal of Physics: Conference Series, 2012, 377, 012086.	0.3	2
1352	Interatomic Potential Development. , 2012, , 267-291.		7
1353	Chen's lattice inversion embedded-atom method for Ni—Al alloy. Chinese Physics B, 2012, 21, 113401.	0.7	12
1354	Many-body potential for nitrogen in α-iron. Philosophical Magazine Letters, 2012, 92, 656-667.	0.5	3
1355	Size effects in the elastic deformation behavior of metallic nanoparticles. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	24
1356	Coarse-grained atomistic simulations of dislocations in Al, Ni and Cu crystals. International Journal of Plasticity, 2012, 38, 86-101.	4.1	61

	Сітаті	on Report	
#	Article	IF	CITATIONS
1357	Atomistic simulation study on key factors dominating dislocation nucleation from a crack tip in two FCC materials: Cu and Al. International Journal of Solids and Structures, 2012, 49, 3345-3354.	1.3	24
1358	Effect of rare earth Th on thermophysical properties of ternary Co–Fe–Th liquid alloy. Journal of Alloys and Compounds, 2012, 543, 176-180.	2.8	3
1359	Interatomic potential for uranium in a wide range of pressures and temperatures. Journal of Physics Condensed Matter, 2012, 24, 015702.	0.7	36
1360	Relating Dynamic Properties to Atomic Structure in Metallic Glasses. Jom, 2012, 64, 856-881.	0.9	110
1361	A thermodynamic perspective of the metastability of holey sheets: the role of curvature. Physical Chemistry Chemical Physics, 2012, 14, 13309.	1.3	1
1362	Molecular automation: a new kind of simulation applied to ionic solutions. Physics and Chemistry of Liquids, 2012, 50, 1-30.	0.4	7
1363	Structural defects in Fe–Pd-based ferromagnetic shape memory alloys: tuning transformation properties by ion irradiation and severe plastic deformation. New Journal of Physics, 2012, 14, 103006.	1.2	8
1364	Variable Charge Reactive Potential for Hydrocarbons to Simulate Organic-Copper Interactions. Journal of Physical Chemistry A, 2012, 116, 7976-7991.	1.1	91
1365	Class Forming Ability and Alloying Effect of a Noble-Metal-Based Glass Former. Journal of Physical Chemistry B, 2012, 116, 1356-1359.	1.2	6
1366	Phonon ballistic transport in the atomic chains with different interface connections to the heat reservoir. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 1392-1398.	1.3	0
1367	Modified embedded atom method potential for Al, Si, Mg, Cu, and Fe alloys. Physical Review B, 2012, 85, .	1.1	267
1368	A Straightforward Approach for the Determination of the Maximum Time Step for the Simulation of Nanometric Metallic Systems. Journal of Chemical Theory and Computation, 2012, 8, 1744-1749.	2.3	8
1369	Structural and dynamic origin of the boson peak in a Cu-Zr metallic glass. Physical Review B, 2012, 85, .	1.1	32
1370	Stability and crystal structures of iron carbides: A comparison between the semi-empirical modified embedded atom method and quantum-mechanical DFT calculations. Physical Review B, 2012, 85, .	1.1	23
1371	Surface layering-induced crystallization of Ni–Si alloy drops. Acta Materialia, 2012, 60, 4636-4645.	3.8	15
1372	Diffusion mobilities in the fcc Ag–Cu and Ag–Pd alloys. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2012, 37, 57-64.	0.7	17
1373	Multiscale analysis of delay effect of dislocation nucleation with surface pit defect in nanoindentation. Computational Materials Science, 2012, 62, 203-209.	1.4	8
1374	Computational aspects of many-body potentials. MRS Bulletin, 2012, 37, 513-521.	1.7	278

#	Article	IF	CITATIONS
1376	Free-energy based pair-additive potentials for bulk Ni-Al systems: Application to study Ni-Al reactive alloying. Journal of Chemical Physics, 2012, 137, 094704.	1.2	13
1377	Atomistic modeling of thermodynamic equilibrium and polymorphism of iron. Journal of Physics Condensed Matter, 2012, 24, 225404.	0.7	38
1378	Effect of material damage on the spallation threshold of single crystal copper: a molecular dynamics study. Modelling and Simulation in Materials Science and Engineering, 2012, 20, 015012.	0.8	19
1379	Numerical estimate for boiling points via Wang–Landau simulations. Molecular Simulation, 2012, 38, 1265-1270.	0.9	19
1380	A molecular dynamics examination of the relationship between self-diffusion and viscosity in liquid metals. Journal of Chemical Physics, 2012, 136, 214505.	1.2	23
1381	Simulation of Cluster Sintering, Dipolar Chain Formation, and Ferroelectric Nanoparticulate Systems. Nanoscience and Technology, 2012, , 139-159.	1.5	0
1382	Orientation- and microstructure-dependent deformation in metal nanowires under bending. Acta Materialia, 2012, 60, 7112-7122.	3.8	23
1383	Sintering and deposition of nanoparticles on surface of metals: A molecular dynamics approach. Computational Materials Science, 2012, 65, 264-268.	1.4	17
1384	Molecular Dynamic Dimulation of Energy and Structural Stability on Twist Grain Boundary in Bicrystal Copper. Procedia Engineering, 2012, 27, 1730-1737.	1.2	2
1385	Breakdown of the Schmid law in homogeneous and heterogeneous nucleation events of slip and twinning in magnesium. Journal of the Mechanics and Physics of Solids, 2012, 60, 2084-2099.	2.3	111
1386	Molecular dynamics calculation of thermodynamic properties of iron solidification. IOP Conference Series: Materials Science and Engineering, 2012, 33, 012113.	0.3	2
1387	Molecular Dynamics Simulations and Kapitza Conductance Prediction of Si/Au Systems Using the New Full 2NN MEAM Si/Au Cross-Potential. Journal of Heat Transfer, 2012, 134, .	1.2	8
1388	Ab initioparametrized model of strain-dependent solubility of H in α-iron. Modelling and Simulation in Materials Science and Engineering, 2012, 20, 035011.	0.8	5
1389	Quantum–Thermal Crossover of Hydrogen and Tritium Diffusion in α-Iron. Journal of Physical Chemistry C, 2012, 116, 23113-23119.	1.5	17
1390	An embedded-atom-method model for alkali-metal vibrations. Journal of Physics Condensed Matter, 2012, 24, 335401.	0.7	7
1391	Structural Irreversibility and Enhanced Brittleness under Fatigue in Zr-Based Amorphous Solids. Metals, 2012, 2, 529-539.	1.0	4
1392	Molecular Simulation of Dissociation Phenomena of Gas Molecule on Metal Surface. , 2012, , .		0
1393	Ab initio calculations of the melting temperatures of refractory bcc metals. Physical Chemistry Chemical Physics, 2012, 14, 1529-1534.	1.3	14

#	Article	IF	CITATIONS
1394	Classical interatomic potential for orthorhombic uranium. Journal of Physics Condensed Matter, 2012, 24, 235403.	0.7	23
1395	A Molecular Dynamics Simulation Study of the Cavitation Pressure in Liquid Al. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 3972-3977.	1.1	13
1396	Embedded atom method potentials for Al-Pd-Mn phases. Physical Review B, 2012, 85, .	1.1	27
1397	Probing grain boundary sink strength at the nanoscale: Energetics and length scales of vacancy and interstitial absorption by grain boundaries in <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:miaif+< 2012,="" 85<="" b,="" mml:matha-fe,="" mml:miaif+<="" physical="" review="" td=""><td>1.1</td><td>285</td></mml:miaif+<></mml:math>	1.1	285
1398	Signatures of the Rayleighâ€Plateau Instability Revealed by Imposing Synthetic Perturbations on Nanometerâ€6ized Liquid Metals on Substrates. Angewandte Chemie - International Edition, 2012, 51, 8768-8772.	7.2	16
1399	Molecular Dynamics Simulation: From "Ab Initio―to "Coarse Grained― , 2012, , 195-238.		11
1400	Theoretical Studies of Structural and Electronic Properties of Clusters. , 2012, , 955-993.		1
1401	Atomistic theory and simulation of the morphology and structure of ionic nanoparticles. Nanoscale, 2012, 4, 1051-1067.	2.8	15
1402	Deformation characteristics of various grain boundary angles on AFM-based nanolithography using molecular dynamics. Journal of Mechanical Science and Technology, 2012, 26, 1841-1847.	0.7	3
1403	On the mechanism of diffusion-induced recrystallization: Comparison between experiment and molecular dynamics simulations. Acta Materialia, 2012, 60, 3469-3479.	3.8	6
1404	Molecular dynamics study of vapor–liquid equilibria and transport properties of sodium and lithium based on EAM potentials. Fluid Phase Equilibria, 2012, 313, 16-24.	1.4	22
1405	Stacking fault energy in FCC plutonium with multiple reference states in the modified embedded atom method. Journal of Nuclear Materials, 2012, 422, 20-26.	1.3	12
1406	Multiscale simulation of onset plasticity during nanoshearing process of copper film. Microelectronic Engineering, 2012, 93, 74-80.	1.1	1
1407	Molecular dynamics simulation of ion focusing and crowdion formation in self-ion-irradiated Fe. Nuclear Instruments & Methods in Physics Research B, 2012, 272, 33-36.	0.6	3
1408	Tight-binding simulations for bulk and low dimensional properties of SiC. Superlattices and Microstructures, 2012, 52, 116-133.	1.4	0
1409	A molecular dynamics study of structural transition of Ti during the rapid quenching process. Physica B: Condensed Matter, 2012, 407, 2112-2118.	1.3	4
1410	Hyper-pre-stress vs. strain-gradient for surface relaxation in diamond-like structures. Journal of the Mechanics and Physics of Solids, 2012, 60, 623-642.	2.3	7
1411	Atomistic simulation of laser ablation of gold: Effect of pressure relaxation. Journal of Experimental and Theoretical Physics, 2012, 114, 792-800.	0.2	66

# 1412	ARTICLE Description of the geometry of crystals with a hexagonal close-packed structure based on pair interaction potentials. Physics of the Solid State, 2012, 54, 1408-1416.	IF 0.2	CITATIONS 9
1413	Surface free energy and surface stress as elastic components of the surface tension of condensed matter. Protection of Metals and Physical Chemistry of Surfaces, 2012, 48, 27-41.	0.3	2
1414	An embedded atom hyperelastic constitutive model and multiscale cohesive finite element method. Computational Mechanics, 2012, 49, 337-355.	2.2	31
1415	Density Functional Theory Models for Radiation Damage. Annual Review of Materials Research, 2013, 43, 35-61.	4.3	101
1416	Molecular dynamics simulations with many-body potentials on multiple GPUs—The implementation, package and performance. Computer Physics Communications, 2013, 184, 2091-2101.	3.0	51
1417	Room Temperature Nanojoining of Triangular and Hexagonal Silver Nanodisks. Journal of Physical Chemistry C, 2013, 117, 16665-16676.	1.5	40
1418	Optical properties of silver and copper clusters with up to 150 atoms. Computational and Theoretical Chemistry, 2013, 1021, 197-205.	1.1	10
1419	Benchmarking of classical force fields by ab initio calculations of atomic clusters: Ti and Ni–Ti case. Computational and Theoretical Chemistry, 2013, 1021, 101-108.	1.1	11
1420	Melting curve of face-centered-cubic nickel from first-principles calculations. Physical Review B, 2013, 88, .	1.1	40
1421	Vibrational properties of vacancy in bcc transition metals using embedded atom method potentials. Pramana - Journal of Physics, 2013, 80, 1041-1054.	0.9	10
1422	Atomistic modeling of carbon Cottrell atmospheres in bcc iron. Journal of Physics Condensed Matter, 2013, 25, 025401.	0.7	35
1423	Interference Effects in Nanocrystalline Systems. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 39-44.	1.1	4
1424	Atomic transport for liquid noble and transition metals using scaling laws. Journal of Molecular Liquids, 2013, 188, 148-154.	2.3	11
1425	Implementing molecular dynamics on hybrid high performance computers—Three-body potentials. Computer Physics Communications, 2013, 184, 2785-2793.	3.0	112
1426	Effect of Lattice Motion on Dissociation and Recombination Rates of H ₂ on Ni(100) Surface. Journal of Physical Chemistry C, 2013, 117, 19010-19019.	1.5	16
1427	A comparative study on temperature dependent diffusion coefficient of liquid Fe. Physica B: Condensed Matter, 2013, 426, 127-131.	1.3	12
1428	Considerations for choosing and using force fields and interatomic potentials in materials science and engineering. Current Opinion in Solid State and Materials Science, 2013, 17, 277-283.	5.6	193
1429	Embedded Atom Method-Based Geometry Optimization Aspects of Body-Centered Cubic Metals. Chinese Physics Letters, 2013, 30, 056201.	1.3	19

#	Article	IF	CITATIONS
1430	Quantifying the energetics and length scales of carbon segregation toα-Fe symmetric tilt grain boundaries using atomistic simulations. Modelling and Simulation in Materials Science and Engineering, 2013, 21, 035009.	0.8	47
1431	Hydrogen detection in metals: a review and introduction of a Kelvin probe approach. Science and Technology of Advanced Materials, 2013, 14, 014201.	2.8	100
1432	Response embedded atom method of interatomic potentials. Physical Review B, 2013, 87, .	1.1	12
1434	Surface tension of liquid transition and noble metals. Journal of Non-Crystalline Solids, 2013, 380, 42-47.	1.5	8
1435	Structure of Pd/Au Alloy Nanoparticles from a Density Functional Theory-Based Embedded-Atom Potential. Journal of Physical Chemistry C, 2013, 117, 21810-21822.	1.5	22
1436	Energy, structure and vibrational modes of small water clusters by a simple many-body potential mimicking polarisation effects. Molecular Physics, 2013, 111, 3502-3514.	0.8	3
1437	Charge Transfer Potentials. RSC Catalysis Series, 2013, , 244-260.	0.1	0
1438	Development of the ReaxFF reactive force field for aluminum–molybdenum alloy. Journal of Materials Research, 2013, 28, 1155-1164.	1.2	10
1439	Structural, electronic and magnetic properties of 22-, 35- and 55-atom core–shell Au–Cu nanoclusters. Molecular Simulation, 2013, 39, 505-512.	0.9	2
1440	A review of ultrafast laser materials micromachining. Optics and Laser Technology, 2013, 46, 88-102.	2.2	315
1441	Molecular dynamics study on temperature and strain rate dependences of mechanical tensile properties of ultrathin nickel nanowires. Transactions of Nonferrous Metals Society of China, 2013, 23, 3353-3361.	1.7	53
1442	Gupta potential for rare earth elements of the fcc phase: lanthanum and cerium. Modelling and Simulation in Materials Science and Engineering, 2013, 21, 065003.	0.8	10
1443	Simulation of the massive austenite–ferrite transformation under uniaxial loading. Computational Materials Science, 2013, 77, 214-223.	1.4	6
1444	Interatomic potentials for PuC by Chen–Möbius multiple lattice inversion. Journal of Nuclear Materials, 2013, 442, 179-183.	1.3	8
1445	Spatially resolved high sensitive measurement of hydrogen permeation by scanning Kelvin probe microscopy. Electrochimica Acta, 2013, 110, 534-538.	2.6	51
1446	Construction and application of multi-element EAM potential (Ni–Al–Re) in <i>γ</i> / <i>γ</i> ′ Ni-based single crystal superalloys. Modelling and Simulation in Materials Science and Engineering, 2013, 21, 015007.	0.8	49
1447	Molecular Dynamics Simulation of FCC Metallic Nanowires: A Review. Jom, 2013, 65, 175-184.	0.9	28
1448	Atomistic Investigation of the Role of Grain Boundary Structure on Hydrogen Segregation and Embrittlement in I±-Fe. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 1365-1375	1.1	89

		CITATION RE	PORT	
#	Article		IF	Citations
1449	Configurational transitions in processes involving metal clusters. Physics Reports, 2013	3, 527, 205-250.	10.3	26
1450	Molecular dynamics simulation of thin film interfacial strength dependency on lattice n Solid Films, 2013, 537, 190-197.	nismatch. Thin	0.8	17
1451	Building an MD Simulation Program. SpringerBriefs in Applied Sciences and Technolog	y, 2013, , 7-16.	0.2	0
1452	Monte Carlo simulation of melting and lattice relaxation of the (111) surface of silver. Science, 2013, 614, 46-52.	Surface	0.8	14
1453	Molecular dynamics calculation of solid–liquid interfacial free energy and its anisotro iron solidification. Computational Materials Science, 2013, 74, 92-100.	py during	1.4	44
1454	Surface self-diffusion of Re adatom on the Re cluster with hexahedral structure. Physica Condensed Matter, 2013, 414, 97-102.	a B:	1.3	3
1455	Reactive Potentials for Advanced Atomistic Simulations. Annual Review of Materials Re 109-129.	search, 2013, 43,	4.3	184
1456	Hydrogen-assisted failure in a twinning-induced plasticity steel studied under in situ hy charging by electron channeling contrast imaging. Acta Materialia, 2013, 61, 4607-461	drogen 18.	3.8	218
1457	Modeling of configurational transitions in atomic systems. Physics-Uspekhi, 2013, 56,	973-998.	0.8	11
1458	Molecular dynamics simulation of severe adhesive wear on a rough aluminum substrate Physics D: Applied Physics, 2013, 46, 055307.	e. Journal	1.3	35
1459	Geometry Optimization Calculations for the Elasticity of Gold at High Pressure. Advance Science and Engineering, 2013, 2013, 1-5.	es in Materials	1.0	9
1460	Controversy Over Elastic Constants Based on Interatomic Potentials. Journal of Engine Materials and Technology, Transactions of the ASME, 2013, 135, .	ering	0.8	4
1461	The Recent Developments of Molecular Dynamics Simulation. Applied Mechanics and N 444-445, 1370-1373.	Naterials, 0,	0.2	1
1462	Molecular Dynamics Simulation of Structural Changes of Ag _{965during Freezing. Advanced Materials Research, 0, 683, 348-352.}	:; Clusters	0.3	0
1463	Numerical Study on Thermal Boundary Resistance and Conductive Properties of Cu/Al I Engineering Materials, 2013, 562-565, 1190-1195.	nterface. Key	0.4	1
1464	MD Simulation on Evolution of Micro Structure and Failure Mechanism around Interact Pure Al. Applied Mechanics and Materials, 2013, 444-445, 183-190.	tional Voids in	0.2	2
1465	Molecular dynamics simulation on the tensile behavior of gold nanowires with diamete and 6 nm. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Na and Nanosystems, 2013, 227, 135-141.	rs between 3 inoengineering	0.1	6
1466	High-pressure phonon dispersion of copper by using the modified analytic embedded a Chinese Physics B, 2013, 22, 096301.	tom method.	0.7	6

#	Article	IF	CITATIONS
1467	On the optimal conditions for the formation and observation of long icosahedral nanowires of aluminium, nickel and copper. Modelling and Simulation in Materials Science and Engineering, 2013, 21, 045002.	0.8	9
1468	Molecular Dynamics Simulations of Atomic Structure in Cu ₄₆ Zr ₄₆ Al ₈ Metallic Liquid and Glass. Advanced Materials Research, 2013, 773, 380-385.	0.3	0
1469	Simulations of Structural Transition of Ti ₇₅ Al ₂₅ under High Pressure. Applied Mechanics and Materials, 0, 401-403, 708-712.	0.2	0
1470	Atomistic modeling of Co–Al compounds. Journal of Materials Research, 2013, 28, 2720-2727.	1.2	4
1471	The interpretation of polycrystalline coherent inelastic neutron scattering from aluminium. Journal of Applied Crystallography, 2013, 46, 1755-1770.	1.9	3
1472	Density functional theory investigations of titanium <i>\hat{I}^3</i> -surfaces and stacking faults. Modelling and Simulation in Materials Science and Engineering, 2013, 21, 015009.	0.8	33
1473	Atomistic potentials for palladium–silver hydrides. Modelling and Simulation in Materials Science and Engineering, 2013, 21, 045005.	0.8	28
1474	Kinetics of liquid-solid phase transition in large nickel clusters. Physical Review B, 2013, 88, .	1.1	12
1476	Possible origin of the discrepancy in Peierls stresses of fcc metals: First-principles simulations of dislocation mobility in aluminum. Physical Review B, 2013, 88, .	1.1	53
1477	A threeâ€dimensional atomisticâ€based process zone model simulation of fragmentation in polycrystalline solids. International Journal for Numerical Methods in Engineering, 2013, 93, 989-1014.	1.5	20
1478	Atomistic study of welding of carbon nanotube onto metallic substrates. , 2013, , .		1
1480	EFFECTS ON MECHANICAL PROPERTIES OF REFRACTORY METAL DOPED Ti ₃ Al ALLOY. International Journal of Modern Physics B, 2013, 27, 1350147.	1.0	6
1481	The clusterâ€size dependence of selfâ€diffusion behavior: A single Re adatom on a hexahedral surface. Physica Status Solidi (B): Basic Research, 2013, 250, 1363-1369.	0.7	4
1482	Recent Advances in Computational Materials Science. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2014, 100, 1207-1219.	0.1	3
1484	Molecular dynamics study of the stability of a carbon nanotube atop a catalytic nanoparticle. European Physical Journal D, 2014, 68, 1.	0.6	23
1485	Screw dislocation in hcp Ti : DFT dislocation excess energies and metastable core structures. Modelling and Simulation in Materials Science and Engineering, 2014, 22, 055016.	0.8	23
1486	Molecular statics simulations of intergranular fracture along Σ11 tilt grain boundaries in copper bicrystals. Journal of Materials Science, 2014, 49, 8355-8364.	1.7	18
1487	Simulation Techniques for Atomic Systems. , 2014, , 151-186.		1

#	Article	IF	CITATIONS
1488	Integrated experimental and computational studies of deformation of single crystal copper at high strain rates. Journal of Applied Physics, 2014, 116, .	1.1	21
1489	Electronic and structural properties of ultrathin tungsten nanowires and nanotubes by density functional theory calculation. Journal of Applied Physics, 2014, 116, 133704.	1.1	6
1490	Comment on "First-principles-based embedded atom method for PdAu nanoparticles― Physical Review B, 2014, 89, .	1.1	3
1491	Orientation sensitivity of focused ion beam damage in pure zirconium: direct experimental observations and molecular dynamics simulations. Philosophical Magazine, 2014, 94, 1601-1621.	0.7	8
1492	Mesodynamics with implicit degrees of freedom. Journal of Chemical Physics, 2014, 141, 064107.	1.2	18
1493	Atomic-scale investigation of point defects and hydrogen-solute atmospheres on the edge dislocation mobility in alpha iron. Journal of Applied Physics, 2014, 116, .	1.1	35
1494	Structural evolution of vacancy clusters by combination of cluster units in alpha-iron. Materials Research Innovations, 2014, 18, S4-1003-S4-1006.	1.0	0
1495	Mobility of the austenite–ferrite interface under various states of loading. Philosophical Magazine, 2014, 94, 801-813.	0.7	1
1496	Palladium Hydride Atomic Potentials for Hydrogen Storage/Separation. , 2014, , .		0
1497	Molecular dynamics simulation of interaction between deformation twin and annealing twin in iron crystal. Materials Research Innovations, 2014, 18, S4-1007-S4-1011.	1.0	1
1498	Molecular Dynamics Simulation of Porous Layer-Induced Stress in α-Iron Single Crystal and Twin Crystal. Materials Science Forum, 2014, 789, 536-542.	0.3	0
1499	Simulation of Structural Transition of Ni Nano-Material under Different Pressures. Applied Mechanics and Materials, 0, 556-562, 72-76.	0.2	0
1500	Modeling Potential Energy Surfaces: From First-Principle Approaches to Empirical Force Fields. Entropy, 2014, 16, 322-349.	1.1	7
1501	Atomistic simulations of Cu2O bulk and Cu/Cu2O interface properties by using a new interatomic potential. Computational Materials Science, 2014, 81, 366-373.	1.4	9
1502	Influence of adsorbates on the segregation properties of Au–Pd bimetallic clusters. Computational Materials Science, 2014, 81, 253-258.	1.4	5
1503	Modeling of interface cracking in copper–graphite composites by MD and CFE method. Composites Part B: Engineering, 2014, 58, 586-592.	5.9	42
1504	Structural and mechanical properties of Fe–Al compounds: An atomistic study by EAM simulation. Intermetallics, 2014, 52, 86-91.	1.8	42
1505	Molecular dynamics simulations of brittle fracture in fcc crystalline materials in the presence of defects. Computational Materials Science, 2014, 86, 130-139.	1.4	24

#	Article	IF	CITATIONS
1506	Effect of surface crack on nanoimprint process of Al thin film. Physica B: Condensed Matter, 2014, 434, 194-199.	1.3	3
1507	Atomistic study of lateral contact stiffness in friction force microscopy. Tribology International, 2014, 74, 57-61.	3.0	3
1508	Vibrational properties of vacancy in bcc Nb using embedded atom method. Indian Journal of Physics, 2014, 88, 171-176.	0.9	5
1509	Thermodynamics at the nanoscale: A new approach to the investigation of unique physicochemical properties of nanomaterials. Materials Science and Engineering Reports, 2014, 79, 1-40.	14.8	133
1510	Computational study on bonding of carbon nanotubes onto metallic substrates. Microsystem Technologies, 2014, 20, 397-402.	1.2	3
1511	A Comparative Study on Hydrogen Diffusion in Amorphous and Crystalline Metals Using a Molecular Dynamics Simulation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 2906-2915.	1.1	36
1512	Determination of the threshold of nanoparticle behavior: Structural and electronic properties study of nano-sized copper. Physica B: Condensed Matter, 2014, 436, 74-79.	1.3	11
1513	Growth of epitaxial graphene: Theory and experiment. Physics Reports, 2014, 542, 195-295.	10.3	228
1514	Elastic, elastic–plastic properties of Ag, Cu and Ni nanowires by the bending test using molecular dynamics simulations. Computational Materials Science, 2014, 87, 138-144.	1.4	31
1515	Representing potential energy surfaces by high-dimensional neural network potentials. Journal of Physics Condensed Matter, 2014, 26, 183001.	0.7	252
1516	Molecular dynamics simulations of edge cracks in copper and aluminum single crystals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 609, 102-109.	2.6	57
1517	Molecular dynamics simulations of influence of Re on lattice trapping and fracture stress of cracks in Ni. Computational Materials Science, 2014, 83, 196-206.	1.4	24
1518	First-principles simulations of plasticity in body-centered-cubic magnesium–lithium alloys. Acta Materialia, 2014, 64, 198-207.	3.8	41
1519	Calculation of the surface tension of pure tin from atomistic simulations of liquid–vapour systems. Molecular Physics, 2014, 112, 2654-2657.	0.8	9
1520	Nonclassical nucleation kinetics in the crystallization of a supercooled melt. Russian Journal of Physical Chemistry A, 2014, 88, 1382-1387.	0.1	13
1521	Determination of the vacancy migration energy in fcc metals using a modified embedded-atom method. Russian Metallurgy (Metally), 2014, 2014, 246-250.	0.1	3
1522	Orientation-dependent crystal instability of gamma-TiAl in nanoindentation investigated by a multiscale interatomic potential finite-element model. Modelling and Simulation in Materials Science and Engineering, 2014, 22, 085013.	0.8	6
1523	Molecular dynamics simulation of a helium bubble bursting on tungsten surfaces. Physica Scripta, 2014, T159, 014062.	1.2	38

#	Article	IF	CITATIONS
1524	Development of lattice inversion modified embedded atom method and its applications. Current Applied Physics, 2014, 14, 1794-1802.	1.1	11
1525	High-index-faceted platinum nanoparticles: insights into structural and thermal stabilities and shape evolution from atomistic simulations. Journal of Materials Chemistry A, 2014, 2, 11480-11489.	5.2	25
1526	Mechanical properties and thermal stability of ultrathin tungsten nanowires. RSC Advances, 2014, 4, 6985.	1.7	9
1527	Atom probe tomography observation of hydrogen in high-Mn steel and silver charged via an electrolytic route. International Journal of Hydrogen Energy, 2014, 39, 12221-12229.	3.8	57
1528	Atomic mechanisms and diffusion anisotropy of Cu tetramers on Cu(111). Physical Review B, 2014, 90, .	1.1	3
1529	An interatomic potential for saturated hydrocarbons based on the modified embedded-atom method. Physical Chemistry Chemical Physics, 2014, 16, 6233-6249.	1.3	41
1530	Development of a ReaxFF potential for Pt–O systems describing the energetics and dynamics of Pt-oxide formation. Physical Chemistry Chemical Physics, 2014, 16, 23118-23133.	1.3	72
1531	Molecular dynamics simulations of clusters and thin film growth in the context of plasma sputtering deposition. Journal Physics D: Applied Physics, 2014, 47, 224004.	1.3	43
1532	Implementation of an alternative method to determine the critical cooling rate: Application in silver and copper nanoparticles. Chemical Physics Letters, 2014, 612, 273-279.	1.2	7
1533	A mean-field interatomic potential for a multi-component Î ² -type titanium alloy. Computational Materials Science, 2014, 95, 414-419.	1.4	3
1534	Validation of Classical Force Fields for the Description of Thermo-Mechanical Properties of Transition Metal Materials. Journal of Physical Chemistry A, 2014, 118, 8426-8436.	1.1	8
1535	Diffusion properties of liquid lithium–lead alloys from atomistic simulation. Computational Materials Science, 2014, 93, 74-80.	1.4	11
1536	Monolayer Nanoislands of Pt on Au and Cu: A First-Principles Computational Study. Journal of Physical Chemistry C, 2014, 118, 22102-22110.	1.5	8
1537	Multiscale simulations of damage of perfect crystal Cu at high strain rates. Pramana - Journal of Physics, 2014, 83, 265-272.	0.9	12
1538	Effect of vacancies and interstitials in the dumbbell configuration on the shear modulus and vibrational density of states of copper. Physics of the Solid State, 2014, 56, 1368-1373.	0.2	11
1539	The ternary Ni—Al—Co embedded-atom-method potential for γ/γ′ Ni-based single-crystal superalloys: Construction and application. Chinese Physics B, 2014, 23, 033401.	0.7	11
1540	Size-dependent elastic properties of thin films: surface anisotropy and surface bonding. Science China Technological Sciences, 2014, 57, 680-691.	2.0	18
1541	On the Modeling of the Diffraction Pattern from Metal Nanocrystals. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 4786-4795.	1.1	7

# 1542	ARTICLE On multiparticle interaction. Technical Physics, 2014, 59, 474-481.	IF 0.2	Citations
1543	Molecular Dynamics Simulation of Self-Diffusion Processes in Titanium in Bulk Material, on Grain Junctions and on Surface. Journal of Physical Chemistry A, 2014, 118, 6685-6691.	1.1	14
1544	A review of modelling and simulation of hydrogen behaviour in tungsten at different scales. Nuclear Fusion, 2014, 54, 086001.	1.6	159
1545	Analytic Force Field for Clusters and Nanoparticles of Aluminum and Its Hydride. Physical Review Applied, 2014, 1, .	1.5	Ο
1546	Temperature-dependent electronic structures, atomistic modelling and the negative thermal expansion ofl Pu. Philosophical Magazine Letters, 2014, 94, 620-628.	0.5	9
1547	Influence of the isothermal process at glass transition temperature on growths of Frank–Kasper polyhedral clusters in TiAl3 alloy. Journal of Non-Crystalline Solids, 2014, 406, 95-101.	1.5	7
1548	Effective embedded-atom potential for metallic adsorbates on crystalline surfaces. Modelling and Simulation in Materials Science and Engineering, 2014, 22, 035015.	0.8	1
1549	Simulations of dislocation mobility in magnesium from first principles. International Journal of Plasticity, 2014, 60, 58-70.	4.1	47
1550	A modified Stillinger–Weber potential-based hyperelastic constitutive model for nonlinear elasticity. International Journal of Solids and Structures, 2014, 51, 1542-1554.	1.3	26
1551	Atomistic modeling of the crack–void interaction in α-Fe. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 609, 255-265.	2.6	32
1552	Processes of H2 adsorption on Fe(110) surface: A density functional theory study. Applied Surface Science, 2014, 296, 47-52.	3.1	31
1553	The molecular dynamic study of anharmonic effects at Cu(111) and Ag(111) surfaces in the presence of Cu- and Ag-trimer island. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 1727-1732.	0.9	5
1554	Simulations of bcc tantalum screw dislocations: Why classical inter-atomic potentials predict {112} slip. Computational Materials Science, 2014, 90, 106-115.	1.4	27
1555	Atomistic Simulations of Properties and Phenomena at High Temperatures. , 2014, , 287-393.		2
1556	Fragment Hamiltonian model potential for nickel: metallic character and defects in crystalline lattices. Modelling and Simulation in Materials Science and Engineering, 2014, 22, 045013.	0.8	4
1557	The embedded atom method ansatz: validation and violation. Modelling and Simulation in Materials Science and Engineering, 2014, 22, 025025.	0.8	3
1558	Strength and Toughness of Graphdiyne/Copper Nanocomposites. Advanced Engineering Materials, 2014, 16, 862-871.	1.6	19
1559	Sublattice parallel replica dynamics. Physical Review E, 2014, 89, 063308.	0.8	8

#	Article	IF	CITATIONS
1560	Vibrational Properties of Vacancy in Na and K Using MEAM Potential. Communications in Computational Physics, 2014, 15, 556-568.	0.7	3
1561	Simulating Grain Boundary Energy Using Molecular Dynamics. Journal of Modern Physics, 2014, 05, 627-632.	0.3	9
1562	Peridynamic State-Based Models and the Embedded-Atom Model. Communications in Computational Physics, 2014, 15, 179-205.	0.7	23
1563	Thermodynamic modelling of liquids: CALPHAD approaches and contributions from statistical physics. Physica Status Solidi (B): Basic Research, 2014, 251, 33-52.	0.7	28
1564	Shear and shuffle in twinning in titanium. Journal of Materials Research, 2015, 30, 3795-3802.	1.2	3
1565	Formation and properties of metallic atomic contacts. Physics-Uspekhi, 2015, 58, 933-951.	0.8	32
1566	Fracture toughness of Cu and Ni single crystals with a nanocrack. Journal of Materials Research, 2015, 30, 1957-1964.	1.2	9
1567	Deformation and fracture of nano-sized metal-coated polymer particles: A molecular dynamics study. Engineering Fracture Mechanics, 2015, 150, 209-221.	2.0	10
1568	Improved method of calculating <i>ab initio</i> high-temperature thermodynamic properties with application to ZrC. Physical Review B, 2015, 91, .	1.1	86
1569	Adsorption of metal nanoparticles on carbon substrates and epitaxial graphene: Assessing models for dispersion forces. Physical Review B, 2015, 91, .	1.1	9
1570	Local Five-Fold Symmetry and Diffusion Behavior of Zr 64 Cu 36 Amorphous Alloy Based on Molecular Dynamics. Chinese Physics Letters, 2015, 32, 116101.	1.3	6
1571	Determination of the vacancy migration energy in FCC metals with allowance for the relaxation of the nearest atoms. Russian Metallurgy (Metally), 2015, 2015, 400-406.	0.1	6
1573	A study on atomic diffusion behaviours in an Al-Mg compound casting process. AIP Advances, 2015, 5, .	0.6	12
1574	Beyond packing of hard spheres: The effects of core softness, non-additivity, intermediate-range repulsion, and many-body interactions on the glass-forming ability of bulk metallic glasses. Journal of Chemical Physics, 2015, 143, 184502.	1.2	18
1575	Impacts of Interface Energies and Transformation Strain from BCC to FCC on Massive-like δ-γ Transformation in Steel. IOP Conference Series: Materials Science and Engineering, 2015, 84, 012049.	0.3	10
1576	Interface Energies of Hetero- and Homo-Phase Boundaries and Their Impact on δ-γ Massive-Like Phase Transformations in Carbon Steel. Materials Transactions, 2015, 56, 1461-1466.	0.4	18
1577	Concurrent γ-Phase Nucleation as a Possible Mechanism of δ-γ Massive-like Phase Transformation in Carbon Steel: Numerical Analysis Based on Effective Interface Energy. Materials Transactions, 2015, 56, 1467-1474.	0.4	17
1578	On shock driven jetting of liquid from non-sinusoidal surfaces into a vacuum. Journal of Applied Physics, 2015, 118, .	1.1	67

#	Article	IF	CITATIONS
1579	Latent heat of vaporization of nanofluids: Measurements and molecular dynamics simulations. Journal of Applied Physics, 2015, 118, .	1.1	15
1580	Application of Grid Increment Cluster Expansion to Modeling Potential Energy Surface of Cu-Based Alloys. Materials Transactions, 2015, 56, 1077-1080.	0.4	1
1581	Classical interaction potentials for diverse materials from <i>ab initio</i> data: a review of <i>potfit</i> . Modelling and Simulation in Materials Science and Engineering, 2015, 23, 074002.	0.8	76
1582	The effect of nano-void on deformation behaviour of Al-Cu intermetallic thin film compounds. Metallurgical Research and Technology, 2015, 112, 505.	0.4	6
1583	Modeling contact formation between atomic-sized gold tips via molecular dynamics. Journal of Physics: Conference Series, 2015, 574, 012045.	0.3	10
1584	Atomic Structure and Diffusion Properties of Liquid Cu ₄ ₅ Zr ₄ ₈ Al ₇ Metallic Glasses. Applied Mechanics and Materials, 2015, 723, 551-555.	0.2	0
1585	Sputtering of cubic metal crystals by low-energy xenon-ions. Computational Materials Science, 2015, 107, 102-109.	1.4	4
1586	MEAMfit: A reference-free modified embedded atom method (RF-MEAM) energy and force-fitting code. Computer Physics Communications, 2015, 196, 439-445.	3.0	29
1587	Mechanical properties and thermal stability of ultrathin molybdenum nanowires. RSC Advances, 2015, 5, 31231-31237.	1.7	3
1588	Reaction Rate Constants of CH ₄ (ads) ⇌ CH ₃ (ads) + H(ads) on Ni(111): The Effect of Lattice Motion. Journal of Physical Chemistry A, 2015, 119, 12953-12961.	1.1	7
1589	High-purity Zirconium under Niobium ion implantation: possibility of a dynamic precipitation?. Philosophical Magazine, 2015, 95, 3727-3744.	0.7	8
1590	Development of Nanomachining Mechanism Based on Molecular Dynamics Simulation. Key Engineering Materials, 0, 667, 41-46.	0.4	0
1591	Molecular Dynamics Simulation of Iron $\hat{a} \in $ A Review. Spin, 2015, 05, 1540007.	0.6	5
1592	The description of deformation and destruction of materials containing hydrogen by means of rheological model. St Petersburg Polytechnical University Journal Physics and Mathematics, 2015, 1, 305-314.	0.3	4
1593	Systematic analysis and modification of embedded-atom potentials: case study of copper. Modelling and Simulation in Materials Science and Engineering, 2015, 23, 074001.	0.8	7
1594	Relationship between Voronoi entropy and the viscosity of Zr 36 Cu 64 alloy melt based on molecular dynamics. Chinese Physics B, 2015, 24, 126102.	0.7	1
1595	Two-phase solid–liquid coexistence of Ni, Cu, and Al by molecular dynamics simulations using the modified embedded-atom method. Acta Materialia, 2015, 86, 169-181.	3.8	105
1596	Phonon instability of Co single crystal in uniaxial tension and nanoindentation. Computational Materials Science, 2015, 99, 47-56.	1.4	7

# 1597	ARTICLE Challenges and opportunities of modeling plasma–surface interactions in tungsten using high-performance computing. Journal of Nuclear Materials, 2015, 463, 30-38.	IF 1.3	Citations
1598	Effect of twin boundary on nanoimprint process of bicrystal Al thin film studied by molecular dynamics simulation. Chinese Physics B, 2015, 24, 026201.	0.7	0
1599	Single asperity nanocontacts: Comparison between molecular dynamics simulations and continuum mechanics models. Computational Materials Science, 2015, 99, 209-220.	1.4	26
1600	Thermal and shape stability of high-index-faceted rhodium nanoparticles: a molecular dynamics investigation. Physical Chemistry Chemical Physics, 2015, 17, 5751-5757.	1.3	10
1601	Atomistic modeling of radiation-induced disordering and dissolution at a Ni/Ni3Al interface. Journal of Materials Research, 2015, 30, 1456-1463.	1.2	13
1602	Assessment of phase-field-crystal concepts using long-time molecular dynamics. Physical Review B, 2015, 91, .	1.1	6
1603	Atomistic simulation of electrical enhanced nanowelding of carbon nanotube to metal. Microsystem Technologies, 2015, 21, 2215-2219.	1.2	4
1604	First-principles study of point defects at a semicoherent interface. Scientific Reports, 2014, 4, 7567.	1.6	11
1605	Continuum shape sensitivity analysis and what-if study for two-dimensional multi-scale crack propagation problems using bridging scale decomposition. Structural and Multidisciplinary Optimization, 2015, 51, 59-87.	1.7	3
1606	The direct and precursor mediated dissociation rates of H ₂ on a Ni(111) surface. Physical Chemistry Chemical Physics, 2015, 17, 5901-5912.	1.3	7
1607	Nano/micro mechanics study of nanoindentation on thin Al/Pd films. Journal of Materials Research, 2015, 30, 699-708.	1.2	7
1609	Dislocation depinning from nano-sized irradiation defects in a bcc iron model. Acta Materialia, 2015, 99, 99-105.	3.8	22
1610	Embedded atom model for the liquid U–10Zr alloy based on density functional theory calculations. RSC Advances, 2015, 5, 61495-61501.	1.7	6
1611	Ab initio and empirical modeling of lithium atoms penetration into silicon. Computational Materials Science, 2015, 109, 76-83.	1.4	3
1612	Simulation of Microstructure and Dynamical Properties in Ni-Al Alloy under Different Pressures. Applied Mechanics and Materials, 0, 723, 575-579.	0.2	0
1613	On-chip planar hydrogen sensor with sub-micrometer spatial resolution. Sensors and Actuators B: Chemical, 2015, 221, 401-405.	4.0	4
1614	In situ study of the initiation of hydrogen bubbles at the aluminium metal/oxide interface. Nature Materials, 2015, 14, 899-903.	13.3	134
1615	Surface entropy of liquid transition and noble metals. Surface Science, 2015, 637-638, 63-68.	0.8	5

#	Article	IF	CITATIONS
1616	Embedded-atom potential for an accurate thermodynamic description of the iron–chromium system. Computational Materials Science, 2015, 104, 185-192.	1.4	33
1617	Observation of morphology and stress distribution around dislocation in Ni3Al on the atomic scale. Solid State Communications, 2015, 211, 4-9.	0.9	5
1618	Anisotropic atom displacement in Pd nanocubes resolved by molecular dynamics simulations supported by x-ray diffraction imaging. Physical Review B, 2015, 91, .	1.1	41
1619	EAM potentials for BCC, FCC and HCP metals with farther neighbor atoms. Applied Physics A: Materials Science and Processing, 2015, 120, 189-197.	1.1	21
1620	Hydrogen Embrittlement Understood. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 2323-2341.	1.1	370
1621	Morphology and Crystallinity of Coalescing Nanosilver by Molecular Dynamics. Journal of Physical Chemistry C, 2015, 119, 10116-10122.	1.5	42
1622	Glass transition of an overcooled aluminum melt: A study in molecular dynamics. Russian Journal of Physical Chemistry A, 2015, 89, 802-806.	0.1	10
1623	Molecular dynamics simulation of Ni/Cu-Ni nanoparticles sintering under various crystallographic, thermodynamic and multi-nanoparticles conditions. European Physical Journal D, 2015, 69, 1.	0.6	11
1624	Multiscale modeling of lattice dynamical instability in gamma-TiAl crystal. Modelling and Simulation in Materials Science and Engineering, 2015, 23, 045006.	0.8	4
1625	Multiscale modeling of nanoindentation-induced instability in FeNi3 crystal. Computational Materials Science, 2015, 102, 140-150.	1.4	5
1626	Non-equilibrium basal stacking faults in hexagonal close-packed metals. Acta Materialia, 2015, 90, 140-150.	3.8	76
1627	Molecular dynamics simulations of shock compressed heterogeneous materials. I. The porous case. Journal of Applied Physics, 2015, 117, .	1.1	24
1628	Dynamics of Atomic Stick-Slip Friction Examined with Atomic Force Microscopy and Atomistic Simulations at Overlapping Speeds. Physical Review Letters, 2015, 114, 146102.	2.9	78
1629	Hydrogen Embrittlement Understood. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2015, 46, 1085-1103.	1.0	385
1630	Large-Scale Computations in Chemistry: A Bird's Eye View of a Vibrant Field. Chemical Reviews, 2015, 115, 5797-5890.	23.0	182
1631	Pressure dependence of the interfacial structure of potassium chloride films on iron. Thin Solid Films, 2015, 593, 150-157.	0.8	4
1632	On the road to metallic nanoparticles by rational design: bridging the gap between atomic-level theoretical modeling and reality by total scattering experiments. Nanoscale, 2015, 7, 17902-17922.	2.8	24
1633	Monte Carlo and molecular dynamics simulations of screw dislocation locking by Cottrell atmospheres in low carbon Fe–C alloys. Scripta Materialia, 2015, 108, 19-22.	2.6	50

#	Article	IF	CITATIONS
1634	Structural properties of coal metallic glasses investigated by molecular dynamics simulations. Modern Physics Letters B, 2015, 29, 1450267.	1.0	0
1635	Size-dependent properties of transition metal clusters: from molecules to crystals and surfaces – computational studies with the program ParaGauss. Physical Chemistry Chemical Physics, 2015, 17, 28463-28483.	1.3	16
1636	Effect of Gallium ion damage on poly-crystalline Zirconium: Direct experimental observations and molecular dynamics simulations. Journal of Nuclear Materials, 2015, 467, 155-164.	1.3	5
1637	Microstructural Investigation of CNT-Metal Bonding Behavior through Computational Simulations. Journal of Nano Research, 2015, 33, 118-125.	0.8	1
1638	The behavior of the thermal conductivity near the melting temperature of copper nanoparticle. Journal of Molecular Liquids, 2015, 211, 695-704.	2.3	37
1639	Glass transition of aluminum melt. Molecular dynamics study. Journal of Non-Crystalline Solids, 2015, 429, 98-103.	1.5	33
1640	MD simulation of growth of Pd on Cu (1 1 1) and Cu on Pd (1 1 1) substrates. Applied Surface Science, 2015, 356, 651-658.	3.1	21
1641	Discrete dislocation modeling of stress corrosion cracking in an iron. Corrosion Reviews, 2015, 33, 467-475.	1.0	7
1642	Manifestation of the internal symmetry of irreducible triatomic interaction in the nonlinear properties of low-symmetry metals. Bulletin of the Russian Academy of Sciences: Physics, 2015, 79, 1402-1408.	0.1	1
1643	Numerical study of hetero-adsorption and diffusion on (100) and (110) surfaces of Cu, Ag and Au. Surface Science, 2015, 635, 64-69.	0.8	33
1644	Effects of oxygen on prismatic faults in α-Ti: a combined quantum mechanics/molecular mechanics study. Scripta Materialia, 2015, 98, 32-35.	2.6	21
1645	Determination of thermodynamic and thermo-elastic properties for ductile B2-DyCu intermetallics using molecular dynamics simulations. Physica B: Condensed Matter, 2015, 459, 69-73.	1.3	3
1646	Lattice inversion modified embedded atom method for bcc transition metals. Computational Materials Science, 2015, 98, 417-423.	1.4	13
1647	Molecular dynamics simulation of graphene on Cu (1 0 0) and (1 1 1) surfaces. Carbon, 2015, 82, 538-547.	5.4	35
1648	Synergy of plastic deformation and gas retention in tungsten. Nuclear Fusion, 2015, 55, 013007.	1.6	27
1649	How morphology and surface crystal texture affect thermal stability of a metallic nanoparticle: the case of silver nanobelts and pentagonal silver nanowires. Physical Chemistry Chemical Physics, 2015, 17, 315-324.	1.3	33
1650	A Comparison of the Predictive Capabilities of the Embedded-Atom Method and Modified Embedded-Atom Method Potentials for Lithium. Journal of Physical Chemistry B, 2015, 119, 8960-8968.	1.2	27
1651	Simulating radiation damage cascades in graphite. Carbon, 2015, 81, 105-114.	5.4	49

		CITATION REPORT		
#	Article		IF	CITATIONS
1652	Impact of uniaxial strain and doping on oxygen diffusion in CeO2. Scientific Reports, 20)14, 4, 6068.	1.6	106
1653	The as-deposited structure of co-sputtered Cu–Ta alloys, studied by X-ray diffraction dynamics simulations. Acta Materialia, 2015, 82, 51-63.	and molecular	3.8	35
1654	Defect structures induced by high-energy displacement cascades in Î ³ uranium. Journal Materials, 2015, 456, 1-6.	of Nuclear	1.3	21
1655	A ternary Ni–Al–W EAM potential for Ni-based single crystal superalloys. Physica B Matter, 2015, 456, 283-292.	Condensed	1.3	17
1656	Advanced Process Combination Concepts. , 2016, , 55-97.			1
1657	Numerical study of self―and heterodiffusion on clean unreconstructed and missingâ€ reconstructed Pt(110) surfaces. Physica Status Solidi (B): Basic Research, 2016, 253, 8	⊧ ow 75-882.	0.7	12
1658	Neural network and ReaxFF comparison for Au properties. International Journal of Quar Chemistry, 2016, 116, 979-987.	itum	1.0	66
1659	Insight into the effect of surface structure on H2 adsorption and activation over differe surfaces: A first-principle study. Computational Materials Science, 2016, 122, 191-200	nt CuO(1 1 1)	1.4	27
1660	Theoretical Study of the Structural, Energetic, and Electronic Properties of 55-Atom Me Nanoclusters: A DFT Investigation within van der Waals Corrections, Spin–Orbit Cou PBE+ <i>U</i> of 42 Metal Systems. Journal of Physical Chemistry C, 2016, 120, 28844	tal pling, and -28856.	1.5	75
1661	Large-scale atomistic simulations of helium-3 bubble growth in complex palladium alloy Chemical Physics, 2016, 144, 194705.	s. Journal of	1.2	9
1662	In-Situ High-Resolution Transmission Electron Microscopy Investigation of Overheating Nanoparticles. Scientific Reports, 2016, 6, 19545.	of Cu	1.6	22
1663	Thermophysical properties of liquid Ni around the melting temperature from molecular simulation. Journal of Chemical Physics, 2016, 145, .	dynamics	1.2	17
1664	Evaluation of copper, aluminum, and nickel interatomic potentials on predicting the ela properties. Journal of Applied Physics, 2016, 119, .	istic	1.1	65
1665	Divacancy binding energy, formation energy and surface energy of BCC transition meta potentials. AIP Conference Proceedings, 2016, , .	Is using MEAM	0.3	2
1666	Compaction simulation of nano-crystalline metals with molecular dynamics analysis. M Conferences, 2016, 80, 02011.	ATEC Web of	0.1	0
1667	First-principle optimal local pseudopotentials construction via optimized effective pote Journal of Chemical Physics, 2016, 144, 134108.	ntial method.	1.2	22
1668	Generation of polycrystalline material at the atomic scale. Computational Materials Sci 245-250.	ence, 2016, 118,	1.4	12
1669	Construction of ternary Ni–Al–Ta potential and its application in the effect of Ta o dislocation slipping in γ′(Ni3Al). Computational Materials Science, 2016, 118, 288-	n [1 1 0] edge 296.	1.4	4

#	Article	IF	CITATIONS
1670	Interfacial effect on strengthening nanoscale metallic multilayers - a combined Hall-Petch relation and atomistic simulation study. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 663, 29-37.	2.6	9
1671	Vibrational properties of vacancy in Au using modified embedded atom method potentials. Journal of Physics and Chemistry of Solids, 2016, 94, 41-46.	1.9	2
1672	Atomistic studies of hydrogen effects on grain boundary structure and deformation response in FCC Ni. Computational Materials Science, 2016, 122, 92-101.	1.4	36
1673	Critical assessment of hydrogen effects on the slip transmission across grain boundaries in <i>î±</i> -Fe. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472, 20150617.	1.0	20
1674	Sulphide stress cracking behaviour of the dissimilar metal welded joint of X60 pipeline steel and Inconel 625 alloy. Corrosion Science, 2016, 110, 242-252.	3.0	35
1675	A review on diffusion modelling in hydrogen related failures of metals. Engineering Failure Analysis, 2016, 66, 577-595.	1.8	37
1676	A basin-hopping Monte Carlo investigation of the structural and energetic properties of 55- and 561-atom bimetallic nanoclusters: the examples of the ZrCu, ZrAl, and CuAl systems. Journal of Physics Condensed Matter, 2016, 28, 175302.	0.7	13
1677	Influence of C concentration on elastic moduli of α′-Fe _{1-<i>x</i>} C _{<i>x</i>} alloys. Philosophical Magazine, 2016, 96, 1448-1462.	0.7	9
1678	MEAMfit: A reference-free modified embedded atom method (RF-MEAM) energy and force-fitting code. Computer Physics Communications, 2016, 203, 354-355.	3.0	7
1679	Development of n-body expansion interatomic potentials and its application for V. Computational Materials Science, 2016, 121, 67-78.	1.4	22
1680	Prediction and clarification of structures of (bio)molecules on surfaces. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2016, 71, 351-374.	0.3	14
1681	Molecular dynamics simulations of tensile tests of Ni-, Cu-, Mg- and Ti-alloyed aluminium nanopolycrystals. Computational Materials Science, 2016, 116, 32-43.	1.4	9
1682	Principles of Coarse-Graining and Coupling Using the Atom-to-Continuum Method. Springer Series in Materials Science, 2016, , 223-259.	0.4	4
1683	Atomistic characterization of solid-liquid interfaces in the Cu-Ni binary alloy system. Computational Materials Science, 2016, 125, 72-81.	1.4	16
1684	Molecular dynamics simulation of the diffusion behaviour between Co and Ti and its effect on the wear of WC/Co tools when titanium alloy is machined. Ceramics International, 2016, 42, 17754-17763.	2.3	31
1685	Indium-defect interactions in FCC and BCC metals studied using the modified embedded atom method. Hyperfine Interactions, 2016, 237, 1.	0.2	1
1686	Classical and quantum dynamics at surfaces: Basic concepts from simple models. International Journal of Quantum Chemistry, 2016, 116, 1575-1602.	1.0	15
1687	Long-range interatomic forces can minimize heat transfer: From slowdown of longitudinal optical phonons to thermal conductivity minimum. Physical Review B, 2016, 94, .	1.1	5

#	Article	IF	CITATIONS
1688	A modified embedded atom method potential for interstitial oxygen in titanium. Computational Materials Science, 2016, 124, 204-210.	1.4	14
1690	Mechanical behaviors of AlCrFeCuNi high-entropy alloys under uniaxial tension via molecular dynamics simulation. RSC Advances, 2016, 6, 76409-76419.	1.7	109
1691	Constraints on phase stability, defect energies, and elastic constants of metals described by EAM-type potentials. Journal of Physics Condensed Matter, 2016, 28, 395701.	0.7	3
1692	Strengthening effects of twin interface in Cu/Ni multilayer thin films – A molecular dynamics study. Materials and Design, 2016, 111, 1-8.	3.3	79
1693	Embedded atom approach for gold–silicon system from ab initio molecular dynamics simulations using the force matching method. Bulletin of Materials Science, 2016, 39, 1339-1347.	0.8	2
1694	A molecular dynamics study of the shock-induced defect microstructure in single crystal Cu. Computational Materials Science, 2016, 124, 304-310.	1.4	27
1695	Effect of the Composition on the Free Energy of Crystal Nucleation for CuPd Nanoalloys. Journal of Physical Chemistry C, 2016, 120, 27657-27664.	1.5	8
1696	Dynamic bonding of metallic nanocontacts: Insights from experiments and atomistic simulations. Physical Review B, 2016, 93, .	1.1	17
1697	A modified embedded-atom method interatomic potential for ionic systems:2NNMEAM+Qeq. Physical Review B, 2016, 93, .	1.1	19
1698	Molecular Dynamics Study of Gas–Surface Interactions in a Force-Driven Flow of Argon through a Rectangular Nanochannel. Nanoscale and Microscale Thermophysical Engineering, 2016, 20, 121-136.	1.4	8
1699	Anomalous capillary filling and wettability reversal in nanochannels. Physical Review E, 2016, 93, 033123.	0.8	43
1700	A Relation for Nanodroplet Diffusion on Smooth Surfaces. Scientific Reports, 2016, 6, 26488.	1.6	15
1701	A new embedded-atom method approach based on thepth moment approximation. Journal of Physics Condensed Matter, 2016, 28, 505201.	0.7	3
1702	Ru/Al Multilayers Integrate Maximum Energy Density and Ductility for Reactive Materials. Scientific Reports, 2016, 6, 19535.	1.6	18
1703	Software citation, reuse and metadata considerations: An exploratory study examining LAMMPS. Proceedings of the Association for Information Science and Technology, 2016, 53, 1-10.	0.3	13
1704	Molecular dynamics simulation of structural change at metal/semiconductor interface induced by nanoindenter. Chinese Physics B, 2016, 25, 114601.	0.7	1
1705	Dislocation Nucleation in Nickel-Graphene Nanocomposites Under Mode I Loading. Jom, 2016, 68, 1909-1914.	0.9	16
1706	Reconsideration of metal surface sputtering due to bombardment of high-energy argon ion particles: a molecular dynamics study. Computational Particle Mechanics, 2016, 3, 3-13.	1.5	10

#	Article	IF	CITATIONS
1707	Correlation between vacancy formation and Σ3 grain boundary structures in nickel from atomistic simulations. Philosophical Magazine, 2016, 96, 2088-2114.	0.7	21
1708	Structural properties of Al and TiAl ₃ metallic glasses — An embedded atom method study. Modern Physics Letters B, 2016, 30, 1650170.	1.0	18
1709	Scaling Laws and Critical Properties for fcc and hcp Metals. Journal of Physical Chemistry B, 2016, 120, 5255-5261.	1.2	28
1710	A novel approach for determining the minimum feed in nanochannels processing via molecular dynamics simulation. Applied Surface Science, 2016, 369, 584-594.	3.1	8
1711	Molecular dynamics prediction and experimental evidence for density of normal and metastable liquid zirconium. Chemical Physics Letters, 2016, 653, 112-116.	1.2	19
1712	The MEAM parameter calibration tool: an explicit methodology for hierarchical bridging between ab initio and atomistic scales. Integrating Materials and Manufacturing Innovation, 2016, 5, 177-191.	1.2	9
1713	Melting and crystallization in large sized copper cluster. Integrated Ferroelectrics, 2016, 170, 146-154.	0.3	1
1714	Ab initio simulations of the structure, energetics and mobility of radiation-induced point defects in bcc Nb. Journal of Nuclear Materials, 2016, 478, 185-196.	1.3	21
1715	Structure and properties of liquid Al–Cu alloys: Empirical potentials compared. Computational Materials Science, 2016, 114, 219-232.	1.4	18
1716	New aspects on the metal reinforcement by carbon nanofillers: A molecular dynamics study. Materials and Design, 2016, 91, 306-313.	3.3	54
1717	Embedded-atom study of low-energy equilibrium triple junction structures and energies. Acta Materialia, 2016, 109, 364-374.	3.8	9
1718	Crystallinity dynamics of gold nanoparticles during sintering or coalescence. AICHE Journal, 2016, 62, 589-598.	1.8	54
1719	Fracture of nanoscale Cu/Ag bimaterials with an interface crack. Computational Materials Science, 2016, 118, 133-138.	1.4	3
1720	Surface segregation phenomena in extended and nanoparticle surfaces of Cu–Au alloys. Surface Science, 2016, 649, 39-45.	0.8	11
1721	Gupta potentials for five HCP rare earth metals. Computational Materials Science, 2016, 112, 75-79.	1.4	6
1722	The energy and stability of helium-related cluster in nickel: A study of molecular dynamics simulation. Nuclear Instruments & Methods in Physics Research B, 2016, 368, 75-80.	0.6	7
1723	ATLAS: A real-space finite-difference implementation of orbital-free density functional theory. Computer Physics Communications, 2016, 200, 87-95.	3.0	42
1724	Atomistic simulations of the nanoindentation-induced incipient plasticity in Ni3Al crystal. Computational Materials Science, 2016, 115, 214-226.	1.4	41

#	Article	IF	CITATIONS
1725	Identification of the Shear Plane During Sliding of Solid Boundary Films: Potassium Chloride Films on Iron. Tribology Letters, 2016, 62, 1.	1.2	2
1726	Effects of uniaxial strain on stability and structural evolution of vacancy clusters in copper. Computational Materials Science, 2016, 117, 361-369.	1.4	5
1727	Hydrogen Embrittlement of Industrial Components: Prediction, Prevention, and Models. Corrosion, 2016, 72, 943-961.	0.5	140
1728	MD simulation of effect of crystal orientations and substrate temperature on growth of Cu/Ni bilayer films. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	22
1729	Dealloying-driven nanoporous palladium with superior electrochemical actuation performance. Nanoscale, 2016, 8, 7287-7295.	2.8	47
1730	Effect of segregated alloying element on the intrinsic fracture behavior of Mg. Theoretical and Applied Fracture Mechanics, 2016, 85, 236-245.	2.1	5
1731	Interatomic Potentials Including Chemistry. Springer Series in Materials Science, 2016, , 107-194.	0.4	1
1732	Size-dependent strain and surface energies of gold nanoclusters. Physical Chemistry Chemical Physics, 2016, 18, 792-800.	1.3	65
1733	Mixed intermetallic potentials for Fe-Cu compounds. Molecular Simulation, 2016, 42, 611-617.	0.9	0
1734	Feature engineering of machine-learning chemisorption models for catalyst design. Catalysis Today, 2017, 280, 232-238.	2.2	165
1735	Ab initio study of He-He interactions in homogeneous electron gas. Nuclear Instruments & Methods in Physics Research B, 2017, 393, 140-143.	0.6	2
1736	Solid–liquid and liquid–solid transitions in metal nanoparticles. Physical Chemistry Chemical Physics, 2017, 19, 5994-6005.	1.3	13
1737	Theoretical Studies of Structural and Electronic Properties of Clusters. , 2017, , 1357-1413.		0
1738	Molecular Dynamics Simulation: From "Ab Initio―to "Coarse Grained― , 2017, , 337-396.		2
1739	Molecular dynamics simulation studies of gold nano-cluster on silicon (001) surface. Indian Journal of Physics, 2017, 91, 853-859.	0.9	7
1740	Stratified construction of neural network based interatomic models for multicomponent materials. Physical Review B, 2017, 95, .	1.1	67
1741	Quasicontinuum simulation of brittle cracking in singleâ€crystal material. Crystal Research and Technology, 2017, 52, 1600247.	0.6	2
1742	Orientation effects on the tensile properties of single crystal nickel with nanovoid: Atomistic simulation. Computational Materials Science, 2017, 132, 116-124.	1.4	19

#	Article	IF	CITATIONS
1743	Discrete simulation of granular and particle-fluid flows: from fundamental study to engineering application. Reviews in Chemical Engineering, 2017, 33, .	2.3	73
1744	Ehrlich–Schwöbel barriers and adsorption of Au, Cu and Ag stepped (100) surfaces. Modern Physics Letters B, 2017, 31, 1750037.	1.0	6
1745	Atomic structures of twin boundaries in hexagonal close-packed metallic crystals with particular focus on Mg. Npj Computational Materials, 2017, 3, .	3.5	28
1747	Nanovoid failure in Magnesium under dynamic loads. Acta Materialia, 2017, 134, 360-374.	3.8	9
1748	Molecular dynamics study of microscopic structures, phase transitions and dynamic crystallization in Ni nanoparticles. RSC Advances, 2017, 7, 25406-25413.	1.7	49
1749	Impact of plastic deformation on plasma induced damage and deuterium retention in tungsten. MRS Advances, 2017, 2, 3347-3352.	0.5	1
1750	Particle deposition and deformation from high speed impaction of Ag nanoparticles. Acta Materialia, 2017, 135, 252-262.	3.8	20
1751	Extracting knowledge from molecular mechanics simulations of grain boundaries using machine learning. Acta Materialia, 2017, 133, 100-108.	3.8	44
1752	Mixed-mode fracture toughness evaluation of a copper single crystal using atomistic simulations. Computational Materials Science, 2017, 136, 216-222.	1.4	11
1753	Efficient embedded atom method interatomic potential for graphite and carbon nanostructures. Molecular Simulation, 2017, 43, 1480-1484.	0.9	5
1754	Study of crater formation and its characteristics due to impact of a cluster projectile on a metal surface by molecular dynamics approach. Nuclear Instruments & Methods in Physics Research B, 2017, 396, 34-42.	0.6	2
1755	The atomic simulation environment—a Python library for working with atoms. Journal of Physics Condensed Matter, 2017, 29, 273002.	0.7	1,933
1756	Embedded atom method interatomic potentials fitted upon density functional theory calculations for the simulation of binary Pt Ni nanoparticles. Computational Materials Science, 2017, 133, 185-193.	1.4	4
1757	How closely do many-body potentials describe the structure and dynamics of Cu–Zr glass-forming alloy?. Journal of Chemical Physics, 2017, 146, 124502.	1.2	8
1758	Solid-liquid interfacial free energy and its anisotropy in the Cu-Ni binary system investigated by molecular dynamics simulations. Journal of Alloys and Compounds, 2017, 708, 1073-1080.	2.8	24
1759	Development of physics based analytical interatomic potential for palladium-hydride. Journal of Molecular Modeling, 2017, 23, 108.	0.8	5
1760	Basal-pyramidal dislocation lock in deformed magnesium. Scripta Materialia, 2017, 134, 37-41.	2.6	33
1761	Molecular dynamics simulations of strengthening due to silver precipitates in copper matrix. Physica Status Solidi (B): Basic Research, 2017, 254, 1600479.	0.7	5

#	Article	IF	CITATIONS
1762	Lattice optimization of Si-Cu interfaces on atomic scale. Computational Materials Science, 2017, 128, 59-66.	1.4	1
1763	FEM analysis of metal matrix nanocomposites reinforced with off-line atomistically-informed equivalent nanofillers. Computational Materials Science, 2017, 129, 89-97.	1.4	2
1764	Metal Ion Modeling Using Classical Mechanics. Chemical Reviews, 2017, 117, 1564-1686.	23.0	266
1765	Self-diffusion in intermetallic AlAu4: Molecular dynamics study down to temperatures relevant to wire bonding. Computational Materials Science, 2017, 129, 13-23.	1.4	5
1766	Dependence of Strain Rate Sensitivity on the Slip System: A Molecular Dynamics Simulation. Journal of Materials Engineering and Performance, 2017, 26, 5173-5179.	1.2	4
1767	A study of dynamical evolution of small two-dimensional Copper islands' diffusion on Ag(111) surface and observed surface effects. Modern Physics Letters B, 2017, 31, 1750316.	1.0	3
1768	Energy barriers of single-adatoms diffusion on unreconstructed and reconstructed (110) surfaces. European Physical Journal B, 2017, 90, 1.	0.6	5
1769	A comparative study of mechanical properties of Ni <001> nanowires from atomistic calculations. Journal of Mechanical Science and Technology, 2017, 31, 4887-4893.	0.7	3
1770	Meta-Atom Molecular Dynamics for Studying Material Property Dependent Deformation Mechanisms of Alloys. Journal of Applied Mechanics, Transactions ASME, 2017, 84, .	1.1	11
1771	Effects of Uniaxial Strain on the Structures of Vacancy Clusters in FCC Metals. Materials Science Forum, 0, 898, 1340-1350.	0.3	1
1773	Identifying deformation mechanisms in molecular dynamics simulations of laser shocked matter. Journal of Computational Physics, 2017, 350, 16-24.	1.9	2
1774	Improvement of modified analytic embedded atom method potentials for noble metals and Cu. Radiation Effects and Defects in Solids, 2017, 172, 575-589.	0.4	12
1775	Modeling Helium Segregation to the Surfaces of Plasma-Exposed Tungsten as a Function of Temperature and Surface Orientation. Fusion Science and Technology, 2017, 71, 22-35.	0.6	18
1776	Automatic kinetic Monte-Carlo modeling for impurity atom diffusion in grain boundary structure of tungsten material. Nuclear Materials and Energy, 2017, 12, 353-360.	0.6	6
1777	Molecular dynamics simulations of single crystal copper nanocubes under triaxial tensile loading. Computational Materials Science, 2017, 138, 377-383.	1.4	13
1778	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"> <mml:mfenced open="{" close="}"><mml:mrow><mml:mn>10</mml:mn><mml:mover accent="true"><mml:mn>1</mml:mn><mml:mo stretchy="true">accent="true">ac</mml:mo </mml:mover </mml:mrow></mml:mfenced 	2.6	24
1779	twins. Scripta Materialia, 2017, 141, 85-88. A modified Embedded-Atom Method interatomic potential for uranium-silicide. Journal of Nuclear Materials, 2017, 495, 267-276.	1.3	24
1780	Molecular dynamics study of deformation and fracture in SiC with angular dependent potential model. Computational Materials Science, 2017, 139, 89-96.	1.4	8

#	Article	IF	CITATIONS
1781	Hetero-diffusion of Au epitaxy on stepped Ag(110) surface: Study of the jump rate and diffusion coefficient. European Physical Journal Plus, 2017, 132, 1.	1.2	2
1782	A study of hydrogen cracking in metals by the acoustoelasticity method. AIP Conference Proceedings, 2017, , .	0.3	4
1783	Interface mechanical properties of graphene reinforced copper nanocomposites. Materials Research Express, 2017, 4, 115020.	0.8	17
1784	Computer Simulations of Nanometer-Scale Indentation and Friction. Springer Handbooks, 2017, , 1013-1067.	0.3	2
1785	Identifying early stage precipitation in large-scale atomistic simulations of superalloys. Modelling and Simulation in Materials Science and Engineering, 2017, 25, 035005.	0.8	0
1786	Surface Composition and Crystallinity of Coalescing Silver–Gold Nanoparticles. ACS Nano, 2017, 11, 11653-11660.	7.3	40
1787	Symmetry-adapted order parameters and free energies for solids undergoing order-disorder phase transitions. Physical Review B, 2017, 96, .	1.1	33
1788	Explicit inclusion of electronic correlation effects in molecular dynamics. Physical Review B, 2017, 96,	1.1	3
1789	Optimized interatomic potential for silicon and its application to thermal stability of silicene. Physical Review B, 2017, 95, .	1.1	39
1790	Near transferable phenomenological <i>n</i> -body potentials for noble metals. Journal of Physics Condensed Matter, 2017, 29, 355701.	0.7	2
1791	Atomistic simulation of hydrogen-assisted ductile-to-brittle transition in $\hat{I}\pm$ -iron. Computational Materials Science, 2017, 127, 211-221.	1.4	34
1792	Development of an empirical interatomic potential for the Ag–Ti system. Nuclear Instruments & Methods in Physics Research B, 2017, 393, 122-125.	0.6	5
1793	Molecular Dynamics Simulations for Plasma‣urface Interactions. Plasma Processes and Polymers, 2017, 14, 1600145.	1.6	53
1794	Molecular dynamics simulation on structural evolution during crystallization of rapidly super-cooled Cu50Ni50 alloy. Journal of Alloys and Compounds, 2017, 690, 633-639.	2.8	21
1795	Atomistic simulation for deforming complex alloys with application toward TWIP steel and associated physical insights. Journal of the Mechanics and Physics of Solids, 2017, 98, 290-308.	2.3	46
1796	Compatible strain evolution in two phases due to epsilon martensite transformation in duplex TRIP-assisted stainless steels with high hydrogen embrittlement resistance. International Journal of Plasticity, 2017, 88, 53-69.	4.1	68
1797	Highly optimized embedding atom method potential for Pt-Cu alloys. Journal of Alloys and Compounds, 2017, 696, 470-480.	2.8	5
1798	Perspective of the Structuration Process Use in the Optoelectronics, Solar Energy, and Biomedicine. , 2017, , .		1

#	Article	IF	CITATIONS
1799	Properties of a Laser Shock Wave in Al-Cu Alloy under Elevated Temperatures: A Molecular Dynamics Simulation Study. Materials, 2017, 10, 73.	1.3	12
1800	Debye–Waller coefficient of heavily deformed nanocrystalline iron. Journal of Applied Crystallography, 2017, 50, 508-518.	1.9	21
1801	Study on the structural transition of CoNi nanoclusters using molecular dynamics simulations. International Journal of Modern Physics B, 2018, 32, 1850133.	1.0	0
1802	Embedded-atom study of grain boundary segregation and grain boundary free energy in nanosized iron–chromium tricrystals. Acta Materialia, 2018, 147, 350-364.	3.8	21
1803	Extending the accuracy of the SNAP interatomic potential form. Journal of Chemical Physics, 2018, 148, 241721.	1.2	129
1804	Lattice inversion modified embedded atom method for FCC metals. Computational Materials Science, 2018, 150, 418-423.	1.4	8
1805	Role of first-neighbor geometry in the electronic and mechanical properties of atomic contacts. Physical Review B, 2018, 97, .	1.1	12
1806	Correlated Debye model for atomic motions in metal nanocrystals. Philosophical Magazine, 2018, 98, 1412-1435.	0.7	6
1807	A numerical study of bubble and spike velocities in shock-driven liquid metals. Journal of Applied Physics, 2018, 123, .	1.1	20
1808	Interatomic Potentials Transferability for Molecular Simulations: A Comparative Study for Platinum, Gold and Silver. Scientific Reports, 2018, 8, 2424.	1.6	30
1809	Coordination numbers for unraveling intrinsic size effects in gold-catalyzed CO oxidation. Physical Chemistry Chemical Physics, 2018, 20, 6055-6059.	1.3	24
1810	Investigating local atomic structural order in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mrow><mml:mrow><mml:mrow><mml:mtext>TiAl</mml:mtext></mml:mrow><mml:mr glass using molecular dynamic simulation. Computational Condensed Matter. 2018. 14, 74-83.</mml:mr </mml:mrow></mml:mrow></mml:math 	1>3:9mml:	m ⁸ >
1811	Unsupervised Learning and Pattern Recognition of Biological Data Structures with Density Functional Theory and Machine Learning. Scientific Reports, 2018, 8, 557.	1.6	25
1812	Uncovering the inertia of dislocation motion and negative mechanical response in crystals. Scientific Reports, 2018, 8, 140.	1.6	13
1813	Multi-shot flash lamp annealing method for electroless-plated Ni-P film on UV-surface-modified ABS. Transactions of the Institute of Metal Finishing, 2018, 96, 103-107.	0.6	3
1814	Embedded atom method potentials for Ce-Ni binary alloy. Computational Materials Science, 2018, 150, 1-8.	1.4	5
1815	Mathematical modeling of the crack growth in linear elastic isotropic materials by conventional fracture mechanics approaches and by molecular dynamics method: crack propagation direction angle under mixed mode loading. Journal of Physics: Conference Series, 2018, 973, 012046.	0.3	9
1816	Atomic Scale Investigation of Structural Properties and Glass Forming Ability of Ti100â^'xAlx Metallic Glasses. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 2513-2522.	1.1	8

#	Article	IF	Citations
1817	Formation of iron hydride in α-Fe under dislocation strain field and its effect on dislocation interaction. Computational Materials Science, 2018, 141, 254-259.	1.4	5
1818	Empirical-potential global minima and DFT local minima of trimetallic Ag Au Pt (l+m+n= 13, 19, 33, 38) clusters. Computational Materials Science, 2018, 141, 30-40.	1.4	29
1819	Quantifying Parameter Sensitivity and Uncertainty for Interatomic Potential Design: Application to Saturated Hydrocarbons. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 2018, 4, .	0.7	4
1820	A review of computational phononics: the bulk, interfaces, and surfaces. Journal of Materials Science, 2018, 53, 5641-5683.	1.7	20
1821	The effect of grain size on the deformation mechanisms and mechanical properties of polycrystalline TiN: A molecular dynamics study. Computational Materials Science, 2018, 143, 189-194.	1.4	22
1822	Density determination and simulation of Inconel 718 alloy at normal and metastable liquid states. Journal of Materials Science and Technology, 2018, 34, 436-439.	5.6	47
1823	Multiscale Simulation of Surface Defect Influence in Nanoindentation by the Quasi-Continuum Method. Proceedings (mdpi), 2018, 2, 1113.	0.2	0
1824	Study of phase transition in the pure metal melt during ultrafast cooling by method of higher-order correlation functions. Journal of Physics: Conference Series, 2018, 946, 012102.	0.3	1
1825	Atomistic calculations of surface and interfacial energies of Mg17Al12–Mg system. Journal of Magnesium and Alloys, 2018, 6, 375-383.	5.5	17
1826	Molecular Dynamics Simulations of Iron-Joining Using Copper as a Filler Metal. Makara Journal of Science, 2018, 22, .	1.1	1
1827	Growth of beryllium thin films on beryllium (0001) surface: Influence of incident energy and incident angle by molecular dynamics simulation. Journal of Applied Physics, 2018, 124, .	1.1	6
1828	Estimation of crack propagation direction angles under mixed mode loading in linear elastic isotropic materials by generalized fracture mechanics criteria and by molecular dynamics method. Journal of Physics: Conference Series, 2018, 1096, 012060.	0.3	7
1829	Atomistic Simulation Techniques to Model Hydrogen Segregation and Hydrogen Embrittlement in Metallic Materials. , 2018, , 1-34.		2
1830	Embedded-atom potential for Ni-Al alloy. IOP Conference Series: Materials Science and Engineering, 2018, 452, 022025.	0.3	0
1831	Pattern Recognition of Human Postures Using the Data Density Functional Method. Applied Sciences (Switzerland), 2018, 8, 1615.	1.3	6
1832	Angular-dependent interatomic potential for the binary Ni–Cr system. Modelling and Simulation in Materials Science and Engineering, 2018, 26, 085008.	0.8	29
1833	Structural Properties of Fe/Cu Magnetic Multilayers: A Monte Carlo Approach. Spin, 2018, 08, 1850012.	0.6	0
1834	Edge-mode–based graphene nanomechanical resonators for high-sensitivity mass sensor. Europhysics Letters, 2018, 123, 36002.	0.7	6

		CITATION REPORT		
#	Article		IF	CITATIONS
1835	A simple embedded atom potential for Pd-H alloys. Molecular Simulation, 2018, 44, 13	71-1379.	0.9	2
1836	Deformation criterion for face-centered-cubic metal nanowires. Materials Science &am A: Structural Materials: Properties, Microstructure and Processing, 2018, 736, 431-437	p; Engineering 7.	2.6	3
1837	Overcoming Site Heterogeneity In Search of Metal Nanocatalysts. ACS Combinatorial 5 567-572.	Science, 2018, 20,	3.8	15
1838	A tungsten-rhenium interatomic potential for point defect studies. Journal of Applied P 123, .	hysics, 2018,	1.1	22
1839	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"> <mml:mi>α</mml:mi> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si2.gif" overflow="scroll"><mml:mi>Î3</mml:mi> uranium. Journal of Nuclear Mat</mml:math 	terials, 2018, 508,	1.3	18
1840	181-194. Mechanical Properties of Nanomaterials. , 2018, , 211-250.			1
1841	Failure mechanisms in pre-cracked Ni-graphene nanocomposites. Computational Mate 2018, 152, 341-350.	rials Science,	1.4	21
1842	Diffusion and adsorption of Au and Pt adatoms on ideal and missing row reconstructed Au(110): DFT and EAM calculations. Surface Science, 2018, 677, 83-89.	d surfaces of	0.8	3
1843	Investigation of impact and spreading of molten nanosized gold droplets on solid surfa Optics, 2018, 57, 2080.	aces. Applied	0.9	6
1844	Temperature and strain rate dependent mechanical properties of ultrathin metallic nan molecular dynamics study. AIP Conference Proceedings, 2018, , .	owires: A	0.3	4
1845	Bridging Density Functional Theory and Big Data Analytics with Applications. Springer Computational Statistics, 2018, , 351-374.	Handbooks of	0.2	1
1846	Atomistic Simulations to Predict Favored Glass-Formation Composition and Ion-Beam- Nano-Multiple-Metal-Layers to Produce Ternary Amorphous Films. Metals, 2018, 8, 129	Mixing of).	1.0	2
1847	Multiscale Analysis of Size Effect of Surface Pit Defect in Nanoindentation. Micromach 298.	ines, 2018, 9,	1.4	8
1848	Cross-slip of long dislocations in FCC solid solutions. Acta Materialia, 2018, 158, 95-11	.7.	3.8	38
1849	Coupling between plasticity and phase transition in shock- and ramp-compressed singl Physical Review B, 2018, 98, .	e-crystal iron.	1.1	36
1850	Hetero-diffusion of small clusters on Ag(111) surface. European Physical Journal Plus, 2	2018, 133, 1.	1.2	5
1852	Thermal Desorption Spectroscopy of Deformed and Undeformed Tungsten after Expos High-Intensity Plasma Flow. Journal of Surface Investigation, 2018, 12, 163-169.	ure to a	0.1	2
1853	Molecular dynamics simulations of single grain pure aluminum in a vice fixture for nanomanufacturing applications. CIRP Journal of Manufacturing Science and Technolo 91-97.	gy, 2018, 23,	2.3	3

#	Article	IF	CITATIONS
1854	Accurate interatomic force field for molecular dynamics simulation by hybridizing classical and machine learning potentials. Extreme Mechanics Letters, 2018, 24, 1-5.	2.0	7
1855	Beating hydrogen with its own weapon: Nano-twin gradients enhance embrittlement resistance of a high-entropy alloy. Materials Today, 2018, 21, 1003-1009.	8.3	127
1856	Interatomic Potential in the Nonequilibrium Warm Dense Matter Regime. Physical Review Letters, 2018, 121, 075002.	2.9	21
1857	Formation of polymer-based nanoparticles and nanocomposites by plasma-assisted deposition methods. European Physical Journal D, 2018, 72, 1.	0.6	8
1858	Mechanical instabilities in the modeling of phase transitions of titanium. Modelling and Simulation in Materials Science and Engineering, 2018, 26, 065002.	0.8	20
1859	Condensation and dissociation rates for gas phase metal clusters from molecular dynamics trajectory calculations. Journal of Chemical Physics, 2018, 148, 164304.	1.2	28
1860	The influence of hydrogen on deformation under the elastic stress in mooring chain steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 730, 295-302.	2.6	4
1861	Mechanical properties of simple computer glasses. Journal of Non-Crystalline Solids, 2019, 522, 119570.	1.5	29
1862	Embedded atom method potentials for La-Al-Ni ternary alloy. Journal of Applied Physics, 2019, 125, 245109.	1.1	2
1863	Embedded Atom Neural Network Potentials: Efficient and Accurate Machine Learning with a Physically Inspired Representation. Journal of Physical Chemistry Letters, 2019, 10, 4962-4967.	2.1	157
1864	Molecular dynamics factors affecting on the structure, phase transition of Al bulk. Physica B: Condensed Matter, 2019, 570, 116-121.	1.3	19
1865	A systematic study on the MEAM interatomic potentials of the transition metal nitrides TMNs (TM=Ti,) Tj ETQq1	1 0.78431 2.8	4 rgBT /Over
1866	The first Brillouin zone of the hexagonal close-packed structure and study on the properties of vacancies and phonon dispersions by the improved ones of the modifiedAanalytic embedded atom method potentials for Ru, Sc, Ti, Y, and Zr. Philosophical Magazine, 2019, 99, 2604-2617.	0.7	7
1867	Modified embedded-atom method potential for cadmium. Hyperfine Interactions, 2019, 240, 1.	0.2	0
1868	Effects of Re, W and Co on dislocation nucleation at the crack tip in the <i>γ</i> -phase of Ni-based single-crystal superalloys by atomistic simulation. Royal Society Open Science, 2019, 6, 190441.	1.1	6
1869	Effect of Fluid Media on Material Removal and Subsurface Defects Evolution of Monocrystal Copper in Nano-Cutting Process. Nanoscale Research Letters, 2019, 14, 239.	3.1	10
1870	Thermodynamic and kinetic behavior of low-alloy steels: An atomic level study using an Fe-Mn-Si-C modified embedded atom method (MEAM) potential. Materialia, 2019, 8, 100473.	1.3	15
1871	ReaxFF Parameter Optimization with Monte-Carlo and Evolutionary Algorithms: Guidelines and Insights. Journal of Chemical Theory and Computation, 2019, 15, 6799-6812.	2.3	54

#	Article	IF	CITATIONS
1872	Simulation on the Factors Affecting the Crystallization Process of FeNi Alloy by Molecular Dynamics. ACS Omega, 2019, 4, 14605-14612.	1.6	23
1873	Molecular dynamics study of thermochemical behaviour of nickel-coated aluminium nanoparticles. AIP Conference Proceedings, 2019, , .	0.3	0
1874	Molecular Dynamics Study of the Deposition of Palladium-Silver Films on a Silver Substrate. Journal of Structural Chemistry, 2019, 60, 1234-1242.	0.3	1
1875	Structural stability and mechanical property of Fe-W solid solutions from a constructed Fe-W potential. Journal of Applied Physics, 2019, 126, .	1.1	18
1876	Mechanochemical Effects of Adsorbates at Nanoelectromechanical Switch Contacts. ACS Applied Materials & Interfaces, 2019, 11, 39238-39247.	4.0	6
1877	Achieving high strength and ductility in traditionally brittle soft magnetic intermetallics via additive manufacturing. Acta Materialia, 2019, 180, 149-157.	3.8	47
1878	Molecular dynamics study on drag reduction mechanism of nonwetting surfaces. Computational Materials Science, 2019, 170, 109127.	1.4	6
1879	Effects of water and hydrogen content on the interaction mechanism between particles and the mechanical properties of a Nafion-based catalyst layer. Materials Research Express, 2019, 6, 085506.	0.8	1
1880	Hydrogen-enhanced decohesion mechanism of the special <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si55.svg"><mml:mrow><mml:mi mathvariant="normal">Σ</mml:mi </mml:mrow>5(0 1 2)[1 0 0] grain boundary in Ni with Mo and C solutes. Computational Materials Science, 2019, 167, 100-110.</mml:math 	1.4	37
1881	A Simple Palladium Hydride Embedded Atom Method Potential for Hydrogen Energy Applications. Journal of Energy Resources Technology, Transactions of the ASME, 2019, 141, .	1.4	3
1882	Determination of the accuracy and reliability of molecular dynamics simulations in estimating the melting point of iron: Roles of interaction potentials and initial system configurations. Journal of Molecular Liquids, 2019, 290, 111204.	2.3	8
1883	The Decmon: a new nanoparticle shape along the truncation path from the icosahedron to the decahedron. Nanotechnology, 2019, 30, 425701.	1.3	3
1884	PhysicallyÂinformed artificial neural networks for atomistic modeling of materials. Nature Communications, 2019, 10, 2339.	5.8	177
1885	Effect of hydrogen atom and hydrogen filled vacancies on stacking fault energy in \hat{I}^3 -Fe by first-principles calculations. International Journal of Hydrogen Energy, 2019, 44, 17136-17145.	3.8	20
1886	Atomistic Simulation Techniques to Model Hydrogen Segregation and Hydrogen Embrittlement in Metallic Materials. , 2019, , 357-390.		0
1887	Embedded-atom method interatomic potential for boron nanostructures. Journal of Molecular Modeling, 2019, 25, 165.	0.8	2
1888	Size effects on thermomechanical failure of layered structure with generalized particle dynamics multiscale methods. Journal of Materials Research, 2019, 34, 2384-2397.	1.2	1
1889	Cluster adsorption and migration energetics on hcp Ti (0001) surfaces via atomistic simulations. Thin Solid Films, 2019, 682, 99-108.	0.8	8

#	Article	IF	CITATIONS
1890	Hydrogen inhibited phase transition near crack tip – An atomistic mechanism of hydrogen embrittlement. International Journal of Hydrogen Energy, 2019, 44, 17146-17153.	3.8	15
1891	On the transferability of interaction potentials for condensed phases of silicon. Journal of Molecular Liquids, 2019, 285, 488-499.	2.3	5
1892	Misfit strain induced phase transformation at a basal/prismatic twin boundary in deformation of magnesium. Computational Materials Science, 2019, 164, 186-194.	1.4	16
1893	Role of ionization fraction on the surface roughness, density, and interface mixing of the films deposited by thermal evaporation, dc magnetron sputtering, and HiPIMS: An atomistic simulation. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2019, 37, .	0.9	23
1894	Interface of Hydrated Perfluorosulfonic Acid Electrolyte and Platinum Catalyst: Construction of a Dissipative Particle Dynamics Simulation Model. Journal of the Electrochemical Society, 2019, 166, B3156-B3162.	1.3	1
1895	Vibrational Properties of Pd Nanocubes. Nanomaterials, 2019, 9, 609.	1.9	5
1896	Synthesis and modelling of the mechanical properties of Ag, Au and Cu nanowires. Science and Technology of Advanced Materials, 2019, 20, 225-261.	2.8	37
1897	Mechanical and Thermodynamic Materials Properties Derived by Semi-empirical Atomic Potentials with Special Focus on Ag, Cu, and the Binary Alloy Ag-Cu. Advanced Structured Materials, 2019, , 51-70.	0.3	0
1898	Influence of normal velocity on microstructure and density of films produced by nanoparticle impact. AIP Advances, 2019, 9, 035226.	0.6	6
1899	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"> <mml:mrow><mml:mo stretchy="true">{<mml:mn>10</mml:mn><mml:mrow><mml:mover accent="true"><mml:mn>1/mml:mn>2</mml:mn></mml:mover </mml:mrow><mml:mrow></mml:mrow></mml:mo </mml:mrow> </td <td>3.8 1> < mml:m</td> <td>43 10</td>	3.8 1> < mml:m	43 10
1900	stretchy="true">} twinning in titanium. Acta Materialia, 2019, 171, Energetic, structural and mechanical properties of terraced interfaces. Acta Materialia, 2019, 171, 92-107.	3.8	14
1901	Fluid release pressure for nanochannels: the Young–Laplace equation using the effective contact angle. Nanoscale, 2019, 11, 8408-8415.	2.8	35
1902	Nanoscale bending properties of bio-inspired Ni-graphene nanocomposites. Composite Structures, 2019, 220, 798-808.	3.1	22
1903	Multi-scale dynamic failure analysis of 3D laminated composites using BEM and MCZM. Engineering Analysis With Boundary Elements, 2019, 104, 94-106.	2.0	4
1904	Modified Embedded Atom Method Potential for Modeling the Thermodynamic Properties of High Thermal Conductivity Beryllium Oxide. ACS Omega, 2019, 4, 6339-6346.	1.6	10
1905	Evaluation of melting behaviour of Nickel, Titanium, and NiTi alloy using EAM and MEAM type potential. Journal of Physics: Conference Series, 2019, 1171, 012035.	0.3	5
1906	Temperature and isomeric effects in nanoclusters. Physical Chemistry Chemical Physics, 2019, 21, 5646-5654.	1.3	15
1907	Quantification of Temperature Dependence of Hydrogen Embrittlement in Pipeline Steel. Materials, 2019, 12, 585.	1.3	12

#	Article	IF	CITATIONS
1908	Effect of Machining-Induced Subsurface Defects on Dislocation Evolution and Mechanical Properties of Materials via Nano-indentation. Nanoscale Research Letters, 2019, 14, 372.	3.1	9
1909	Multiscale Simulation of Surface Defect Influence in Nanoindentation by a Quasi-Continuum Method. , $0,,.$		0
1910	Formation of metal/semiconductor Cu–Si composite nanostructures. Beilstein Journal of Nanotechnology, 2019, 10, 2497-2504.	1.5	3
1911	An embedded-atom method potential parameterized for sulfur-induced embrittlement of nickel. Modelling and Simulation in Materials Science and Engineering, 2019, 27, 085016.	0.8	6
1912	Numerical evaluation of hydrogen outgassing from copper electrodes with mitigation based on a tungsten capping layer. Physics of Plasmas, 2019, 26, .	0.7	7
1913	Excess thermal energy and latent heat in nanocluster collisional growth. Journal of Chemical Physics, 2019, 151, 224304.	1.2	20
1914	Strain-stress relationship and dislocation evolution of W–Cu bilayers from a constructed <i>n</i> -body W–Cu potential. Journal of Physics Condensed Matter, 2019, 31, 305002.	0.7	23
1915	Enhancement of mechanical properties of metallic glass nanolaminates via martensitic transformation: Atomistic deformation mechanism. Materials Chemistry and Physics, 2019, 225, 159-168.	2.0	21
1916	Atomistic investigation of hydrogen embrittlement effect for symmetric and asymmetric grain boundary structures of bcc Fe. Computational Materials Science, 2019, 158, 58-64.	1.4	5
1917	Fundamental mechanism of BCC-FCC phase transition from a constructed PdCu potential through molecular dynamics simulation. Computational Materials Science, 2019, 159, 440-447. Dislocation absorption and transmutation at <mm!math< td=""><td>1.4</td><td>21</td></mm!math<>	1.4	21
1918	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"> <mml:mrow><mml:mrow><mml:mo stretchy="true">{<mml:mrow><mml:mn>10</mml:mn><mml:mrow><mml:mover accent="true"><mml:mn>1</mml:mn><mml:mo>A^</mml:mo></mml:mover </mml:mrow><mml:mn>2<td>3.8 1n> <td>64 mrow><mml< td=""></mml<></td></td></mml:mn></mml:mrow></mml:mo </mml:mrow></mml:mrow>	3.8 1n> <td>64 mrow><mml< td=""></mml<></td>	64 mrow> <mml< td=""></mml<>
1919	stretchy="true">} twin boundaries in deformation Grain boundary induced deformation mechanisms in nanocrystalline Al by molecular dynamics simulation: From interatomic potential perspective. Computational Materials Science, 2019, 156, 421-433.	1.4	42
1920	Diffusion mechanism of tools and simulation in nanoscale cutting the Ni–Fe–Cr series of Nickel-based superalloy. International Journal of Mechanical Sciences, 2019, 150, 625-636.	3.6	51
1922	overnow='scroit'> <mmi:mrow><mmi:mo stretchy="true">ã€^<mmi:mrow><mmi:mrow><mmi:mn>01</mmi:mn></mmi:mrow><mmi:mover accent="true"><mmi:mrow><mmi:mn>1</mmi:mn></mmi:mrow></mmi:mover </mmi:mrow><mmi:mo>i</mmi:mo><mmi: stretchy="true">〉</mmi: </mmi:mo </mmi:mrow> boundaries between <mmi:math< td=""><td>mr۵۷۵ > < Mi</td><td>ກໄສດກ>0</td></mmi:math<>	mr ۵ ۷۵ > < Mi	ກ ໄສດ ກ>0
1923	Molecular dynamics evaluation of the effects of zinc on the mechanical properties of aluminum alloys. Computational Materials Science, 2019, 159, 66-72.	1.4	3
1924	Static and dynamic properties of liquid Fe: An OF-AIMD simulation study. Physica B: Condensed Matter, 2019, 567, 129-137.	1.3	2
1925	The liquid-solid phase transition characteristics of Ag _x Cu _(500â^'x) alloy particles: a molecular dynamics study. Materials Research Express, 2019, 6, 025202.	0.8	2
1926	Assessing the inner core nucleation paradox with atomic-scale simulations. Earth and Planetary Science Letters, 2019, 507, 1-9.	1.8	17

#	Article	IF	CITATIONS
1927	Thermophysical properties of (UxAm1â^'x)O2 MOX fuel. Computational Materials Science, 2020, 172, 109324.	1.4	10
1928	Global Optimization of Li and Na Clusters: Application of a Modified Embedded Atom Method. Journal of Cluster Science, 2020, 31, 769-790.	1.7	4
1929	Perspective on coarse-graining, cognitive load, and materials simulation. Computational Materials Science, 2020, 171, 109129.	1.4	7
1930	Interatomic Potential Development. , 2020, , 544-572.		5
1931	Effects of orientation, lattice defects and temperature on plasticity and phase transition in ramp-compressed single crystal iron. Computational Materials Science, 2020, 172, 109318.	1.4	16
1932	Molecular dynamics simulation of nanostructure formation in copper foil under laser shock forming. Computational Materials Science, 2020, 172, 109352.	1.4	10
1933	Dislocation â ⁺ " twin transmutations during interaction between prismatic slip and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif"><mml:mrow><mml:mo>{</mml:mo><mml:mrow><mml:mn>10</mml:mn><mml:mover accent="true"><mml:mn>1</mml:mn><mml:mo>Â⁻</mml:mo><mml:mn>1</mml:mn>twin in magnesium_Acta Materialia_2020_186_291-307</mml:mover </mml:mrow></mml:mrow></mml:math 	3.8 /> < mml:m	25 o>}
1934	Metal alloy nanowire joining induced by femtosecond laser heating: A hybrid atomistic-continuum interpretation. International Journal of Heat and Mass Transfer, 2020, 150, 119287.	2.5	3
1935	Thermal Effect and Rayleigh Instability of Ultrathin 4H Hexagonal Gold Nanoribbons. Matter, 2020, 2, 658-665.	5.0	30
1936	H induced decohesion of an Al grain boundary investigated with first principles: General conditions for instant breakage and local delayed fracture. Computational Materials Science, 2020, 173, 109403.	1.4	2
1937	Molecular dynamics simulations of amorphous Ni–P alloy formation by rapid quenching and atomic deposition. Journal of Physics Condensed Matter, 2020, 32, 154001.	0.7	3
1938	Vacancy concentration of films and nanoparticles. Computational Materials Science, 2020, 173, 109416.	1.4	8
1939	TensorAlloy: An automatic atomistic neural network program for alloys. Computer Physics Communications, 2020, 250, 107057.	3.0	8
1940	Analytic description of grain boundary segregation, tension, and formation energy in the copper–nickel system. Acta Materialia, 2020, 201, 364-372.	3.8	2
1941	Frontiers in atomistic simulations of high entropy alloys. Journal of Applied Physics, 2020, 128, .	1.1	40
1942	Structural origin of reversible martensitic transformation and reversible twinning in NiTi shape memory alloy. Acta Materialia, 2020, 199, 240-252.	3.8	29
1943	Nuclear versus electronic energy loss in slow Ar ion scattering on a Cu (100) surface: Experiment and simulations. Physical Review A, 2020, 102, .	1.0	6
1944	Atomic cluster expansion of scalar, vectorial, and tensorial properties including magnetism and charge transfer. Physical Review B, 2020, 102, .	1.1	56
#	Article	IF	CITATIONS
------	---	-----	-----------
1945	Atomistic simulation for the interaction between dislocation and solute atoms, clusters, and associated physical insights. Journal of Applied Physics, 2020, 128, 024301.	1.1	1
1946	Ultra-Fast High-PrecisionÂMetallic Nanoparticle Synthesis using Laser-Accelerated Protons. Scientific Reports, 2020, 10, 9570.	1.6	8
1947	Influence of heating rate, temperature, pressure on the structure, and phase transition of amorphous Ni material: A molecular dynamics study. Heliyon, 2020, 6, e05548.	1.4	12
1948	Bragg coherent imaging of nanoprecipitates: role of superstructure reflections. Journal of Applied Crystallography, 2020, 53, 1353-1369.	1.9	2
1949	Frank-Kasper Z16 local structures in Cu-Zr metallic glasses. Physical Review B, 2020, 102, .	1.1	2
1950	Formation and growth of fractal-like agglomerates and aggregates in the gas phase. Frontiers of Nanoscience, 2020, , 41-60.	0.3	1
1951	Dislocation nucleation from Zr–Nb bimetal interfaces cooperating with the dynamic evolution of interfacial dislocations. International Journal of Plasticity, 2020, 135, 102830.	4.1	15
1952	Compaction simulation of crystalline nano-powders under cold compaction process with molecular dynamics analysis. Powder Technology, 2020, 373, 741-753.	2.1	22
1953	Molecular dynamics study on temperature and strain rate dependences of mechanical properties of single crystal Al under uniaxial loading. AIP Advances, 2020, 10, .	0.6	20
1954	Definitions of local density in density-dependent potentials for mixtures. Physical Review E, 2020, 102, 013312.	0.8	8
1955	Monomolecular wire cutting of copper nanocolumns via carbyne. Extreme Mechanics Letters, 2020, 40, 100922.	2.0	0
1956	A computational study of the mixed–mode crack behavior by molecular dynamics method and the multi – Parameter crack field description of classical fracture mechanics. Theoretical and Applied Fracture Mechanics, 2020, 109, 102691.	2.1	13
1957	Structure stabilities and mono-vacancy properties of BCC transition metals by MAEAM potentials. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	4
1958	Study of nickel-coated aluminum nanoparticles using molecular dynamic simulations and thermodynamic modeling. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	1
1959	Influence of initial distance and heating rate on the aggregation of Cu and Au nanoparticles: a MD study. Modern Physics Letters B, 2020, 34, 2150001.	1.0	2
1960	Deformation mechanism in Al _{0.1} CoCrFeNi Σ3(111)[11̄0] high entropy alloys – molecular dynamics simulations. RSC Advances, 2020, 10, 27688-27696.	1.7	16
1961	The central role of entropy in adiabatic ensembles and its application to phase transitions in the grand-isobaric adiabatic ensemble. Journal of Chemical Physics, 2020, 153, 094114.	1.2	4
1962	Molecular dynamics simulation of thermal welding process of Ag nanoparticles. Ferroelectrics, 2020, 564, 102-112.	0.3	0

#	Article	IF	CITATIONS
1963	Refined electron-spin transport model for single-element ferromagnetic systems: Application to nickel nanocontacts. Physical Review B, 2020, 102, .	1.1	4
1964	Revealing the Geometry and Conductance of Double-Stranded Atomic Chains of Gold. Journal of Physical Chemistry C, 2020, 124, 26596-26602.	1.5	3
1965	Construction of Ni–Al–Ru EAM potential and application in misfit dislocation system. Progress in Natural Science: Materials International, 2020, 30, 539-544.	1.8	4
1966	Modeling of metal nanoparticles: Development of neural-network interatomic potential inspired by features of the modified embedded-atom method. Physical Review B, 2020, 102, .	1.1	3
1967	Calculation of formation enthalpies and dilute heats of bcc–bcc binary alloys by modified ones of EAM potentials. Indian Journal of Physics, 2020, 95, 1775.	0.9	1
1968	Z-AXIS deformation method to investigate the influence of system size, structure phase transition on mechanical properties of bulk nickel. Materials Chemistry and Physics, 2020, 252, 123275.	2.0	15
1969	Extraction of Two-Dimensional Aluminum Alloys from Decagonal Quasicrystals. ACS Nano, 2020, 14, 7435-7443.	7.3	19
1970	Explicit Multielement Extension of the Spectral Neighbor Analysis Potential for Chemically Complex Systems. Journal of Physical Chemistry A, 2020, 124, 5456-5464.	1.1	36
1971	Empirical interatomic potential for Fe-C system using original Finnis-Sinclair potential function. Computational Materials Science, 2020, 184, 109871.	1.4	3
1972	Investigations on the mechanism of microweld changes during ultrasonic wire bonding by molecular dynamics simulation. Materials and Design, 2020, 192, 108718.	3.3	25
1973	Influence of Zinc Content on the Mechanical Behaviors of Cu-Zn Alloys by Molecular Dynamics. Materials, 2020, 13, 2062.	1.3	5
1974	Research on microstructure deformation mechanism of crack tip in titanium under tension along different orientations. Molecular Simulation, 2020, 46, 440-447.	0.9	2
1975	On the determination of stopping cross-sections in ion scattering in solids and deviations from standard models. Radiation Effects and Defects in Solids, 2020, 175, 160-176.	0.4	5
1976	Monte Carlo simulation of thermophysical properties of liquid Ni-15%X (Co, Cu, Yb) alloys. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	0
1977	Coarse-graining of polyisoprene melts using inverse Monte Carlo and local density potentials. Journal of Chemical Physics, 2020, 152, 124902.	1.2	27
1978	Effect of substrate bias on microstructure of epitaxial film grown by HiPIMS: An atomistic simulation. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	0.9	9
1979	MEAM-based MD calculations of melting temperature for Fe. Journal of Molecular Modeling, 2020, 26, 189.	0.8	3
1980	Multiscale Modeling Reveals the Cause of Surface Stress Change on Microcantilevers Due to Alkanethiol SAM Adsorption. Journal of Chemical Information and Modeling, 2020, 60, 2998-3008.	2.5	3

#	Article	IF	CITATIONS
1981	Surface softening in palladium nanoparticles: effects of a capping agent on vibrational properties. Nanoscale, 2020, 12, 5876-5887.	2.8	3
1982	Self-Learning Method for Construction of Analytical Interatomic Potentials to Describe Laser-Excited Materials. Physical Review Letters, 2020, 124, 085501.	2.9	16
1983	Hydrogen in zirconium: Atomistic simulations of diffusion and interaction with defects using a new embedded atom method potential. Journal of Nuclear Materials, 2020, 532, 152055.	1.3	30
1984	Metallic glass instability induced by the continuous dislocation absorption at an amorphous/crystalline interface. Acta Materialia, 2020, 189, 10-24.	3.8	24
1985	Structural characteristics, diffusion mechanism and mechanical behaviour of cathode catalyst layer. Computational Materials Science, 2020, 177, 109572.	1.4	6
1986	Development of a segregation model beyond McLean based on atomistic simulations. Acta Materialia, 2020, 187, 73-83.	3.8	6
1987	Construction of an n-body Fe–Cu potential and its application in atomistic modeling of Fe–Cu solid solutions. Journal of Applied Physics, 2020, 127, 045104.	1.1	6
1988	Resolving hydrogen atoms at metal-metal hydride interfaces. Science Advances, 2020, 6, eaay4312.	4.7	72
1989	The role of oxophilic Mo species in Pt/MgO catalysts as extremely active sites for enhanced hydrodeoxygenation of dibenzofuran. Catalysis Science and Technology, 2020, 10, 2948-2960.	2.1	15
1990	Second-nearest-neighbor modified embedded-atom method interatomic potential for Cu-M (MÂ=ÂCo, Mo) binary systems. Computational Materials Science, 2020, 178, 109627.	1.4	8
1991	The mechanics and physics of high-speed dislocations: a critical review. International Materials Reviews, 2021, 66, 215-255.	9.4	35
1992	Deep convolutional neural network aided optimization for cold spray 3D simulation based on molecular dynamics. Journal of Intelligent Manufacturing, 2021, 32, 1009-1023.	4.4	6
1993	Physically inspired atom-centered symmetry functions for the construction of high dimensional neural network potential energy surfaces. Computational Materials Science, 2021, 186, 110071.	1.4	8
1994	Machine learning-accelerated quantum mechanics-based atomistic simulations for industrial applications. Journal of Computer-Aided Molecular Design, 2021, 35, 557-586.	1.3	29
1995	Sluggish hydrogen diffusion and hydrogen decreasing stacking fault energy in a high-entropy alloy. Materials Today Communications, 2021, 26, 101902.	0.9	11
1996	Size-selective, rapid dynamics of large, hetero-epitaxial islands on fcc(0 0 1) surfaces. Computational Materials Science, 2021, 188, 110225.	1.4	1
1997	MAISE: Construction of neural network interatomic models and evolutionary structure optimization. Computer Physics Communications, 2021, 259, 107679.	3.0	22
1998	The free-standing nanoporous palladium for hydrogen isotope storage. Journal of Alloys and Compounds, 2021, 854, 157062.	2.8	11

#	Article	IF	CITATIONS
1999	Dislocation Damping and Defect Friction Damping in Magnesium: Molecular Dynamics Study. Metals and Materials International, 2021, 27, 1458-1468.	1.8	9
2000	Deformation mechanisms of Inconel-718 at the nanoscale by molecular dynamics. Physical Chemistry Chemical Physics, 2021, 23, 10650-10661.	1.3	8
2001	Enabling simulations of helium bubble nucleation and growth: A strategy for interatomic potentials. Physical Review B, 2021, 103, .	1.1	5
2002	STUDYING HYDROGEN DIFFUSION IN PALLADIUM SILVER FILMS BY MOLECULAR DYNAMICS. Journal of Structural Chemistry, 2021, 62, 1-8.	0.3	0
2003	Molecular Dynamics Simulations—A Time and Length Scale Investigation. , 2021, , 125-141.		0
2004	PyXtal_FF: a python library for automated force field generation. Machine Learning: Science and Technology, 2021, 2, 027001.	2.4	18
2005	Influence of hydrogenation on the mechanical properties of Pd nanoparticles. RSC Advances, 2021, 11, 3115-3124.	1.7	2
2006	First-principles studies on optical absorption of [010] screw dislocation in KDP crystals. CrystEngComm, 2021, 23, 7412-7417.	1.3	8
2007	Lithium nickel borides: evolution of [NiB] layers driven by Li pressure. Inorganic Chemistry Frontiers, 2021, 8, 1675-1685.	3.0	7
2008	Copper-graphene composites; developing the MEAM potential and investigating their mechanical properties. Computational Materials Science, 2021, 188, 110204.	1.4	12
2009	Atomistic Simulation of Severely Adhesive Wear on a Rough Aluminum Substrate. , 0, , .		0
2010	Microscopic Study on the Mechanism of Tool Bond Wear in Cutting Ni–Fe-Cr-Co–Cu Series Nickel-Base Superalloy. International Journal of Precision Engineering and Manufacturing, 2021, 22, 621-634.	1.1	2
2011	Automated discovery of a robust interatomic potential for aluminum. Nature Communications, 2021, 12, 1257.	5.8	47
2012	Beyond the static corrugation model: Dynamic surfaces with the embedded atom method. Journal of Chemical Physics, 2021, 154, 074710.	1.2	7
2013	Evolution dynamics of voids in single crystal copper under triaxial loading condition. Philosophical Magazine, 2021, 101, 1119-1143.	0.7	1
2014	Electronic energy loss and straggling in low energy H ⁺ and H ₂ ⁺ interaction with silicon films. Radiation Effects and Defects in Solids, 2021, 176, 73-91.	0.4	7
2015	A multiscale approach for modeling metal laser welding. AIP Advances, 2021, 11, .	0.6	4
2016	Effect of oxygen adsorption and oxidation on the strain state of Pd nanocrystals. Applied Surface Science, 2021, 541, 148508.	3.1	3

#	Article	IF	CITATIONS
2017	Simulations of hydrogen outgassing and sticking coefficients at a copper electrode surface: Dependencies on temperature, incident angle and energy. Physical Review Research, 2021, 3, .	1.3	4
2018	Formation enthalpies and dilute heats of HCP-HCP disordered binary alloys: modified ones of embedded atom method potentials. Journal of Molecular Modeling, 2021, 27, 99.	0.8	0
2019	Embedded atom method for elastic constants of iridium binary alloys (at room temperature). International Journal of Modern Physics C, 2021, 32, 2150075.	0.8	0
2020	Comparative investigation of microjetting generated from monocrystalline tin surface and polycrystalline tin surface under plane impact loading. Chinese Physics B, 2021, 30, 104701.	0.7	1
2021	Molecular dynamics simulation of monocrystalline copper nano-scratch process under the excitation of ultrasonic vibration. Materials Research Express, 2021, 8, 046507.	0.8	10
2022	Validity of the Stokesâ ''Einstein relation in liquid 3d transition metals for a wide range of temperatures. Journal of Molecular Liquids, 2021, 328, 115434.	2.3	4
2023	Embedding Quantum Statistical Excitations in a Classical Force Field. Journal of Physical Chemistry A, 2021, 125, 3760-3775.	1.1	3
2024	Vacancy and phonon dispersion properties of Be, Co, Hf, Mg, and Re by modified embedded atom method potentials. Journal of Molecular Modeling, 2021, 27, 156.	0.8	3
2025	Fundamental effects of copper on dislocation loops and mechanical property of tungsten under irradiation. Journal of Nuclear Materials, 2021, 548, 152838.	1.3	4
2026	Influence of point defects and grain boundaries on plasticity and phase transition in uniaxially-compressed iron. Computational Condensed Matter, 2021, 27, e00560.	0.9	5
2027	Atomistic analyses of HCP-FCC transformation and reorientation of Ti in Al-Ti multilayers. Computational Materials Science, 2021, 192, 110329.	1.4	9
2028	Evaluation of Force Fields for Molecular Dynamics Simulations of Platinum in Bulk and Nanoparticle Forms. Journal of Chemical Theory and Computation, 2021, 17, 4486-4498.	2.3	7
2029	An effective scheme to determine surface energy and its relation with adsorption energy. Acta Materialia, 2021, 212, 116895.	3.8	16
2030	Interatomic potential for metal diborides. Molecular Simulation, 2021, 47, 982-987.	0.9	0
2031	Surface Heterostructure of Aluminum with Carbon Nanotubes Obtained by Laser-Oriented Deposition. Coatings, 2021, 11, 674.	1.2	4
2032	Saf Kalsiyum Elementinin Isıtma Sürecinin Moleküler Dinamik Benzetim Yöntemi ile İncelenmesi. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 0, , .	0.1	0
2033	Development of modified embedded-atom model and molecular dynamics simulation of cesium. Computational Materials Science, 2021, 194, 110451.	1.4	2
2034	Mechanism of microweld formation and breakage during Cu–Cu wire bonding investigated by molecular dynamics simulation. Chinese Physics B, 2022, 31, 016101.	0.7	9

#	Article	IF	Citations
2035	Memory access optimization of molecular dynamics simulation software Crystal-MD on Sunway Taihulight. Tsinghua Science and Technology, 2021, 26, 296-308.	4.1	5
2036	Molecular dynamics simulations of dopant effects on lattice trapping of cracks in Ni matrix. Chinese Physics B, 0, , .	0.7	1
2037	Evaluation of nickel self-sputtering yields by molecular-dynamics simulation. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2021, 39, .	0.9	5
2038	Size-Dependent Solute Segregation at Symmetric Tilt Grain Boundaries in α-Fe: A Quasiparticle Approach Study. Materials, 2021, 14, 4197.	1.3	2
2039	Machine learning for alloys. Nature Reviews Materials, 2021, 6, 730-755.	23.3	202
2040	Verification of the Stokes-Einstein relation in liquid noble metals over a wide range of temperatures. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 403, 127385.	0.9	4
2041	Mechanical models and numerical simulations in nanomechanics: A review across the scales. Engineering Analysis With Boundary Elements, 2021, 128, 149-170.	2.0	19
2042	Surface Microscopy of Atomic and Molecular Hydrogen from Field-Evaporating Semiconductors. Journal of Physical Chemistry C, 2021, 125, 17078-17087.	1.5	4
2043	Effects of Substrate Bias Voltage on Structure of Diamond-Like Carbon Films on AISI 316L Stainless Steel: A Molecular Dynamics Simulation Study. Materials, 2021, 14, 4925.	1.3	5
2044	Dynamic Weld evolution during ultrasonic welding of Cu–Al joints. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 823, 141724.	2.6	25
2045	Machine-learning interatomic potentials for materials science. Acta Materialia, 2021, 214, 116980.	3.8	112
2046	<pre><mml:math altimg="si1.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>i³</mml:mi></mml:math>U and <mml:math altimg="si1.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>i³</mml:mi></mml:math>U-Mo allovs, Journal of Nuclear Materials, 2021, 552, altimg="si1.svg"><mml:mi>i³</mml:mi>U-Mo allovs, Journal of Nuclear Materials, 2021, 552, </pre>	1.3	10
2047	152970. Lattice ground states for embedded-atom models in 2D and 3D. Letters in Mathematical Physics, 2021, 111, 1.	0.5	5
2048	Effects of Number of Atoms, Shell Thickness, and Temperature on the Structure of Fe Nanoparticles Amorphous by Molecular Dynamics Method. Advances in Civil Engineering, 2021, 2021, 1-12.	0.4	4
2049	Gold Segregation Improves Electrocatalytic Activity of Icosahedron Au@Pt Nanocluster: Insights from Machine Learning â€. Chinese Journal of Chemistry, 0, , .	2.6	10
2050	How to take into account local concentration in Ising-based Monte-Carlo: illustration with zirconium hydrides. Computational Materials Science, 2021, 197, 110547.	1.4	1
2051	Proven Anti-Wetting Properties of Molybdenum Tested for High-Temperature Corrosion-Resistance with Potential Application in the Aluminum Industry. Materials, 2021, 14, 5355.	1.3	0
2052	Mechanism of Spontaneous Surface Modifications on Polycrystalline Cu Due to Electric Fields. Micromachines, 2021, 12, 1178.	1.4	1

#	Article	IF	CITATIONS
2053	A new interatomic potential describing Fe-H and H-H interactions in bcc iron. Computational Materials Science, 2021, 197, 110640.	1.4	20
2054	The Role of Grain Boundary Diffusion in the Solute Drag Effect. Nanomaterials, 2021, 11, 2348.	1.9	8
2055	Approaches to modelling the shape of nanocrystals. Nano Convergence, 2021, 8, 26.	6.3	22
2056	Efficient prediction of elastic properties of Ti0.5Al0.5N at elevated temperature using machine learning interatomic potential. Thin Solid Films, 2021, 737, 138927.	0.8	4
	The role of hydrogen in the edge dislocation mobility and grain boundary-dislocation interaction in < mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"		
2057	altimg="si1.svg"> <mml:mrow><mml:mi mathvariant="bold-italic">α</mml:mi </mml:mrow> -Fe. International Journal of Hydrogen	3.8	18
	Energy, 2021, 46, 32695-32709. Breakdown of Universal Scaling for Nanometer-Sized Bubbles in Graphene. Nano Letters, 2021, 21.		
2058	8103-8110. A half-shear-half-shuffle mechanism and the single-layer twinning dislocation for <mml:math< td=""><td>4.5</td><td>23</td></mml:math<>	4.5	23
2050	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"> <mml:mrow><mml:mrow><mml:mo>{</mml:mo><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml< td=""><td>mgver</td><td>19</td></mml<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow>	mgver	19
2039	accent="true"> <mml:mn>2</mml:mn> <mml:mo>Â⁻</mml:mo> <mml:mn>2</mml:mn> Â ⁻ <mml:mover< td=""><td>w∛?mml:n</td><td>no'>}</td></mml:mover<>	w∛ ? mml:n	no'>}
2060	accent="true"> <mm. 117150.<br="" 2021,="" 216,="" acta="" materialia,="">Modeling and experimental study of machining outcomes when conducting nanoscratching using dual-tip probe on single-crystal copper. International Journal of Mechanical Sciences, 2021, 206,</mm.>	3.6	9
	106649.		
2062	Perspectives on multiscale modelling and experiments to accelerate materials development for fusion. Journal of Nuclear Materials, 2021, 554, 153113.	1.3	37
2063	Static investigation of the small clusters on the Cu(111) and Au(111) surfaces. Chinese Journal of Physics, 2021, 73, 552-560.	2.0	4
2064	close-packed metals. Computational Materials Science, 2021, 198, 110684.	1.4	7
	On the role of ion notential energy in low energy HiPIMS denosition: An atomistic simulation. Surface		
2065	and Coatings Technology, 2021, 426, 127726.	2.2	7
2066	A coarse-grained – Atomistic multi-scale method to study the mechanical behavior of heterogeneous	14	10
2066	FCC nano-materials. Computational Materials Science, 2021, 199, 110725.	1.4	10
2067	Atomistic simulation of the surface configuration of the Ni–Re cluster. Thin Solid Films, 2021, 737,	0.8	1
	138938.		
2068	Machine learning enhanced empirical potentials for metals and alloys. Computer Physics	3.0	3
2069	nanocomposite with enhanced hydrogen gas barrier properties. Journal of Membrane Science, 2021,	4.1	29
2070	Molecular Dynamics and Statics. , 2022, , 510-520.		0
	Core–shell PdAu nanocluster catalysts to suppress sulfur poisoning. Physical Chemistry Chemical		
2071	Physics, 2021, 23, 15010-15019.	1.3	10

#	Article	IF	CITATIONS
2072	Development of Finnis-Sinclair potential of metal Nb and the influence of potential function form on the properties of material. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 113401-113401.	0.2	0
2074	Diffusion, Nucleation and Growth on Metal Surfaces. , 2005, , 55-70.		1
2075	Molecular Dynamics Study on the Characteristics of Edge and Screw Dislocations in Gamma/Gamma-Prime Microstructure of Ni-Based Superalloy. Solid Mechanics and Its Applications, 2004, , 59-68.	0.1	4
2076	Atomic-Scale Simulations of the Mechanical Behavior of Carbon Nanotube Systems. Challenges and Advances in Computational Chemistry and Physics, 2010, , 255-295.	0.6	2
2077	Atomistic Simulations of Surfaces and Interfaces. , 1992, , 89-122.		4
2078	The Martensitic Transformation in Iron-Nickel Alloys: A Molecular Dynamics Study. , 1997, , 95-100.		4
2079	Embedded Atom Method: Many-Atom Description of Metallic Cohesion. , 1989, , 181-191.		10
2080	Application of Many-Body Potentials to Noble Metal Alloys. , 1989, , 193-202.		1
2081	Effects of B and S on Ni3Al Grain Boundaries. , 1989, , 223-231.		3
2082	Embedded Atom Method Model for Close-Packed Metals. , 1989, , 233-238.		28
2083	Physical Properties of Grain-Boundary Materials: Comparison of EAM and Central-Force Potentials. , 1989, , 245-263.		16
2084	A New Method for Coupled Elastic-Atomistic Modelling. , 1989, , 411-418.		15
2085	Surface Diffusion of Metal Atoms and Clusters Directly Observed. NATO ASI Series Series B: Physics, 1997, , 23-43.	0.2	3
2086	Various Modeling Techniques for Nanostructures. Nanoscience and Technology, 2013, , 31-58.	1.5	2
2087	Computer Simulations of Nanometer-Scale Indentation and Friction. , 2017, , 301-370.		1
2088	Computer Simulations of Nanometer-Scale Indentation and Friction. , 2007, , 1051-1106.		8
2089	Theoretical Investigation of Interfaces. Springer Series in Materials Science, 2007, , 91-122.	0.4	2
2090	Interatomic Potentials. Springer Theses, 2010, , 33-49.	0.0	3

#	Article	IF	CITATIONS
2091	A Peierls Criterion for Deformation Twinning at a Mode II Crack. Lecture Notes in Computational Science and Engineering, 2004, , 157-165.	0.1	1
2092	Potential Energy Surfaces for the Dynamics of Elementary Gas-Surface Processes. Springer Series in Surface Sciences, 2013, , 25-50.	0.3	5
2093	Monte Carlo Simulations of Metal Monoatomic Layers. Springer Proceedings in Physics, 2004, , 226-249.	0.1	3
2094	Density Functional Theory Study of Self-Diffusion on the (111) Surfaces of Ni, Pd, Pt, Cu, Ag and Au. Springer Series in Solid-state Sciences, 1996, , 173-182.	0.3	5
2095	Derivation of Angular Forces for Semiconductors and Transition Metals. Springer Proceedings in Physics, 1990, , 257-263.	0.1	1
2096	The Embedded Atom Method: A Review. Springer Proceedings in Physics, 1990, , 48-63.	0.1	5
2097	Implications of the Embedded-Atom Method Format. Springer Proceedings in Physics, 1990, , 85-102.	0.1	6
2099	Atomistic Modeling of Failure Mechanisms. , 1996, , 227-244.		4
2100	Interatomic Forces and the Simulation of Cracks. , 1987, , 177-195.		2
2101	Application of the Embedded Atom Method to Hydrogen Embrittlement. , 1987, , 196-218.		9
2102	Solute-Dislocation Interactions and Solid-Solution Strengthening Mechanisms in Ordered Alloys. , 1992, , 237-256.		9
2103	COMPUTER SIMULATION OF ELASTIC AND STRUCTURAL ANOMALIES OF THIN FILMS AND SUPERLATTICES*. , 1990, , 52-62.		2
2104	COUPLED ATOMISTIC-CONTINUUM CALCULATIONS OF NEAR INTERFACE CRACKING IN METAL/CERAMIC COMPOSITES. , 1990, , 63-70.		6
2105	An atomistic approach for stress relaxation in materials. , 2001, , 119-150.		2
2106	Cold welding assisted self-healing of fractured ultrathin Au nanowires. Nano Express, 2020, 1, 020014.	1.2	6
2107	Stencil growth of metallic nanorod: An atomistic simulation. IOP SciNotes, 2020, 1, 034801.	0.4	1
2108	Conceptual and practical bases for the high accuracy of machine learning interatomic potentials: Application to elemental titanium. Physical Review Materials, 2017, 1, .	0.9	44
2109	Machine learning for metallurgy II. A neural-network potential for magnesium. Physical Review Materials, 2020, 4, .	0.9	32

#	Article	IF	CITATIONS
2110	Development of a general-purpose machine-learning interatomic potential for aluminum by the physically informed neural network method. Physical Review Materials, 2020, 4, .	0.9	15
2111	Title is missing!. Applied Physics, 2012, 02, 50-54.	0.0	2
2112	Mo/Si multilayers sputtered onto inclined substrates: experiments and simulations. Optics Express, 2020, 28, 13516.	1.7	2
2114	Molecular Dynamics Simulation of the Effect of Interfaces in Melting and Solid-State Amorphization. Materials Research Society Symposia Proceedings, 1991, 230, 3.	0.1	7
2115	Error Control for Molecular Statics Problems. International Journal for Multiscale Computational Engineering, 2006, 4, 647-662.	0.8	50
2116	Towards a Universal Embedded Atom Method Interatomic Potential for Pure Metals. Journal of Siberian Federal University - Mathematics and Physics, 2015, 8, 230-249.	0.2	5
2117	MolekÃ1⁄4ler Dinamik Benzetim Yöntemi ile Isıtma İşlemi Sırasında Platin Metalinin Yapısal GeliÅŸimi v Noktası Üzerine Atomlar-arası Potansiyel Etkisinin Araştırılması. Bitlis Eren Üniversitesi Fen Bilimler Dergisi, 2019, 8, 413-427.	ve Erime ri 0.1	4
2119	Structure and Energy of Interphase Boundaries in Steel. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2003, 89, 497-509.	0.1	14
2120	Recent Advances and Multi-Hierarchical Perspectives in Plasticity Theory. VII: Simulation of Plastic Deformation by Using Molecular Dynamics Zairyo/Journal of the Society of Materials Science, Japan, 1999, 48, 1328-1334.	0.1	2
2121	Local Lattice Instability of Amorphous Metals under Tension: A Molecular Dynamics Study. Zairyo/Journal of the Society of Materials Science, Japan, 2005, 54, 1053-1059.	0.1	10
2122	Surface Energy Calculation of Face Centered Cubic Lattice Metals Journal of Chemical Software, 1996, 3, 91-96.	0.2	2
2124	Probing Local Surface Reactivity With Hydrogen Molecules-Realizing an Atom/Molecule Scanning Probe Shinku/Journal of the Vacuum Society of Japan, 2003, 46, 391-396.	0.2	3
2127	Some Factors Affected on Structure, Mechanical of Ni Bulk. Advances in Materials Physics and Chemistry, 2018, 08, 177-192.	0.3	1
2128	Investigation of deposition of nanofilms on a porous aluminium oxide substrate by mathematical modeling techniques. Computational Continuum Mechanics, 2016, 9, 59-72.	0.1	4
2129	Atomistic simulation of the bcc—hcp transition in iron driven by uniaxial strain. Wuli Xuebao/Acta Physica Sinica, 2010, 59, 4888.	0.2	6
2130	Equations of state and thermodynamic properties of hot plasma. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 030505.	0.2	5
2131	Empirical MD Simulations of Laser-Excited Matter. , 2021, , 275-322.		0
2132	Ab-Initio Theory Considering Excited Potential Energy Surface and \$\$e^-\$\$-Phonon Coupling. , 2021, , 323-377.		0

#	Article	IF	CITATIONS
2133	Symmetry-adapted graph neural networks for constructing molecular dynamics force fields. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	2.0	5
2134	Efficient and transferable machine learning potentials for the simulation of crystal defects in bcc Fe and W. Physical Review Materials, 2021, 5, .	0.9	21
2135	Employing Hybrid Lennard-Jones and Axilrod-Teller Potentials to Parametrize Force Fields for the Simulation of Materials' Properties. Materials, 2021, 14, 6352.	1.3	4
2136	Fatigue crack propagation in carbon steel using RVE based model. Engineering Fracture Mechanics, 2021, 258, 108050.	2.0	8
2137	Criterion on Local Instability for Dislocation Nucleation in Nickel Crystal Zairyo/Journal of the Society of Materials Science, Japan, 2000, 49, 527-533.	0.1	0
2138	Dependence of the Interfacial Structures of Ni/Pd Layers on Underlayer Conditions Estimated by Molecular Dynamics Simulation Journal of the Magnetics Society of Japan, 2000, 24, 439-442.	0.4	0
2139	Observation of Film Formation Process on Cu Single Crystal and Polycrystalline Substrate by Molecular Dynamics Simulation. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2001, 65, 191-194.	0.2	0
2141	Molecular Dynamics Study on Phase Transitions and Structural Transformations*. Yosetsu Gakkai Shi/Journal of the Japan Welding Society, 2003, 72, 495-498.	0.0	1
2142	Title is missing!. , 2003, , .		0
2144	Simulation Methods for Interfacial Friction in Solids. , 2004, , .		1
2148	Contributions of Molecular Modeling to Nanometer-Scale Science and Technology. The Electrical Engineering Handbook, 2007, , 28-1-28-33.	0.2	0
2149	Modeling: The Role Of Atomistic Simulations. , 2008, , 57-85.		0
2150	Molecular Dynamics. , 2011, , 975-1012.		1
2151	Long-range Finnis-Sinclair potential for Zn-Mg alloy. Wuli Xuebao/Acta Physica Sinica, 2011, 60, 086105.	0.2	1
2152	Magnetization of Nano-Size Subsystem in a Two-Dimensional Ising Square Lattice. World Journal of Condensed Matter Physics, 2012, 02, 175-180.	1.1	0
2155	Atomistic Investigations of Intrinsic and Extrinsic Point Defects in bcc Uranium. , 2013, , 231-247.		1
2156	A Study on Solidification and Amorphous Crystallization of Metal Ag by Molecular Dynamics Simulation. Applied Physics, 2013, 03, 109-114.	0.0	0
2157	A Molecular Dynamics Study on Amorphous Formation and Crystallization of Ag-Cu Eutectic Alloys. Applied Physics, 2013, 03, 149-154.	0.0	1

# 2158	ARTICLE Interaction between a Mg17Al12 precipitate and $ { 10 1 ¯ 2 } < 10 1¯ 2 > $ \$\${ 10ar 12} < 10ar 12 >\$\$ twin boundary in magnesium alloys _2013 _ 89.94	IF	CITATIONS
2161	Simulation of copper nanocrystal plastic deformation at uniaxial tension. Computer Research and Modeling, 2013, 5, 225-230.	0.2	0
2162	Interatomic Potentials, Scattering and Nuclear Stopping. Springer Series in Solid-state Sciences, 2014, , 235-280.	0.3	0
2163	Theory of Hydrogen on Metal Surfaces. Springer Series in Surface Sciences, 1985, , 41-45.	0.3	0
2164	Chemistry and Physics of Fracture (An Overview). , 1987, , 3-11.		1
2165	Self-Diffusion and Impurity Diffusion of FCC Metals Using the Embedded Atom Method. , 1989, , 419-424.		2
2166	Application of the Tight-Binding Bond Model. , 1989, , 369-380.		0
2167	Angular Forces in Transition Metals and Diamond Structure Semiconductors. , 1989, , 103-113.		1
2168	Introduction to Many-Atom Interactions in Solids. Springer Proceedings in Physics, 1990, , 2-11.	0.1	0
2169	One-Electron Energy Corrections in the Effective-Medium Theory: Application to Copper Clusters. Springer Proceedings in Physics, 1990, , 199-203.	0.1	0
2170	Interatomic Potentials. Mechanics and Physics of Discrete Systems, 1990, , 37-64.	0.0	0
2172	The Effective-Medium Theory Beyond the Nearest Neighbour Interaction. Springer Proceedings in Physics, 1990, , 168-175.	0.1	0
2173	The Effective-Medium Theory. Springer Proceedings in Physics, 1990, , 34-47.	0.1	0
2174	Dynamic Simulations of Dislocation Core Structures in Gold Using Many-Atom Interactions. Springer Proceedings in Physics, 1990, , 191-198.	0.1	0
2175	Computer Applications to Materials Science and Engineering. , 1991, , 81-108.		0
2176	Atomistic modeling of dislocations in Be12X compounds. , 1992, , 103-107.		0
2177	Planar defect energies by the embedded atom method and dissociated superdislocation configurations in the L10-type TiAl compound. , 1992, , 18-25.		0
2178	Mean-Field Approach to Segregation at [001] Large Angle Twist Boundaries in Dilute Binary Alloys. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1992, 56, 991-997.	0.2	0

#	Article	IF	CITATIONS
2179	Homonuclear Metallic Microclusters: Structure and Energetics. , 1992, , 575-580.		0
2180	Molecular Dynamics Simulation of Cluster-Ion Impacts. Research Reports in Physics, 1992, , 44-56.	0.0	0
2181	Surface Free Energy. Surface Tension. , 1993, , 74-81.		0
2182	Stability, structure, and melting of copper clusters. , 1993, , 115-126.		0
2183	Molecular Dynamics of Nanophase Intermetallics. , 1994, , 315-322.		0
2184	Computer simulation study of film formation process. , 1994, , 333-336.		0
2185	Interphase Boundary Structures in Phase Transformation and Precipitation Processes. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1995, 81, 98-104.	0.1	1
2186	Interfacial effects during ion beam processing of metals. , 1996, , 38-48.		0
2187	Ab-Initio-Based Atomistic Potentials and Application to Metallic Surface and Interface Structures. NATO ASI Series Series B: Physics, 1996, , 443-448.	0.2	0
2188	ELECTRONIC STRUCTURE STUDY OF DEFORMATION IN TRANSITION METALS. , 1996, , 495-500.		0
2189	Electronic Structure in Palladium Assuming Large Lattice Deformation. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1997, 61, 261-266.	0.2	0
2190	Molecular Dynamics Simulation of the Structure at the Interface of a Ni/Pd Multilayer. Journal of the Magnetics Society of Japan, 1997, 21, 449-452.	0.4	0
2191	Molecular Dynamics Simulation of the Structure at the Interface of an Ni/Pd Multilayer with Two Different Crystal Orientations. Journal of the Magnetics Society of Japan, 1998, 22, 593-596.	0.4	1
2192	Electronic Structure Approach to Hydrogen Embrittlement in fcc Transition Metals. Advances in Materials Research, 1998, , 185-194.	0.2	0
2194	Theoretical Studies of Structural and Electronic Properties of Clusters. , 2015, , 1-57.		0
2195	Molecular Dynamics Simulation: From "Ab Initio―to "Coarse Grained― , 2015, , 1-61.		0
2196	Molecular Dynamics Simulation of Glass Forming Ability of Al ₃₀ Co _{10 } Amorphous Alloy. Open Journal of Applied Sciences, 2015, 05, 552-558.	0.2	0
2197	10.3 Introduction to surface phonons. , 2015, , 586-615.		0

#	Article	IF	CITATIONS
2198	The Fe/Ni Multilayers Size Effects Simulation by Molecular Dynamics. Hans Journal of Nanotechnology, 2015, 05, 34-39.	0.1	0
2199	Temperature dependent electronic properties of bulk Aluminium system. Bitlis Eren University Journal of Science and Technology, 2013, 3, 39-39.	0.5	0
2200	10.2 Introduction to atom-surface interaction. , 2015, , 575-585.		0
2201	Superplastic deformation mechanism of nanocrystalline copper: a molecular dynamics study. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 126201.	0.2	1
2202	Solid Solution. , 2016, , 1-9.		2
2203	Molecular Models of Cluster Formation. , 2016, , 35-67.		0
2204	Effect of Pore Size Parameters for Mechanisms of Nanofilm Coatings on Substrates of Porous Alumina. Bulletin of the South Ural State University, Series: Mathematical Modelling, Programming and Computer Software, 2017, 10, 83-97.	0.1	1
2207	Modelling Technologies and Applications. , 2018, , 45-82.		0
2208	Theoretical Methods of Surface Dynamics. Springer Series in Surface Sciences, 2018, , 117-142.	0.3	0
2209	Theory of Atom Scattering from Surface Phonons: Basic Concepts and Temperature Effects. Springer Series in Surface Sciences, 2018, , 181-226.	0.3	0
2211	INTERACTION OF HYDROGEN IMPURITY WITH NANOCRYSTALLINE PALLADIUM AND NICKEL. Izvestiya Vysshikh Uchebnykh Zavedenij Chernaya Metallurgiya, 2018, 61, 631-637.	0.1	0
2213	Methods to evaluate the twin formation energy: comparative studies of the atomic simulations and in-situ TEM tensile tests. Applied Microscopy, 2020, 50, 19.	0.8	2
2214	Modified Embedded-Atom Interatomic Potential Parameters of the Ti–Cr Binary and Ti–Cr–N Ternary Systems. Frontiers in Chemistry, 2021, 9, 773015.	1.8	2
2215	Fabrication of three-dimensional sin-shaped ripples using a multi-tip diamond tool based on the force modulation approach. Journal of Manufacturing Processes, 2021, 72, 262-273.	2.8	9
2216	Coupling between plasticity and phase transition in single crystal iron at ultra-high strain rate. AIP Conference Proceedings, 2020, , .	0.3	2
2217	A neural-network based framework of developing cross interaction in alloy embedded-atom method potentials: application to Zr–Nb alloy. Journal of Physics Condensed Matter, 2021, 33, 084004.	0.7	2
2218	A molecular dynamics study of collisional heat transfer to nanoclusters in the gas phase. Journal of Aerosol Science, 2022, 159, 105891.	1.8	10
2219	Ir nanocluster shape effects on melting, surface energy and scaling behavior of self-diffusion coefficient near melting temperature. Computational Materials Science, 2022, 201, 110935.	1.4	2

#	Article	IF	CITATIONS
2220	Study on microstructure evolution of grinding surface of bcc Fe-Ni maraging steel based on molecular dynamics. Applied Surface Science, 2022, 573, 151493.	3.1	7
2221	Molecular dynamics simulation of the interfacial evolution and whisker growth of copper-tin coating under electrothermal coupling. Computational Materials Science, 2022, 202, 110981.	1.4	5
2222	Surface Phonons: Theoretical Methods and Results. Springer Handbooks, 2020, , 737-782.	0.3	2
2223	Atomistic modeling of radiation-induced defects in metals and their interactions with dislocations. Frontiers of Nanoscience, 2020, 17, 161-186.	0.3	0
2224	Atomic Study on Copper–Copper Bonding Using Nanoparticles. Journal of Electronic Packaging, Transactions of the ASME, 2020, 142, .	1.2	3
2225	3.5.6 References for 3.5. , 0, , 123-133.		0
2226	Multiscale modeling of deformation and fracture in metallic materials. , 2007, , 369-390.		0
2227	Theoretical Studies of Structural, Energetic, and Electronic Properties of Clusters. , 2008, , 163-181.		0
2228	Molecular Dynamics on NEC Vector Systems. , 2007, , 145-152.		0
2229	Computer Simulations of Nanometer-Scale Indentation and Friction. , 2008, , 655-740.		0
2230	The Molecular dynamics simulations of the mechanical behavior of nanostructured and amorphous Al80Ti15Ni5 alloy. Revista Facultad De IngenierÃa, 0, , .	0.5	2
2231	A comparative analysis of the vibrational and structural properties of nearly incommensurate overlayer systems. Surface Science, 2022, 717, 121989.	0.8	0
2232	Coupling effects of water content, temperature, oxygen density, and polytetrafluoroethylene loading on oxygen transport through ionomer thin film on platinum surface in catalyst layer of proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 2022, 47, 4062-4074.	3.8	4
2233	MEAM interatomic potentials of Ni, Re, and Ni–ReÂalloys for atomistic fracture simulations. Modelling and Simulation in Materials Science and Engineering, 2022, 30, 015002.	0.8	2
2234	An understanding of hydrogen embrittlement in nickel grain boundaries from first principles. Materials and Design, 2021, 212, 110283.	3.3	20
2235	Asymmetric {11-21}<11-2-6>ÂTwin Boundary and Migration Mechanism in Hexagonal Close-Packed Titanium. SSRN Electronic Journal, 0, , .	0.4	0
2236	Analysis of hypervelocity impacts: the tungsten case. Nuclear Fusion, 2022, 62, 026034.	1.6	4
2237	Modeling heats of solution for CuNixM(1â^'x): M = Rh, Sr, and Ir alloys. AIP Advances, 2022, 12, 015210.	0.6	0

#	Article	IF	CITATIONS
2238	Orientation-dependent shock compression behavior of non-porous/porous NiTi shape memory alloy: An atomic scale study. Materials Today Communications, 2022, 30, 103114.	0.9	2
2239	Fabrication of impermeable dense architecture containing covalently stitched graphene oxide/boron nitride hybrid nanofiller reinforced semi-interpenetrating network for hydrogen gas barrier applications. Journal of Materials Chemistry A, 2022, 10, 4376-4391.	5.2	15
2240	Comparing Five and Lower-Dimensional Grain Boundary Character and Energy Distributions in Copper: Experiment and Molecular Statics Simulation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 449-459.	1.1	2
2241	Origins of the hydrogen signal in atom probe tomography: case studies of alkali and noble metals. New Journal of Physics, 2022, 24, 013008.	1.2	10
2242	Development of the temperature-dependent interatomic potential for molecular dynamics simulation of metal irradiated with an ultrashort pulse laser. Journal of Physics Condensed Matter, 2022, 34, 165901.	0.7	4
2243	A molecular dynamics study on the cyclic plastic deformation mechanism of Al–Mg alloys. Journal of Applied Physics, 2022, 131, 055105.	1.1	1
2244	Intrinsic dependence of welding quality and recrystallization on the surface-contacted micro-asperity scale during ultrasonic welding of Cu–Cu joints. Journal of Materials Research and Technology, 2022, 17, 353-364.	2.6	11
2245	Mechanical response of single-crystal copper under vibration excitation based on molecular dynamics simulation. Journal of Manufacturing Processes, 2022, 75, 605-616.	2.8	11
2246	Effect of Iron Ion on the Evaluation of Buried-Steel Pipeline Corrosion. Journal of Materials in Civil Engineering, 2022, 34, .	1.3	1
2247	Development of a physically-informed neural network interatomic potential for tantalum. Computational Materials Science, 2022, 205, 111180.	1.4	7
2248	A Combined Atomistic-Continuum Study on the Unfaulting of Single and Multi-layer Interstitial Dislocation Loops in Irradiated FCC and HCP Metals. International Journal of Plasticity, 2022, 152, 103231.	4.1	4
2249	Directional passive transport of nanodroplets on general axisymmetric surfaces. Physical Chemistry Chemical Physics, 2022, 24, 9727-9734.	1.3	4
2250	Evaluation of surface energy and its anisotropy for bcc transition metals by modified embedded atom method. Indian Journal of Physics, 0, , 1.	0.9	0
2251	Evaluating applicability of classical and neural network interatomic potentials for modeling body centered cubic polymorph of magnesium. Modelling and Simulation in Materials Science and Engineering, 0, , .	0.8	2
2252	Morphological Surface Study of Silver Electrodeposition by Kinetic Monte Carloâ€Embedded Atom Method. Physica Status Solidi (B): Basic Research, 0, , 2100559.	0.7	1
2253	Deep dive into machine learning density functional theory for materials science and chemistry. Physical Review Materials, 2022, 6, .	0.9	28
2254	Influence of Size and Composition on the Transformation Mechanics of Gold–Silver Core–Shell Nanoparticles. Journal of Physical Chemistry C, 2022, 126, 6612-6618.	1.5	0
2255	Data-centric framework for crystal structure identification in atomistic simulations using machine learning. Physical Review Materials, 2022, 6, .	0.9	5

#	Article	IF	CITATIONS
2256	Lattice inversion potential with neural network corrections for metallic systems. Computational Materials Science, 2022, 207, 111311.	1.4	1
2257	Effects of interatomic potential on fracture behaviour in single- and bicrystalline tungsten. Computational Materials Science, 2022, 207, 111283.	1.4	16
2258	Spin-lattice dynamics simulation of the Einstein–de Haas effect. Computational Materials Science, 2022, 209, 111359.	1.4	5
2259	Invariant surface elastic properties in FCC metals and their correlation to bulk properties revealed by machine learning methods. Journal of the Mechanics and Physics of Solids, 2022, 163, 104852.	2.3	3
2260	A study of interface evolution-triggering different nucleate boiling heat transfer phenomenon on the structured surfaces. International Journal of Heat and Mass Transfer, 2022, 190, 122754.	2.5	10
2261	Molecular dynamics study on single particle displacement damage of ZB InN. Journal of Physics: Conference Series, 2021, 2133, 012042.	0.3	0
2262	Formation Enthalpies and Dilution Heats of FCC–FCC Binary Alloys Using Modified Ones of EAM Potentials. Physics of Metals and Metallography, 2021, 122, 1264-1271.	0.3	2
2263	Electronic phase transition and enhanced optoelectronic performance of lead-free halide perovskites AGeI3 (A = Rb, K) under pressure. Materials Today Communications, 2022, 31, 103532.	0.9	13
2264	Asymmetric <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si2.svg"><mml:mrow><mml:mrow><mml:mo>(</mml:mo>(</mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mm< td=""><td>:mrow><r 3.8 nml:mo</r </td><td>nml:mn>22</td></mm<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	:mrow> <r 3.8 nml:mo</r 	nml:mn>22
	stretchy-"true"sAz/mml·mos Acta Materialia 2022 232 117943		
2265	The free electron model and the electronic energy losses of protons at low velocities interacting with polycrystalline tantalum. Radiation Effects and Defects in Solids, 2022, 177, 161-172.	0.4	2
2265 2266	The free electron model and the electronic energy losses of protons at low velocities interacting with polycrystalline tantalum. Radiation Effects and Defects in Solids, 2022, 177, 161-172. Atomistics of Fracture. , 2005, , 839-853.	0.4	2
2265 2266 2268	The free electron model and the electronic energy losses of protons at low velocities interacting with polycrystalline tantalum. Radiation Effects and Defects in Solids, 2022, 177, 161-172. Atomistics of Fracture. , 2005, , 839-853. Generalized universal equation of states for magnetic materials: A novel formulation for an interatomic potential in Fe. Physical Review Materials, 2022, 6, .	0.4	2 0 0
2265 2266 2268 2269	Stretchy- tute VA Quantum OVA Constrained, 2022, 202, 117945. The free electron model and the electronic energy losses of protons at low velocities interacting with polycrystalline tantalum. Radiation Effects and Defects in Solids, 2022, 177, 161-172. Atomistics of Fracture. , 2005, , 839-853. Generalized universal equation of states for magnetic materials: A novel formulation for an interatomic potential in Fe. Physical Review Materials, 2022, 6, . Integrating atomistic simulations and machine learning to design multi-principal element alloys with superior elastic modulus. Journal of Materials Research, 2022, 37, 1497-1512.	0.4	2 0 0 7
2265 2266 2268 2269 2270	Stetchy- tube OR Qhimininos, Acta Wateriana, 2022, 252, 117945. The free electron model and the electronic energy losses of protons at low velocities interacting with polycrystalline tantalum. Radiation Effects and Defects in Solids, 2022, 177, 161-172. Atomistics of Fracture. , 2005, , 839-853. Generalized universal equation of states for magnetic materials: A novel formulation for an interatomic potential in Fe. Physical Review Materials, 2022, 6, . Integrating atomistic simulations and machine learning to design multi-principal element alloys with superior elastic modulus. Journal of Materials Research, 2022, 37, 1497-1512. Challenges and opportunities in atomistic simulations of glasses: a review. Comptes Rendus - Geoscience, 2022, 354, 35-77.	0.4 0.9 1.2 0.4	2 0 0 7 7
2265 2266 2268 2269 2270	Stretchy- true VA (finitiality: Acta Materials, 2022, 232, 117713. The free electron model and the electronic energy losses of protons at low velocities interacting with polycrystalline tantalum. Radiation Effects and Defects in Solids, 2022, 177, 161-172. Atomistics of Fracture. , 2005, , 839-853. Generalized universal equation of states for magnetic materials: A novel formulation for an interatomic potential in Fe. Physical Review Materials, 2022, 6, . Integrating atomistic simulations and machine learning to design multi-principal element alloys with superior elastic modulus. Journal of Materials Research, 2022, 37, 1497-1512. Challenges and opportunities in atomistic simulations of glasses: a review. Comptes Rendus - Geoscience, 2022, 354, 35-77. Application of atomic simulation for studying hydrogen embrittlement phenomena and mechanism in iron-based alloys. International Journal of Hydrogen Energy, 2022, 47, 20288-20309.	0.4 0.9 1.2 0.4 3.8	2 0 0 7 7 24
2265 2266 2269 2270 2271	Subtraction of atomic simulation for studying hydrogen embrittlement phenomena and mechanism in iron-based alloys. International Journal of Hydrogen Energy, 2022, 47, 2028-20309.	0.4 0.9 1.2 0.4 3.8	2 0 0 7 7 24 5
2265 2266 2269 2270 2271 2272	Activity - title vik cynimitatios vikita intertatia, 2022, 229, 2117343. The free electron model and the electronic energy losses of protons at low velocities interacting with polycrystalline tantalum. Radiation Effects and Defects in Solids, 2022, 177, 161-172. Atomistics of Fracture., 2005, , 839-853. Generalized universal equation of states for magnetic materials: A novel formulation for an interatomic potential in Fe. Physical Review Materials, 2022, 6, . Integrating atomistic simulations and machine learning to design multi-principal element alloys with superior elastic modulus. Journal of Materials Research, 2022, 37, 1497-1512. Challenges and opportunities in atomistic simulations of glasses: a review. Comptes Rendus - Geoscience, 2022, 354, 35-77. Application of atomic simulation for studying hydrogen embrittlement phenomena and mechanism in iron-based alloys. International Journal of Hydrogen Energy, 2022, 47, 20288-20309. A quantification study of hydrogen-induced cohesion reduction at the atomic scale. Materials and Design, 2022, 218, 110702. Band gap engineering to stimulate the optoelectronic performance of lead-free halide perovskites RbGeX3 (X&E%=&E%cCl, Br) under pressure. Journal of Materials Science: Materials in Electronics, 2022, 33, 13860-13875.	0.4 0.9 1.2 0.4 3.8 3.3 1.1	2 0 0 7 7 24 24 5 13

#	Article	IF	Citations
2276	A review of the thermal conductivity of silver-epoxy nanocomposites as encapsulation material for packaging applications. Chemical Engineering Journal, 2022, 446, 137319.	6.6	40
2278	Adiabatic models for the quantum dynamics of surface scattering with lattice effects. Physical Chemistry Chemical Physics, 2022, 24, 16415-16436.	1.3	1
2279	Machine learning for metallurgy V: A neural-network potential for zirconium. Physical Review Materials, 2022, 6, .	0.9	9
2280	X-ray diffraction study and molecular dynamic simulation of liquid Al-Cu alloys: a new data and interatomic potentials comparison. Journal of Molecular Modeling, 2022, 28, .	0.8	0
2281	Sensitivity analysis and uncertainty propagation for SMA-TB potentials. Computational Materials Science, 2022, 213, 111641.	1.4	1
2282	A Career in Catalysis: Jens Kehlet NÃ,rskov. ACS Catalysis, 2022, 12, 9679-9689.	5.5	19
2283	Embedding functions for Pt and Pd: recalculation and verification on properties of bulk phases, Pt, Pd, and Pt–Pd nanoparticles. Applied Physics A: Materials Science and Processing, 2022, 128, .	1.1	4
2284	The origin of jerky dislocation motion in high-entropy alloys. Nature Communications, 2022, 13, .	5.8	28
2285	Molecular Dynamics Study on the Welding Behavior in Dissimilar TC4-TA17 Titanium Alloys. Materials, 2022, 15, 5606.	1.3	5
2286	Influence of the interatomic repulsive hardness on the microstructure and dynamics of CuZr metallic glasses. Journal of Molecular Modeling, 2022, 28, .	0.8	0
2287	Effect of Particle Velocity on Microcutting Process of Fe–C Alloy by Molecular Dynamics. Micromachines, 2022, 13, 1339.	1.4	0
2288	Atomic level simulations of the phase stability and stacking fault energy of FeCoCrMnSi high entropy alloy. Modelling and Simulation in Materials Science and Engineering, 2022, 30, 075002.	0.8	9
2289	Collision dependent silver nucleation regulated by chemical diffusion and reaction. Chemical Engineering Science, 2022, 262, 117965.	1.9	2
2290	An embedded-atom method potential for studying the properties of Fe-Pb solid-liquid interface. Journal of Nuclear Materials, 2022, 572, 154041.	1.3	1
2291	EAM Inter-Atomic Potential—Its Implication on Nickel, Copper, and Aluminum (and Their Alloys). Lecture Notes in Applied and Computational Mechanics, 2022, , 133-156.	2.0	19
2292	Investigation of formation and breakage mechanism of microweld of typical wire-bonding materials via molecular dynamics simulation. MRS Communications, 2022, 12, 864-872.	0.8	2
2293	Molecular dynamics simulation of minor Zr addition on short and medium-range orders of Cu-Zr metallic glass. Journal of Molecular Modeling, 2022, 28, .	0.8	1
2294	Dynamic bonding influenced by the proximity of adatoms to one atom high step edges. Physical Review B, 2022, 106, .	1.1	0

		IC	CITATIONS
#	Molecular dynamics study on the effect of electric current on electrically-assisted scratching for	IF	CHATIONS
2295	crystal copper. Physica Scripta, 2022, 97, 115401.	1.2	1
2296	Molecular dynamics simulations on the connectivity of topologically close-packed clusters in TiAl ₃ alloys. Physica Scripta, 0, , .	1.2	0
2297	Interatomic potentials: achievements and challenges. Advances in Physics: X, 2023, 8, .	1.5	11
2298	Abnormal trapping of hydrogen in the elastic stress field of dislocations in body-centered cubic iron. International Journal of Hydrogen Energy, 2022, 47, 39255-39264.	3.8	5
2299	Dynamic Lattice Distortion in Metallic Nanocrystals. Acta Materialia, 2022, , 118491.	3.8	0
2300	MEAM potential–based MD simulations of melting transition on Ni surfaces. Journal of Molecular Modeling, 2022, 28, .	0.8	1
2301	Effect of crystal defects in iron on carbon diffusivity: Analytical model married to atomistics. Physical Review Materials, 2022, 6, .	0.9	2
2302	Effect of Cutting Parameters on Nano-Cutting of Single Crystal Î ³ -TiAl Alloy with Water Medium via Atomistic Simulation. Metals, 2022, 12, 1861.	1.0	0
2303	Simulating Polymerization by Boltzmann Inversion Force Field Approach and Dynamical Nonequilibrium Reactive Molecular Dynamics. Polymers, 2022, 14, 4529.	2.0	2
2304	Surface energy and its anisotropy for fcc metals: modified embedded atom method study. Indian Journal of Physics, 0, , .	0.9	0
2305	Bimetallic clusters. , 2023, , 41-59.		0
2306	Accurate path-integral molecular dynamics calculation of aluminum with improved empirical ionic potentials. Physical Review B, 2022, 106, .	1.1	0
2307	Accelerating the discovery of novel magnetic materials using machine learning–guided adaptive feedback. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	7
2308	Computational determination of a primary diffusion mode in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mi>î³</mml:mi>U-10Mo under irradiation. Journal of Nuclear Materials. 2023. 574. 154137.</mml:math 	1.3	2
2309	Switching nanoprecipitates to resist hydrogen embrittlement in high-strength aluminum alloys. Nature Communications, 2022, 13, .	5.8	8
2310	A study of how solid–liquid interactions affect flow resistance and heat transfer at different temperatures based on molecular dynamics simulations. Physical Chemistry Chemical Physics, 2022, 25, 813-821.	1.3	1
2311	ABC-FIRE: Accelerated Bias-Corrected Fast Inertial Relaxation Engine. Computational Materials Science, 2023, 218, 111978.	1.4	0
2312	Global optimization of gold nanocrystals based on an iterative QM/MM method. Chemical Physics Letters, 2023, 812, 140264.	1.2	0

#	Article	IF	CITATIONS
2313	A Molecular Dynamics Study on the Tribological Performance of Imidazoliumâ^'Based Ionic Liquids Mixed with Oil in Comparison to Pure Liquids. Fluids, 2022, 7, 384.	0.8	0
2314	From atomistic systems to linearized continuum models for elastic materials with voids. Nonlinearity, 2023, 36, 679-733.	0.6	1
2315	Molecular dynamics study of liquid–vapor transition in underwater electrical wire explosion. Physics of Plasmas, 2022, 29, .	0.7	2
2316	Molecular Dynamics Study on Crack Propagation in Al Containing Mg–Si Clusters Formed during Natural Aging. Materials, 2023, 16, 883.	1.3	2
2317	Atomistic investigation of the impact of phosphorus impurities on the tungsten grain boundary decohesion. Computational Materials Science, 2023, 219, 112017.	1.4	3
2318	Unified graph neural network force-field for the periodic table: solid state applications. , 2023, 2, 346-355.		11
2319	Advancements in hydrogen energy research with the assistance of computational chemistry. International Journal of Hydrogen Energy, 2023, 48, 14978-14999.	3.8	4
2320	Molecular dynamics study on the effects of nanorolling processes on the properties of nickel-based superalloy GH4169. Materials Research Express, 2023, 10, 025002.	0.8	1
2321	Mechanism of enhanced phase-change process on structured surface: Evolution of solid-liquid-gas interface. International Journal of Heat and Mass Transfer, 2023, 205, 123915.	2.5	4
2322	Simple Parameterization of Embedded Atom Method Potentials for FCC Alloys. Acta Materialia, 2023, 248, 118772.	3.8	0
2323	A Modified Embedded-Atom Method Potential for a Quaternary Fe-Cr-Si-Mo Solid Solution Alloy. Materials, 2023, 16, 2825.	1.3	0
2324	Exploring the basal/prismatic slip transfer at grain boundaries in magnesium: A molecular dynamic simulation. Vacuum, 2023, 212, 111995.	1.6	2
2325	Development of an interatomic potential for mixed uranium-americium oxides and application to the determination of the structural and thermodynamic properties of (U,Am)O2 with americium contents below 50%. Journal of Nuclear Materials, 2023, 579, 154390.	1.3	2
2326	Feasibility study on the use of single crystal silicon carbide as a tool material. Materials Today Communications, 2023, 35, 105824.	0.9	0
2328	Strain-Rate Dependence of Plasticity and Phase Transition in [001]-Oriented Single-Crystal Iron. Crystals, 2023, 13, 250.	1.0	3
2329	A comparative study on surface tension, diffusion coefficient and shear viscosity coefficient of liquid transition metals. Journal of Non-Crystalline Solids, 2023, 606, 122176.	1.5	1
2330	Simple parameterization of embedded atom method potentials for FCC metals. Acta Materialia, 2023, 248, 118771.	3.8	0
2331	Stable Solid Molecular Hydrogen above 900ÂK from a Machine-Learned Potential Trained with Diffusion Quantum MonteÂCarlo. Physical Review Letters, 2023, 130, .	2.9	6

<u></u>			D	
		ON	REL	דעהנ
	IAH			

#	Article	IF	CITATIONS
2332	Multiscale simulations of nanofluidics: Recent progress and perspective. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2023, 13, .	6.2	3
2333	Study on the Nano-Friction Behavior of Nickel-Based Ag Film Composites Based on Molecular Dynamics. Lubricants, 2023, 11, 110.	1.2	0
2334	Optimality of the triangular lattice for Lennard–Jones type lattice energies: a computer-assisted method. Journal of Physics A: Mathematical and Theoretical, 2023, 56, 145204.	0.7	1
2335	Magnetic iron-cobalt silicides discovered using machine-learning. Physical Review Materials, 2023, 7, .	0.9	3
2336	Simulating short-range order in compositionally complex materials. Nature Computational Science, 2023, 3, 221-229.	3.8	8
2337	Oxidizationâ€Temperatureâ€Triggered Rapid Preparation of Largeâ€Area Singleâ€Crystal Cu(111) Foil. Advanced Materials, 2023, 35, .	11.1	4
2338	Ultrafast Quantum Processes at the Nanoscale: Insights from Modeling. Springer Series in Optical Sciences, 2023, , 139-171.	0.5	0
2339	Properties of Naked Silver Clusters with Up to 100 Atoms as Found with Embedded-Atom and Density-Functional Calculations. Molecules, 2023, 28, 3266.	1.7	2
2340	Hydrogen-induced intergranular cracking of pure nickel under various strain rates and temperatures in gaseous hydrogen environment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2023, 873, 145040.	2.6	1
2341	Development of a Ni–Al reactive force field for Ni-based superalloy: revealing electrostatic effects on mechanical deformation. Journal of Materials Research and Technology, 2023, 24, 4454-4467.	2.6	0
2343	Molecular dynamics calculations: Machine learning. , 2024, , 543-552.		0
2354	Solid Solution. , 2023, , 1-9.		0
2379	Machine-Learning for Static andÂDynamic Electronic StructureÂTheory. Challenges and Advances in Computational Chemistry and Physics, 2023, , 113-160.	0.6	0
2396	Practical classical molecular dynamics simulations for low-temperature plasma processing: a review. Reviews of Modern Plasma Physics, 2024, 8,	2.2	0
0.400	Malagular Dunamica on Hf Nh Ta Ti Zr High Entrony Alloy		0

2409 Molecular Dynamics on Hf-Nb-Ta-Ti-Zr High Entropy Alloy. , 0, , .