A lymphocyte-specific cellular enhancer is located down immunoglobulin heavy chain genes

Cell 33, 729-740

DOI: 10.1016/0092-8674(83)90015-6

Citation Report

#	Article	IF	Citations
1	Novel Antibodies by DNA Manipulation. Chemical Immunology and Allergy, 1988, 45, 91-105.	1.7	0
2	Gene regulation: Enhancer elements activated by steroid hormones?. Nature, 1983, 304, 687-688.	27.8	39
3	Reciprocal chromosome translocation between c-myc and immunoglobulin \hat{l}^32b genes. Nature, 1983, 305, 240-243.	27.8	66
4	Molecular biology: Enhancers, chromosome position effects, and transgenic mice. Nature, 1983, 306, 313-314.	27.8	22
5	Expression of a microinjected immunoglobulin gene in the spleen of transgenic mice. Nature, 1983, 306, 332-336.	27.8	211
6	Cell-specific expression controlled by the 5′-flanking region of insulin and chymotrypsin genes. Nature, 1983, 306, 557-561.	27.8	710
7	Oncogenesis: Paradox and paradigm: the message and meaning of myc. Nature, 1983, 306, 733-736.	27.8	41
8	Identification of reciprocal translocation sites within the c-myc oncogene and immunoglobulin \hat{l} /4 locus in a Burkitt lymphoma. Nature, 1983, 306, 799-803.	27.8	113
9	DNase I hypersensitive sites in the chromatin of human $\hat{l}\frac{1}{4}$ immunoglobulin heavy-chain genes. Nature, 1983, 306, 809-812.	27.8	120
10	DNA fragments from F9 PyEC mutants increase expression of heterologous genes in transfected F9 cells. Cell, 1983, 35, 693-699.	28.9	160
11	The human c-myc oncogene: Structural consequences of translocation into the igh locus in Burkitt lymphoma. Cell, 1983, 34, 779-787.	28.9	767
12	Correct developmental expression of a cloned alcohol dehydrogenase gene transduced into the drosophila germ line. Cell, 1983, 34, 59-73.	28.9	290
13	Transcription enhancer identified near the human \hat{Cl}_4 immunoglobulin heavy chain gene is unavailable to the translocated c-myc gene in a Burkitt lymphoma. Nature, 1983, 306, 806-809.	27.8	106
14	Nucleotide sequences of Immunoglobulin $\hat{l}^{1}\!\!/\!\!4$ heavy chain deletion mutants. Nucleic Acids Research, 1983, 11, 7471-7485.	14.5	15
15	Transcriptional activity of the human psendogene $\hat{l}_i = \hat{l}_i$ globin compared with \hat{l}_i globin, its functional gene counterpart. Nucleic Acids Research, 1983, 11, 7717-7733.	14.5	32
16	BK viral enhancer element and a human cellular homolog. Science, 1983, 222, 749-755.	12.6	200
17	Translocations among antibody genes in human cancer. Science, 1983, 222, 765-771.	12.6	743
18	Expression of cloned imunoglobulin genes introduced into mouse L cells. Nucleic Acids Research, 1983, 11, 7981-7997.	14.5	26

#	ARTICLE	IF	CITATIONS
19	A functional component of the sea urchin H2A gene modulator contains an extended sequence homology to a viral enhancer. Nucleic Acids Research, 1983, 11, 8123-8136.	14.5	32
20	An enhancer element is located 340 base pairs upstream from the adenovirus-2 E1A capsite. Nucleic Acids Research, 1983, 11, 8747-8760.	14.5	147
21	cis and trans activation of globin gene transcription in transient assays Proceedings of the National Academy of Sciences of the United States of America, 1983, 80, 7428-7432.	7.1	283
22	Structure of the human interleukin 2 gene Proceedings of the National Academy of Sciences of the United States of America, 1983, 80, 7437-7441.	7.1	194
23	Activation of the c-myc gene by translocation: a model for translational control Proceedings of the National Academy of Sciences of the United States of America, 1983, 80, 7476-7480.	7.1	201
24	Translocation of an immunoglobulin kappa locus to a region 3' of an unrearranged c-myc oncogene enhances c-myc transcription Proceedings of the National Academy of Sciences of the United States of America, 1983, 80, 7581-7585.	7.1	210
25	Transcriptional enhancer elements in the mouse immunoglobulin heavy chain locus. Science, 1983, 221, 663-665.	12.6	166
26	Sequence of the murine and human cellular myc oncogenes and two modes of myc transcription resulting from chromosome translocation in B lymphoid tumours EMBO Journal, 1983, 2, 2375-2383.	7.8	411
27	Modulation of enhancer activity by the hormone responsive regulatory element from mouse mammary tumor virus EMBO Journal, 1984, 3, 1891-1899.	7.8	69
28	Activation of immunoglobulin mu gene expression involves stepwise demethylation EMBO Journal, 1984, 3, 3013-3021.	7.8	21
29	Advances in thalassemia research. Blood, 1984, 63, 738-758.	1.4	127
30	A close association between sites of DNase I hypersensitivity and sites of enhanced cleavage by micrococcal nuclease in the $5\hat{a}\in^2$ -flanking region of the actively transcribed ovalbumin gene EMBO Journal, 1984, 3, 1137-1144.	7.8	39
31	Transcriptional regulation of a herpes simplex virus immediate early gene is mediated through an enhancer-type sequence EMBO Journal, 1984, 3, 389-395.	7.8	72
32	Transcriptional analysis of human zeta globin genes EMBO Journal, 1984, 3, 1533-1540.	7.8	29
33	Deletion of the IgH enhancer does not reduce immunoglobulin heavy chain production of a hybridoma IgD class switch variant EMBO Journal, 1984, 3, 2473-2476.	7.8	114
34	Tissue-specific expression is conferred by a sequence from the 5′ end of the rat albumin gene EMBO Journal, 1984, 3, 2505-2510.	7.8	192
35	Unrearranged immunoglobulin lambda variable region is transcribed in kappa-producing myelomas EMBO Journal, 1984, 3, 3031-3035.	7.8	28
37	Immunoglobulin gene expression and DNA methylation in murine pre-B cell lines EMBO Journal, 1984, 3, 677-681.	7.8	9

3

#	Article	IF	CITATIONS
38	Stimulation of in vitro transcription from the SV40 early promoter by the enhancer involves a specific trans-acting factor EMBO Journal, 1984, 3, 3129-3133.	7.8	192
39	Multiple enhancer domains in the 3′ terminus of the Prague strain of Rous sarcoma virus. Nucleic Acids Research, 1984, 12, 6427-6442.	14.5	163
40	Short and long range activation by the SV40 enhancer. Nucleic Acids Research, 1984, 12, 5589-5608.	14.5	115
41	Trasiocation affects normalc-mycpromoter usage and activates fifteen crypticc-myctranscription starts in plasmacytoma M603. Nucleic Acids Research, 1984, 12, 8987-9007.	14.5	29
42	The MLV and SV40 enhancers have a similar pattern of transcriptional activation. Nucleic Acids Research, 1984, 12, 8801-8818.	14.5	17
43	Induction of immunoglobulin gene expression in mouse fibroblasts by cycloheximide treatment Journal of Experimental Medicine, 1984, 160, 1937-1942.	8.5	62
44	JC virus enhancer-promoter active in human brain cells. Science, 1984, 226, 1337-1339.	12.6	213
45	An enhancer sequence from bovine papilloma virus DNA consists of two essential regions. Nucleic Acids Research, 1984, 12, 2901-2916.	14.5	85
46	The Molecular Genetics of Human Hemoglobin. Progress in Molecular Biology and Translational Science, 1984, 31, 315-465.	1.9	385
47	Magic Enhancers?. DNA and Cell Biology, 1984, 3, 1-5.	5.2	99
48	Prospects for Human Gene Therapy. Science, 1984, 226, 401-409.	12.6	542
49	Transfer and Expression of Immunoglobulin Genes. Annual Review of Immunology, 1984, 2, 239-256.	21.8	37
50	The Primary Structure of μ-Chain-Disease Protein BOT. Peculiar Amino-Acid Sequence of the N-Terminal 42 Positions. Hoppe-Seyler's Zeitschrift Für Physiologische Chemie, 1984, 365, 105-118.	1.6	10
51	Transcription control region within the protein-coding portion of adenovirus E1A genes Molecular and Cellular Biology, 1984, 4, 1293-1305.	2.3	66
52	Lipopolysaccharide-induced transcription of the kappa immunoglobulin locus occurs on both alleles and is independent of methylatlon status. Nucleic Acids Research, 1984, 12, 1911-1923.	14.5	67
53	Efficient DNA-mediated transfer of selectable genes and unselected sequences into differentiated and undifferentiated mouse melanoma clones. Somatic Cell and Molecular Genetics, 1984, 10, 139-151.	0.7	53
54	Expression of class I histocompatibility antigens on human T-B lymphoblast hybrids. Somatic Cell and Molecular Genetics, 1984, 10, 217-224.	0.7	15
55	The use of cloned gene probes to study differentiation in teratocarcinomas. Cell Differentiation, 1984, 15, 257-267.	0.4	10

#	Article	IF	CITATIONS
56	A lymphocyte-specific enhancer in the mouse immunoglobulin κ gene. Nature, 1984, 307, 80-82.	27.8	449
57	Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15. Nature, 1984, 307, 131-136.	27.8	615
58	Activation of a translocated human c-myc gene by an enhancer in the immunoglobulin heavy-chain locus. Nature, 1984, 307, 334-340.	27.8	272
59	The molecular biology of immunoglobulin D. Nature, 1984, 307, 417-422.	27.8	161
60	Induction of altered chromatin structures by simian virus 40 enhancer and promoter elements. Nature, 1984, 307, 708-714.	27.8	245
61	Determination of the leukaemogenicity of a murine retrovirus by sequences within the long terminal repeat. Nature, 1984, 308, 467-470.	27.8	434
62	Non-function of a Moloney murine leukaemia virus regulatory sequence in F9 embryonal carcinoma cells. Nature, 1984, 308, 470-472.	27.8	310
63	Gene regulation: Latterday lessons of lambda and lac. Nature, 1984, 308, 687-688.	27.8	2
64	Long terminal repeats of human T-cell leukaemia virus II genome determine target cell specificity. Nature, 1984, 309, 276-279.	27.8	96
65	Expression of a VHCκ chimaeric protein in mouse myeloma cells. Nature, 1984, 309, 364-367.	27.8	61
66	Correct transcription of an immunoglobulin \hat{I}^2 gene requires an upstream fragment containing conserved sequence elements. Nature, 1984, 310, 71-74.	27.8	703
67	Regulated expression of an introduced MHC H–2Kbm1 gene in murine embryonal carcinoma cells. Nature, 1984, 310, 415-418.	27.8	61
68	Cell type-specific enhancer element associated with a mouse MHC gene, EÎ ² . Nature, 1984, 310, 594-597.	27.8	182
69	The structure, rearrangement and expression of $D\hat{l}^2$ gene segments of the murine T-cell antigen receptor. Nature, 1984, 311, 344-349.	27.8	299
70	Cell-surface antigens expressed on L-cells transfected with whole DNA from non-expressing and expressing cells. Nature, 1984, 312, 68-69.	27.8	37
71	Polyoma virus DNA replication requires an enhancer. Nature, 1984, 312, 242-246.	27.8	313
72	Molecular biology: Multiple levels of gene control in eukaryotic cells. Nature, 1984, 312, 308-309.	27.8	10
73	Novel immunoglobulin heavy chains are produced from DJH gene segment rearrangements in lymphoid cells. Nature, 1984, 312, 418-423.	27.8	276

#	Article	IF	CITATIONS
74	Gene regulation: Repression of activators. Nature, 1984, 312, 594-595.	27.8	21
75	Adenovirus-2 E1A products repress enhancer-induced stimulation of transcription. Nature, 1984, 312, 608-612.	27.8	572
76	Signal Sequences Associated with Fibroin Gene Expression are Identical in Fibroin-Producer and -Nonproducer Tissues. (differential expression/transcription signals/cell-free transcription/silk) Tj ETQq0 0 0 rgBT	/Ovvearlock	10aTf 50 657
77	SV40-alpha-globulin hybrid minichromosomes. Differences in DNase I hypersensitivity of promoter and enhancer sequences. FEBS Journal, 1984, 144, 545-553.	0.2	6
78	c-myc involvement in chromosomal translocations in mice and men. Journal of Cellular Physiology, 1984, 121, 199-208.	4.1	16
79	RNA polymerase III control regions in retrovirus LTR, alu-type repetitive DNA, and papovavirus. Journal of Theoretical Biology, 1984, 108, 339-348.	1.7	9
80	Sequences in the long terminal repeats of the moloney murine sarcoma virus-124 genome which control transforming gene function. Virology, 1984, 137, 32-40.	2.4	6
81	Nucleotide sequence of the large terminal repeat of two different strains of gibbon ape leukemia virus. Virology, 1984, 137, 201-205.	2.4	22
82	Effects of orientation and position on the activity of a herpes simplex virus immediate early gene far-upstream region. Virology, 1984, 137, 439-444.	2.4	39
83	Models for the rearrangements of immunoglobulin genes: a computer view. Trends in Biochemical Sciences, 1984, 9, 293-296.	7.5	15
84	Tissue-specific enhancers. Trends in Biochemical Sciences, 1984, 9, 81-82.	7.5	4
85	The use of promoter fusions in Drosophila genetics: Isolation of mutations affecting the heat shock response. Cell, 1984, 37, 979-991.	28.9	206
86	Translocation of the myc cellular oncogene to the immunoglobulin heavy chain locus in murine plasmacytomas is an imprecise reciprocal exchange. Cell, 1984, 36, 973-982.	28.9	136
87	c-fos protein can induce cellular transformation: A novel mechanism of activation of a cellular oncogene. Cell, 1984, 36, 51-60.	28.9	613
88	Molecular immunology: growth into adolescence. Trends in Biochemical Sciences, 1984, 9, 137-138.	7.5	0
89	Two distinct enhancers with different cell specificities coexist in the regulatory region of polyoma. Cell, 1984, 39, 653-662.	28.9	1,006
90	Site-specific recombination between immunoglobulin D and JH segments that were introduced into the genome of a murine pre-B cell line. Cell, 1984, 37, 105-112.	28.9	79
91	Specific interaction between enhancer-containing molecules and cellular components. Cell, 1984, 36, 403-411.	28.9	418

#	Article	IF	CITATIONS
92	An SV40 "enhancer trap―incorporates exogenous enhancers or generates enhancers from its own sequences. Cell, 1984, 36, 983-992.	28.9	256
93	Assembly of transcriptionally active chromatin in Xenopus oocytes requires specific DNA binding factors. Cell, 1984, 38, 511-521.	28.9	81
94	Cis-acting and trans-acting regulatory mutations define two types of promoters controlled by the qa-1F gene of Neurospora. Cell, 1984, 36, 493-502.	28.9	42
95	Fibroblast lines expressing activated c-myc oncogenes are tumorigenic in nude mice and syngeneic animals. Cell, 1984, 39, 339-348.	28.9	222
96	DNA sequences required for regulated expression of \hat{l}^2 -globin genes in murine erythroleukemia cells. Cell, 1984, 38, 265-273.	28.9	259
97	Tissue-specific expression of the rat pancreatic elastase I gene in transgenic mice. Cell, 1984, 38, 639-646.	28.9	240
98	Prokaryote invertible DNA systems are highly conserved. Trends in Biochemical Sciences, 1984, 9, 82-83.	7.5	4
99	Trans-acting transcriptional activation of the long terminal repeat of human T lymphotropic viruses in infected cells. Science, 1984, 225, 381-385.	12.6	899
100	The Mutation and Polymorphism of the Human beta-Globin Gene and its Surrounding DNA. Annual Review of Genetics, 1984, 18, 131-171.	7.6	402
101	The Molecular Genetics of Cellular Oncogenes. Annual Review of Genetics, 1984, 18, 553-612.	7.6	747
102	Molecular analysis of erythropoiesis. Experimental Cell Research, 1984, 155, 321-344.	2.6	31
103	A tissue-specific transcription enhancer element in the human immunoglobulin λ light chain locus. FEBS Letters, 1984, 175, 152-158.	2.8	7
104	Sex- and tissue-specific, but hormonally independent, demethylation at the 3'-end of Xenopus vitellogenin gene B1. FEBS Letters, 1984, 178, 217-222.	2.8	2
105	Mechanisms of glucocorticoid hormone action. The Journal of Steroid Biochemistry, 1984, 20, 77-88.	1.1	70
106	Enhancer elements share local homologous twist-angle variations with a helical periodicity. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1984, 783, 246-257.	2.4	9
107	Transcriptionally active chromatin. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1984, 782, 343-393.	2.4	350
108	Methylation, expression and chromosomal position of genes in mammals. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1984, 782, 1-9.	2.4	100
109	A transcription enhancer acts in vitro over distances of hundreds of base-pairs on both circular and linear templates but not on chromatin-reconstituted DNA. Journal of Molecular Biology, 1984, 180, 577-600.	4.2	102

#	Article	IF	CITATIONS
110	Rat immunoglobulin E heavy chain locus. Journal of Molecular Biology, 1984, 177, 19-32.	4.2	29
111	Accumulation of rare and moderately abundant mRNAs in mouse L-cells is mainly post-transcriptionally regulated. Journal of Molecular Biology, 1984, 178, 869-880.	4.2	82
112	Identification of herpes simplex virus DNA sequences which encode a trans-acting polypeptide responsible for stimulation of immediate early transcription. Journal of Molecular Biology, 1984, 180, 1-19.	4.2	675
113	Enhancer-like properties of the 60/81 bp elements in the ribosomal gene spacer of Xenopus laevis. Cell, 1984, 37, 285-289.	28.9	211
114	Activation and somatic mutation of the translocated c-myc gene in Burkitt lymphoma cells. Cell, 1984, 36, 339-348.	28.9	355
115	Tumorigenesis by mouse mammary tumor virus: Proviral activation of a cellular gene in the common integration region int-2. Cell, 1984, 37, 529-536.	28.9	389
116	Transcriptional activation of the translocated c-myc oncogene in mouse plasmacytomas: Similar RNA levels in tumor and proliferating normal cells. Cell, 1984, 37, 521-528.	28.9	131
117	Introduction of a $\hat{1}$ /4 immunoglobulin gene into the mouse germ line: Specific expression in lymphoid cells and synthesis of functional antibody. Cell, 1984, 38, 647-658.	28.9	328
118	A genetic analysis of extinction: Trans-dominant loci regulate expression of liver-specific traits in hepatoma hybrid cells. Cell, 1984, 38, 523-534.	28.9	370
119	Enhanced gene expression by the poly(dT-dG).poly(dC-dA) sequence Molecular and Cellular Biology, 1984, 4, 2622-2630.	2.3	302
120	Adenovirus 5 E2 transcription unit: an E1A-inducible promoter with an essential element that functions independently of position or orientation Molecular and Cellular Biology, 1984, 4, 875-882.	2.3	122
121	Upstream activation sites of the CYC1 gene of Saccharomyces cerevisiae are active when inverted but not when placed downstream of the "TATA box" Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 7860-7864.	7.1	216
122	Expression of an immunoglobulin heavy chain gene transfected into lymphocytes Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 1292-1296.	7.1	51
123	Repeated consensus sequence and pseudopromoters in the four coordinately regulated tubulin genes of Chlamydomonas reinhardi Molecular and Cellular Biology, 1984, 4, 1115-1124.	2.3	77
124	Stable transfer and expression of exogenous human globin genes in human erythroleukemia (K562) cells Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 5315-5319.	7.1	31
125	Structure of the 5' ends of immunoglobulin genes: a novel conserved sequence Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 2650-2654.	7.1	577
126	Biochemical genetics of the mouse IgM system. Canadian Journal of Biochemistry and Cell Biology, 1984, 62, 217-224.	1.3	3
127	Location of sequences in polyomavirus DNA that are required for early gene expression in vivo and in vitro Molecular and Cellular Biology, 1984, 4, 2594-2609.	2.3	71

#	Article	IF	CITATIONS
128	Fine mapping of an immunoglobulin gene activator Molecular and Cellular Biology, 1984, 4, 1042-1049.	2.3	174
129	Complex regulation of simian virus 40 early-region transcription from different overlapping promoters Molecular and Cellular Biology, 1984, 4, 1900-1914.	2.3	75
130	Genetic properties and chromatin structure of the yeast gal regulatory element: an enhancer-like sequence Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 7865-7869.	7.1	145
131	Two regulatory elements for immunoglobulin kappa light chain gene expression Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 7041-7045.	7.1	209
132	Bovine leukemia virus: unique structural features of its long terminal repeats and its evolutionary relationship to human T-cell leukemia virus Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 4741-4745.	7.1	71
133	Nucleotide sequence analysis of the long terminal repeat of human T-cell leukemia virus type II Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 1079-1083.	7.1	91
134	Stimulation of in vitro transcription from heterologous promoters by the simian virus 40 enhancer Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 308-312.	7.1	109
135	Integration-specific retrovirus expression in embryonal carcinoma cells Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 6627-6631.	7.1	57
136	Enhancer-dependent expression of human kappa immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 7161-7165.	7.1	931
137	Expression of immunoglobulin heavy chain at a high level in the absence of a proposed immunoglobulin enhancer element in cis Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 2452-2455.	7.1	127
138	tk Enzyme expression in differentiating muscle cells is regulated through an internal segment of the cellular tk gene Molecular and Cellular Biology, 1984, 4, 1777-1784.	2.3	126
139	Biochemie und Molekularbiologie 1983. Nachrichten Aus Der Chemie, 1984, 32, 123-133.	0.0	O
140	Identification of a transcriptional enhancer element upstream from the proto-oncogene fos. Science, 1985, 230, 1174-1177.	12.6	180
141	Human Genome Structure. International Review of Cytology, 1985, 96, 51-88.	6.2	11
142	SV40 Promoters and Their Regulation. Progress in Molecular Biology and Translational Science, 1985, 32, 217-236.	1.9	19
143	The Role of Avian Retroviral Ltrs in the Regulation of Gene Expression and Viral Replication. Advances in Virus Research, 1985, 30, 179-223.	2.1	27
144	Activation of the c-myc oncogene by the immunoglobulin heavy-chain gene enhancer after multiple switch region-mediated chromosome rearrangements in a murine plasmacytoma Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 3746-3750.	7.1	65
145	A long and complex enhancer activates transcription of the gene coding for the highly abundant immediate early mRNA in murine cytomegalovirus Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 8325-8329.	7.1	215

#	ARTICLE	IF	CITATIONS
146	Each of three "TATA elements" specifies a subset of the transcription initiation sites at the CYC-1 promoter of Saccharomyces cerevisiae Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 8562-8566.	7.1	361
147	Role of an RNA cleavage/poly(A) addition site in the production of membrane-bound and secreted IgM mRNA Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 8658-8662.	7.1	96
148	Cloning and sequencing of a c-myc oncogene in a Burkitt's lymphoma cell line that is translocated to a germ line alpha switch region Molecular and Cellular Biology, 1985, 5, 501-509.	2.3	112
149	Polyomavirus enhancer contains multiple redundant sequence elements that activate both DNA replication and gene expression Molecular and Cellular Biology, 1985, 5, 649-658.	2.3	290
150	Enhancer-dependent expression of the rat preproinsulin gene in bovine papillomavirus type 1 vectors Molecular and Cellular Biology, 1985 , 5 , 3507 - 3516 .	2.3	17
151	Accurate and efficient transcription of human c-myc genes injected into Xenopus laevis oocytes Molecular and Cellular Biology, 1985, 5, 1434-1441.	2.3	20
152	Common regulatory elements control gene expression from polyoma early and late promoters in cells transformed by chimeric plasmids Molecular and Cellular Biology, 1985, 5, 2070-2079.	2.3	42
153	Distinct H-2-linked regulation of T-cell responses to the pre-S and S regions of the same hepatitis B surface antigen polypeptide allows circumvention of nonresponsiveness to the S region Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 8168-8172.	7.1	117
154	Upstream promoter element of the human metallothionein-IIA gene can act like an enhancer element Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 8572-8576.	7.1	131
155	Independent control elements that determine yolk protein gene expression in alternative Drosophila tissues Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 1396-1400.	7.1	168
156	Functional activation of the long terminal repeat of human T-cell leukemia virus type I by a trans-acting factor Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 2277-2281.	7.1	320
157	IgM RNA switch from membrane to secretory form is prevented by adding antireceptor antibody to bacterial lipopolysaccharide-stimulated murine primary B-cell cultures Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 7384-7388.	7.1	51
158	Regulation of expression of the human interferon gamma gene Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 8173-8177.	7.1	92
159	Hormonal response region in the mouse mammary tumor virus long terminal repeat can be dissociated from the proviral promoter and has enhancer properties Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 1020-1024.	7.1	177
160	Lens-specific expression of the chloramphenicol acetyltransferase gene promoted by 5' flanking sequences of the murine alpha A-crystallin gene in explanted chicken lens epithelia Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 2334-2338.	7.1	127
161	Functional analysis of the transcription control region located within the avian retroviral long terminal repeat Molecular and Cellular Biology, 1985, 5, 438-447.	2.3	117
162	trans Activation of the simian virus 40 late transcription unit by T-antigen Molecular and Cellular Biology, 1985, 5, 1391-1399.	2.3	162
163	Characterization of the functional gene and several processed pseudogenes in the human triosephosphate isomerase gene family Molecular and Cellular Biology, 1985, 5, 1694-1706.	2.3	101

#	Article	IF	CITATIONS
164	Expression of human beta-globin genes in transgenic mice: effects of a flanking metallothionein-human growth hormone fusion gene Molecular and Cellular Biology, 1985, 5, 1977-1983.	2.3	38
165	Murine leukemia virus long terminal repeat sequences can enhance gene activity in a cell-type-specific manner Molecular and Cellular Biology, 1985, 5, 2832-2835.	2.3	105
166	Cloning and molecular analysis of the HAP2 locus: a global regulator of respiratory genes in Saccharomyces cerevisiae Molecular and Cellular Biology, 1985, 5, 3410-3416.	2.3	155
167	Control of adenovirus late promoter expression in two human cell lines Molecular and Cellular Biology, 1985, 5, 2433-2442.	2.3	84
168	Basic Science Review: Retroviruses and Human Cancer: Evaluation of T-Lymphocyte Transformation by Human T-Cell Leukemia-Lymphoma Virus. Cancer Investigation, 1985, 3, 145-160.	1.3	4
169	Specific 5' and 3' regions of the mu-chain gene are undermethylated at distinct stages of B-cell differentiation Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 3809-3813.	7.1	26
170	Deletion of a B-cell-specific enhancer affects transfected, but not endogenous, immunoglobulin heavy-chain gene expression Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 5088-5092.	7.1	89
171	Activation regions in a yeast transposon have homology to mating type control sequences and to mammalian enhancers Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 5423-5427.	7.1	110
172	The "beta-like-globin" gene domain in human erythroid cells Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 6384-6388.	7.1	625
173	An enhancer-like element in the adenovirus E2 promoter contains sequences essential for uninduced and E1A-induced transcription Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 381-385.	7.1	158
174	Differential expression of the human gonadotropin alpha gene in ectopic and eutopic cells Molecular and Cellular Biology, 1985, 5, 3157-3167.	2.3	74
175	Characterization, expression, and evolution of the mouse embryonic zeta-globin gene Molecular and Cellular Biology, 1985, 5, 1025-1033.	2.3	47
176	Linker scanning mutagenesis of the 5'-flanking region of the mouse beta-major-globin gene: sequence requirements for transcription in erythroid and nonerythroid cells Molecular and Cellular Biology, 1985, 5, 1498-1511.	2.3	142
177	Glucocorticoid regulation of mouse mammary tumor virus sequences in transgenic mice Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 5880-5884.	7.1	68
178	Stimulation of sea urchin H2B histone gene transcription by a chromatin-associated protein fraction depends on gene sequences downstream of the transcription start site Molecular and Cellular Biology, 1985, 5, 2764-2769.	2.3	35
179	Lens-specific promoter activity of a mouse gamma-crystallin gene Molecular and Cellular Biology, 1985, 5, 2221-2230.	2.3	7 3
180	The first intron of the human growth hormone gene contains a binding site for glucocorticoid receptor Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 699-702.	7.1	214
181	Analysis of gene expression during hematopoiesis: Present and future applications. Critical Reviews in Oncology/Hematology, 1985, 4, 67-102.	4.4	4

#	Article	IF	CITATIONS
182	The role of c-myc in the proliferation of normal and neoplastic cells. Journal of Clinical Immunology, 1985, 5, 65-77.	3.8	48
183	A trans-acting factor is responsible for the simian virus 40 enhancer activity in vitro. Nature, 1985, 313, 458-463.	27.8	231
184	Specific expression of an elastase–human growth hormone fusion gene in pancreatic acinar cells of transgenic mice. Nature, 1985, 313, 600-602.	27.8	253
185	Duplications of a mutated simian virus 40 enhancer restore its activity. Nature, 1985, 313, 711-714.	27.8	170
186	Cell-type-specific contacts to immunoglobulin enhancers in nuclei. Nature, 1985, 313, 798-801.	27.8	358
187	A hapten-specific chimaeric IgE antibody with human physiological effector function. Nature, 1985, 314, 268-270.	27.8	295
188	Suppression of leukaemia virus pathogenicity by polyoma virus enhancers. Nature, 1985, 314, 550-553.	27.8	112
189	Simian virus 40 enhancer increases number of RNA polymerase II molecules on linked DNA. Nature, 1985, 315, 72-75.	27.8	148
190	Simian virus 40 enhancer increases RNA polymerase density within the linked gene. Nature, 1985, 315, 75-77.	27.8	88
191	A short conserved sequence is involved in the light-inducibility of a gene encoding ribulose 1,5-bisphosphate carboxylase small subunit of pea. Nature, 1985, 315, 200-204.	27.8	204
192	An immunoglobulin promoter displays cell-type specificity independently of the enhancer. Nature, 1985, 315, 423-425.	27.8	146
193	A viral enhancer element specifically active in human haematopoietic cells. Nature, 1985, 315, 597-600.	27.8	103
194	An enhancer-like sequence within the Xenopus U2 gene promoter facilitates the formation of stable transcription complexes. Nature, 1985, 316, 163-167.	27.8	280
195	SV40 enhancer and large-T antigen are instrumental in development of choroid plexus tumours in transgenic mice. Nature, 1985, 316, 457-460.	27.8	258
196	Control of eukaryotic messenger RNA synthesis by sequence-specific DNA-binding proteins. Nature, 1985, 316, 774-778.	27.8	1,353
197	Genomic organization of the genes encoding mouse T-cell receptor α-chain. Nature, 1985, 316, 832-836.	27.8	216
198	Relationship between an enhancer element in the human antithrombin III gene and an immunoglobulin light-chain gene enhancer. Nature, 1985, 316, 845-848.	27.8	55
199	Cî¼-containing transcripts initiate heterogeneously within the IgH enhancer region and contain a novel 5′-nontranslatable exon. Nature, 1985, 318, 475-478.	27.8	253

#	Article	IF	CITATIONS
200	The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature, 1985, 318, 533-538.	27.8	1,714
201	Light regulation of plant gene expression by an upstream enhancer-like element. Nature, 1985, 318, 579-582.	27.8	172
202	Simian virus 40-mediated cis induction of the Xenopus \hat{I}^2 -globin DNase I hypersensitive site. Nature, 1985, 318, 680-683.	27.8	48
203	Cell-specific expression of the rat insulin gene: evidence for role of two distinct 5' flanking elements. Science, 1985, 230, 912-916.	12.6	743
204	Enhancers and eukaryotic gene transcription. Trends in Genetics, 1985, 1, 224-230.	6.7	606
205	Immunoglobulin genes in transgenic mice. Trends in Genetics, 1985, 1, 231-236.	6.7	47
206	Structural wrinkles and the genomic regulatory sites of eukaryotes. Journal of Molecular Evolution, 1985, 22, 150-159.	1.8	10
207	Comparison of human and chimpanzee ξ1 blobin genes. Journal of Molecular Evolution, 1985, 22, 309-315.	1.8	20
208	The regulatory locus rî»1 affects the level of î»l light chain synthesis in lipopolysaccharide-activated lymphocytes but not the frequency of î»l -positive B cell precursors. European Journal of Immunology, 1985, 15, 66-72.	2.9	11
209	Transformation of B and non-B cell lines with the 2,4,6- trinitrophenyl (TNP)-specific immunoglobulin genes. European Journal of Immunology, 1985, 15, 1117-1124.	2.9	13
210	Selection of mouse neuroblastoma cell-specific polyoma virus mutants with stage differentiative advantages of replication EMBO Journal, 1985, 4, 3215-3221.	7.8	29
211	Multiple upstream regulatory elements control the expression of the Drosophila white gene EMBO Journal, 1985, 4, 3501-3508.	7.8	173
212	Chromosome translocation activates heterogeneously initiated, bipolar transcription of a mouse c-myc gene EMBO Journal, 1985, 4, 667-674.	7.8	28
213	Chromosome translocations clustered 5′ of the murine c-myc gene qualitatively affect promoter usage: implications for the site of normal c-myc regulation EMBO Journal, 1985, 4, 1441-1447.	7.8	73
214	The nucleotide sequence of the human int-1 mammary oncogene; evolutionary conservation of coding and non-coding sequences EMBO Journal, 1985, 4, 2905-2909.	7.8	96
215	A transcription enhancer in the Herpesvirus saimiri genome EMBO Journal, 1985, 4, 2669-2674.	7.8	17
216	Characterization of immunoglobulin enhancer deletions in murine plasmacytomas EMBO Journal, 1985, 4, 3689-3693.	7.8	64
217	Structural and functional evidence for differential promoter activity of the two linked delta-crystallin genes in the chicken EMBO Journal, 1985, 4, 445-452.	7.8	46

#	Article	IF	CITATIONS
218	Structure and cell-specific expression of a cloned human retinol binding protein gene: the 5′-flanking region contains hepatoma specific transcriptional signals EMBO Journal, 1985, 4, 1981-1989.	7.8	90
219	Specific interaction of cellular factors with the B enhancer of polyoma virus EMBO Journal, 1985, 4, 2675-2685.	7.8	116
220	Cell-type preference of immunoglobulin kappa and lambda gene promoters EMBO Journal, 1985, 4, 2831-2838.	7.8	107
221	The SV40 enhancer influences viral late transcription in vitro and in vivo but not on replicating templates EMBO Journal, 1985, 4, 3247-3252.	7.8	20
222	Enhancer activity correlates with the oncogenic potential of avian retroviruses EMBO Journal, 1985, 4, 949-956.	7.8	57
223	Independent immunoglobulin class-switch events occurring in a single myeloma cell line Molecular and Cellular Biology, 1985, 5, 856-868.	2.3	87
224	Metal-dependent SV40 viruses containing inducible enhancers from the upstream region of metallothionein genes EMBO Journal, 1985, 4, 3851-3859.	7.8	80
225	Cell type-specific transcriptional enhancement in vitro requires the presence of trans-acting factors EMBO Journal, 1985, 4, 3005-3013.	7.8	118
226	Functional and pseudogenes are similarly organized and may equally contribute to the extensive antibody diversity of the IgVHII family EMBO Journal, 1985, 4, 1225-1230.	7.8	65
227	The x gene is essential for HTLV replication. Science, 1985, 229, 54-58.	12.6	198
228	Trans-acting transcriptional regulation of human T-cell leukemia virus type III long terminal repeat. Science, 1985, 227, 171-173.	12.6	570
229	Immunoglobulin heavy-chain enhancer requires one or more tissue-specific factors. Science, 1985, 227, 266-270.	12.6	283
230	Repression of the immunoglobulin heavy chain enhancer by the adenovirus-2 E1A products. Science, 1985, 230, 1391-1394.	12.6	270
231	Active T-cell receptor genes have intron deoxyribonuclease hypersensitive sites. Science, 1985, 229, 528-534.	12.6	41
232	Structure and transcription of theDrosophila mullerialcohol dehydrogenase genes. Nucleic Acids Research, 1985, 13, 6899-6917.	14.5	105
233	Highly conserved sequencim in the $3\hat{a} \in \mathbb{R}^2$ untranslated region of mRNAs coding for homologous proteins in distantly related species. Nucleic Acids Research, 1985, 13, 3723-3737.	14.5	153
234	B-Cell Abnormalities in Multiple Sclerosis. Archives of Neurology, 1985, 42, 73.	4.5	20
235	Gene transfer method for transient gene expression, stable transformation, and cotransformation of suspension cell cultures Molecular and Cellular Biology, 1985, 5, 1188-1190.	2.3	42

#	Article	IF	CITATIONS
236	Upstream region of the SUC2 gene confers regulated expression to a heterologous gene in Saccharomyces cerevisiae Molecular and Cellular Biology, 1985, 5, 2521-2526.	2.3	100
237	Xenopusribosomal gene enhancers function when inserted inside the gene they enhance. Nucleic Acids Research, 1985, 13, 8999-9009.	14.5	36
238	Contribution of promoter to tissue-specific expression of the mouse immunoglobulin kappa gene. Science, 1985, 229, 1102-1104.	12.6	81
239	Structural analysis of both products of a reciprocal translocation between c-myc and immunoglobulin loci in Burkitt lymphoma. Nucleic Acids Research, 1985, 13, 2141-2152.	14.5	15
240	A comparison between mammalian and avian fast skeletal muscle alkali myosin light chain genes: regulatory implications. Nucleic Acids Research, 1985, 13, 4623-4643.	14.5	50
241	Funcitonal activity and chromatin configuration of SV40 enhancer injected inXenopus laevisoocytes. Nucleic Acids Research, 1985, 13, 8065-8081.	14.5	15
242	A novel expression selection approach allows precise mapping of the hepatitis B virus enhancer. Nucleic Acids Research, 1985, 13, 7457-7472.	14.5	111
243	Evidence for transient requirement of the IgH enhancer. Nucleic Acids Research, 1985, 13, 8901-8912.	14.5	51
244	Hybrid Genes: Molecular Approaches to Tissue-Specific Gene Regulation. Annual Review of Genetics, 1985, 19, 273-296.	7.6	32
245	Lambda Chains and Genes in Inbred Mice. Annual Review of Immunology, 1985, 3, 337-365.	21.8	88
246	Mechanisms that Regulate Immunoglobulin Gene Expression. Annual Review of Immunology, 1985, 3, 159-195.	21.8	106
247	Oncogenes: Their Role in Neoplastic Transformation. Annual Review of Microbiology, 1985, 39, 419-449.	7.3	31
248	Mutational Analyses of the Moloney Murine Sarcoma Virus Enhancer. DNA and Cell Biology, 1985, 4, 193-202.	5.2	19
249	Evolution of the functional human beta-actin gene and its multi-pseudogene family: conservation of noncoding regions and chromosomal dispersion of pseudogenes Molecular and Cellular Biology, 1985, 5, 2720-2732.	2.3	386
250	B lineage-specific interactions of an immunoglobulin enhancer with cellular factors in vivo. Science, 1985, 227, 134-140.	12.6	908
251	A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell, 1985, 41, 521-530.	28.9	1,263
252	High frequency of homologous recombination in mammalian cells between endogenous and introduced SV40 genomes. Cell, 1985, 43, 695-703.	28.9	115
253	The two promoters of the mouse \hat{l}_{\pm} -amylase gene Amy-1a are differentially activated during parotid gland differentiation. Cell, 1985, 40, 907-912.	28.9	58

#	Article	IF	CITATIONS
254	Structure, organization, and somatic rearrangement of T cell gamma genes. Cell, 1985, 40, 259-269.	28.9	397
255	Mouse alpha-amylase loci, Amy-1a and Amy-2a, are closely linked. Journal of Molecular Biology, 1985, 182, 359-365.	4.2	20
256	Bovine leukemia virus long terminal repeat: a cell type-specific promoter. Science, 1985, 227, 317-320.	12.6	87
257	The Coming of Age of the Immunoglobulin J Chain. Annual Review of Immunology, 1985, 3, 425-453.	21.8	203
258	Transient accumulation of c-fos RNA following serum stimulation requires a conserved 5′ element and c-fos 3′ sequences. Cell, 1985, 42, 889-902.	28.9	893
259	High-affinity binding site for a specific nuclear protein in the human IgM gene. Nature, 1985, 314, 289-292.	27.8	98
260	Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature, 1985, 318, 635-641.	27.8	1,792
261	Molecular Analysis of Deletion and Nondeletion Hereditary Persistence of Fetal Hemoglobin and Identification of a New Mutation Causing ?-Thalassemia. Annals of the New York Academy of Sciences, 1985, 445, 159-169.	3.8	11
262	Tissue-specific gene expression. Trends in Neurosciences, 1985, 8, 100-104.	8.6	12
263	The endogenous immunoglobulin heavy chain enhancer can activate tandem VH promoters separated by a large distance. Cell, 1985, 43, 659-665.	28.9	88
264	Protein structures and split genes. Advances in Biophysics, 1985, 19, 91-131.	0.5	44
265	Expression of mouse Amy-2a alpha-amylase genes is regulated by strong pancreas-specific promoters. Journal of Molecular Biology, 1985, 185, 285-293.	4.2	29
266	Developmentally controlled and tissue-specific expression of unrearranged VH gene segments. Cell, 1985, 40, 271-281.	28.9	728
267	The location of cis-acting regulatory sequences in the human T cell lymphotropic virus type III (HTLV-III/LAV) long terminal repeat. Cell, 1985, 41, 813-823.	28.9	1,029
268	Chromatin-specific hypersensitive sites are assembled on a Xenopus histone gene injected into Xenopus oocytes. Journal of Molecular Biology, 1985, 181, 333-349.	4.2	29
269	Adenovirus E1a proteins repress transcription from the SV40 early promoter. Cell, 1985, 40, 705-716.	28.9	453
270	Cell-specific expression of a transfected human $\hat{l}\pm 1$ -antitrypsin gene. Cell, 1985, 41, 531-540.	28.9	202
271	Nonfunctional immunoglobulin light chain transcripts in two IgE-producing rat immunocytomas; implications for the allelic exclusion and transcription activation processes. Gene, 1985, 40, 115-124.	2.2	7

#	Article	IF	Citations
272	A 46-nucleotide promoter segment from an IFN- \hat{l}_{\pm} gene renders an unrelated promoter inducible by virus. Cell, 1985, 41, 497-507.	28.9	194
273	Transactivation of a bovine papilloma virus transcriptional regulatory element by the E2 gene product. Cell, 1985, 42, 183-191.	28.9	513
274	Transcription cell type specificity is conferred by an immunoglobulin VH gene promoter that includes a functional consensus sequence. Cell, 1985, 41, 479-487.	28.9	348
275	Cell-type specificity of iminunoglobulin gene expression is regulated by at least three DNA sequence elements. Cell, 1985, 41, 885-897.	28.9	654
276	A cloned human immunoglobulin heavy chain gene with a novel direct-repeat sequence in 5' flanking region. Gene, 1985, 33, 181-189.	2.2	51
277	The positive transcription factor of the 5S RNA gene induces a 5S DNA-specific gyration in xenopus oocyte extracts. Cell, 1985, 41, 945-953.	28.9	106
278	Evolution and structure of the fibrinogen genes. Journal of Molecular Biology, 1985, 185, 1-19.	4.2	83
279	Transposition of the immunoglobulin heavy chain enhancer to the myc oncogene in a murine plasmacytoma. Cell, 1985, 40, 71-79.	28.9	107
280	Properties of REP3: a cis-acting locus required for stable propagation of the Saccharomyces cerevisiae plasmid 2 microns circle Molecular and Cellular Biology, 1985, 5, 2466-2475.	2.3	83
281	Developmental Regulation of Human Globin Genes. Annual Review of Biochemistry, 1985, 54, 1071-1108.	11.1	188
282	Glucocorticoid receptor binding and activation of a heterologous promoter by dexamethasone by the first intron of the human growth hormone gene Molecular and Cellular Biology, 1985, 5, 2984-2992.	2.3	253
283	Gene structure and nucleotide sequence for rat cytochrome P-450c. Archives of Biochemistry and Biophysics, 1985, 237, 465-476.	3.0	61
284	Developmental regulation of alpha-fetoprotein genes in transgenic mice Molecular and Cellular Biology, 1985, 5, 1639-1648.	2.3	159
285	Time course of arrest of immunoglobulin expression in heterokaryons and early hybrids of human lymphoma cells and mouse fibroblasts. Experimental Cell Research, 1985, 158, 349-359.	2.6	12
286	The 5′-flanking sequences of human globin genes contribute to tissue specific expression. Biochemical and Biophysical Research Communications, 1986, 134, 128-133.	2.1	23
287	Steroid regulation of transfected genes in mouse mammary tumour cells. The Journal of Steroid Biochemistry, 1986, 24, 125-131.	1.1	8
288	Point mutations in the U3 region of the long terminal repeat of moloney murine leukemia virus determine disease specificity of the myeloproliferative sarcoma virus. Virology, 1986, 153, 145-149.	2.4	49
289	Chromosomal loop anchorage of the kappa immunoglobulin gene occurs next to the enhancer in a region containing topoisomerase II sites. Cell, 1986, 44, 273-282.	28.9	948

#	Article	IF	CITATIONS
290	Enhancer binding proteins predicted by informational spectrum method. Biochemical and Biophysical Research Communications, 1986, 141, 831-838.	2.1	27
291	Sequence and expression of a novel murine interferon alpha gene — Homology with enhancer elements in the regulatory region of the gene. Biochemical and Biophysical Research Communications, 1986, 138, 826-834.	2.1	20
292	PRE-mRNA Splicing. Annual Review of Genetics, 1986, 20, 671-708.	7.6	724
293	Detailed analysis of the mouse H-2Kb promoter: Enhancer-like sequences and their role in the regulation of class I gene expression. Cell, 1986, 44, 261-272.	28.9	434
294	Developmental Aspects of Immunoglobulin Gene Expression Using Tumor Cells as Models. International Reviews of Immunology, 1986, 1, 215-235.	3.3	0
295	Structure of Transcriptionally Active Chromati. Critical Reviews in Biochemistry, 1986, 21, 1-26.	7.5	81
296	Genes for Cytochrome P-450 and Their Regulatio. Critical Reviews in Biochemistry, 1986, 19, 247-305.	7.5	219
297	CNS and hypoderm regulatory elements of the Drosophila melanogaster dopa decarboxylase gene. Science, 1986, 234, 998-1002.	12.6	104
298	The human \hat{l}^2 -interferon gene enhancer is under negative control. Cell, 1986, 45, 601-610.	28.9	441
299	During B-cell differentiation enhancer activity and transcription rate of immunoglobulin heavy chain genes are high before mRNA accumulation. Cell, 1986, 45, 45-52.	28.9	116
300	An estrogen-responsive element derived from the $5\hat{a}\in^2$ flanking region of the Xenopus vitellogenin A2 gene functions in transfected human cells. Cell, 1986, 46, 1053-1061.	28.9	736
301	Analysis of promoter and enhancer cell type specificities and the regulation of immunoglobulin gene expression. Gene, 1986, 50, 321-331.	2.2	14
302	Regulation of human interleukin-2 gene: Functional DNA sequences in the 5′ flanking region for the gene expression in activated T lymphocytes. Cell, 1986, 46, 401-407.	28.9	303
303	Tandem kappa immunoglobulin promoters are equally active in the presence of the kappa enhancer: Implications for models of enhancer function. Cell, 1986, 46, 253-262.	28.9	51
304	SV40 enhancer-binding factors are required at the establishment but not the maintenance step of enhancer-dependent transcriptional activation. Cell, 1986, 47, 241-247.	28.9	61
305	Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the $t(14;18)$ translocation. Cell, 1986, 47, 19-28.	28.9	1,224
306	Trans-acting nuclear protein responsible for induction of rearranged human immunoglobulin heavy chain gene. Cell, 1986, 45, 25-33.	28.9	51
307	A tissue-specific transcription enhancer from the Drosophila yolk protein 1 gene. Cell, 1986, 45, 859-867.	28.9	213

#	Article	IF	CITATIONS
308	The pattern of actin expression in human fibroblast $\tilde{A}-$ mouse muscle heterokaryons suggests that human muscle regulatory factors are produced. Cell, 1986, 47, 123-130.	28.9	77
309	Inducibility of κ immunoglobulin enhancer-binding protein NF-κB by a posttranslational mechanism. Cell, 1986, 47, 921-928.	28.9	2,059
310	Sequence signals in eukaryotic upstream regions. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1986, 866, 109-119.	2.4	21
311	The myc Oncogene: Its Role in Transformation and Differentiation. Annual Review of Genetics, 1986, 20, 361-384.	7.6	724
312	Complete nucleotide and encoded amino acid sequence of a mammalian myosin heavy chain gene. Journal of Molecular Biology, 1986, 190, 291-317.	4.2	282
313	Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell, 1986, 46, 705-716.	28.9	2,651
314	A transcriptional enhancer with specificity for erythroid cells is located in the long terminal repeat of the Friend murine leukemia virus EMBO Journal, 1986, 5, 1615-1623.	7.8	53
315	The lysozyme enhancer: cell-specific activation of the chicken lysozyme gene by a far-upstream DNA element EMBO Journal, 1986, 5, 719-724.	7.8	107
316	Several hundred base pairs upstream of Drosophila hsp23 and 26 genes are required for their heat induction in transformed flies EMBO Journal, 1986, 5, 755-761.	7.8	50
317	Regulatory elements involved in Drosophila Adh gene expression are conserved in divergent species and separate elements mediate expression in different tissues EMBO Journal, 1986, 5, 1275-1289.	7.8	81
318	Idiotypic selection of an antibody mutant with changed hapten binding specificity, resulting from a point mutation in position 50 of the heavy chain EMBO Journal, 1986, 5, 1561-1566.	7.8	40
319	Tissue-specific expression of the rat alpha 2u globulin gene family Molecular and Cellular Biology, 1986, 6, 3563-3567.	2.3	57
320	Multiple sequence motifs are involved in SV40 enhancer function EMBO Journal, 1986, 5, 387-397.	7.8	471
321	Direct evidence that p40x of human T-cell leukemia virus type I is a trans-acting transcriptional activator EMBO Journal, 1986, 5, 561-565.	7.8	219
322	A transcriptional enhancer sequence of HTLV-I is responsible for trans-activation mediated by p40 chi HTLV-I EMBO Journal, 1986, 5, 713-718.	7.8	182
323	The hormone regulatory element of mouse mammary tumour virus mediates progesterone induction EMBO Journal, 1986, 5, 2237-2240.	7.8	381
324	Nuclear factors binding specific sequences within the immunoglobulin enhancer interact differentially with other enhancer elements EMBO Journal, 1986, 5, 3251-3258.	7.8	59
325	Sequence conservation in the protein coding and intron regions of the engrailed transcription unit EMBO Journal, 1986, 5, 3583-3589.	7.8	97

#	Article	IF	CITATIONS
326	GENE REGULATION AND ITS ROLE IN EVOLUTIONARY PROCESSES., 1986,, 3-36.		6
327	The mouse immunoglobulin heavy-chain enhancer: effect on transcription in vitro and binding of proteins present in HeLa and lymphoid B cell extracts EMBO Journal, 1986, 5, 1791-1797.	7.8	107
328	Coordination of murine parotid secretory protein and salivary amylase expression EMBO Journal, 1986, 5, 1891-1896.	7.8	39
329	The immunoglobulin heavy-chain B-lymphocyte enhancer efficiently stimulates transcription in non-lymphoid cells EMBO Journal, 1986, 5, 553-560.	7.8	127
330	Activation of an enhancerless gene by chromosomal integration Molecular and Cellular Biology, 1986, 6, 4179-4184.	2.3	25
331	Random isolation of gene activator elements from the human genome Molecular and Cellular Biology, 1986, 6, 4185-4194.	2.3	25
332	Construction of novel antibodies by use of DNA transfection: design of plasmid vectors. Philosophical Transactions of the Royal Society A, 1986, 317, 425-432.	1.1	14
333	Regulation of Adenovirus Mrna Formation. Advances in Virus Research, 1986, 31, 169-228.	2.1	71
334	5'-flanking sequence required for regulated expression of a muscle-specific Drosophila melanogaster actin gene Molecular and Cellular Biology, 1986, 6, 3388-3396.	2.3	43
335	Cellular promoters incorporated into the adenovirus genome: effects of viral regulatory elements on transcription rates and cell specificity of albumin and beta-globin promoters Molecular and Cellular Biology, 1986, 6, 3798-3806.	2.3	50
336	Different tissue-specific expression of the amylase gene Amy-1 in mice and rats Molecular and Cellular Biology, 1986, 6, 4067-4076.	2.3	27
337	Multiple regulatory elements in the intergenic region between the alpha-fetoprotein and albumin genes Molecular and Cellular Biology, 1986, 6, 477-487.	2.3	230
338	The human hepatitis B virus enhancer requires trans-acting cellular factor(s) for activity Molecular and Cellular Biology, 1986, 6, 710-715.	2.3	127
339	Down-regulation of glucocorticoid receptor mRNA by glucocorticoid hormones and recognition by the receptor of a specific binding sequence within a receptor cDNA clone Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 5899-5903.	7.1	242
340	Immunoglobulin heavy chain locus of the rat: striking homology to mouse antibody genes Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 6075-6079.	7.1	73
341	Immunoglobulin J chain gene from the mouse Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 456-460.	7.1	54
342	Liver-specific expression of the mouse alpha-fetoprotein gene is mediated by cis-acting DNA elements Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 8196-8200.	7.1	72
343	Cell-type-specific and regulated expression of a human gamma 1 heavy-chain immunoglobulin gene in transgenic mice Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 2152-2156.	7.1	36

#	Article	IF	Citations
344	The neuronal identifier element is a cis-acting positive regulator of gene expression Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 3751-3755.	7.1	65
345	Evolution of the immunoglobulin kappa light chain locus in the rabbit: evidence for differential gene conversion events Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 5180-5183.	7.1	33
346	Differential expression of mouse beta/goat beta c, mouse beta/goat beta F, and mouse beta/goat epsilon II hybrid globin genes in murine erythroleukemia cells Molecular and Cellular Biology, 1986, 6, 3873-3883.	2.3	0
347	Delimiting regulatory sequences of the Drosophila melanogaster Ddc gene Molecular and Cellular Biology, 1986, 6, 4548-4557.	2.3	38
348	Cell type-specific negative regulatory element in the control region of the rat alpha-fetoprotein gene Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 7653-7657.	7.1	120
349	Cell-type-specific synthesis of murine immunoglobulin mu RNA from an adenovirus vector Molecular and Cellular Biology, 1986, 6, 123-133.	2.3	34
350	DNA rearrangement causes a high rate of spontaneous mutation at the immunoglobulin heavy-chain locus of a mouse myeloma cell line Molecular and Cellular Biology, 1986, 6, 4228-4235.	2.3	18
351	trans Activation of the simian virus 40 enhancer Molecular and Cellular Biology, 1986, 6, 1283-1295.	2.3	50
352	DNase I-hypersensitive sites surround the mouse acetylcholine receptor delta-subunit gene Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 8405-8409.	7.1	28
353	Tissue-specific expression of the rat albumin gene: genetic control of its extinction in microcell hybrids Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 2561-2565.	7.1	103
354	Myeloma mutant with a novel 3' flanking region: loss of normal sequence and insertion of repetitive elements leads to decreased transcription but normal processing of the alpha heavy-chain gene products Molecular and Cellular Biology, 1986, 6, 1903-1916.	2.3	56
355	Repression mediates cell-type-specific expression of the rat growth hormone gene Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 8283-8287.	7.1	109
356	The mouse immunoglobulin heavy-chain gene enhancer contains sequences that inhibit transcription in Vitro in HeLa cell extracts Molecular and Cellular Biology, 1986, 6, 4117-4121.	2.3	14
357	Adenovirus 2 peptide IX gene is expressed only on replicated DNA molecules Molecular and Cellular Biology, 1986, 6, 4149-4154.	2.3	32
358	Eel electric organ: hyperexpressing calmodulin system Molecular and Cellular Biology, 1986, 6, 950-954.	2.3	9
359	Effects of the position of the simian virus 40 enhancer on expression of multiple transcription units in a single plasmid Molecular and Cellular Biology, 1986, 6, 2593-2601.	2.3	153
360	Regulation of rat insulin 1 gene expression: evidence for negative regulation in nonpancreatic cells Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 3180-3184.	7.1	193
361	Mutation affecting the expression of immunoglobulin variable regions in the rabbit Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 4883-4886.	7.1	37

#	Article	IF	CITATIONS
362	Efficient introduction of plasmid DNA into human hemopoietic cells by encapsidation in simian virus 40 pseudovirions Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 6925-6929.	7.1	29
363	Requirement of multiple copies of a 21-nucleotide sequence in the U3 regions of human T-cell leukemia virus type I and type II long terminal repeats for trans-acting activation of transcription Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 8112-8116.	7.1	264
364	Mutational analysis of the immunoglobulin heavy chain promoter region Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 9626-9630.	7.1	102
365	The immunoglobulin heavy chain enhancer is stimulated by the adenovirus type 2 E1A products in mouse fibroblasts Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 2846-2849.	7.1	53
366	Activation of the adenovirus and BK virus late promoters: effects of the BK virus enhancer and trans-acting viral early proteins Molecular and Cellular Biology, 1986, 6, 3596-3605.	2.3	33
367	Binding in vitro of multiple cellular proteins to immunoglobulin heavy-chain enhancer DNA Molecular and Cellular Biology, 1986, 6, 4168-4178.	2.3	92
368	Transcriptional control of the mouse prealbumin (transthyretin) gene: both promoter sequences and a distinct enhancer are cell specific Molecular and Cellular Biology, 1986, 6, 4697-4708.	2.3	163
369	An active chromatin structure acquired by translocated c-myc genes Molecular and Cellular Biology, 1986, 6, 1357-1361.	2.3	18
370	Lymphoid and other tissue-specific phenotypes of polyomavirus enhancer recombinants: positive and negative combinational effects on enhancer specificity and activity Molecular and Cellular Biology, 1986, 6, 2068-2079.	2.3	49
371	Enhancer sequences responsible for DNase I hypersensitivity in polyomavirus chromatin Molecular and Cellular Biology, 1986, 6, 2249-2252.	2.3	13
372	Downstream sequences affect transcription initiation from the adenovirus major late promoter Molecular and Cellular Biology, 1986, 6, 2684-2694.	2.3	116
373	Nuclear factors bind to regulatory regions of the mouse kappa immunoglobulin gene. Nucleic Acids Research, 1986, 14, 4837-4848.	14.5	45
374	Transhybridomas from fusion gene transgenic lymphocytes can be used to produce foreign protein of biological interest. European Journal of Immunology, 1986, 16, 1033-1035.	2.9	3
375	Characteristics of site variation among clones of the 340-base pair, tandemly repeated EcoR1 family of human DNA. Biochemical Genetics, 1986, 24, 71-78.	1.7	0
376	Transient gene expression in a Gramineae cell line. Molecular Genetics and Genomics, 1986, 202, 471-475.	2.4	69
377	A nuclear factor that binds to a conserved sequence motif in transcriptional control elements of immunoglobulin genes. Nature, 1986, 319, 154-158.	27.8	1,249
378	Synergism between immunoglobulin enhancers and promoters. Nature, 1986, 322, 383-385.	27.8	122
379	A novel VH to VHDJH joining mechanism in heavy-chain-negative (null) pre-B cells results in heavy-chain production. Nature, 1986, 322, 840-842.	27.8	315

#	Article	IF	Citations
380	Distinct factors bind to apparently homolgous sequences in the immunoglobulin heavy-chain enhancer. Nature, 1986, 322, 846-848.	27.8	184
381	A cyclic AMP- and phorbol ester-inducible DNA element. Nature, 1986, 323, 353-356.	27.8	775
382	Cell-type specific protein binding to the enhancer of simian virus 40 in nuclear extracts. Nature, 1986, 323, 544-548.	27.8	242
383	Light-inducible and tissue-specific pea lhcp gene expression involves an upstream element combining enhancer- and silencer-like properties. Nature, 1986, 323, 551-554.	27.8	139
384	A $3\hat{a}\in^2$ enhancer is required for temporal and tissue-specific transcriptional activation of the chicken adult \hat{l}^2 -globin gene. Nature, 1986, 323, 731-734.	27.8	209
385	Recombination between immunoglobulin variable region gene segments is enhanced by transcription. Nature, 1986, 324, 585-589.	27.8	337
386	Regulation of Genome Rearrangement Events during Lymphocyte Differentiation. Immunological Reviews, 1986, 89, 5-30.	6.0	425
387	Sequences 3'of Immunoglobulin Heavy Chain Genes Influence their Expression. Immunological Reviews, 1986, 89, 31-48.	6.0	11
388	Cell-Type Specific Regulation of a K Immunoglobulin Gene by Promoter and Enhancer Elements. Immunological Reviews, 1986, 89, 49-68.	6.0	21
389	Expression of recombinant immunoglobulin genes to produce novel molecules with specific functions. Immunologic Research, 1986, 5, 210-220.	2.9	1
390	Immunoglobulin synthesis in non-B cell lines. Immunology Letters, 1986, 12, 257-262.	2.5	1
391	An apparent progressive and recurrent evolutionary restriction in tissue expression of a gene, the lactate dehydrogenase-C gene, within a family of bony fish (Salmoniformes: Umbridae). Journal of Molecular Evolution, 1986, 23, 95-107.	1.8	32
392	Regulation of the Assembly and Expression of Variable-Region Genes. Annual Review of Immunology, 1986, 4, 339-368.	21.8	394
393	The Regulation and Expression of c-myc in Normal and Malignant Cells. Annual Review of Immunology, 1986, 4, 317-338.	21.8	198
394	Introduction of estrogen-responsiveness into mammalian cell lines. Nucleic Acids Research, 1986, 14, 9329-9337.	14.5	68
395	In vivo competition between a metallothionein regulatory element and the SV40 enhancer. Science, 1986, 232, 76-80.	12.6	100
396	Replicative and cytopathic potential of HTLV-III/LAV with sor gene deletions. Science, 1986, 231, 1549-1553.	12.6	251
397	Androgen regulation by the long terminal repeat of mouse mammary tumor virus Molecular and Cellular Biology, 1986, 6, 2847-2854.	2.3	148

#	Article	IF	Citations
398	The 5′-Flanking Sequences of the Human Growth Hormone Gene Contain a Cell-Specific Control Element. DNA and Cell Biology, 1986, 5, 503-509.	5.2	27
399	A Sensitive, Nondestructive Assay for Transfected Genes. DNA and Cell Biology, 1986, 5, 257-262.	5.2	12
400	Nuclear activity from F9 embryonal carcinoma cells binding specifically to the enhancers of wild-type polyoma virus and PyEC mutant DNAs. Nucleic Acids Research, 1986, 14, 2845-2861.	14.5	61
401	Identification of a restriction fragment length polymorphism by a CR1 cDNA that correlates with the number of CR1 on erythrocytes Journal of Experimental Medicine, 1986, 164, 50-59.	8.5	188
402	B-lymphocyte targeting of gene expression in transgenic mice with the immunoglobulin heavychain enhancer. Nucleic Acids Research, 1986, 14, 6565-6577.	14.5	36
403	Transcriptional enhancer within the human placental lactogen and growth hormone multigene cluster. Nucleic Acids Research, 1986, 14, 7647-7659.	14.5	50
404	Functional analysis of the murine IgH enhancer: evidence for negative control of cell-type specificity. Nucleic Acids Research, 1986, 14, 8209-8221.	14.5	127
405	Hair Keratin: Composition, Structure and Biogenesis. , 1986, , 695-721.		26
406	Hypersensitive sites in the 5′ and 3′ flanking regions of the cysteine proteinase I gene ofDictyostelium discoideum. Nucleic Acids Research, 1986, 14, 8703-8722.	14.5	15
407	Genetics of Adrenal Steroid 21-Hydroxylase Deficiency*. Endocrine Reviews, 1986, 7, 331-349.	20.1	57
408	Sequences closely related to an immunoglobulin gene promoter/enhancer element occur also upstream of other eukaryotic and of prokaryotic genes. Nucleic Acids Research, 1986, 14, 8819-8827.	14.5	98
409	Structure and expression of a human subgroup II immunoglobulin x gene. Nucleic Acids Research, 1986, 14, 3957-3970.	14.5	7
410	A 100-kD HeLa cell octamer binding protein (OBP100) interacts differently with two separate octamer-related sequences within the SV40 enhancer Genes and Development, 1987, 1, 1147-1160.	5.9	271
411	Factors that interact with the rat albumin promoter are present both in hepatocytes and other cell types Genes and Development, 1987, 1, 256-267.	5.9	87
412	Lens-specific enhancer in the third intron regulates expression of the chicken delta 1-crystallin gene Genes and Development, 1987, 1, 818-828.	5.9	115
413	Competition studies with repressors and activators of viral enhancer function in F9 mouse embryonal carcinoma cells. Nucleic Acids Research, 1987, 15, 4307-4324.	14.5	19
414	The SV40 enhancer can be dissected into multiple segments, each with a different cell type specificity Genes and Development, 1987, 1, 65-74.	5.9	305
415	Lysozyme gene activity in chicken macrophages is controlled by positive and negative regulatory elements. Nucleic Acids Research, 1987, 15, 4163-4178.	14.5	96

#	Article	IF	CITATIONS
416	The HLA-DQ $\hat{1}^2$ gene upstream region contains an immunoglobulin-like octamer motif that binds cell-type specific nuclear factors. Nucleic Acids Research, 1987, 15, 8057-8067.	14.5	22
417	The immunoglobulin octanucleotide: independent activity and selective interaction with enhancers. Science, 1987, 235, 1498-1501.	12.6	110
418	Isolation and Characterization of Murine Transcriptional Control Elements Using a "Shotgun" Method. DNA and Cell Biology, 1987, 6, 307-316.	5.2	10
419	Development of the primary antibody repertoire. Science, 1987, 238, 1079-1087.	12.6	650
420	Tissue specific expression of the human alpha-1-antitrypsin gene in transgenic mice. Nucleic Acids Research, 1987, 15, 1459-1475.	14.5	125
421	Novel transcripts from the Ultrabithorax domain of the bithorax complex Genes and Development, 1987, 1, 307-322.	5.9	193
422	Simian virus 40 (SV40)-transgenic mice that develop tumors are specifically tolerant to SV40 T antigen Journal of Experimental Medicine, 1987, 165, 417-427.	8.5	52
423	A cell type specific factor recognizes the rat thyroglobulin promoter. Nucleic Acids Research, 1987, 15, 8149-8166.	14.5	107
424	A transcriptional activator is located in the coding region of the yeastPGKgene. Nucleic Acids Research, 1987, 15, 6243-6259.	14.5	60
425	Protein-binding sites in Ig gene enhancers determine transcriptional activity and inducibility. Science, 1987, 236, 1573-1577.	12.6	654
426	Nuclear factors binding to the human immunoglobulin heavy-chain gene enhancer. Nucleic Acids Research, 1987, 15, 2851-2869.	14.5	36
427	Adenovirus transforming 19-kD T antigen has an enhancer-dependent trans-activation function and relieves enhancer repression mediated by viral and cellular genes Genes and Development, 1987, 1, 645-658.	5.9	62
428	A Combination of RNase H and S1 nuclease Circumvents an artefact inherent to conventional S1 analysis of RNA splicing. Nucleic Acids Research, 1987, 15, 1995-2011.	14.5	29
429	In vitro binding of several cell-specific and ubiquitous nuclear proteins to the GT-I motif of the SV40 enhancer Genes and Development, 1987, 1, 794-807.	5.9	143
430	Identification of the promoter sequences involved in the cell specific expression of the rat somatostatin gene. Nucleic Acids Research, 1987, 15, 5715-5728.	14.5	82
431	Optimizing gene expression in BPV-transformed cells: effects of cell type on enhancer/promoter interaction. Nucleic Acids Research, 1987, 15, 7137-7153.	14.5	6
432	Determinants of rat albumin promoter tissue specificity analyzed by an improved transient expression system Molecular and Cellular Biology, 1987, 7, 2425-2434.	2.3	191
433	Identification of a rat liver nuclear protein that binds to the enhancer core element of three animal viruses Genes and Development, 1987, 1, 133-146.	5.9	666

#	Article	IF	CITATIONS
434	Regulation of Gene Transcription by Multiple Hormones: Organization of Regulatory Elements. Progress in Molecular Biology and Translational Science, 1987, 34, 59-87.	1.9	8
435	Chapter 4 Assembly of immunoglobulin variable region gene segments. New Comprehensive Biochemistry, 1987, , 111-134.	0.1	6
436	Chapter 6 Immunoglobulin gene expression. New Comprehensive Biochemistry, 1987, , 153-176.	0.1	0
437	Multiple nuclear proteins bind upstream sequences in the promotor region of a T-cell receptor beta-chain variable-region gene: evidence for tissue specificity Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 232-236.	7.1	35
438	Identification of a cell-specific transcriptional enhancer in the first intron of the mouse alpha 2 (type) Tj ETQq0 0 C 1987, 84, 5590-5594.) rgBT /Ov 7.1	erlock 10 Tf 167
439	Regulation of immunoglobulin transcription rates and mRNA processing in proliferating normal B lymphocytes by activators of protein kinase C Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 9135-9139.	7.1	28
440	Complex protein binding within the mouse immunoglobulin heavy-chain enhancer Molecular and Cellular Biology, 1987, 7, 4194-4203.	2.3	71
441	Nucleotides in the polyomavirus enhancer that control viral transcription and DNA replication Molecular and Cellular Biology, 1987, 7, 1681-1690.	2.3	74
442	Introns are inconsequential to efficient formation of cellular thymidine kinase mRNA in mouse L cells Molecular and Cellular Biology, 1987, 7, 4576-4581.	2.3	33
443	Repression of insulin gene expression by adenovirus type 5 E1a proteins Molecular and Cellular Biology, 1987, 7, 1164-1170.	2.3	116
444	In vitro transcription of immunoglobulin genes in a B-cell extract: effects of enhancer and promoter sequences Molecular and Cellular Biology, 1987, 7, 1989-1994.	2.3	29
445	Chromatin fine-structure mapping of the goat beta F gene in fetal erythroid tissue Molecular and Cellular Biology, 1987, 7, 2772-2782.	2.3	2
446	The yeast PHO5 promoter: phosphate-control elements and sequences mediating mRNA start-site selection Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 1340-1344.	7.1	110
447	Noncoding $3\hat{a}\in^2$ sequences of the transferrin receptor gene are required for mRNA regulation by iron EMBO Journal, 1987, 6, 1287-1293.	7.8	198
448	A pancreas specificity results from the combination of polyomavirus and Moloney murine leukemia virus enhancer Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 449-453.	7.1	51
449	Tissue-specific activity of the pro-opiomelanocortin gene promoter Molecular and Cellular Biology, 1987, 7, 4058-4064.	2.3	80
450	Extinction of expression of immunoglobulin genes in myeloma X fibroblast somatic cell hybrids Molecular and Cellular Biology, 1987, 7, 936-939.	2.3	31
451	Transcription of adenovirus 2 major late and peptide IX genes under conditions of in vitro nucleosome assembly Molecular and Cellular Biology, 1987, 7, 1401-1408.	2.3	100

#	Article	IF	CITATIONS
452	Expression of the c-myc oncogene under control of an immunoglobulin enhancer in E mu-myc transgenic mice Molecular and Cellular Biology, 1987, 7, 1436-1444.	2.3	75
453	Multiple DNA sequence elements are necessary for the function of an immunoglobulin heavy chain promoter Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 7634-7638.	7.1	126
454	A genetic analysis of extinction: trans-regulation of 16 liver-specific genes in hepatoma-fibroblast hybrid cells Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 1614-1618.	7.1	72
455	Promoter and enhancer elements from the rat elastase I gene function independently of each other and of heterologous enhancers Molecular and Cellular Biology, 1987, 7, 3466-3472.	2.3	32
456	DNA sequence requirements for replication of polyomavirus DNA in vivo and in vitro Molecular and Cellular Biology, 1987, 7, 3694-3704.	2.3	70
457	At least two nuclear proteins bind specifically to the Rous sarcoma virus long terminal repeat enhancer Molecular and Cellular Biology, 1987, 7, 787-798.	2.3	113
458	Regulated expression of a complete human beta-globin gene encoded by a transmissible retrovirus vector Molecular and Cellular Biology, 1987, 7, 887-897.	2.3	170
459	Different activities of viral enhancer elements before and after stable integration of transfected DNAs Molecular and Cellular Biology, 1987, 7, 1296-1299.	2.3	10
460	12-O-tetradecanoyl-phorbol-13-acetate induction of the human collagenase gene is mediated by an inducible enhancer element located in the 5'-flanking region Molecular and Cellular Biology, 1987, 7, 2256-2266.	2.3	746
461	Negative regulation contributes to tissue specificity of the immunoglobulin heavy-chain enhancer Molecular and Cellular Biology, 1987, 7, 2558-2567.	2.3	130
462	Tissue-specific enhancer of the human glycoprotein hormone alpha-subunit gene: dependence on cyclic AMP-inducible elements Molecular and Cellular Biology, 1987, 7, 3994-4002.	2.3	425
463	Cell-specific expression of the human gastrin gene: evidence for a control element located downstream of the TATA box Molecular and Cellular Biology, 1987, 7, 4329-4336.	2.3	56
464	Extinction of alpha-fetoprotein gene expression in somatic cell hybrids involves cis-acting DNA elements Molecular and Cellular Biology, 1987, 7, 2606-2609.	2.3	14
465	A mutational analysis of the insulin gene transcription control region: expression in beta cells is dependent on two related sequences within the enhancer Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 8819-8823.	7.1	262
466	Duplicated CArG box domains have positive and mutually dependent regulatory roles in expression of the human alpha-cardiac actin gene Molecular and Cellular Biology, 1987, 7, 2803-2813.	2.3	216
467	The rat elastase I regulatory element is an enhancer that directs correct cell specificity and developmental onset of expression in transgenic mice Molecular and Cellular Biology, 1987, 7, 2956-2967.	2.3	123
468	The interplay of DNA-binding proteins on the promoter of the mouse albumin gene. Cell, 1987, 51, 963-973.	28.9	567
469	High efficiency gene transfer and expression in normal murine B lymphocytes. Journal of Immunological Methods, 1987, 101, 279-285.	1.4	6

#	Article	IF	CITATIONS
470	The cis-acting regulatory elements of immunoglobulin heavy chain gene involved in enhanced immunoglobulin production after lipopolysaccharide (LPS) stimulation. Molecular Immunology, 1987, 24, 759-764.	2.2	2
471	A comparison of bovine growth hormone expression directed by bGH genomic or intronless DNA in transiently transfected eukaryotic cells. Gene, 1987, 57, 47-52.	2.2	17
472	High-efficiency transformation of mammalian cells by plasmid DNA Molecular and Cellular Biology, 1987, 7, 2745-2752.	2.3	5,785
473	Expression of antibody cDNA in murine myeloma cells: possible involvement of additional regulatory elements in transcription of immunoglobulin genes. Gene, 1987, 60, 205-216.	2.2	16
474	Identification and purification of a human lymphoid-specific octamer-binding protein (OTF-2) that activates transcription of an immunoglobulin promoter in vitro. Cell, 1987, 51, 783-793.	28.9	416
475	Comparison of the cis-acting control regions of two coordinately controlled genes involved in ethanol utilization in Aspergillus nidulans. Gene, 1987, 51, 205-216.	2.2	120
476	Activation of cryptic promoters of human c-myc genes in microinjected Xenopus laevis oocytes. Journal of Molecular Biology, 1987, 193, 497-505.	4.2	3
477	c-mos Upstream sequence exhibits species-specific enhancer activity and binds murine-specific nuclear proteins. Journal of Molecular Biology, 1987, 193, 255-266.	4.2	19
478	Reconstitution of functionally active antibody directed against creatine kinase from separately expressed heavy and light chains in non-lymphoid cells. Gene, 1987, 51, 21-29.	2.2	44
479	The role of the κ enhancer and its binding factor NF-κB in the developmental regulation of κ gene transcription. Cell, 1987, 48, 121-128.	28.9	272
480	A transcriptional enhancer located between adult beta-globin and embryonic epsilon-globin genes in chicken and duck. Gene, 1987, 58, 167-175.	2.2	15
481	Regulation of inducible and tissue-specific gene expression. Science, 1987, 236, 1237-1245.	12.6	1,719
482	Cooperativity of glucocorticoid response elements located far upstream of the tyrosine aminotransferase gene. Cell, 1987, 49, 29-38.	28.9	785
483	Transcriptional control of $\hat{l}^{1}\!\!/_{-}$ and \mathfrak{D}_{7} Gene expression in resting and bacterial lipopolysaccharide-activated normal B cells. Immunobiology, 1987, 174, 162-176.	1.9	33
484	A pituitary-specific trans-acting factor can stimulate transcription from the growth hormone promoter in extracts of nonexpressing cells. Cell, 1987, 50, 267-275.	28.9	304
485	A lymphoproliferative abnormality associated with inappropriate expression of the Thy-1 antigen in transgenic mice. Cell, 1987, 51, 7-19.	28.9	50
486	Purification and characterization of OTF-1, a transcription factor regulating cell cycle expression of a human histone H2b gene. Cell, 1987, 51, 773-781.	28.9	543
487	Activation of V kappa gene rearrangement in pre-B cells follows the expression of membrane-bound immunoglobulin heavy chains EMBO Journal, 1987, 6, 3299-3305.	7.8	169

#	Article	IF	Citations
488	Promoter and enhancer elements containing a conserved sequence motif are recognized by nuclear factor III, a protein stimulating adenovirus DNA replication EMBO Journal, 1987, 6, 3771-3778.	7.8	101
489	Cell type-specificity elements of the immunoglobulin heavy chain gene enhancer EMBO Journal, 1987, 6, 1323-1330.	7.8	240
490	An enhancer element lies 3′ to the human A gamma globin gene EMBO Journal, 1987, 6, 2997-3004.	7.8	126
491	One cell-specific and three ubiquitous nuclear proteins bind in vitro to overlapping motifs in the domain B1 of the SV40 enhancer EMBO Journal, 1987, 6, 3005-3013.	7.8	122
492	In vitro binding of cell-specific and ubiquitous nuclear proteins to the octamer motif of the SV40 enhancer and related motifs present in other promoters and enhancers EMBO Journal, 1987, 6, 3015-3025.	7.8	142
493	Interactions of cellular proteins involved in the transcriptional regulation of the human immunodeficiency virus EMBO Journal, 1987, 6, 3761-3770.	7.8	278
494	Six distinct nuclear factors interact with the 75-base-pair repeat of the Moloney murine leukemia virus enhancer Molecular and Cellular Biology, 1987, 7, 1101-1110.	2.3	356
495	The conserved decanucleotide from the immunoglobulin heavy chain promoter induces a very high transcriptional activity in B-cells when introduced into an heterologous promoter EMBO Journal, 1987, 6, 1685-1690.	7.8	131
496	The chicken progesterone receptor: sequence, expression and functional analysis EMBO Journal, 1987, 6, 3985-3994.	7.8	222
497	Interaction of the TGGCA-binding protein with upstream sequences is required for efficient transcription of mouse mammary tumor virus EMBO Journal, 1987, 6, 1355-1360.	7.8	159
498	Cloning of a <i>Nicotiana plumbaginifolia</i> protoplast-specific enhancer-like sequence. EMBO Journal, 1987, 6, 2525-2530.	7.8	12
499	Cis- and trans-acting elements responsible for the cell-specific expression of the human alpha 1-antitrypsin gene EMBO Journal, 1987, 6, 2759-2766.	7.8	159
500	Driven by the same Ig enhancer and SV40 T promoter ras induced lung adenomatous tumors, myc induced pre-B cell lymphomas and SV40 large T gene a variety of tumors in transgenic mice EMBO Journal, 1987, 6, 4055-4065.	7.8	117
501	A Pituitary-Specific Factor Interacts with an Upstream Promoter Element in the Rat Growth Hormone Gene*. Molecular Endocrinology, 1987, 1, 90-96.	3.7	57
502	Tissue-specific expression of the human growth hormone gene is conferred in part by the binding of a specific trans-acting factor EMBO Journal, 1987, 6, 971-981.	7.8	206
503	Developmental regulation by an enhancer from the <i>Sgs-4</i> gene of <i>Drosophila</i> EMBO Journal, 1987, 6, 207-214.	7.8	35
504	Promoter and enhancer elements in the rearranged alpha chain gene of the human T cell receptor EMBO Journal, 1987, 6, 3307-3312.	7.8	50
505	Regulated expression of the Ren-2 gene in transgenic mice derived from parental strains carrying only the Ren-1 gene EMBO Journal, 1987, 6, 983-987.	7.8	74

#	Article	IF	Citations
506	Discrete elements within the SV40 enhancer region display different cell-specific enhancer activities EMBO Journal, 1987, 6, 1017-1025.	7.8	215
507	Studies on transvection at the bithorax complex in Drosophila melanogaster. Molecular Genetics and Genomics, 1987, 210, 557-563.	2.4	24
508	Chromatin structure and plant gene expression. Genesis, 1987, 8, 405-434.	2.1	13
509	Identification of an enhancer-like element upstream from a cell cycle dependent human H4 histone gene. Journal of Cellular Physiology, 1987, 132, 552-558.	4.1	26
510	Provision of the immunoglobulin heavy chain enhancer downstream of a test gene is sufficient to confer lymphoid-specific expression in transgenic mice. European Journal of Immunology, 1987, 17, 465-469.	2.9	38
511	Regulation of immunoglobulin gene transcription by labile represser factor(s). European Journal of Immunology, 1987, 17, 1249-1256.	2.9	16
512	Transient gene expression in untransformed lymphocytes. European Journal of Immunology, 1987, 17, 1499-1502.	2.9	20
513	Organization and expression of the Plasmodium knowlesi circumsporozoite antigen gene. Molecular and Biochemical Parasitology, 1987, 23, 233-245.	1.1	32
514	A transcription factor which binds to the enhancers of SV40, immunoglobulin heavy chain and U2 snRNA genes. Nature, 1987, 325, 268-272.	27.8	185
515	Enhancer-mediated activation of a growth-regulated promoter. FEBS Journal, 1987, 162, 333-338.	0.2	3
516	Comparison of the 5' upstream putative regulatory sequences of three members of the alpha2u-globulin gene family. FEBS Journal, 1987, 165, 521-529.	0.2	21
517	Isolation and characterization of a cDNA clone encoding testis protamine Z1 from the dog-fish Scylliorhinus caniculus. FEBS Journal, 1987, 165, 553-557.	0.2	7
518	Rat glycine methyltransferase. Complete amino acid sequence deduced from a cDNA clone and characterization of the genomic DNA. FEBS Journal, 1987, 168, 141-151.	0.2	40
519	The developmentally regulated expression of two linked myosin heavy-chain genes. FEBS Journal, 1987, 169, 79-84.	0.2	27
520	Prediction of 'hot spots' in SV40 enhancer and relation with experimental data. FEBS Journal, 1987, 170, 247-252.	0.2	35
521	A homologous in vitro system to analyze transcription of a mouse immunoglobulin mu heavy-chain gene. FEBS Journal, 1988, 172, 679-685.	0.2	6
522	Enhancer sequences and the regulation of gene transcription. FEBS Journal, 1988, 176, 485-495.	0.2	157
524	Somatic Generation of Immune Diversity (Nobel Lecture). Angewandte Chemie International Edition in English, 1988, 27, 1028-1039.	4.4	7

#	Article	IF	CITATIONS
525	Molecular analysis of the mouse class II gene, E? q. Immunogenetics, 1988, 27, 426-430.	2.4	5
526	The N-terminal region of the chicken progesterone receptor specifies target gene activation. Nature, 1988, 333, 185-188.	27.8	421
527	The expression of immunoglobulin genes. Trends in Immunology, 1988, 9, 278-281.	7.5	4
528	Somatic generation of immune diversity. In Vitro Cellular & Developmental Biology, 1988, 24, 253-265.	1.0	20
529	DNA bending induced by specific interaction of decamer binding proteins with immunoglobulin gene control sequences. Journal of Structural Biology, 1988, 101, 145-158.	0.8	4
530	Somatic generation of immune diversity. Bioscience Reports, 1988, 8, 3-26.	2.4	33
531	Identification of sequences in the long terminal repeat of avian sarcoma virus required for efficient transcription. Virology, 1988, 162, 243-247.	2.4	30
532	Structure and expression of a Manduca sexta larval cuticle gene homologous to Drosophila cuticle genes. Journal of Molecular Biology, 1988, 203, 411-423.	4.2	350
533	ldentification of an orthologous mammalian cytokeratin gene. Journal of Molecular Biology, 1988, 204, 841-856.	4.2	98
534	An Ultrabithorax protein binds sequences near its own and the Antennapedia P1 promoters. Cell, 1988, 55, 1069-1081.	28.9	193
535	A promoter of the rat insulin-like growth factor II gene consists of minimal control elements. Journal of Molecular Biology, 1988, 199, 61-81.	4.2	91
536	Regulation of SV40 early gene expression. Biochemistry and Cell Biology, 1988, 66, 567-577.	2.0	35
537	Nuclease Hypersensitive Sites in Chromatin. Annual Review of Biochemistry, 1988, 57, 159-197.	11.1	1,231
538	Redundancy of information in enhancers as a principle of mammalian transcription control. Journal of Molecular Biology, 1988, 201, 81-90.	4.2	68
539	Purification of a nuclear trans-acting factor involved in the regulated transcription of a human immunoglobulin heavy chain gene. Cell, 1988, 53, 723-730.	28.9	43
540	Anti-IgM antibodies inhibit IgM expression in lipopolysaccharide-stimulated normal murine B-cells: study of RNA metabolism and translation. Gene, 1988, 72, 209-217.	2.2	8
541	The Steroid and Thyroid Hormone Receptor Superfamily. Science, 1988, 240, 889-895.	12.6	7,368
542	Regulation of tissue-specific glycolytic isozyme genes: coordinate response to oxygen availability in myogenic cells. Canadian Journal of Zoology, 1988, 66, 1046-1058.	1.0	28

#	Article	IF	CITATIONS
544	The half-life of immunoglobulin mRNA increases during B-cell differentiation: a possible role for targeting to membrane-bound polysomes Genes and Development, 1988, 2, 1003-1011.	5.9	57
545	In vivofunctional analysis ofin vitroprotein binding sites in the immunoglobulin heavy chain enhancer. Nucleic Acids Research, 1988, 16, 3239-3253.	14.5	64
546	Identification and purification of EBP1: a HeLa cell protein that binds to a region overlapping the 'core' of the SV40 enhancer Genes and Development, 1988, 2, 991-1002.	5.9	76
547	Mouse DNA polymerase gene promoter: fine mapping and involvement of Sp1-like mouse transcription factor in its function. Nucleic Acids Research, 1988, 16, 8773-8787.	14.5	55
548	The $5\hat{a}$ \in flanking region of the gene for the Epstein-Barr virus-encoded nuclear antigen 2 contains a cell type specificcis-acting regulatory element that activates transcription in transfected B-cells. Nucleic Acids Research, 1988, 16, 8391-8410.	14.5	62
549	Genes activated in the presence of an immunoglobulin enhancer or promoter are negatively regulated by a T-lymphoma cell line Molecular and Cellular Biology, 1988, 8, 1932-1939.	2.3	58
550	Strong transcriptional activation of translocated c-myc genes occurs without a strong nearby enhancer or promoter. Nucleic Acids Research, 1988, 16, 77-96.	14.5	16
551	Erythroid specific activation of the Xenopus laevisadult \hat{l} ±-globin promoter in transient heterokaryons. Nucleic Acids Research, 1988, 16, 11027-11045.	14.5	5
552	The muscle creatine kinase gene is regulated by multiple upstream elements, including a muscle-specific enhancer Molecular and Cellular Biology, 1988, 8, 62-70.	2.3	264
553	lsotypic exclusion of gamma delta T cell receptors in transgenic mice bearing a rearranged beta-chain gene. Science, 1988, 241, 1089-1092.	12.6	63
554	Systematic binding analysis of the insulin gene transcription control region: insulin and immunoglobulin enhancers utilize similar transactivators Molecular and Cellular Biology, 1988, 8, 2620-2627.	2.3	127
555	Detection of two tissue-specific DNA-binding proteins with affinity for sites in the mouse beta-globin intervening sequence 2 Molecular and Cellular Biology, 1988, 8, 381-392.	2.3	71
556	Replication-induced stimulation of the major late promoter of adenovirus is correlated to the binding of a factor to sequences in the first intron. Nucleic Acids Research, 1988, 16, 3771-3786.	14.5	51
557	Comparison of intron-dependent and intron-independent gene expression Molecular and Cellular Biology, 1988, 8, 4395-4405.	2.3	375
558	Mutational analysis of the contribution of sequence motifs within the IgH enhancer to tissue specific transcriptional activation. Nucleic Acids Research, 1988, 16, 6085-6096.	14.5	54
559	Trans-activation of transcription, from promoters containing immunoglobulin gene octamer sequences, by myeloma cell mRNA inXenopusoocytes. Nucleic Acids Research, 1988, 16, 4903-4913.	14.5	11
560	Tissue specific sequence motifs in the enhancer of the leukaemogenic mouse retrovirus SL3-3. Nucleic Acids Research, 1988, 16, 5927-5944.	14.5	37
561	Isolation of a recombinant copy of the gene encoding C/EBP Genes and Development, 1988, 2, 786-800.	5.9	995

#	Article	IF	CITATIONS
562	Minute Virus of Mice Non-structural Protein NS-1 Is Necessary and Sufficient for Trans-activation of the Viral P39 Promoter. Journal of General Virology, 1988, 69, 2563-2573.	2.9	130
563	Octamer-binding proteins from B or HeLa cells stimulate transcription of the immunoglobulin heavy-chain promoter in vitro Genes and Development, 1988, 2, 1227-1237.	5.9	133
564	The B-cell-specific Oct-2 protein contains POU box- and homeo box-type domains Genes and Development, 1988, 2, 1570-1581.	5.9	445
565	Premature translation termination mediates triosephosphate isomerase mRNA degradation Molecular and Cellular Biology, 1988, 8, 802-813.	2.3	247
566	B-cell control region at the 5' end of a major histocompatibility complex class II gene: sequences and factors Molecular and Cellular Biology, 1988, 8, 3975-3987.	2.3	75
567	A beta-cell-specific protein binds to the two major regulatory sequences of the insulin gene enhancer Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 4228-4231.	7.1	105
568	Multiple hepatic trans-acting factors are required for in vitro transcription of the human alpha-1-antitrypsin gene Molecular and Cellular Biology, 1988, 8, 4362-4369.	2.3	61
569	Two regulatory domains flank the mouse H19 gene Molecular and Cellular Biology, 1988, 8, 4707-4715.	2.3	107
570	Differential regulation of the two glyceraldehyde-3-phosphate dehydrogenase genes during Drosophila development Molecular and Cellular Biology, 1988, 8, 5200-5205.	2.3	17
571	Expression of T-cell receptor alpha-chain genes in transgenic mice Molecular and Cellular Biology, 1988, 8, 5459-5469.	2.3	59
572	Role for DNA replication in beta-globin gene activation Molecular and Cellular Biology, 1988, 8, 1301-1308.	2.3	38
573	A conserved sequence in the T-cell receptor beta-chain promoter region Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 3551-3554.	7.1	75
574	B-cell-specific enhancer activity of conserved upstream elements of the class II major histocompatibility complex DQB gene Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 6909-6913.	7.1	46
575	Targeting of an inducible toxic phenotype in animal cells Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 7572-7576.	7.1	238
576	Transgenic mice bearing the human c-myc gene activated by an immunoglobulin enhancer: a pre-B-cell lymphoma model Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 6047-6051.	7.1	116
577	Transgenic rabbits with lymphocytic leukemia induced by the c-myc oncogene fused with the immunoglobulin heavy chain enhancer Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 3130-3134.	7.1	65
578	Localization of a repressive sequence contributing to B-cell specificity in the immunoglobulin heavy-chain enhancer Molecular and Cellular Biology, 1988, 8, 988-992.	2.3	63
579	The NF-kappa B-binding site mediates phorbol ester-inducible transcription in nonlymphoid cells Molecular and Cellular Biology, 1988, 8, 3526-3531.	2.3	91

#	Article	IF	CITATIONS
580	Transcriptional Controlling Elements in the Immunoglobulin and T Cell Receptor Loci. Advances in Immunology, 1988, 43, 235-275.	2.2	49
581	Modulation of Cellular Genes by Oncogenes. Progress in Molecular Biology and Translational Science, 1988, 35, 73-94.	1.9	4
582	Identification of upstream and intragenic regulatory elements that confer cell-type-restricted and differentiation-specific expression on the muscle creatine kinase gene Molecular and Cellular Biology, 1988, 8, 2896-2909.	2.3	281
583	The cell-specific enhancer of the mouse transthyretin (prealbumin) gene binds a common factor at one site and a liver-specific factor(s) at two other sites Molecular and Cellular Biology, 1988, 8, 81-90.	2.3	126
584	Multiple subelements within the polyomavirus enhancer function synergistically to activate DNA replication Molecular and Cellular Biology, 1988, 8, 5000-5015.	2.3	72
585	Differential protein binding in lymphocytes to a sequence in the enhancer of the mouse retrovirus SL3-3 Molecular and Cellular Biology, 1988, 8, 1625-1637.	2.3	152
586	Introns increase transcriptional efficiency in transgenic mice Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 836-840.	7.1	705
587	Identification and characterization of two functional domains within the murine heavy-chain enhancer Molecular and Cellular Biology, 1988, 8, 145-152.	2.3	96
588	Transcription of T cell receptor beta-chain genes is controlled by a downstream regulatory element EMBO Journal, 1988, 7, 745-750.	7.8	173
589	Functional redundancy in the tissue-specific enhancer of the Drosophila Sgs-4 gene EMBO Journal, 1988, 7, 2559-2567.	7.8	37
590	Tissue specific trans-acting factor interaction with proximal rat prolactin gene promoter sequences EMBO Journal, 1988, 7, 1721-1733.	7.8	28
591	Cell lineage specificity of chromatin configuration around the immunoglobulin heavy chain enhancer EMBO Journal, 1988, 7, 2393-2399.	7.8	33
592	Identification of a novel lymphoid specific octamer binding protein (OTF-2B) by proteolytic clipping bandshift assay (PCBA) EMBO Journal, 1988, 7, 4221-4229.	7.8	271
593	Purification of a NF1-like DNA-binding protein from rat liver and cloning of the corresponding cDNA EMBO Journal, 1988, 7, 3115-3123.	7.8	233
594	Two different liver-specific factors stimulate in vitro transcription from the human alpha 1-antitrypsin promoter EMBO Journal, 1988, 7, 2075-2087.	7.8	227
595	A T cell-specific enhancer is located in a DNase I-hypersensitive area at the 3′ end of the CD3-delta gene EMBO Journal, 1988, 7, 2401-2407.	7.8	80
596	Both immunoglobulin promoter and enhancer sequences are targets for suppression in myeloma-fibroblast hybrid cells EMBO Journal, 1988, 7, 3093-3098.	7.8	33
597	The t(5;14) chromosomal translocation in a case of acute lymphocytic leukemia joins the interleukin-3 gene to the immunoglobulin heavy chain gene. Blood, 1989, 73, 2081-2085.	1.4	144

#	Article	IF	CITATIONS
598	IgH enhancer-mediated deregulation of N-myc gene expression in transgenic mice: generation of lymphoid neoplasias that lack c-myc expression EMBO Journal, 1989, 8, 1121-1128.	7.8	86
599	A novel, inducible and T cell-specific enhancer located at the 3′ end of the T cell receptor alpha locus EMBO Journal, 1989, 8, 729-733.	7.8	165
600	The immunoglobulin kappa locus contains a second, stronger B-cell-specific enhancer which is located downstream of the constant region EMBO Journal, 1989, 8, 1959-1964.	7.8	201
601	The spatial and temporal expression pattern of sevenless is exclusively controlled by gene-internal elements EMBO Journal, 1989, 8, 2381-2386.	7.8	91
602	Octamer transcription factors bind to two different sequence motifs of the immunoglobulin heavy chain promoter EMBO Journal, 1989, 8, 2001-2008.	7.8	127
603	Transgenic expression of the muscle-specific intermediate filament protein desmin in nonmuscle cells Journal of Cell Biology, 1989, 108, 1009-1024.	5.2	40
604	Identification of an octamer-binding site in the mouse kappa light-chain immunoglobulin enhancer Molecular and Cellular Biology, 1989, 9, 4239-4247.	2.3	39
605	A thyroid-specific nuclear protein essential for tissue-specific expression of the thyroglobulin promoter EMBO Journal, 1989, 8, 2537-2542.	7.8	338
606	An enhancer located in a CpG-island $3\hat{a} \in \mathbb{Z}$ to the TCR/CD3-epsilon gene confers T lymphocyte-specificity to its promoter EMBO Journal, 1989, 8, 2527-2535.	7.8	58
607	A family of octamer-specific proteins present during mouse embryogenesis: evidence for germline-specific expression of an Oct factor EMBO Journal, 1989, 8, 2543-2550.	7.8	586
608	Octamer binding proteins confer transcriptional activity in early mouse embryogenesis EMBO Journal, 1989, 8, 2551-2557.	7.8	295
609	T cell tolerance to MIsa encoded antigens in T cell receptor V beta 8.1 chain transgenic mice EMBO Journal, 1989, 8, 719-727.	7.8	169
610	The Oct-2 protein binds cooperatively to adjacent octamer sites Genes and Development, 1989, 3, 1625-1638.	5.9	146
611	Lineage-specific expression of a T cell receptor variable gene promoter controlled by upstream sequences Journal of Experimental Medicine, 1989, 169, 1213-1231.	8.5	23
612	Evidence for a complex regulatory array in the first intron of the human adenosine deaminase gene Genes and Development, 1989, 3, 1384-1400.	5.9	124
613	A cis-Acting Sequence within the Rat Ribosomal DNA Enhancer Region Can Modulate RNA Polymerase II-Directed Transcription of the Metallothionein I Gene In Vitro. DNA and Cell Biology, 1989, 8, 311-320.	5.2	10
614	A developmental-specific factor binds to suppressor sites flanking the immunoglobulin heavy-chain enhancer Genes and Development, 1989, 3, 1255-1266.	5.9	113
615	In situdetection of a heat-shock regulatory element binding protein using a soluble short synthetic enhancer sequence. Nucleic Acids Research, 1989, 17, 4077-4087.	14.5	12

#	Article	IF	CITATIONS
616	Paradoxical effect of Simian virus 40 enhancer on the function of mouse DNA polymerase \hat{l}^2 gene promoter. Nucleic Acids Research, 1989, 17, 3725-3734.	14.5	5
617	An enhancer associated with the mouse immunoglobin λf gene is specific for λ light chain producing cells. Nucleic Acids Research, 1989, 17, 5307-5322.	14.5	13
618	Multiple Cis-Acting DNA Regulatory Elements Mediate Hepatic Angiotensinogen Gene Expression. Molecular Endocrinology, 1989, 3, 1022-1034.	3.7	61
619	Expression of the Cholecystokinin Gene by Cultured Human Primitive Neuroepithelioma Cell Lines*. Journal of Clinical Endocrinology and Metabolism, 1989, 69, 411-419.	3.6	22
620	Importance of introns for expression of mouse ribosomal protein gene rpL32 Molecular and Cellular Biology, 1989, 9, 2075-2082.	2.3	153
621	Long-range activation of transcription by SV40 enhancer is affected by ?inhibitory? or ?permissive? DNA sequences between enhancer and promoter. Somatic Cell and Molecular Genetics, 1989, 15, 591-603.	0.7	13
622	High-level expression of human erythropoietin cDNA in stably transfected Namalwa cells. Journal of Bioscience and Bioengineering, 1989, 68, 257-263.	0.9	2
623	Negative regulation of the hepatitis B virus pre-S1 promoter by internal DNA sequences. Virology, 1989, 170, 251-260.	2.4	22
624	Enhancer function in viral and cellular gene regulation. Biochimica Et Biophysica Acta: Reviews on Cancer, 1989, 989, 97-110.	7.4	14
625	A chromosomal basis of lymphoid malignancy in man. FEBS Journal, 1989, 185, 1-17.	0.2	40
626	Regulation of interleukin 2 gene expression: discrepancy between enhancer activity and endogenous gene expression. European Journal of Immunology, 1989, 19, 145-149.	2.9	8
627	Cell-type-specific expression of mouse DNA polymerase ?-gene is regulated by silencer elements. Journal of Cellular Physiology, 1989, 141, 431-436.	4.1	13
628	Analysis of Adh gene regulation in Drosophila: Studies using somatic transformation. Genesis, 1989, 10, 210-219.	2.1	22
629	TCR $\hat{V^2}$ genes in man and mouse and the factors that shape the linkage pattern of immune receptor genes. Trends in Immunology, 1989, 10, 14-17.	7.5	5
630	Structural alteration of the insulin-like growth factor II-gene in Wilms tumour. European Journal of Pediatrics, 1989, 148, 620-623.	2.7	22
631	Recombinant Proteins of Therapeutic Interest Expressed by Lymphoid Cell Lines Derived from Transgenic Mice. Nature Biotechnology, 1989, 7, 1049-1054.	17.5	7
632	Eukaryotic Transcriptional Regulatory Proteins. Annual Review of Biochemistry, 1989, 58, 799-839.	11.1	1,352
633	The keratin BIIIB gene family: Isolation of cDNA clones and structure of a gene and a related pseudogene. Genomics, 1989, 4, 182-191.	2.9	40

#	Article	IF	CITATIONS
634	Predisposition to lymphomagenesis in pim-1 transgenic mice: Cooperation with c-myc and N-myc in murine leukemia virus-induced tumors. Cell, 1989, 56, 673-682.	28.9	501
635	Antigen/MHC-specific T cells are preferentially exported from the thymus in the presence of their MHC ligand. Cell, 1989, 58, 1035-1046.	28.9	378
636	Murine interleukin-4 displays potent anti-tumor activity in vivo. Cell, 1989, 57, 503-512.	28.9	794
637	Characterization and Expression of the Gene-Encoding Rat Thyrotropin-Releasing Hormone (TRH). Annals of the New York Academy of Sciences, 1989, 553, 14-28.	3.8	9
638	Expression of human erythropoietin cDNA in human lymphoblastoid Namalwa cells: the inconsistency of a stable expression level with transient expression efficiency. Gene, 1989, 76, 19-26.	2.2	5
639	In vivo footprinting of a muscle specific enhancer by ligation mediated PCR. Science, 1989, 246, 780-786.	12.6	1,046
640	The rat albumin promoter is composed of six distinct positive elements within 130 nucleotides Molecular and Cellular Biology, 1989, 9, 4750-4758.	2.3	80
641	The activity of the mouse renin promoter in cells that do not normally produce renin is dependent upon the presence of a functional enhancer. FEBS Letters, 1989, 255, 241-247.	2.8	16
642	Hypothesis: The removal of VH gene downstream sequences is required for its expression in mature B cells. Molecular Immunology, 1989, 26, 721-725.	2.2	0
643	Evolutionary conservation of splice sites in sterile \hat{Cl} 4 transcripts and of immunoglobulin heavy chain (lgH) enhancer region sequences. Molecular Immunology, 1989, 26, 1007-1010.	2.2	12
644	Proteins binding to site C2 (muE3) in the immunoglobulin heavy-chain enhancer exist in multiple oligomeric forms Molecular and Cellular Biology, 1989, 9, 776-786.	2.3	46
645	A bcr-v-abl oncogene induces lymphomas in transgenic mice Molecular and Cellular Biology, 1989, 9, 2798-2805.	2.3	129
646	Transcription from a murine T-cell receptor V beta promoter depends on a conserved decamer motif similar to the cyclic AMP response element Molecular and Cellular Biology, 1989, 9, 4835-4845.	2.3	47
647	Purification and properties of the Rous sarcoma virus internal enhancer binding factor Molecular and Cellular Biology, 1989, 9, 1929-1939.	2.3	26
648	Differential extra-renal expression of the mouse renin genes. Nucleic Acids Research, 1989, 17, 3117-3128.	14.5	47
649	Dual Cis-Acting Negative Regulatory Elements Located Upstream of the Mouse DNA Polymerase \hat{l}^2 Gene1. Journal of Biochemistry, 1989, 105, 79-83.	1.7	12
650	The Xenopus laevis U2 gene distal sequence element (enhancer) is composed of four subdomains that can act independently and are partly functionally redundant Molecular and Cellular Biology, 1989, 9, 1682-1690.	2.3	24
651	Promoter upstream elements of the chicken cardiac myosin light-chain 2-A gene interact with trans-acting regulatory factors for muscle-specific transcription Molecular and Cellular Biology, 1989, 9, 2513-2525.	2.3	92

#	Article	IF	CITATIONS
652	Negative transcriptional regulatory element that functions in embryonal carcinoma cells Molecular and Cellular Biology, 1989, 9, 4032-4037.	2.3	11
653	Tissue-specific transcription of the mouse alpha-fetoprotein gene promoter is dependent on HNF-1 Molecular and Cellular Biology, 1989, 9, 4204-4212.	2.3	140
654	Identification of a yeast protein with properties similar to those of the immunoglobulin heavy-chain enhancer-binding protein NF-muE3 Molecular and Cellular Biology, 1989, 9, 4535-4540.	2.3	10
655	Developmental appearance of transcription factors that regulate liver-specific expression of the aldolase B gene Molecular and Cellular Biology, 1989, 9, 4923-4931.	2.3	65
656	Thymidine kinase obliteration: creation of transgenic mice with controlled immune deficiency Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 2698-2702.	7.1	174
657	Multiple enhancer-like sequences in the HLA-B7 gene Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 5247-5251.	7.1	36
658	Intron and upstream sequences regulate expression of the Drosophila beta 3-tubulin gene in the visceral and somatic musculature, respectively Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 3215-3218.	7.1	64
659	B-lymphoma cells process and present their endogenous immunoglobulin to major histocompatibility complex-restricted T cells Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 282-286.	7.1	216
660	New B-lymphocyte-specific enhancer-binding protein Molecular and Cellular Biology, 1989, 9, 312-320.	2.3	35
663	Topography of Oxytocin and Vasopressin Neurons in the Forebrain of <i>Equus caballus:</i> Further Support of Proposed Evolutionary Relationships for Proopiomelanocortin, Oxytocin and Vasopressin Neurons. Brain, Behavior and Evolution, 1989, 33, 193-204.	1.7	13
664	Comparison of human lymphotoxin gene expression in CHO cells directed by genomic DNA or cDNA sequences Agricultural and Biological Chemistry, 1990, 54, 2801-2809.	0.3	3
665	Functional analysis and nucleotide sequence of the promoter region of the murine hck gene Molecular and Cellular Biology, 1990, 10, 4603-4611.	2.3	20
666	Expression and secretion of aequorin as a chimeric antibody by means of a mammalian expression vector Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 2047-2051.	7.1	46
667	Complex regulation of the immunoglobulin mu heavy-chain gene enhancer: microB, a new determinant of enhancer function Molecular and Cellular Biology, 1990, 10, 3145-3154.	2.3	72
668	The immunoglobulin heavy-chain enhancer functions as the promoter for I mu sterile transcription Molecular and Cellular Biology, 1990, 10, 2619-2624.	2.3	68
669	Regulation of the human T-cell receptor alpha gene enhancer: multiple ubiquitous and T-cell-specific nuclear proteins interact with four hypomethylated enhancer elements Molecular and Cellular Biology, 1990, 10, 4720-4727.	2.3	55
670	Immunoglobulin heavy-chain enhancer is required to maintain transfected gamma 2A gene expression in a pre-B-cell line Molecular and Cellular Biology, 1990, 10, 1076-1083.	2.3	13
671	Regulation of chimeric phosphoenolpyruvate carboxykinase genes by the trans-dominant locus TSE1 Molecular and Cellular Biology, 1990, 10, 2660-2668.	2.3	11

#	Article	IF	CITATIONS
672	Interaction of a nuclear protein with a palindromic sequence of the mouse immunoglobulin lambda 2-chain gene promoter is important for its transcription Molecular and Cellular Biology, 1990, 10, 5894-5902.	2.3	2
673	A role for protein kinase C activity in interleukin-1 (IL-1) induction of IL-2 gene expression but not in IL-1 signal transduction Molecular and Cellular Biology, 1990, 10, 2731-2737.	2.3	27
674	Identification of a novel factor that interacts with an immunoglobulin heavy-chain promoter and stimulates transcription in conjunction with the lymphoid cell-specific factor OTF2 Molecular and Cellular Biology, 1990, 10, 2145-2153.	2.3	22
675	A T cell-specific transcriptional enhancer within the human T cell receptor delta locus. Science, 1990, 247, 1225-1229.	12.6	137
676	Structural Analyses of Human Developmentally Regulated Vh3 Genes. Scandinavian Journal of Immunology, 1990, 31, 257-267.	2.7	48
677	The Early Expression of Some Human Autoantibody-Associated Heavy Chain Variable Region Genes is Controlled by Specific Regulatory Elements. Scandinavian Journal of Immunology, 1990, 31, 673-678.	2.7	23
678	A second B cell-specific enhancer 3' of the immunoglobulin heavy-chain locus. Nature, 1990, 344, 165-168.	27.8	214
679	A factor known to bind to the endogenous Ig heavy chain enhancer only in lymphocytes is a ubiquitously active transcription factor. FEBS Journal, 1990, 187, 507-513.	0.2	4
680	Structural characterization of the human DNA topoisomerase I gene promoter. FEBS Journal, 1990, 194, 323-330.	0.2	38
681	Characterisation of tissue-specific trans-acting factor binding to a proximal element in the rat growth hormone gene promoter. FEBS Journal, 1990, 191, 605-615.	0.2	6
682	Identification of a third protein factor which binds to the rous sarcoma virus LTR enhancer: Possible homology with the serum response factor. Virology, 1990, 174, 204-216.	2.4	37
683	Retrovirus vector-targeted inducible expression of human \hat{l}^2 -interferon gene to B-cells. Virology, 1990, 178, 419-428.	2.4	14
684	Distinct positive and negative elements control the limited hepatocyte and choroid plexus expression of transthyretin in transgenic mice EMBO Journal, 1990, 9, 869-878.	7.8	138
685	The cell type-specific octamer transcription factor OTF-2 has two domains required for the activation of transcription EMBO Journal, 1990, 9, 1635-1643.	7.8	136
686	Separate elements control DJ and VDJ rearrangement in a transgenic recombination substrate EMBO Journal, 1990, 9, 117-125.	7.8	210
687	[40] Assembly of enhancers, promoters, and splice signals to control expression of transferred genes. Methods in Enzymology, 1990, 185, 512-527.	1.0	15
688	A highly conserved intronic sequence is involved in transcriptional regulation of the alpha $1(I)$ collagen gene Molecular Biology of the Cell, 1990, 1, 487-498.	6.5	64
689	Structure and expression of the human immunoglobulin lambda genes Journal of Experimental Medicine, 1990, 172, 609-620.	8.5	160

#	Article	IF	CITATIONS
690	TFE3: a helix-loop-helix protein that activates transcription through the immunoglobulin enhancer muE3 motif Genes and Development, 1990, 4, 167-179.	5.9	472
691	Constitutive expression of parathyroid hormone-related protein gene in human T cell leukemia virus type 1 (HTLV-1) carriers and adult T cell leukemia patients that can be trans-activated by HTLV-1 tax gene Journal of Experimental Medicine, 1990, 172, 759-765.	8.5	225
692	Regulation of transcription of the human T cell antigen receptor delta chain gene. A T lineage-specific enhancer element is located in the J delta 3-C delta intron Journal of Experimental Medicine, 1990, 171, 75-83.	8.5	53
693	Induction by HMBA and DMSO of genes introduced into mouse erythroleukemia and other cell lines by transient transfection Genes and Development, 1990, 4, 1252-1266.	5.9	27
694	A novel enhancer in the immunoglobulin lambda locus is duplicated and functionally independent of NF kappa B Genes and Development, 1990, 4, 978-992.	5.9	102
695	Regulatory elements in the introns of the human HPRT gene are necessary for its expression in embryonic stem cells Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 4299-4303.	7.1	104
696	Conservation of the primary structure, organization, and function of the human and mouse beta-globin locus-activating regions Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 7693-7697.	7.1	107
697	Structural and functional comparisons of the Drosophila virilis and Drosophila melanogaster rough genes Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 5916-5920.	7.1	41
698	From Human Autoantibodies to the Fetal Antibody Repertoire to B Cell Malignancy: It's a Small World After All. International Reviews of Immunology, 1990, 5, 239-251.	3.3	35
699	Identification of tissue specific nuclear proteins: DNA sequence and protein binding regions in the T cell receptor beta J-C intron. Nucleic Acids Research, 1990, 18, 3027-3027.	14.5	8
700	Regulation of a human neurotropic virus promoter, JCVE: identification of a novel activator domain located upstream from the 98 bp enhancer promoter region. Nucleic Acids Research, 1990, 18, 7417-7423.	14.5	30
701	Intervening sequences increase efficiency of RNA 3' processing and accumulation of cytoplasmic RNA. Nucleic Acids Research, 1990, 18, 937-947.	14.5	317
702	Position Effects on Eukaryotic Gene Expression. Annual Review of Cell Biology, 1990, 6, 679-714.	26.1	373
703	Torsional stress stabilizes extended base unpairing in suppressor sites flanking immunoglobulin heavy chain enhancer. Biochemistry, 1990, 29, 9551-9560.	2.5	137
704	The importance of the 3′-enhancer region in immunoglobulinxgene expression. Nucleic Acids Research, 1990, 18, 5609-5615.	14.5	102
705	Regulation of the immunoglobulin gene transcription. Biochimie, 1990, 72, 7-17.	2.6	21
706	Molecular structures of two human DNA topoisomerase I retrosequences. Gene, 1990, 91, 247-253.	2.2	15
707	Extinction of an immunoglobulin \hat{I}^2 promoter in cell hybrids is mediated by the octamer motif and correlates with suppression of Oct-2 expression. Cell, 1990, 61, 467-474.	28.9	7 3

#	Article	IF	CITATIONS
708	Molecular Biology, Gene Expression, and Medicine. , 1990, , 3-51.		1
709	Expression of the BNLF-1 oncogene of Epstein-Barr virus in the skin of transgenic mice induces hyperplasia and aberrant expression of keratin 6. Cell, 1990, 61, 1315-1327.	28.9	250
710	Polyomavirus-based shuttle vectors for studying mechanisms of mutagenesis in rodent cells. Mutation Research - Genetic Toxicology Testing and Biomonitoring of Environmental Or Occupational Exposure, 1990, 242, 57-65.	1.2	6
711	Structure and chromosome localization of the human eosinophil-derived neurotoxin and eosinophil cationic protein genes: Evidence for intronless coding sequences in the ribonuclease gene superfamily. Genomics, 1990, 7, 535-546.	2.9	104
712	[39] Vectors used for expression in mammalian cells. Methods in Enzymology, 1990, 185, 487-511.	1.0	175
713	Two distinct transcription factors that bind the immunoglobulin enhancer microE5/kappa 2 motif. Science, 1990, 247, 467-470.	12.6	488
714	Tissue and cell specific expression of a renin promoter-reporter gene construct in transgenic mice. Biochemical and Biophysical Research Communications, 1990, 170, 344-350.	2.1	69
715	Characterization of a putative promoter region of the human poly(ADP-ribose) polymerase gene: Structural similarity to that of the DNA polymerase \hat{l}^2 gene. Biochemical and Biophysical Research Communications, 1990, 167, 701-710.	2.1	43
716	The interaction of a c-Jun/Fos related protein factor with the U3 sequences of the mouse mammary tumor virus LTR. Biochemical and Biophysical Research Communications, 1990, 172, 348-356.	2.1	5
717	Expression of genes containing the IgH enhancer in non-lymphoid cells. Molecular Immunology, 1990, 27, 713-722.	2.2	0
718	Analysis of the expression of murine \hat{l} » genes transfected into immunocompetent cell lines. Molecular Immunology, 1990, 27, 115-127.	2.2	5
719	Importance of the CArG box in regulation of \hat{l}^2 -actin-encoding genes. Gene, 1991, 108, 211-217.	2.2	25
720	Transcription factor requirements for U2 snRNA-encoding gene activation in B lymphoid cells. Gene, 1991, 109, 297-301.	2.2	4
721	Evaluation of Lymphoid-Specific Enhancer Addition or Substitution in a Basic Retrovirus Vector. Human Gene Therapy, 1991, 2, 307-315.	2.7	22
722	Human Immunoglobulin Heavy-Chain Variable Region Genes: Organization, Polymorphism, and Expression. Advances in Immunology, 1991, 49, 1-74.	2.2	215
723	MHC Class-I Transgenic Mice. Annual Review of Immunology, 1991, 9, 297-322.	21.8	33
724	Efficient gene transfer and expression in primary B lymphocytes. Journal of Immunological Methods, 1991, 141, 53-62.	1.4	12
725	The use of transgenic animals to study the role of growth factors in endocrinology. Bailliere's Clinical Endocrinology and Metabolism, 1991, 5, 833-845.	1.0	3

#	ARTICLE	IF	Citations
726	Both Oct-1 and Oct-2A contain domains which can activate the ubiquitously expressed U2 snRNA genes EMBO Journal, 1991, 10, 2291-2296.	7.8	28
727	Chimeric mouse-human anti-carcinoma antibodies that mediate different anti-tumor cell biological activities. Human Antibodies, 1991, 2, 84-93.	1.5	11
728	Sequence variations in the 5' flanking and IVS-II regions of the G gamma- and A gamma-globin genes of beta S chromosomes with five different haplotypes. Blood, 1991, 77, 2488-2496.	1.4	100
729	Regulation and a possible stage-specific function of Oct-2 during pre-B-cell differentiation Molecular and Cellular Biology, 1991, 11, 4885-4894.	2.3	48
730	Novel protein-DNA interactions associated with increased immunoglobulin transcription in response to antigen plus interleukin-5 Molecular and Cellular Biology, 1991, 11, 5197-5205.	2.3	47
731	Coordination of immunoglobulin DJH transcription and D-to-JH rearrangement by promoter-enhancer approximation Molecular and Cellular Biology, 1991, 11, 2096-2107.	2.3	75
732	Negative regulation of globin gene expression during megakaryocytic differentiation of a human erythroleukemic cell line Molecular and Cellular Biology, 1991, 11, 3528-3536.	2.3	51
733	Positive and negative regulation of immunoglobulin gene expression by a novel B-cell-specific enhancer element Molecular and Cellular Biology, 1991, 11, 75-83.	2.3	16
734	Identification of an enhancer required for the expression of a mouse major urinary protein gene in the submaxillary gland Molecular and Cellular Biology, 1991, 11, 4244-4252.	2.3	15
735	Construction and characterisation of $3\hat{a}\in^2$ -deletion mutants of the rat prolactin gene promoter. Biochemical Society Transactions, 1991, 19, 42S-42S.	3.4	0
736	Regulation of JCV promoter function: Evidence that a pentanucleotide "silencer―repeat sequence AGGGAAGGGA down-regulates transcription of the JC virus late promoter. Virology, 1991, 180, 327-338.	2.4	50
737	Allelic exclusion of membrane but not secreted immunoglobulin in a mature B cell line. European Journal of Immunology, 1991, 21, 55-62.	2.9	6
738	Identification and functional analysis of the transcriptional enhancer of the human T cell receptor \hat{l}^2 gene. European Journal of Immunology, 1991, 21, 161-166.	2.9	21
739	A transcriptional enhancer of the mouse T cell receptor $\hat{\Gamma}$ gene locus. European Journal of Immunology, 1991, 21, 807-810.	2.9	31
740	A rearranged \hat{l} »2 light gene chain retards but does not excludex and \hat{l} »1 expression. European Journal of Immunology, 1991, 21, 2391-2395.	2.9	24
741	Expression of immunoglobulin genes in common variable immunodeficiency. Journal of Clinical Immunology, 1991, 11, 262-267.	3.8	7
742	Allotype-associated differences in concentrations of human IgG subclasses. Journal of Clinical Immunology, 1991, 11, 39-45.	3.8	37
743	Identification of transcriptional regulatory activity within the $5\hat{a} \in \mathbb{R}^2$ A-type monomer sequence of the mouse LINE-1 retroposon. Mammalian Genome, 1991, 2, 41-50.	2.2	58

#	Article	IF	CITATIONS
744	A new cAMP response element in the transcribed region of the human c-fos gene. Nucleic Acids Research, 1991, 19, 4153-4159.	14.5	38
745	Anti-IgM antibodies down modulate mu-enhancer activity and OTF2 levels in LPS-stimuulated mouse splenic B-cells. Nucleic Acids Research, 1991, 19, 5981-5989.	14.5	15
746	An intron binding protein is required for transformation ability of p53. Nucleic Acids Research, 1991, 19, 4747-4752.	14.5	41
747	DNA looping and Sp1 multimer links: a mechanism for transcriptional synergism and enhancement Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 5670-5674.	7.1	240
748	Transcription of two cytooxic cel protease genes is under the control of different regulatory elements. Nucleic Acids Research, 1991, 19, 5583-5590.	14.5	21
749	Characterization of the BCR promoter in Philadelphia chromosome-positive and -negative cell lines Molecular and Cellular Biology, 1991, 11, 1854-1860.	2.3	30
750	Calcium Phosphate Mediated Gene Transfer into Established Cell Lines., 1991, 7, 15-22.		19
751	Inhibition of Human Immunodeficiency Virus Forward and Reverse Transcription by PC6, a Natural Product from Cones of Pine Trees. AIDS Research and Human Retroviruses, 1991, 7, 349-357.	1.1	12
752	Upstream box/TATA box order is the major determinant of the direction of transcription. Nucleic Acids Research, 1991, 19, 6699-6704.	14.5	53
7 53	Comparative Analysis of Sequences at the 5′ End of the Human and Mouse Apolipoprotein B Genes. DNA and Cell Biology, 1991, 10, 329-338.	1.9	17
754	Effect of intron A from human cytomegalovirus (Towne) immediate-early gene on heterologous expression in mammalian cells. Nucleic Acids Research, 1991, 19, 3979-3986.	14.5	308
755	Complex pattern of immunoglobulin mu gene expression in normal and transgenic mice: nonoverlapping regulatory sequences govern distinct tissue specificities Genes and Development, 1991, 5, 932-943.	5.9	95
756	LEF-1, a gene encoding a lymphoid-specific protein with an HMG domain, regulates T-cell receptor alpha enhancer function [corrected]. Genes and Development, 1991, 5, 880-894.	5.9	588
757	An enhancer at the 3′ end of the mouse immunoglobulin heavy chain locus. Nucleic Acids Research, 1991, 19, 933-937.	14.5	113
758	mRNA transcripts initiating within the human immunoglobulin mu heavy chain enhancer region contain a non-translatable exon and are extremely heterogeneous at the $5a \in 2$ end. Nucleic Acids Research, 1991, 19, 2427-2433.	14.5	30
7 59	Molecular cloning and structural analysis of mouse gene and pseudogenes for proliferating cell nuclear antigen. Nucleic Acids Research, 1991, 19, 2403-2410.	14.5	7 5
760	Structural and functional analysis of a polyoma-related mammalian plasmid (L factor): the enhancer activity and plasmid establishment. Nucleic Acids Research, 1991, 19, 3633-3639.	14.5	4
761	Functional modularity in the SP6xpromoter. Nucleic Acids Research, 1991, 19, 4347-4354.	14.5	20

#	Article	IF	CITATIONS
762	Promoters with the octamer DNA motif (ATGCAAAT) can be ubiquitous or cell type-specific depending on binding affinity of the octamer site and Oct-factor concentration. Nucleic Acids Research, 1991, 19, 237-242.	14.5	94
763	Structure, expression, and regulation of the murine renin genes Hypertension, 1991, 18, 446-457.	2.7	115
764	Inhibition of the activation of heat shock factor in vivo and in vitro by flavonoids Molecular and Cellular Biology, 1992, 12, 3490-3498.	2.3	207
765	Identification of USF as the ubiquitous murine factor that binds to and stimulates transcription from the immunoglobulin î»2 chain promoter. Nucleic Acids Research, 1992, 20, 287-293.	14.5	25
766	Activation of the mouse DNA polymerase \hat{l}^2 gene promoter by adenovirus type 12 E1A proteins. Nucleic Acids Research, 1992, 20, 2321-2325.	14.5	7
767	Functional analysis of defined mutations in the immunoglobulin heavy-chain enhancer in transgenic mice. Nucleic Acids Research, 1992, 20, 1503-1509.	14.5	24
768	Heparin inhibits collagenase gene expression mediated by phorbol ester-responsive element in primate arterial smooth muscle cells Circulation Research, 1992, 70, 1062-1069.	4.5	57
769	Regulated tissue- and cell-specific expression of the human renin gene in transgenic mice Circulation Research, 1992, 70, 1070-1079.	4.5	97
770	Intron requirement for expression of the human purine nucleoside phosphorylase gene. Nucleic Acids Research, 1992, 20, 3191-3198.	14.5	76
771	An embryonically expressed gene is a target for c-Myc regulation via the c-Myc-binding sequence Genes and Development, 1992, 6, 2513-2523.	5.9	139
772	Regulation of Immunoglobulin Gene Transcription. International Review of Cytology, 1992, 133, 121-149.	6.2	42
773	cis-acting elements involved in the alternative translation initiation process of human basic fibroblast growth factor mRNA Molecular and Cellular Biology, 1992, 12, 4796-4805.	2.3	75
774	Fish immunoglobulins and the genes that encode them. Annual Review of Fish Diseases, 1992, 2, 201-221.	1.0	136
775	Variable breakpoints in Burkitt lymphoma cells with chromosomal t(8; 14) translocation separate c-myc and the IgH locus up to several hundred kb. Human Molecular Genetics, 1992, 1, 625-632.	2.9	100
776	DNA binding sites 5′ of the IgG1 switch region comprising IL4 inducibility and B cell specificity. Molecular Immunology, 1992, 29, 1265-1272.	2.2	8
777	Organization of immunoglobulin heavy chain constant and joining region genes in the channel catfish. Molecular Immunology, 1992, 29, 151-159.	2.2	38
778	Influence of transfected SV40 early region on growth and differentiation of human endothelial cells. Journal of Biotechnology, 1992, 25, 349-356.	3.8	15
779	A position- and orientation-dependent element in the first intron is required for expression of the mouse hprt gene in embryonic stem cells. Gene, 1992, 122, 289-296.	2.2	25

#	Article	IF	CITATIONS
780	Insulin-responsive tyrosine aminotransferase transcription requires multiple promoter regions. Biochemical and Biophysical Research Communications, 1992, 187, 778-782.	2.1	5
781	Insulin-mediated inhibition of the induction of tyrosine aminotransferase by dexamethasone. Archives of Biochemistry and Biophysics, 1992, 298, 522-526.	3.0	5
782	Expression of heat shock-regulated human growth hormone genes containing or lacking introns by NIH-3T3 and wish cell lines. Cell Biology and Toxicology, 1992, 8, 139-56.	5. 3	3
783	Activation of immunoglobulin control elements in trasgenic mice. Immunogenetics, 1992, 35, 24-32.	2.4	9
784	Activation of the Mouse Proliferating Cell Nuclear Antigen Gene Promoter by Adenovirus Type 12 E1A Proteins. Japanese Journal of Cancer Research, 1992, 83, 609-617.	1.7	17
785	Historical perspective of molecular biology and the role of the cardiologist. Current Problems in Cardiology, 1992, 17, 9-72.	2.4	1
786	High-level expression of a human immunoglobulin \hat{I}^31 transgene depends on switch region sequences. European Journal of Immunology, 1992, 22, 1185-1191.	2.9	21
787	Somatic Generation of Immune Diversity. Scandinavian Journal of Immunology, 1993, 38, 305-319.	2.7	14
788	The promoter region of the human type-I-DNA-topoisomerase gene. Protein-binding sites and sequences involved in transcriptional regulation. FEBS Journal, 1993, 217, 813-822.	0.2	24
789	POU domain transcription factors. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1993, 1173, 1-21.	2.4	228
790	Cloning, expression and characterization of a murine-human chimeric antibody with specificity for pre-S2 surface antigen of hepatitis B virus. Molecular Immunology, 1993, 30, 1647-1654.	2.2	17
791	Structure of the gene encoding the mouse 47-kDa heat-shock protein (HSP47). Gene, 1993, 126, 187-193.	2.2	44
792	Organisation of the ovine immunoglobulin Cϵ gene locus: evidence for a deletion 5′ of the gene. Veterinary Immunology and Immunopathology, 1993, 39, 381-393.	1.2	5
793	Elongation factor SII-dependent transcription by RNA polymerase II through a sequence-specific DNA-binding protein Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 1917-1921.	7.1	104
794	IP-10, a -C-X-C- chemokine, elicits a potent thymus-dependent antitumor response in vivo Journal of Experimental Medicine, 1993, 178, 1057-1065.	8.5	386
7 95	Stimulation of gene expression by introns: conversion of an inhibitory intron to a stimulatory intron by alteration of the splice donor sequence. Nucleic Acids Research, 1993, 21, 5901-5908.	14.5	37
796	Inhibition of Gene Expression by Steroid Hormone Receptors <i>Via</i> a Negative Glucocorticoid Response Element: Evidence for the Involvement of DNA-Binding and Agonistic Effects of the Antiglucocorticoid/Antiprogestin RU486. DNA and Cell Biology, 1993, 12, 695-702.	1.9	52
797	The immunoglobulin mu enhancer core establishes local factor access in nuclear chromatin independent of transcriptional stimulation Genes and Development, 1993, 7, 2016-2032.	5.9	106

#	Article	IF	CITATIONS
798	A myelin proteolipid protein-LacZ fusion protein is developmentally regulated and targeted to the myelin membrane in transgenic mice Journal of Cell Biology, 1993, 123, 443-454.	5.2	115
799	Transforming growth factor beta and cyclosporin A inhibit the inducible activity of the interleukin-2 gene in T cells through a noncanonical octamer-binding site Molecular and Cellular Biology, 1993, 13, 1155-1162.	2.3	135
800	The Concept of the Gene: Short History and Present Status. Quarterly Review of Biology, 1993, 68, 173-223.	0.1	166
801	The Design of Intron for Gene Expression in Saccharomyces cerevisiae Nippon Nogeikagaku Kaishi, 1993, 67, 853-856.	0.0	0
802	Pi, a pre-B-cell-specific enhancer element in the immunoglobulin heavy-chain enhancer Molecular and Cellular Biology, 1993, 13, 5957-5969.	2.3	33
803	E2A expression, nuclear localization, and in vivo formation of DNA- and non-DNA-binding species during B-cell development Molecular and Cellular Biology, 1993, 13, 7321-7333.	2.3	70
804	PU.1 is a component of a multiprotein complex which binds an essential site in the murine immunoglobulin lambda 2-4 enhancer Molecular and Cellular Biology, 1993, 13, 6452-6461.	2.3	184
805	The immunoglobulin heavy chain locus contains another B-cell-specific 3' enhancer close to the alpha constant region Molecular and Cellular Biology, 1993, 13, 1547-1553.	2.3	85
806	Interspersion of an unusual GCN4 activation site with a complex transcriptional repression site in Ty2 elements of Saccharomyces cerevisiae Molecular and Cellular Biology, 1993, 13, 2091-2103.	2.3	18
807	NF-HB (BSAP) is a repressor of the murine immunoglobulin heavy-chain 3' alpha enhancer at early stages of B-cell differentiation Molecular and Cellular Biology, 1993, 13, 3611-3622.	2.3	137
808	Elements in the immunoglobulin heavy-chain enhancer directly regulate simian virus 40 ori-dependent DNA replication Molecular and Cellular Biology, 1993, 13, 5629-5636.	2.3	10
809	Mutations of the intronic lgH enhancer and its flanking sequences differentially affect accessibility of the JH locus EMBO Journal, 1993, 12, 4635-4645.	7.8	170
810	V(D)J recombination in B cells is impaired but not blocked by targeted deletion of the immunoglobulin heavy chain intron enhancer EMBO Journal, 1993, 12, 2321-2327.	7.8	196
811	Goals for signal transduction pathways: linking up with transcriptional regulation EMBO Journal, 1994, 13, 4717-4728.	7.8	54
812	Sequences affecting the $V(D)$ J recombinational activity of the lgH intronic enhancer in a transgenic substrate. Nucleic Acids Research, 1994, 22, 792-798.	14.5	20
813	Cellular distribution of human leucocyte adhesion molecule ICAM-3 Journal of Clinical Pathology, 1994, 47, 143-147.	2.0	29
814	Different Potential of Cellular and Viral Activators of Transcription Revealed in Oocytes and Early Embryos of <i>Xenopus laevis </i> Biological Chemistry Hoppe-Seyler, 1994, 375, 105-112.	1.4	15
815	Short Introns Interrupting the Oct-2 POU Domain May Prevent Recombination between POU Family Genes without Interfering with Potential POU Domain †Shuffling' in Evolution. Biological Chemistry Hoppe-Seyler, 1994, 375, 675-684.	1.4	21

#	Article	IF	CITATIONS
816	Analysis of the imperfect octamer-containing human immunoglobulin VH6 gene promoter. Nucleic Acids Research, 1994, 22, 850-860.	14.5	5
817	Specific combinations of human serum albumin introns direct high level expression of albumin in transfected COS cells and in the milk of transgenic mice. Transgenic Research, 1994, 3, 365-375.	2.4	29
818	Construction by one-step gene replacement of Trichoderma reesei strains that produce the glucoamylase P of Hormoconis resinae. Current Genetics, 1994, 26, 422-429.	1.7	7
819	Lymphocyte expression in transgenic trout by mouse immunoglobulin promoter/enhancer. Immunogenetics, 1994, 40, 1-8.	2.4	15
820	Human HE2 (?B) and ?A motifs show the same function as whole IgH intronic enhancer in transgenic mice. Molecular and Cellular Biochemistry, 1994, 137, 33-37.	3.1	2
821	The anti-inflammatory activity of glucocorticoids. Molecular Biology Reports, 1994, 19, 81-88.	2.3	31
822	A second promoter and enhancer element within the immunoglobulin heavy chain locus. European Journal of Immunology, 1994, 24, 817-821.	2.9	42
823	Spi-1/PU.1: an oncogene of the Ets family. Biochimica Et Biophysica Acta: Reviews on Cancer, 1994, 1198, 149-163.	7.4	49
824	Cloning, nucleotide sequence and expression of rat heat inducible hsp70 gene. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1994, 1219, 64-72.	2.4	28
825	Differential effect of p53 on the promoters of mouse DNA polymerase beta gene and proliferating-cell-nuclear-antigen gene. FEBS Journal, 1994, 221, 227-237.	0.2	36
826	Positive transcriptional control elements within the SP6 \hat{I}^{0} promoter decamer 3' flanking sequence. Molecular Immunology, 1994, 31, 1005-1016.	2.2	13
827	Dependence of enhancer-mediated transcription of the immunoglobulin mu gene on nuclear matrix attachment regions. Science, 1994, 265, 1221-1225.	12.6	215
828	Evidence for a cell-specific negative regulatory element in the first intron of the gene for bovine elastin. Biochemical Journal, 1994, 300, 147-152.	3.7	14
830	Alternative 5' splice site selection induced by heat shock Molecular and Cellular Biology, 1994, 14, 567-575.	2.3	55
831	Functional analysis of the V gamma 3 promoter of the murine gamma delta T-cell receptor Molecular and Cellular Biology, 1994, 14, 803-814.	2.3	13
832	Stably integrated mouse mammary tumor virus long terminal repeat DNA requires the octamer motifs for basal promoter activity Molecular and Cellular Biology, 1994, 14, 1191-1203.	2.3	35
833	Pan/E2A expression precedes immunoglobulin heavy-chain expression during B lymphopoiesis in nontransformed cells, and Pan/E2A proteins are not detected in myeloid cells Molecular and Cellular Biology, 1994, 14, 4087-4096.	2.3	22
834	Pentadecamer-Binding Proteins: Definition of Two Independent Protein-Binding Sites Needed for Functional Activity. Molecular and Cellular Biology, 1995, 15, 1343-1352.	2.3	18

#	Article	IF	CITATIONS
835	Stimulation of \ddot{l}^{\ddagger} transcription by a decamer-dependent, synergistic mechanism. European Journal of Immunology, 1995, 25, 298-301.	2.9	15
836	B-cell-specific demethylation of BTK, the defective gene in X-linked agammaglobulinemia. Immunogenetics, 1995, 42, 129-35.	2.4	6
837	RNA polymerase II C-terminal domain required for enhancer-driven transcription. Nature, 1995, 374, 660-662.	27.8	152
838	Differential promoter activity in benign and malignant human cells of skin origin*. Experimental Dermatology, 1995, 4, 317-321.	2.9	1
839	Genetically engineered antibodies and their application to brain delivery. Advanced Drug Delivery Reviews, 1995, 15, 147-175.	13.7	8
840	Flanking and Intragenic Sequences Regulating the Expression of the Rabbit \hat{l}_{\pm} -Globin Gene. Journal of Biological Chemistry, 1995, 270, 3965-3973.	3.4	16
841	Journey to the surface of the cell: Fos regulation and the SRE EMBO Journal, 1995, 14, 4905-4913.	7.8	349
842	Immunoglobulin gene transcription ceases upon deletion of a distant enhancer EMBO Journal, 1995, 14, 6229-6238.	7.8	68
843	Random activation of a transgene under the control of a hybrid hCD2 locus control region/lg enhancer regulatory element EMBO Journal, 1995, 14, 575-584.	7.8	48
844	Targeting of adenovirus E1A and E4-ORF3 proteins to nuclear matrix-associated PML bodies Journal of Cell Biology, 1995, 131, 45-56.	5.2	271
845	A Sensitive <i>lacZ < /i>-Based Expression Vector for Analyzing Transcriptional Control Elements in Eukaryotic Cells. DNA and Cell Biology, 1995, 14, 635-642.</i>	1.9	22
846	Pip, a novel IRF family member, is a lymphoid-specific, PU.1-dependent transcriptional activator Genes and Development, 1995, 9, 1377-1387.	5.9	416
847	Transcriptional Regulation of the Rat Insulin-like Growth Factor-I Gene Involves Metabolism-dependent Binding of Nuclear Proteins to a Downstream Region. Journal of Biological Chemistry, 1995, 270, 24917-24922.	3.4	22
848	The immunoglobulin heavy-chain matrix-associating regions are bound by Bright: a B cell-specific trans-activator that describes a new DNA-binding protein family Genes and Development, 1995, 9, 3067-3082.	5.9	235
849	Combinatorial regulation of transcription II: the immunoglobulin \hat{l} heavy chain gene. Immunity, 1995, 2, 427-438.	14.3	114
850	Real-time analysis of Oct protein-octamer interaction and transcription complex assembly. Molecular Immunology, 1995, 32, 1429-1442.	2.2	6
851	Nuclear transcription factor Oct-1 binds to the $5\hat{a}\in^2$ -upstream region of CYP1A1 and negatively regulates its expression. International Journal of Biochemistry and Cell Biology, 1996, 28, 217-227.	2.8	19
852	Identification and functional characterization of a highly conserved sequence in the intron of the kappa light chain gene. Molecular Immunology, 1996, 33, 973-988.	2.2	0

#	Article	IF	CITATIONS
854	Gene-targeted deletion and replacement mutations of the T-cell receptor beta-chain enhancer: the role of enhancer elements in controlling $V(D)$ J recombination accessibility Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 7871-7876.	7.1	155
855	Lessons learned, promises kept: a biologist's eye view of the Genome Project Genome Research, 1996, 6, 773-780.	5.5	15
856	Deregulation of PAX-5 by translocation of the Emu enhancer of the IgH locus adjacent to two alternative PAX-5 promoters in a diffuse large-cell lymphoma Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 6129-6134.	7.1	163
857	Enhancers of hypermutation. Immunogenetics, 1996, 45, 59-64.	2.4	32
858	Early Bâ€Cell Factor (EBF) Downâ€Regulates Immunoglobulin Heavy Chain Intron Enhancer Function in a Plasmacytoma Cell Line. Scandinavian Journal of Immunology, 1996, 44, 89-92.	2.7	9
859	ELF-1 Interacts with and Transactivates the IgH Enhancer π Site. Journal of Biological Chemistry, 1996, 271, 26007-26012.	3.4	20
861	Chapter 18 Transgenic regulation in laboratory Animals. Principles of Medical Biology, 1996, 5, 377-401.	0.1	0
862	ACCESSIBILITY CONTROL OF ANTIGEN-RECEPTOR VARIABLE-REGION GENE ASSEMBLY: Role ofcis-Acting Elements. Annual Review of Immunology, 1996, 14, 459-481.	21.8	287
863	Chromatin Domains and Prediction of MAR Sequences. International Review of Cytology, 1996, 162A, 279-388.	6.2	186
864	Cellular and Molecular Analysis of Lymphoid Development Using RAG-Deficient Mice. International Reviews of Immunology, 1996, 13, 257-288.	3.3	20
865	Polarized Expression of GABA Transporters in Madin-Darby Canine Kidney Cells and Cultured Hippocampal Neurons. Journal of Biological Chemistry, 1996, 271, 6917-6924.	3.4	54
866	V(D)J recombination frequency is affected by the sequence interposed between a pair of recombination signals: sequence comparison reveals a putative recombinational enhancer element. Nucleic Acids Research, 1997, 25, 2303-2310.	14.5	6
867	Specific Deactivation of the Mouse Mammary Tumor Virus Long Terminal Repeat Promoter upon Continuous Hormone Treatment. Journal of Biological Chemistry, 1997, 272, 21803-21810.	3.4	7
868	Cysteine 50 of the POU H domain determines the range of targets recognized by POU proteins. Nucleic Acids Research, 1997, 25, 2847-2853.	14.5	22
869	A Transgenic Marker for Mouse B Lymphoid Precursors. Journal of Experimental Medicine, 1997, 185, 653-662.	8.5	52
870	Somatic Transgene Immunization with DNA Encoding an Immunoglobulin Heavy Chain. DNA and Cell Biology, 1997, 16, 611-625.	1.9	35
871	Expression of the (Recombinant) Endogenous Immunoglobulin Heavy-Chain Locus Requires the Intronic Matrix Attachment Regions. Molecular and Cellular Biology, 1997, 17, 2658-2668.	2.3	37
872	A Conserved Tissue-Specific Structure at a Human T-Cell Receptor \hat{l}^2 -Chain Core Promoter. Molecular and Cellular Biology, 1997, 17, 4220-4229.	2.3	60

#	Article	IF	CITATIONS
873	CpG Islands from the α-Globin Gene Cluster Increase Gene Expression in an Integration-Dependent Manner. Molecular and Cellular Biology, 1997, 17, 5856-5866.	2.3	16
874	Organisation of regulatory elements in two closely spaced Drosophila genes with common expression characteristics. Mechanisms of Development, 1997, 68, 101-113.	1.7	8
875	Evaluation of novel control elements by construction of eukaryotic expression vectors. Gene, 1997, 188, 191-198.	2.2	6
876	In vivo role of B lymphocytes in somatic transgene immunization. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 6352-6357.	7.1	30
877	Involvement of Stat3 in interleukin-6-induced IgM production in a human B-cell line. Immunology, 1997, 90, 350-357.	4.4	19
878	Increased transcription of the \hat{El} 4-myc transgene and mRNA stabilisation produce only a modest elevation in Myc protein. Oncogene, 1997, 14, 2735-2739.	5.9	6
879	Enhancer activity in the 5′ untranslated region of the H2-Eb gene. Immunogenetics, 1997, 45, 432-435.	2.4	2
880	Tissue specific and vitamin D responsive gene expression in bone. Molecular Biology Reports, 1998, 25, 45-61.	2.3	18
881	Gastrin induces phosphorylation of elF4E binding protein 1 and translation initiation of ornithine decarboxylase mRNA. Oncogene, 1998, 16, 2219-2227.	5.9	35
882	DNA immunization inrelB-deficient mice discloses a role for dendritic cells in IgM  →   lgG1 swi European Journal of Immunology, 1998, 28, 516-524.	tchin vivo. 2.9	25
883	Expression of VEGF in routinely fixed material using a new monoclonal., 1998, 186, 313-318.		65
884	Simian virus 40 as a vector: recombinant viruses expressing individual polyoma T antigens. Virus Research, 1998, 54, 133-145.	2.2	0
885	Locus control regions, chromatin activation and transcription. Current Opinion in Cell Biology, 1998, 10, 361-365.	5.4	125
886	Lymphoid-specific transcription mediated by the conserved octamer site: Who is doing what?. Seminars in Immunology, 1998, 10, 155-163.	5.6	67
887	Characteristics of the Intron Involvement in the Mitogen-induced Expression of Zfp-36. Journal of Biological Chemistry, 1998, 273, 506-517.	3.4	44
888	Plural Immunoglobulin Synthesis in a Single Cell: An Ultrastructural Study of Two Cases with Three M-proteins. Ultrastructural Pathology, 1998, 22, 421-429.	0.9	4
889	Functional characterization of transcriptional regulatory elements in the upstream region and intron 1 of the human S6 ribosomal protein gene. Biochemical Journal, 1998, 336, 327-335.	3.7	29
890	The Ig mutator is dependent on the presence, position, and orientation of the large intron enhancer. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 2396-2399.	7.1	46

#	Article	IF	CITATIONS
891	Production of Transgenic Rodents by the Microinjection of Cloned DNA into Fertilized One-Celled Eggs., 1999, 97, 61-100.		3
892	The Ig heavy chain intronic enhancer core region is necessary and sufficient to promote efficient class switch recombination. International Immunology, 1999, 11, 1709-1713.	4.0	38
893	Recombination and transcription of the endogenous Ig heavy chain locus is effected by the Ig heavy chain intronic enhancer core region in the absence of the matrix attachment regions. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 1526-1531.	7.1	82
894	Stimulation of Tat-associated kinase-independent transcriptional elongation from the human immunodeficiency virus type-1 long terminal repeat by a cellular enhancer. EMBO Journal, 1999, 18, 1378-1386.	7.8	23
895	The immunoglobulin lambda light chain enhancer consists of three modules which synergize in activation of transcription. European Journal of Immunology, 1999, 29, 713-724.	2.9	17
896	Expression of an immunoglobulin heavy chain transgene in macrophage as well as lymphocyte lineagesin vivo. European Journal of Immunology, 1999, 29, 1219-1227.	2.9	2
897	Catfish Oct2 binding affinity and functional preference for octamer motifs, and interaction with OBF-1. Developmental and Comparative Immunology, 1999, 23, 199-211.	2.3	21
898	Cux/CDP Homeoprotein Is a Component of NF-νNR and Represses the Immunoglobulin Heavy Chain Intronic Enhancer by Antagonizing the Bright Transcription Activator. Molecular and Cellular Biology, 1999, 19, 284-295.	2.3	76
900	The 3′ IgH regulatory region: A complex structure in a search for a function. Advances in Immunology, 2000, 75, 317-345.	2.2	90
901	Nuclear localization and transactivating capacities of the papillary renal cell carcinoma-associated TFE3 and PRCC (fusion) proteins. Oncogene, 2000, 19, 69-74.	5.9	75
902	A Single 3′α hs1,2 Enhancer in the Rabbit IgH Locus. Journal of Immunology, 2000, 165, 6400-6405.	0.8	12
903	Role of OCA-B in 3′-IgH Enhancer Function. Journal of Immunology, 2000, 164, 5306-5312.	0.8	50
904	Regulation of Germline Promoters by the Two Human Ig Heavy Chain $3\hat{a}\in^2\hat{I}_\pm$ Enhancers. Journal of Immunology, 2000, 164, 6380-6386.	0.8	28
905	An Upstream Oct-1- and Oct-2-Binding Silencer GovernsB29(\lg^2) Gene Expression. Journal of Immunology, 2000, 164, 2550-2556.	0.8	29
906	Structure and expression of the human p68 RNA helicase gene. Nucleic Acids Research, 2000, 28, 932-939.	14.5	31
907	Production of Transgenic Rodents by the Microinjection of Cloned DNA into Fertilized One-Cell Eggs. Molecular Biotechnology, 2001, 17, 151-182.	2.4	16
908	A Pivotal Role for DNase I-Sensitive Regions 3b and/or 4 in the Induction of Somatic Hypermutation of IgH Genes. Journal of Immunology, 2001, 167, 811-820.	0.8	35
909	HS1,2 Enhancer Regulation of Germline ε and γ2b Promoters in Murine B Lymphocytes: Evidence for Specific Promoter-Enhancer Interactions. Journal of Immunology, 2001, 167, 3257-3265.	0.8	49

#	Article	IF	CITATIONS
910	Studies on CD4 T Cell Immunity Using Somatic Transgene Immunization. International Reviews of Immunology, 2001, 20, 613-625.	3.3	1
911	Deletional analyses reveal an essential role for the hs3b/hs4 lgH $3\hat{a}\in^2$ enhancer pair in an lg-secreting but not an earlier-stage B cell line. International Immunology, 2001, 13, 1003-1012.	4.0	31
912	Transcriptional Activation by a Matrix Associating Region-binding Protein. Journal of Biological Chemistry, 2001, 276, 21325-21330.	3 . 4	30
913	Historical Development of the Concept of the Gene. Journal of Medicine and Philosophy, 2002, 27, 257-286.	0.8	53
914	GSK-3 parameters in lymphocytes of schizophrenic patients. Psychiatry Research, 2002, 112, 51-57.	3.3	30
915	Myeloma expression systems. Journal of Immunological Methods, 2002, 261, 1-20.	1.4	64
916	The modulator is a constitutive enhancer of a developmentally regulated sea urchin histone H2A gene. BioEssays, 2002, 24, 850-857.	2.5	7
917	lgH Intronic Enhancer Element HE2 ($\hat{l}^{1}\!/\!4$ B) Functions as a cis-Activator in Choroid Plexus Cells at the Cellular Level as well as in Transgenic Mice. Journal of Neurochemistry, 2002, 64, 961-966.	3.9	11
918	Distinct host range of influenza h3n2 virus isolates in vero and mdck cells is determined by cell specific glycosylation pattern. Virology, 2003, 307, 90-97.	2.4	55
919	Transgenic studies on the regulation of the anterior pituitary gland function by the hypothalamus. Frontiers in Neuroendocrinology, 2003, 24, 11-26.	5. 2	10
920	Epstein-Barr virus nuclear antigen-1 and Myc cooperate in lymphomagenesis. International Journal of Cancer, 2003, 106, 388-395.	5.1	37
921	In Vivo Gene Transfer Studies on the Regulation and Function of the Vasopressin and Oxytocin Genes. Journal of Neuroendocrinology, 2003, 15, 109-125.	2.6	38
922	Lentivirus Vectors Incorporating the Immunoglobulin Heavy Chain Enhancer and Matrix Attachment Regions Provide Position-Independent Expression in B Lymphocytes. Journal of Virology, 2003, 77, 7341-7351.	3.4	40
923	Selective Regulation of Mature IgG1 Transcription by CD86 and \hat{I}^2 2-Adrenergic Receptor Stimulation. Journal of Immunology, 2003, 170, 5143-5151.	0.8	74
924	Transcription of Immunoglobulin Genes. , 2004, , 83-100.		3
925	Combinatorial Control of DNase I-hypersensitive Site Formation and Erasure by Immunoglobulin Heavy Chain Enhancer-binding Proteins. Journal of Biological Chemistry, 2004, 279, 7331-7338.	3.4	6
926	Regulation of Immunoglobulin Promoter Activity by TFII-I Class Transcription Factors. Journal of Biological Chemistry, 2004, 279, 5460-5469.	3.4	37
927	The recurrent translocation t(14;20)(q32;q12) in multiple myeloma results in aberrant expression of MAFB: a molecular and genetic analysis of the chromosomal breakpoint. British Journal of Haematology, 2004, 126, 355-363.	2.5	45

#	Article	IF	CITATIONS
928	How I became one of the fathers of a superfamily. Nature Medicine, 2004, 10, 1027-1031.	30.7	29
929	Induction of human IgM and IgG anti-GM1 antibodies in transgenic mice in response to lipopolysaccharides from Campylobacter jejuni. Journal of Neuroimmunology, 2004, 146, 63-75.	2.3	14
931	Hypothesis: Biological role for J intronic matrix attachment regions in the molecular mechanism of antigenâ€driven somatic hypermutation. Immunology and Cell Biology, 2005, 83, 383-391.	2.3	4
932	Organization and Expression of Genes Encoding IgA Heavy Chain, Polymeric Ig Receptor, and J Chain. , 2005, , 183-194.		2
933	DNA looping induced by a transcriptional enhancer in vivo. Nucleic Acids Research, 2005, 33, 3743-3750.	14.5	73
934	Establishment of human fibroma cell lines from a MEN1 patient by introduction of either hTERT or SV40 early region. International Journal of Oncology, 2005, 26, 961-70.	3.3	12
935	Enhancer., 2006,, 493-500.		0
936	Transcriptional Regulatory Elements in the Human Genome. Annual Review of Genomics and Human Genetics, 2006, 7, 29-59.	6.2	724
937	MECHANISM AND CONTROL OF V(D)J RECOMBINATION AT THE IMMUNOGLOBULIN HEAVY CHAIN LOCUS. Annual Review of Immunology, 2006, 24, 541-570.	21.8	502
938	ELISA., 2006,, 490-490.		0
939	Biased dA/dT somatic hypermutation as regulated by the heavy chain intronic iEμ enhancer and 3′Eα enhancers in human lymphoblastoid B cells. Molecular Immunology, 2006, 43, 1817-1826.	2.2	11
940	High levels of protein expression using different mammalian CMV promoters in several cell lines. Protein Expression and Purification, 2006, 45, 115-124.	1.3	73
941	Hypothesis: A biological role for germline transcription in the mechanism of V(D)J recombination – implications for initiation of allelic exclusion. Immunology and Cell Biology, 2006, 84, 396-403.	2.3	1
942	Mechanism of Action of a Distal NF-κB-Dependent Enhancer. Molecular and Cellular Biology, 2006, 26, 5759-5770.	2.3	81
943	Critical roles of the immunoglobulin intronic enhancers in maintaining the sequential rearrangement of IgH and Igk loci. Journal of Experimental Medicine, 2006, 203, 1721-1732.	8.5	45
944	Extracellular Matrix. , 2006, , 543-547.		0
945	In vitro evaluation of cancer-specific NF-κB-CEA enhancer–promoter system for 5-fluorouracil prodrug gene therapy in colon cancer cell lines. British Journal of Cancer, 2007, 97, 745-754.	6.4	15
946	Transcription of a Productively Rearranged Ig VDJCα Does Not Require the Presence of HS4 in the <i>lgh</i> 3′ Regulatory Region. Journal of Immunology, 2007, 178, 6297-6306.	0.8	9

#	Article	IF	CITATIONS
947	Conserved elements within first intron of aquaporin-5 (Aqp5) function as transcriptional enhancers. Biochemical and Biophysical Research Communications, 2007, 356, 26-31.	2.1	7
948	Enhancer and promoter activity in the JH to IGHM intron of the Pekin duck, Anas platyrhynchos. Developmental and Comparative Immunology, 2007, 31, 286-295.	2.3	2
949	Shedding light on developmental gene regulation through the lens. Development Growth and Differentiation, 2008, 50, S57-69.	1.5	8
950	Chapter 1 Cisâ€Regulatory Elements and Epigenetic Changes Control Genomic Rearrangements of the IgH Locus. Advances in Immunology, 2008, 99, 1-32.	2.2	61
951	Enforced Expression of the Transcriptional Coactivator OBF1 Impairs B Cell Differentiation at the Earliest Stage of Development. PLoS ONE, 2008, 3, e4007.	2.5	18
952	A role for the IgH intronic enhancer $E\hat{l}$ in enforcing allelic exclusion. Journal of Experimental Medicine, 2009, 206, 153-167.	8.5	15
953	Role of Defective Oct-2 and OCA-B Expression in Immunoglobulin Production and Kaposi's Sarcoma-Associated Herpesvirus Lytic Reactivation in Primary Effusion Lymphoma. Journal of Virology, 2009, 83, 4308-4315.	3.4	13
954	Small DNA tumour viruses and their contributions to our understanding of transcription control. Virology, 2009, 384, 369-374.	2.4	12
955	Long Noncoding RNAs as Enhancers of Gene Expression. Cold Spring Harbor Symposia on Quantitative Biology, 2010, 75, 325-331.	1.1	72
956	B cell–specific lentiviral gene therapy leads to sustained B-cell functional recovery in a murine model of X-linked agammaglobulinemia. Blood, 2010, 115, 2146-2155.	1.4	62
957	Transcriptional Enhancers in Animal Development and Evolution. Current Biology, 2010, 20, R754-R763.	3.9	403
958	The IgH 3′ regulatory region and its implication in lymphomagenesis. European Journal of Immunology, 2010, 40, 3306-3311.	2.9	20
959	Enhancing somatic nuclear reprogramming by Oct4 gain-of-function in cloned mouse embryos. International Journal of Developmental Biology, 2010, 54, 1649-1657.	0.6	24
961	Dissecting the regulatory switches of development: lessons from enhancer evolution in Drosophila. Development (Cambridge), 2010, 137, 5-13.	2.5	44
962	The Mouse Immunoglobulin Heavy Chain V-D Intergenic Sequence Contains Insulators That May Regulate Ordered V(D)J Recombination. Journal of Biological Chemistry, 2010, 285, 9327-9338.	3.4	72
963	In Vivo Redundant Function of the 3′ <i>lgH</i> Regulatory Element HS3b in the Mouse. Journal of Immunology, 2010, 184, 3710-3717.	0.8	35
964	Long Noncoding RNAs with Enhancer-like Function in Human Cells. Cell, 2010, 143, 46-58.	28.9	1,664
965	Functional and Mechanistic Diversity of Distal Transcription Enhancers. Cell, 2011, 144, 327-339.	28.9	718

#	Article	IF	Citations
967	The Transcription Factor PU.1 is a Critical Regulator of Cellular Communication in the Immune System. Archivum Immunologiae Et Therapiae Experimentalis, 2011, 59, 431-440.	2.3	75
968	Class-C SOX Transcription Factors Control GnRH Gene Expression via the Intronic Transcriptional Enhancer. Molecular Endocrinology, 2011, 25, 1184-1196.	3.7	21
969	Development of B-lineage Predominant Lentiviral Vectors for Use in Genetic Therapies for B Cell Disorders. Molecular Therapy, 2011, 19, 515-525.	8.2	32
970	Lineage-specific adjacent IFNG and IL26 genes share a common distal enhancer element. Genes and Immunity, 2012, 13, 481-488.	4.1	24
971	The Chromatin Fingerprint of Gene Enhancer Elements. Journal of Biological Chemistry, 2012, 287, 30888-30896.	3.4	77
972	What does our genome encode?. Genome Research, 2012, 22, 1602-1611.	5.5	107
973	Efficient Lentiviral Transduction and Transgene Expression in Primary Human B Cells. Human Gene Therapy Methods, 2012, 23, 408-415.	2.1	24
974	Transcription factor binding at enhancers: shaping a genomic regulatory landscape in flux. Frontiers in Genetics, 2012, 3, 195.	2.3	40
975	Simian Virus 40 Strains with Novel Properties Generated by Replacing the Viral Enhancer with Synthetic Oligonucleotides. Journal of Virology, 2012, 86, 3135-3142.	3.4	4
976	Uncovering <i>cis</i> -regulatory sequence requirements for context-specific transcription factor binding. Genome Research, 2012, 22, 2018-2030.	5.5	98
977	Non-coding transcription and large-scale nuclear organisation of immunoglobulin recombination. Current Opinion in Genetics and Development, 2013, 23, 81-88.	3.3	25
978	Genome organization and long-range regulation of gene expression by enhancers. Current Opinion in Cell Biology, 2013, 25, 387-394.	5.4	139
979	Human genetic variation within neural crest enhancers: molecular and phenotypic implications. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120360.	4.0	18
980	A yeast oneâ€hybrid and microfluidicsâ€based pipeline to map mammalian gene regulatory networks. Molecular Systems Biology, 2013, 9, 682.	7.2	35
981	Regulators of chromatin state and transcription in <scp>CD</scp> 4 <scp>T</scp> â€ell polarization. Immunology, 2013, 139, 299-308.	4.4	27
982	UpSET-ing the balance. Fly, 2013, 7, 153-160.	1.7	2
983	What history tells us XXXV. Enhancers: Their existence and characteristics have raised puzzling issues since their discovery. Journal of Biosciences, 2014, 39, 741-745.	1.1	2
984	The Eν Enhancer Region Influences H Chain Expression and B Cell Fate without Impacting IgVH Repertoire and Immune Response In Vivo. Journal of Immunology, 2014, 193, 1171-1183.	0.8	29

#	Article	IF	Citations
985	Activation of Muscle Enhancers by MyoD and epigenetic modifiers. Journal of Cellular Biochemistry, 2014, 115, n/a-n/a.	2.6	15
986	Genetic Modeling of PIM Proteins in Cancer: Proviral Tagging and Cooperation with Oncogenes, Tumor Suppressor Genes, and Carcinogens. Frontiers in Oncology, 2014, 4, 109.	2.8	25
987	Transcriptional enhancers: from properties to genome-wide predictions. Nature Reviews Genetics, 2014, 15, 272-286.	16.3	1,136
988	Novel human renal proximal tubular cell line for the production of complex proteins. Journal of Biotechnology, 2014, 176, 29-39.	3.8	6
989	Enhancer biology and enhanceropathies. Nature Structural and Molecular Biology, 2014, 21, 210-219.	8.2	259
990	Transcriptional regulation in the immune system: a status report. Trends in Immunology, 2014, 35, 190-194.	6.8	24
991	How Cell Division Facilitates Nuclear Reprogramming. , 2014, , 393-406.		0
992	Gene transcription in the zebrafish embryo: regulators and networks. Briefings in Functional Genomics, 2014, 13, 131-143.	2.7	14
993	Comparative validation of the <i>D. melanogaster</i> modENCODE transcriptome annotation. Genome Research, 2014, 24, 1209-1223.	5.5	147
994	Regulatory Domains and Their Mechanisms. Cold Spring Harbor Symposia on Quantitative Biology, 2015, 80, 45-51.	1.1	29
995	Enhancers, enhancers – from their discovery to today's universe of transcription enhancers. Biological Chemistry, 2015, 396, 311-327.	2.5	82
996	In the loop: promoter–enhancer interactions and bioinformatics. Briefings in Bioinformatics, 2016, 17, bbv097.	6.5	115
997	Dynamic Control of Long-Range Genomic Interactions at the Immunoglobulin κ Light-Chain Locus. Advances in Immunology, 2015, 128, 183-271.	2.2	26
998	DNase I hypersensitivity mapping, genomic footprinting, and transcription factor networks in plants. Current Plant Biology, 2015, 3-4, 40-47.	4.7	33
999	What are super-enhancers?. Nature Genetics, 2015, 47, 8-12.	21.4	598
1000	High throughput technologies for the functional discovery of mammalian enhancers: New approaches for understanding transcriptional regulatory network dynamics. Genomics, 2015, 106, 151-158.	2.9	31
1001	A unified architecture of transcriptional regulatory elements. Trends in Genetics, 2015, 31, 426-433.	6.7	173
1002	Efficient inversions and duplications of mammalian regulatory DNA elements and gene clusters by CRISPR/Cas9. Journal of Molecular Cell Biology, 2015, 7, 284-298.	3.3	116

#	ARTICLE	IF	CITATIONS
1003	Genomic Views of Transcriptional Enhancers: Essential Determinants of Cellular Identity and Activity-Dependent Responses in the CNS. Journal of Neuroscience, 2015, 35, 13819-13826.	3.6	33
1004	Architectural and Functional Commonalities between Enhancers and Promoters. Cell, 2015, 162, 948-959.	28.9	277
1005	Promoter or enhancer, what's the difference? Deconstruction of established distinctions and presentation of a unifying model. BioEssays, 2015, 37, 314-323.	2.5	92
1006	Chromatin remodeling effects on enhancer activity. Cellular and Molecular Life Sciences, 2016, 73, 2897-2910.	5.4	25
1007	The analysis of novel distal Cebpa enhancers and silencers using a transcriptional model reveals the complex regulatory logic of hematopoietic lineage specification. Developmental Biology, 2016, 413, 128-144.	2.0	18
1008	Enhancer, epigenetics, and human disease. Current Opinion in Genetics and Development, 2016, 36, 27-33.	3.3	19
1009	The Zebrafish as Model for Deciphering the Regulatory Architecture of Vertebrate Genomes. Advances in Genetics, 2016, 95, 195-216.	1.8	1
1010	Enhancer deregulation in cancer and other diseases. BioEssays, 2016, 38, 1003-1015.	2.5	79
1011	Identification and function of enhancers in the human genome. Human Molecular Genetics, 2016, 25, R190-R197.	2.9	26
1012	Regulation of disease-associated gene expression in the 3D genome. Nature Reviews Molecular Cell Biology, 2016, 17, 771-782.	37.0	294
1013	Enhanced Identification of Transcriptional Enhancers Provides Mechanistic Insights into Diseases. Trends in Genetics, 2016, 32, 76-88.	6.7	87
1014	Enrichment analysis of Alu elements with different spatial chromatin proximity in the human genome. Protein and Cell, 2016, 7, 250-266.	11.0	23
1015	Enhancers as non-coding RNA transcription units: recent insights and future perspectives. Nature Reviews Genetics, 2016, 17, 207-223.	16.3	614
1016	RNA Exosome and Non-coding RNA-Coupled Mechanisms in AlD-Mediated Genomic Alterations. Journal of Molecular Biology, 2017, 429, 3230-3241.	4.2	14
1017	Multiplex Enhancer Interference Reveals Collaborative Control of Gene Regulation by Estrogen Receptor α-Bound Enhancers. Cell Systems, 2017, 5, 333-344.e5.	6.2	85
1018	DNA methylation regulates discrimination of enhancers from promoters through a H3K4me1-H3K4me3 seesaw mechanism. BMC Genomics, 2017, 18, 964.	2.8	80
1019	A Brief Introduction to Chromatin Regulation and Dynamics. , 2017, , 1-34.		1
1020	Competitive Promoter-Associated Matrix Attachment Region Binding of the Arid3a and Cux1 Transcription Factors. Diseases (Basel, Switzerland), 2017, 5, 34.	2.5	1

#	Article	IF	Citations
1021	Conserved noncoding transcription and core promoter regulatory code in early Drosophila development. ELife, $2017, 6, .$	6.0	10
1022	Rfx2 Stabilizes Foxj1 Binding at Chromatin Loops to Enable Multiciliated Cell Gene Expression. PLoS Genetics, 2017, 13, e1006538.	3.5	68
1023	Emerging themes in neuronal activity-dependent gene expression. Molecular and Cellular Neurosciences, 2018, 87, 27-34.	2.2	28
1024	Emerging roles of transcriptional enhancers in chromatin looping and promoter-proximal pausing of RNA polymerase II. Journal of Biological Chemistry, 2018, 293, 13786-13794.	3.4	39
1025	Enhancers Improve the AID-Induced Hypermutation in Episomal Vector for Antibody Affinity Maturation in Mammalian Cell Display. Antibodies, 2018, 7, 42.	2.5	2
1026	A tissue-specific enhancer of the C. elegans nhr-67/tailless gene drives coordinated expression in uterine stem cells and the differentiated anchor cell. Gene Expression Patterns, 2018, 30, 71-81.	0.8	9
1027	Genomeâ€Wide Maps of Transcription Regulatory Elements and Transcription Enhancers in Development and Disease. , 2018, 9, 439-455.		12
1028	The Chromatin Reader ZMYND8 Regulates Igh Enhancers to Promote Immunoglobulin Class Switch Recombination. Molecular Cell, 2018, 72, 636-649.e8.	9.7	34
1029	Enhancer and superâ€enhancer: Positive regulators in gene transcription. Animal Models and Experimental Medicine, 2018, 1, 169-179.	3.3	49
1030	Patterns of variation in cis-regulatory regions: examining evidence of purifying selection. BMC Genomics, 2018, 19, 95.	2.8	8
1031	Genetic Variation in Long-Range Enhancers. Current Topics in Behavioral Neurosciences, 2019, 42, 35-50.	1.7	2
1032	Ontogeny, Genetics, Molecular Biology, and Classification of B- and T-Cell Non-Hodgkin Lymphoma. Hematology/Oncology Clinics of North America, 2019, 33, 553-574.	2.2	2
1033	Genomic Enhancers in Brain Health and Disease. Genes, 2019, 10, 43.	2.4	53
1034	Interplay between small RNA pathways shapes chromatin landscapes in C. elegans. Nucleic Acids Research, 2019, 47, 5603-5616.	14.5	20
1035	Leukocyte integrin signaling regulates FOXP1 gene expression via FOXP1-IT1 long non-coding RNA-mediated IRAK1 pathway. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2019, 1862, 493-508.	1.9	9
1036	Dynamics of transcriptional enhancers and chromosome topology in gene regulation. Development Growth and Differentiation, 2019, 61, 343-352.	1.5	13
1037	Super-enhancers in transcriptional regulation and genome organization. Nucleic Acids Research, 2019, 47, 11481-11496.	14.5	85
1038	Regular expression based pattern extraction from a cell - Specific gene expression data. Informatics in Medicine Unlocked, 2019, 17, 100269.	3.4	3

#	ARTICLE	IF	Citations
1039	Transcriptional control by enhancers and enhancer RNAs. Transcription, 2019, 10, 171-186.	3.1	49
1041	Mapping and Dynamics of Regulatory DNA in Maturing Arabidopsis thaliana Siliques. Frontiers in Plant Science, 2019, 10, 1434.	3.6	13
1042	Discovery platform for inhibitors of IgH gene enhancer activity. Cancer Biology and Therapy, 2019, 20, 571-581.	3.4	6
1043	Linking Enhancer to Epigenetics: New Way to Think About Human Diseases. , 2019, , 145-163.		О
1044	Determinants of enhancer and promoter activities of regulatory elements. Nature Reviews Genetics, 2020, 21, 71-87.	16.3	464
1045	Gene regulatory networks STARR-ing B cells. Nature Immunology, 2020, 21, 110-112.	14.5	0
1046	Enhancers as regulators of antigen receptor loci three-dimensional chromatin structure. Transcription, 2020, 11, 37-51.	3.1	9
1047	Critical roles of super-enhancers in the pathogenesis of autoimmune diseases. Inflammation and Regeneration, 2020, 40, 16.	3.7	12
1048	A systematic evaluation of the design and context dependencies of massively parallel reporter assays. Nature Methods, 2020, 17, 1083-1091.	19.0	111
1049	Ancestral and derived transcriptional enhancers share regulatory sequence and a pleiotropic site affecting chromatin accessibility. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20636-20644.	7.1	18
1050	Mouse Models of c-myc Deregulation Driven by IgH Locus Enhancers as Models of B-Cell Lymphomagenesis. Frontiers in Immunology, 2020, 11, 1564.	4.8	14
1051	Immunoglobulins or Antibodies: IMGT® Bridging Genes, Structures and Functions. Biomedicines, 2020, 8, 319.	3.2	39
1052	Transcriptional Enhancers in <i>Drosophila </i> . Genetics, 2020, 216, 1-26.	2.9	31
1053	Progress, Challenges, and Surprises in Annotating the Human Genome. Annual Review of Genomics and Human Genetics, 2020, 21, 55-79.	6.2	20
1054	Identification of Plant Enhancers and Their Constituent Elements by STARR-seq in Tobacco Leaves. Plant Cell, 2020, 32, 2120-2131.	6.6	53
1055	Evaluating Enhancer Function and Transcription. Annual Review of Biochemistry, 2020, 89, 213-234.	11.1	123
1056	Gene regulatory networks controlling neuronal development. , 2020, , 699-730.		0
1057	Transcriptional control by enhancers: working remotely for improved performance. Transcription, 2020, 11, 1-2.	3.1	1

#	Article	IF	CITATIONS
1058	A Multi-Omics Interpretable Machine Learning Model Reveals Modes of Action of Small Molecules. Scientific Reports, 2020, 10, 954.	3.3	27
1059	Towards a comprehensive catalogue of validated and target-linked human enhancers. Nature Reviews Genetics, 2020, 21, 292-310.	16.3	229
1060	Spirits in the Material World: Enhancer RNAs in Transcriptional Regulation. Trends in Biochemical Sciences, 2021, 46, 138-153.	7.5	39
1062	Mechanisms of Enhancer-Promoter Interactions in Higher Eukaryotes. International Journal of Molecular Sciences, 2021, 22, 671.	4.1	43
1063	Dynamic 3D Locus Organization and Its Drivers Underpin Immunoglobulin Recombination. Frontiers in Immunology, 2020, 11, 633705.	4.8	15
1064	Effective, safe, and sustained correction of murine XLA using a UCOE-BTK promoter-based lentiviral vector. Molecular Therapy - Methods and Clinical Development, 2021, 20, 635-651.	4.1	11
1065	Not-so-selfish DNA? Intronic enhancers fine-tune spatiotemporal gene expression. Plant Cell, 2021, 33, 1851-1852.	6.6	1
1066	Genomic editing of intronic enhancers unveils their role in fine-tuning tissue-specific gene expression in <i>Arabidopsis thaliana</i> . Plant Cell, 2021, 33, 1997-2014.	6.6	43
1067	The Stochastic Genome and Its Role in Gene Expression. Cold Spring Harbor Perspectives in Biology, 2021, 13, a040386.	5.5	18
1068	Fish-Ing for Enhancers in the Heart. International Journal of Molecular Sciences, 2021, 22, 3914.	4.1	5
1069	Enhancing B-Cell Malignancies—On Repurposing Enhancer Activity towards Cancer. Cancers, 2021, 13, 3270.	3.7	5
1070	A gain-of-function single nucleotide variant creates a new promoter which acts as an orientation-dependent enhancer-blocker. Nature Communications, 2021, 12, 3806.	12.8	18
1071	Synthetic promoter designs enabled by a comprehensive analysis of plant core promoters. Nature Plants, 2021, 7, 842-855.	9.3	78
1072	The Impact of Space and Time on the Functional Output of the Genome. Cold Spring Harbor Perspectives in Biology, 2021, , a040378.	5.5	10
1074	Transcriptional enhancers and their communication with gene promoters. Cellular and Molecular Life Sciences, 2021, 78, 6453-6485.	5.4	25
1075	Nuclear compartmentalization as a mechanism of quantitative control of gene expression. Nature Reviews Molecular Cell Biology, 2021, 22, 653-670.	37.0	131
1076	Transcriptional Regulation by (Super)Enhancers: From Discovery to Mechanisms. Annual Review of Genomics and Human Genetics, 2021, 22, 127-146.	6.2	59
1077	Activation and Regulation of the Vitellogenin Gene Family. , 1987, , 205-233.		10

#	Article	IF	CITATIONS
1078	Gene Structure and Regulation., 1987,, 11-51.		2
1079	Gene Transfer into Mouse Embryos. , 1986, 4, 1-36.		6
1080	Replication of SV40 and Polyoma Virus Chromosomes. , 1986, , 99-246.		123
1081	DNA Methylation in Early Mammalian Development. Springer Series in Molecular Biology, 1984, , 189-219.	2.0	36
1082	Chromatin Structure and Gene Expression. Springer Series in Molecular Biology, 1984, , 293-351.	2.0	27
1083	DNA Methylation and Gene Expression. Springer Series in Molecular Biology, 1984, , 147-164.	2.0	18
1084	Expression of Cloned Immunoglobulin Genes. , 1985, , 117-134.		2
1085	Introduction and Regulation of Cloned Genes for Agricultural Livestock Improvement., 1986, 37, 151-161.		6
1086	Transgenic Mice: Gene Transfer into the Germ Line. , 1986, , 189-221.		4
1087	Structure and Expression of Human Placental Hormone Genes. Advances in Experimental Medicine and Biology, 1986, 205, 267-280.	1.6	8
1088	High Level Production of Proteins in Mammalian Cells. , 1987, , 155-198.		8
1089	B Lymphoma Cells Process and Present their Endogenous Ig: Implications for Network Theory. Advances in Experimental Medicine and Biology, 1988, 237, 877-882.	1.6	5
1090	DNase I Hypersensitive Sites: A Structural Feature of Chromatin Associated with Gene Expression. , 1985, , 77-101.		12
1091	Regulatory Elements in Steroid Hormone Inducible Genes: Structure and Evolution of DNA Sequences Recognized by Steroid Hormone Receptors., 1985,, 121-141.		5
1092	Retrovirus and Proto-oncogene Involvement in the Etiology of Breast Neoplasia., 1987,, 323-351.		4
1093	Linking Enhancer to Epigenetics: New Way to Think About Human Diseases. , 2017, , 1-20.		1
1094	Multiple Nonhistonel Protein-DNA Complexes in Chromatin Regulate the Cell- and Stage-Specific Activity of an Eukaryotic Gene. Results and Problems in Cell Differentiation, 1987, 14, 255-269.	0.7	12
1095	Cell-Type Specificity of Transcription: The Immunoglobulin Heavy Chain Enhancer as a Model System. Nucleic Acids and Molecular Biology, 1987, , 221-240.	0.2	4

#	Article	IF	CITATIONS
1096	Expression of Cellular Oncogenes. Current Topics in Microbiology and Immunology, 1984, 112, 73-115.	1.1	63
1097	Genome Structure and Host Range Restriction of the Lymphotropic Papovavirus (LPV): Identification of a Viral Lymphocyte Specific Enhancer Element. Current Topics in Microbiology and Immunology, 1984, 113, 26-30.	1.1	14
1098	Structure and Function of the Genome of HTLV. Current Topics in Microbiology and Immunology, 1985, 115, 177-209.	1.1	18
1099	Insulin Gene Regulation. Handbook of Experimental Pharmacology, 1990, , 93-111.	1.8	1
1100	The Structural and Functional Domain Organization of the Chicken Lysozyme Gene Locus. Nucleic Acids and Molecular Biology, 1989, , 133-147.	0.2	9
1101	Construction, expression and function of chimeric antibodies. , 1990, , 195-215.		1
1102	Transgenic Mouse Models to Study VDJ Recombination. , 1994, , 1-14.		2
1103	Transcriptional Enhancement by Specific Regulatory Protein – DNA Complexes. , 1984, , 79-92.		7
1104	Position Effects and Gene Expression in the Transgenic Mouse. , 1984, , 123-134.		2
1105	Factors Regulating Immunoglobulin-Gene Transcription. , 1989, , 327-342.		14
1106	Construction of Vectors for Immunoglobulin Reverse Genetics. , 1985, , 55-67.		2
1107	Analysis of cis- and trans-Acting Factors Regulating Gene Transcription. , 1990, , 75-93.		3
1108	Interaction of the Glucocorticoid Receptor with Specific DNA Sequences., 1986,, 325-357.		6
1109	RECOMBINANT GENE TRANSFER IN ANIMALS: THE POTENTIAL FOR IMPROVING GROWTH IN LIVESTOCK. , 1986, , 293-313.		1
1110	Protein Coding Genes of Higher Eukaryotes: Promoter Elements and trans-Acting Factors. , 1986, , 79-99.		10
1111	Transcriptional regulation of immunoglobulin gene expression. Molecular Aspects of Cellular Regulation, 1991, 6, 399-421.	1.4	27
1112	Molecular Mechanism of Class Switch Recombination. , 2004, , 307-326.		7
1113	Hormonal regulation of the bovine prolactin promoter in rat pituitary tumor cells Journal of Biological Chemistry, 1985, 260, 12246-12251.	3.4	136

#	Article	IF	CITATIONS
1114	Glucocorticoids regulate the expression of a rat growth hormone gene lacking 5' flanking sequences Journal of Biological Chemistry, 1986, 261, 291-297.	3.4	29
1115	The functional human dihydrofolate reductase gene Journal of Biological Chemistry, 1984, 259, 3933-3943.	3.4	223
1116	Structure of the gene for rat nucleolar protein B23 Journal of Biological Chemistry, 1990, 265, 18227-18233.	3.4	54
1117	Unusual DNA sequences located within the promoter region and the first intron of the chicken pro-alpha 1(I) collagen gene Journal of Biological Chemistry, 1987, 262, 13323-13332.	3.4	33
1118	Cyclic AMP responsiveness of human gonadotropin-alpha gene transcription is directed by a repeated 18-base pair enhancer. Alpha-promoter receptivity to the enhancer confers cell-preferential expression Journal of Biological Chemistry, 1987, 262, 12169-12174.	3.4	208
1119	Amino acids conserved in interleukin-1 receptors (IL-1Rs) and the Drosophila toll protein are essential for IL-1R signal transduction Journal of Biological Chemistry, 1992, 267, 2605-2609.	3.4	163
1120	The tetrameric structure of NF-mu NR provides a mechanism for cooperative binding to the immunoglobulin heavy chain mu enhancer Journal of Biological Chemistry, 1992, 267, 624-634.	3.4	10
1121	ras protein activity is essential for T-cell antigen receptor signal transduction Journal of Biological Chemistry, 1993, 268, 2693-2698.	3.4	64
1122	Cyclosporin A blocks calcium-dependent pathways of gene activation Journal of Biological Chemistry, 1991, 266, 19103-19108.	3.4	26
1123	Recombination of exogenous interleukin 2 receptor gene flanked by immunoglobulin recombination signal sequences in a pre-B cell line and transgenic mice Journal of Biological Chemistry, 1991, 266, 18387-18394.	3.4	20
1124	The enhancer of the immunoglobulin heavy chain locus is flanked by presumptive chromosomal loop anchorage elements Journal of Biological Chemistry, 1987, 262, 5394-5397.	3.4	214
1125	Characterization of 5'-flanking region of heart myosin light chain 2A gene. Structural and functional evidence for promoter activity Journal of Biological Chemistry, 1986, 261, 13852-13860.	3.4	21
1126	Characterization of the phosphoenolpyruvate carboxykinase (GTP) promoter-regulatory region. I. Multiple hormone regulatory elements and the effects of enhancers Journal of Biological Chemistry, 1986, 261, 9714-9720.	3.4	96
1127	The laminin B2 chain promoter contains unique repeat sequences and is active in transient transfection Journal of Biological Chemistry, 1988, 263, 8384-8389.	3.4	35
1128	Human apolipoprotein CIII gene expression is regulated by positive and negative cis-acting elements and tissue-specific protein factors Journal of Biological Chemistry, 1988, 263, 6857-6864.	3.4	107
1129	A nuclear protein derived from brain cells stimulates transcription of the human neurotropic virus promoter, JCVE, in vitro Journal of Biological Chemistry, 1990, 265, 13899-13905.	3.4	48
1130	Differential Glucocorticoid Regulation of Collagen mRNAs in Human Dermal Fibroblasts. Journal of Biological Chemistry, 1989, 264, 13730-13735.	3.4	74
1131	Transcriptional Regulatory Sequences of the Housekeeping Gene for Human Triosephosphate Isomerase. Journal of Biological Chemistry, 1989, 264, 5177-5187.	3.4	45

#	Article	IF	CITATIONS
1132	The human alpha-fetoprotein gene. Sequence organization and the 5' flanking region Journal of Biological Chemistry, 1985, 260, 5055-5060.	3.4	81
1133	Structure of the promoter of the rat type II procollagen gene Journal of Biological Chemistry, 1985, 260, 4441-4447.	3.4	65
1134	Intron positions are conserved in the 5' end region of myosin heavy-chain genes Journal of Biological Chemistry, 1985, 260, 468-471.	3.4	33
1135	Isolation and sequence of a rat chymotrypsin B gene Journal of Biological Chemistry, 1984, 259, 14265-14270.	3.4	123
1136	A similar 5'-flanking region is required for estrogen and progesterone induction of ovalbumin gene expression Journal of Biological Chemistry, 1984, 259, 9967-9970.	3.4	57
1137	Structure of the human type I DNA topoisomerase gene. Journal of Biological Chemistry, 1991, 266, 9610-9616.	3.4	48
1138	Interaction of a Positive Regulatory Factor(s) with a 106-Base Pair Upstream Region Controls Transcription of Metallothionein-I Gene in the Liver. Journal of Biological Chemistry, 1989, 264, 2134-2138.	3.4	17
1139	Nuclear Factors from Expressing Tissues Interact in Vitro with a Rat α-2u Globulin Gene Intron. Journal of Biological Chemistry, 1989, 264, 1754-1759.	3.4	10
1140	A recombinant cDNA derived from human brain encodes a DNA binding protein that stimulates transcription of the human neurotropic virus JCV. Journal of Biological Chemistry, 1991, 266, 15876-15881.	3.4	49
1141	Multiple DNA elements responsible for transcriptional regulation of the ornithine decarboxylase gene by protein kinase A Journal of Biological Chemistry, 1992, 267, 18866-18873.	3.4	41
1142	The mouse ribosomal protein L7 gene. Its primary structure and functional analysis of the promoter region Journal of Biological Chemistry, 1990, 265, 11465-11473.	3.4	79
1143	Structure and function of the intracellular portion of the mouse interleukin 1 receptor (type I). Determining the essential region for transducing signals to activate the interleukin 8 gene. Journal of Biological Chemistry, 1993, 268, 13510-13518.	3.4	47
1144	The chymotrypsin enhancer core. Journal of Biological Chemistry, 1989, 264, 20744-20751.	3.4	43
1145	Identification of a downstream sequence and binding protein that regulate adenovirus major late promoter transcription in vitro Journal of Biological Chemistry, 1988, 263, 10377-10385.	3.4	27
1146	Role of the Intronic Elements in the Endogenous Immunoglobulin Heavy Chain Locus. Journal of Biological Chemistry, 1999, 274, 4858-4862.	3.4	22
1147	INTERACTING GENES CONTROL GLYCEROL-3-PHOSPHATE DEHYDROGENASE EXPRESSION IN DEVELOPING CEREBELLUM OF THE MOUSE. Genetics, 1985, 110, 123-143.	2.9	17
1148	Analysis of the Promoter of the <i>ninaE</i> Opsin Gene in <i>Drosophila melanogaster</i> Genetics, 1987, 116, 565-578.	2.9	236
1152	Mechanisms of Transcriptional Regulation in Lymphocyte Progenitors: Insight from an Analysis of the Terminal Transferase Promoter. Cold Spring Harbor Symposia on Quantitative Biology, 1999, 64, 87-98.	1.1	6

#	Article	IF	CITATIONS
1153	Characterization and Expression of the Gene-Encoding Rat Thyrotropin-Releasing Hormone (TRH). Annals of the New York Academy of Sciences, 1989, 553, 14-28.	3.8	9
1154	Transcriptional activity of avian retroviral long terminal repeats directly correlates with enhancer activity. Journal of Virology, 1985, 53, 515-521.	3.4	86
1155	Tissue selectivity of murine leukemia virus infection is determined by long terminal repeat sequences. Journal of Virology, 1985, 55, 862-866.	3.4	159
1156	DNA sequence of the lymphotropic variant of minute virus of mice, MVM(i), and comparison with the DNA sequence of the fibrotropic prototype strain. Journal of Virology, 1986, 57, 656-669.	3.4	183
1157	Activation of enhancer sequences in type II human T-cell leukemia virus and bovine leukemia virus long terminal repeats by virus-associated trans-acting regulatory factors. Journal of Virology, 1986, 57, 738-744.	3.4	50
1158	Properties of intracellular bovine papillomavirus chromatin. Journal of Virology, 1986, 58, 500-507.	3.4	30
1159	Regulation of polyomavirus late promoter activity by viral early proteins. Journal of Virology, 1986, 60, 275-285.	3.4	55
1160	Rous sarcoma virus nucleic acid-binding protein p12 is necessary for viral 70S RNA dimer formation and packaging. Journal of Virology, 1986, 60, 450-459.	3.4	236
1161	A single regulatory region modulates both cis activation and trans activation of the herpes simplex virus VP5 promoter in transient-expression assays in vivo. Journal of Virology, 1986, 60, 460-469.	3.4	40
1162	Construction and characterization of hybrid polyomavirus genomes. Journal of Virology, 1986, 60, 960-971.	3.4	63
1163	Dsi-1, a region with frequent proviral insertions in Moloney murine leukemia virus-induced rat thymomas. Journal of Virology, 1987, 61, 1164-1170.	3.4	41
1164	B-lymphoma induction by reticuloendotheliosis virus: characterization of a mutated chicken syncytial virus provirus involved in c-myc activation. Journal of Virology, 1987, 61, 2084-2090.	3.4	33
1165	Alterations in binding characteristics of the human immunodeficiency virus enhancer factor. Journal of Virology, 1988, 62, 218-225.	3.4	91
1166	Structure and function of endogenous feline leukemia virus long terminal repeats and adjoining regions. Journal of Virology, 1988, 62, 3631-3641.	3.4	52
1167	Characterization of the cell type-specific determinant in the genome of minute virus of mice. Journal of Virology, 1988, 62, 552-557.	3.4	84
1168	trans-activation of the simian virus 40 enhancer by a pX product of human T-cell leukemia virus type I. Journal of Virology, 1988, 62, 644-648.	3.4	26
1169	Tissue preferential expression of the hepatitis B virus (HBV) surface antigen gene in two lines of HBV transgenic mice. Journal of Virology, 1988, 62, 649-654.	3.4	73
1170	Specific interactions between transcription factors and the promoter-regulatory region of the human cytomegalovirus major immediate-early gene. Journal of Virology, 1988, 62, 1076-1079.	3.4	59

#	Article	IF	Citations
1171	Properties of the human hepatitis B virus enhancer: position effects and cell-type nonspecificity. Journal of Virology, 1988, 62, 1305-1313.	3.4	84
1172	Human T-cell leukemia virus types I and II exhibit different DNase I protection patterns. Journal of Virology, 1988, 62, 1339-1346.	3.4	72
1173	The hepatitis B virus enhancer modulates transcription of the hepatitis B virus surface antigen gene from an internal location. Journal of Virology, 1988, 62, 1437-1441.	3.4	52
1174	The polyomavirus enhancer comprises multiple functional elements. Journal of Virology, 1988, 62, 1667-1678.	3.4	47
1175	Simian virus 40 revertant enhancers exhibit restricted host ranges for enhancer function. Journal of Virology, 1988, 62, 3364-3370.	3.4	13
1176	Characterization of enhancer elements and their mutations in the long terminal repeat of feline endogenous RD-114 proviruses. Journal of Virology, 1989, 63, 4234-4241.	3.4	8
1177	Novel 12-O-tetradecanoylphorbol-13-acetate-responsive elements in the upstream sequence of the MS gene promoter of Epstein-Barr virus. Journal of Virology, 1989, 63, 5062-5068.	3.4	2
1178	Phorbol ester-inducible T-cell-specific expression of variant mouse mammary tumor virus long terminal repeats. Journal of Virology, 1989, 63, 3466-3471.	3.4	36
1179	Deletion analysis of the polyomavirus late promoter: evidence for both positive and negative elements in the absence of early proteins. Journal of Virology, 1989, 63, 3634-3642.	3.4	41
1180	Purification of a mouse nuclear factor that binds to both the A and B cores of the polyomavirus enhancer. Journal of Virology, 1990, 64, 4808-4819.	3.4	221
1181	Replication-dependent transactivation of the polyomavirus late promoter. Journal of Virology, 1990, 64, 992-1001.	3.4	34
1182	Cell-type-specific control elements of the lymphotropic papovavirus enhancer. Journal of Virology, 1990, 64, 1657-1666.	3.4	17
1183	Identification of a glucocorticoid-responsive element in Epstein-Barr virus. Journal of Virology, 1990, 64, 1984-1990.	3.4	43
1184	Host range mutant of human immunodeficiency virus type 1: modification of cell tropism by a single point mutation at the neutralization epitope in the env gene. Journal of Virology, 1991, 65, 1710-1718.	3.4	192
1185	Isolation and characterization of human immunodeficiency virus type 1 variants infectious to brain-derived cells: detection of common point mutations in the V3 region of the env gene of the variants. Journal of Virology, 1994, 68, 6130-6135.	3.4	37
1186	Immunoglobulin Heavy-Chain Enhancer Is Required To Maintain Transfected Î ³ 2A Gene Expression in a Pre-B-Cell Line. Molecular and Cellular Biology, 1990, 10, 1076-1083.	2.3	10
1187	The Immunoglobulin Heavy-Chain Enhancer Functions as the Promoter for \hat{l} Sterile Transcription. Molecular and Cellular Biology, 1990, 10, 2619-2624.	2.3	51
1188	Regulation of chimeric phosphoenolpyruvate carboxykinase genes by the trans-dominant locus TSE1. Molecular and Cellular Biology, 1990, 10, 2660-2668.	2.3	3

#	Article	IF	Citations
1189	Complex Regulation of the Immunoglobulin $\hat{l}^{1}/4$ Heavy-Chain Gene Enhancer: $\hat{l}^{1}/4$ B, a New Determinant of Enhancer Function. Molecular and Cellular Biology, 1990, 10, 3145-3154.	2.3	47
1190	Novel Protein-DNA Interactions Associated with Increased Immunoglobulin Transcription in Response to Antigen Plus Interleukin-5. Molecular and Cellular Biology, 1991, 11, 5197-5205.	2.3	28
1191	Coordination of immunoglobulin DJH transcription and D-to-JH rearrangement by promoter-enhancer approximation. Molecular and Cellular Biology, 1991, 11, 2096-2107.	2.3	40
1192	Negative Regulation of Globin Gene Expression during Megakaryocytic Differentiation of a Human Erythroleukemic Cell Line. Molecular and Cellular Biology, 1991, 11, 3528-3536.	2.3	33
1193	<i>ci>cis</i> -Acting Elements Involved in the Alternative Translation Initiation Process of Human Basic Fibroblast Growth Factor mRNA. Molecular and Cellular Biology, 1992, 12, 4796-4805.	2.3	31
1194	Inhibition of the Activation of Heat Shock Factor In Vivo and In Vitro by Flavonoids. Molecular and Cellular Biology, 1992, 12, 3490-3498.	2.3	78
1195	$\ddot{\text{I}}$ €, a Pre-B-Cell-Specific Enhancer Element in the Immunoglobulin Heavy-Chain Enhancer. Molecular and Cellular Biology, 1993, 13, 5957-5969.	2.3	15
1196	PU.1 is a Component of a Multiprotein Complex Which Binds an Essential Site in the Murine Immunoglobulin λ2-4 Enhancer. Molecular and Cellular Biology, 1993, 13, 6452-6461.	2.3	61
1197	E2A Expression, Nuclear Localization, and In Vivo Formation of DNA- and Non-DNA-Binding Species during B-Cell Development. Molecular and Cellular Biology, 1993, 13, 7321-7333.	2.3	40
1198	Interspersion of an Unusual GCN4 Activation Site with a Complex Transcriptional Repression Site in Ty2 Elements of <i>Saccharomyces cerevisiae</i> Nolecular and Cellular Biology, 1993, 13, 2091-2103.	2.3	12
1199	NF-HB (BSAP) is a Repressor of the Murine Immunoglobulin Heavy-Chain $3'\hat{1}_{\pm}$ Enhancer at Early Stages of B-Cell Differentiation. Molecular and Cellular Biology, 1993, 13, 3611-3622.	2.3	42
1200	Elements in the Immunoglobulin Heavy-Chain Enhancer Directly Regulate Simian Virus 40 ori-Dependent DNA Replication. Molecular and Cellular Biology, 1993, 13, 5629-5636.	2.3	6
1201	Alternative 5′ splice site selection induced by heat shock. Molecular and Cellular Biology, 1994, 14, 567-575.	2.3	33
1202	Stably Integrated Mouse Mammary Tumor Virus Long Terminal Repeat DNA Requires the Octamer Motifs for Basal Promoter Activity. Molecular and Cellular Biology, 1994, 14, 1191-1203.	2.3	16
1203	Pan/E2A Expression Precedes Immunoglobulin Heavy-Chain Expression during B Lymphopoiesis in Nontransformed Cells, and Pan/E2A Proteins Are Not Detected in Myeloid Cells. Molecular and Cellular Biology, 1994, 14, 4087-4096.	2.3	5
1204	Location of Sequences in Polyomavirus DNA That Are Required for Early Gene Expression In Vivo and In Vitro. Molecular and Cellular Biology, 1984, 4, 2594-2609.	2.3	56
1205	Complex Regulation of Simian Virus 40 Early-Region Transcription from Different Overlapping Promoters. Molecular and Cellular Biology, 1984, 4, 1900-1914.	2.3	58
1206	Upstream Region of the <i>SUC2</i> Gene Confers Regulated Expression to a Heterologous Gene in <i>Saccharomyces cerevisiae</i> Molecular and Cellular Biology, 1985, 5, 2521-2526.	2.3	68

#	Article	IF	CITATIONS
1207	Evolution of the Functional Human \hat{l}^2 -Actin Gene and Its Multi-Pseudogene Family: Conservation of Noncoding Regions and Chromosomal Dispersion of Pseudogenes. Molecular and Cellular Biology, 1985, 5, 2720-2732.	2.3	221
1208	Murine Leukemia Virus Long Terminal Repeat Sequences Can Enhance Gene Activity in a Cell-Type-Specific Manner. Molecular and Cellular Biology, 1985, 5, 2832-2835.	2.3	87
1209	Cloning and Molecular Analysis of the <i>HAP2</i> Locus: a Global Regulator of Respiratory Genes in <i>Saccharomyces cerevisiae</i> Molecular and Cellular Biology, 1985, 5, 3410-3416.	2.3	94
1210	Functional Analysis of the Transcription Control Region Located Within the Avian Retroviral Long Terminal Repeat. Molecular and Cellular Biology, 1985, 5, 438-447.	2.3	93
1211	Cloning and Sequencing of a c- <i>myc</i> Oncogene in a Burkitt's Lymphoma Cell Line That Is Translocated to a Germ Line Alpha Switch Region. Molecular and Cellular Biology, 1985, 5, 501-509.	2.3	53
1212	Polyomavirus Enhancer Contains Multiple Redundant Sequence Elements That Activate Both DNA Replication and Gene Expression. Molecular and Cellular Biology, 1985, 5, 649-658.	2.3	212
1213	Developmental Regulation of \hat{l}_{\pm} -Fetoprotein Genes in Transgenic Mice. Molecular and Cellular Biology, 1985, 5, 1639-1648.	2.3	79
1214	Common Regulatory Elements Control Gene Expression from Polyoma Early and Late Promoters in Cells Transformed by Chimeric Plasmids. Molecular and Cellular Biology, 1985, 5, 2070-2079.	2.3	37
1215	Lens-Specific Promoter Activity of a Mouse \hat{I}^3 -Crystallin Gene. Molecular and Cellular Biology, 1985, 5, 2221-2230.	2.3	33
1216	Properties of <i>REP3</i> : a <i>cis</i> -Acting Locus Required for Stable Propagation of the <i>Saccharomyces cerevisiae</i> Plasmid 2 1¼m Circle. Molecular and Cellular Biology, 1985, 5, 2466-2475.	2.3	43
1217	Cellular Promoters Incorporated into the Adenovirus Genome: Effects of Viral Regulatory Elements on Transcription Rates and Cell Specificity of Albumin and \hat{l}^2 -Globin Promoters. Molecular and Cellular Biology, 1986, 6, 3798-3806.	2.3	24
1218	Adenovirus 2 peptide IX gene is expressed only on replicated DNA molecules. Molecular and Cellular Biology, 1986, 6, 4149-4154.	2.3	25
1219	Multiple regulatory elements in the intergenic region between the alpha-fetoprotein and albumin genes. Molecular and Cellular Biology, 1986, 6, 477-487.	2.3	136
1220	The human hepatitis B virus enhancer requires trans-acting cellular factor(s) for activity. Molecular and Cellular Biology, 1986, 6, 710-715.	2.3	82
1221	Myeloma mutant with a novel 3' flanking region: loss of normal sequence and insertion of repetitive elements leads to decreased transcription but normal processing of the alpha heavy-chain gene products. Molecular and Cellular Biology, 1986, 6, 1903-1916.	2.3	36
1222	Lymphoid and other tissue-specific phenotypes of polyomavirus enhancer recombinants: positive and negative combinational effects on enhancer specificity and activity. Molecular and Cellular Biology, 1986, 6, 2068-2079.	2.3	39
1223	Effects of the Position of the Simian Virus 40 Enhancer on Expression of Multiple Transcription Units in a Single Plasmid. Molecular and Cellular Biology, 1986, 6, 2593-2601.	2.3	91
1224	Downstream Sequences Affect Transcription Initiation from the Adenovirus Major Late Promoter. Molecular and Cellular Biology, 1986, 6, 2684-2694.	2.3	75

#	Article	IF	CITATIONS
1225	Androgen Regulation by the Long Terminal Repeat of Mouse Mammary Tumor Virus. Molecular and Cellular Biology, 1986, 6, 2847-2854.	2.3	47
1226	Promoter and Enhancer Elements from the Rat Elastase I Gene Function Independently of each other and of Heterologous Enhancers. Molecular and Cellular Biology, 1987, 7, 3466-3472.	2.3	14
1227	DNA Sequence Requirements for Replication of Polyomavirus DNA In Vivo and In Vitro. Molecular and Cellular Biology, 1987, 7, 3694-3704.	2.3	52
1228	Tissue-Specific Enhancer of the Human Glycoprotein Hormone α-Subunit Gene: Dependence on Cyclic AMP-Inducible Elements. Molecular and Cellular Biology, 1987, 7, 3994-4002.	2.3	126
1229	Regulated Expression of a Complete Human \hat{l}^2 -Globin Gene Encoded by a Transmissible Retrovirus Vector. Molecular and Cellular Biology, 1987, 7, 887-897.	2.3	79
1230	Six Distinct Nuclear Factors Interact with the 75-Base-Pair Repeat of the Moloney Murine Leukemia Virus Enhancer. Molecular and Cellular Biology, 1987, 7, 1101-1110.	2.3	252
1231	Repression of Insulin Gene Expression by Adenovirus Type 5 Ela Proteins. Molecular and Cellular Biology, 1987, 7, 1164-1170.	2.3	71
1232	Transcription of Adenovirus 2 Major Late and Peptide IX Genes under Conditions of In Vitro Nucleosome Assembly. Molecular and Cellular Biology, 1987, 7, 1401-1408.	2.3	59
1233	Expression of the c- <i>myc</i> Oncogene under Control of an Immunoglobulin Enhancer in EÂμ- <i>myc</i> Transgenic Mice. Molecular and Cellular Biology, 1987, 7, 1436-1444.	2.3	29
1234	Nucleotides in the Polyomavirus Enhancer that Control Viral Transcription and DNA Replication. Molecular and Cellular Biology, 1987, 7, 1681-1690.	2.3	70
1235	12- <i>O</i> -Tetradecanoyl-Phorbol-13-Acetate Induction of the Human Collagenase Gene Is Mediated By an Inducible Enhancer Element Located in the 5′-Flanking Region. Molecular and Cellular Biology, 1987, 7, 2256-2266.	2.3	256
1236	Determinants of rat albumin promoter tissue specificity analyzed by an improved transient expression system. Molecular and Cellular Biology, 1987, 7, 2425-2434.	2.3	110
1237	Negative regulation contributes to tissue specificity of the immunoglobulin heavy-chain enhancer. Molecular and Cellular Biology, 1987, 7, 2558-2567.	2.3	80
1238	High-Efficiency Transformation of Mammalian Cells by Plasmid DNA. Molecular and Cellular Biology, 1987, 7, 2745-2752.	2.3	2,479
1239	Duplicated CArG box domains have positive and mutually dependent regulatory roles in expression of the human alpha-cardiac actin gene. Molecular and Cellular Biology, 1987, 7, 2803-2813.	2.3	144
1240	Identification and Characterization of Two Functional Domains within the Murine Heavy-Chain Enhancer. Molecular and Cellular Biology, 1988, 8, 145-152.	2.3	76
1241	Detection of Two Tissue-Specific DNA-Binding Proteins with Affinity for Sites in the Mouse Î ² -Globin Intervening Sequence 2. Molecular and Cellular Biology, 1988, 8, 381-392.	2.3	52
1242	The Muscle Creatine Kinase Gene Is Regulated by Multiple Upstream Elements, Including a Muscle-Specific Enhancer. Molecular and Cellular Biology, 1988, 8, 62-70.	2.3	146

#	Article	IF	CITATIONS
1243	Comparison of Intron-Dependent and Intron-Independent Gene Expression. Molecular and Cellular Biology, 1988, 8, 4395-4405.	2.3	234
1244	Two Regulatory Domains Flank the Mouse H19 Gene. Molecular and Cellular Biology, 1988, 8, 4707-4715.	2.3	49
1245	Multiple Subelements within the Polyomavirus Enhancer Function Synergistically To Activate DNA Replication. Molecular and Cellular Biology, 1988, 8, 5000-5015.	2.3	60
1246	Premature translation termination mediates triosephosphate isomerase mRNA degradation. Molecular and Cellular Biology, 1988, 8, 802-813.	2.3	127
1247	Localization of a repressive sequence contributing to B-cell specificity in the immunoglobulin heavy-chain enhancer. Molecular and Cellular Biology, 1988, 8, 988-992.	2.3	37
1248	Differential protein binding in lymphocytes to a sequence in the enhancer of the mouse retrovirus SL3-3. Molecular and Cellular Biology, 1988, 8, 1625-1637.	2.3	120
1249	Genes Activated in the Presence of an Immunoglobulin Enhancer or Promoter Are Negatively Regulated by a T-Lymphoma Cell Line. Molecular and Cellular Biology, 1988, 8, 1932-1939.	2.3	20
1250	Identification of Upstream and Intragenic Regulatory Elements That Confer Cell-Type-Restricted and Differentiation-Specific Expression on the Muscle Creatine Kinase Gene. Molecular and Cellular Biology, 1988, 8, 2896-2909.	2.3	160
1251	The NF-κB-Binding Site Mediates Phorbol Ester-Inducible Transcription in Nonlymphoid Cells. Molecular and Cellular Biology, 1988, 8, 3526-3531.	2.3	56
1252	Tissue-Specific Transcription of the Mouse α-Fetoprotein Gene Promoter Is Dependent on HNF-1. Molecular and Cellular Biology, 1989, 9, 4204-4212.	2.3	68
1253	Transcription from a Murine T-Cell Receptor $\hat{V^2}$ Promoter Depends on a Conserved Decamer Motif Similar to the Cyclic AMP Response Element. Molecular and Cellular Biology, 1989, 9, 4835-4845.	2.3	29
1254	The <i>Xenopus laevis</i> U2 Gene Distal Sequence Element (Enhancer) Is Composed of Four Subdomains That Can Act Independently and Are Partly Functionally Redundant. Molecular and Cellular Biology, 1989, 9, 1682-1690.	2.3	19
1255	Importance of Introns for Expression of Mouse Ribosomal Protein Gene rpL32. Molecular and Cellular Biology, 1989, 9, 2075-2082.	2.3	84
1256	Promoter Upstream Elements of the Chicken Cardiac Myosin LightChain 2-A Gene Interact with <i>trans-Ading </i> Regulatory Factors for Muscle-Specific Transcription. Molecular and Cellular Biology, 1989, 9, 2513-2525.	2.3	60
1257	A <i>bcr</i> -v- <i>abl</i>) Oncogene Induces Lymphomas in Transgenic Mice. Molecular and Cellular Biology, 1989, 9, 2798-2805.	2.3	35
1258	DNA methylation and gene expression. Microbiological Reviews, 1991, 55, 451-458.	10.1	585
1259	Genetic approaches to inflorescence and leaf development in maize. Development (Cambridge), 1991, 113, 105-111.	2.5	10
1260	Targeting Super-Enhancers for Disease Treatment and Diagnosis. Molecules and Cells, 2018, 41, 506-514.	2.6	62

#	Article	IF	CITATIONS
1261	The search for <i>cis</i> -regulatory driver mutations in cancer genomes. Oncotarget, 2015, 6, 32509-32525.	1.8	18
1263	Live-cell imaging reveals enhancer-dependent Sox2 transcription in the absence of enhancer proximity. ELife, 2019, 8, .	6.0	220
1265	PROSER1 mediates TET2 O-GlcNAcylation to regulate DNA demethylation on UTX-dependent enhancers and CpG islands. Life Science Alliance, 2022, 5, e202101228.	2.8	24
1266	Wie werden unsere Gene ein- und ausgeschaltet?. , 2000, , 7-14.		0
1267	Transgenic Rats and the Functional Genomics of Endocrine Systems. Growth Hormone, 2001, , 1-24.	0.2	0
1271	Silencing Immunoglobulin Gene Enhancers as a Potential Treatment Strategy for Multiple Myeloma. Blood, 2008, 112, 5162-5162.	1.4	0
1273	Rearrangement and Activation of C-MYC Oncogene by Chromosome Translocation in B Cell Neoplasias. , 1984 , , $91-116$.		2
1274	Transcription by RNA Polymerase II. , 1984, , 65-97.		3
1275	Correct Developmental and Tissue Specific Expression of a Cloned Alcohol Dehydrogenase Gene Introduced into the Drosophila Germ Line by P Element Transformation., 1984,, 23-37.		0
1276	Promoter Elements of Genes Coding for Proteins and Modulation of Transcription by Estrogens and Progesterone., 1984, 40, 1-42.		60
1277	Gene Transfer in Living Organisms. , 1984, , 134-152.		2
1278	Control Elements Located within the Major Intervening Sequences of Murine Kappa Light Chain Genes. , 1984, , 93-104.		0
1279	Expression of crystalline genes by cloned cultured cells Seibutsu Butsuri, 1984, 24, 258-261.	0.1	0
1280	Enhancers as Transcriptional Control Elements. , 1984, , 26-34.		1
1281	SV40 als Modellsystem zum Studium eukaryontischer Genregulation. , 1985, , 177-188.		0
1282	Transcription Control in Eucaryotes-Enhancers and Promoters. , 1985, , 267-283.		0
1283	Strategies for Stable Human Monoclonal Antibody Production. , 1985, , 71-91.		4
1284	Negative Control of Viral and Cellular Enhancer Activity by the Products of the Immortalizing E1A Gene of Human Adenovirus-2. Jerusalem Symposia on Quantum Chemistry and Biochemistry, 1985, , 87-99.	0.2	0

#	ARTICLE	IF	Citations
1285	Promoter Elements of Eukaryotic Protein-Coding Genes., 1985,, 103-119.		2
1286	DNA-Mediated Tranformation of Lymphoid Cells. , 1985, , 21-29.		1
1287	Control of transcription and mRNA processing. , 1986, , 341-382.		O
1288	Novel Antibodies by DNA Transfection. , 1986, , 309-314.		1
1289	Cell-Type-Specific Synthesis of Murine Immunoglobulin $\hat{l}\sqrt[4]{4}$ RNA from an Adenovirus Vector. Molecular and Cellular Biology, 1986, 6, 123-133.	2.3	20
1290	Regulation of Alpha-Amylase Gene Expression. , 1986, , 47-54.		1
1291	Activation of the c-myc Oncogene. , 1986, 38, 399-406.		2
1293	Expression of Transfected Genes. , 1986, , 223-241.		3
1294	Mammalian Gene Transfer and Gene Expression. Advances in Experimental Medicine and Biology, 1986, 205, 319-349.	1.6	1
1295	Regulation of the Assembly and Expression of Immunoglobulin Genes: Variable Region Assembly and Heavy Chain Class Switching. , 1986, , 1-17.		0
1296	The Polyoma Enhancer., 1987,, 85-100.		0
1297	The SV40 Early Promoter. , 1987, , 53-83.		1
1298	Molecular Mechanisms of Epidermal Growth Factor Regulation of Prolactin Gene Transcription. , 1987, , 473-498.		0
1299	Mechanisms of Virus-Induced Alterations of Expression of Class I Genes and Their Role on Tumorigenesis., 1987,, 203-220.		O
1300	Transfectomas Provide Antibodies with Novel Structures and Functions., 1987,, 167-178.		0
1301	Polyomavirus Sequences Affecting the Initiation of Transcription and DNA Replication. , 1987, , 41-51.		O
1302	Developmental and Hormonal Regulation of Neuroendocrine Gene Transcription., 1987, 43, 499-534.		5
1303	Inducible and Constitutive Sequence Elements in the Enhancer of the Mouse Metallothionein-I Gene. Exs, 1987, 52, 415-422.	1.4	O

#	Article	IF	CITATIONS
1305	Regulation of H-2 Class I Gene Expression in Virus Transformed and/or Infected Cells., 1987,, 651-657.		4
1306	Functions of Chromatin and the Expression of Genes. , 1987, , 599-684.		1
1307	The Human Growth-Hormone Gene Family. , 1987, , 121-135.		0
1308	Transcriptional and Post-Transcriptional Strategies in Neuroendocrine Gene Expression. , 1988, 5, 317-334.		O
1309	The Cell-Specific Enhancer of the Mouse Transthyretin (Prealbumin) Gene Binds a Common Factor at One Site and a Liver-Specific Factor(s) at Two Other Sites. Molecular and Cellular Biology, 1988, 8, 81-90.	2.3	70
1310	Identification of the Cis-Acting Elements and Trans-Acting Factors That Mediate Cell-Specific and Thyroid Hormone Stimulation of Growth Hormone Gene Expression., 1988, 44, 53-114.		5
1311	Cell-type-specific regulation of growth hormone gene expression. , 1989, , 19-28.		1
1312	A chromosomal basis of lymphoid malignancy in man. , 1989, , 129-145.		0
1313	Thyroid Specific Gene Expression. Advances in Experimental Medicine and Biology, 1989, 261, 373-389.	1.6	1
1314	Transcriptional Regulation of Immunoglobulin Heavy Chain and T-Cell Receptor Beta Chain Genes. , 1989, 254, 77-86.		0
1315	New B-Lymphocyte-Specific Enhancer-Binding Protein. Molecular and Cellular Biology, 1989, 9, 312-320.	2.3	21
1316	Molecular genetics of immunoglobulin variable regions. , 1990, , 219-250.		0
1317	Identification of a Novel Factor That Interacts with an Immunoglobulin Heavy-Chain Promoter and Stimulates Transcription in Conjunction with the Lymphoid Cell-Specific Factor OTF2. Molecular and Cellular Biology, 1990, 10, 2145-2153.	2.3	12
1318	Relationship of bcr breakpoint to chronic phase duration, survival, and blast crisis lineage in chronic myelogenous leukemia patients presenting in early chronic phase [see comments]. Blood, 1990, 75, 2035-2041.	1.4	15
1319	A Role for Protein Kinase C Activity in Interleukin-1 (IL-1) Induction of IL-2 Gene Expression but Not in IL-1 Signal Transduction. Molecular and Cellular Biology, 1990, 10, 2731-2737.	2.3	5
1320	Regulation of the Human T-Cell Receptor $\hat{l}\pm$ Gene Enhancer: Multiple Ubiquitous and T-Cell-Specific Nuclear Proteins Interact with Four Hypomethylated Enhancer Elements. Molecular and Cellular Biology, 1990, 10, 4720-4727.	2.3	37
1321	Functional Analysis and Nucleotide Sequence of the Promoter Region of the Murine <i>hck</i> Gene. Molecular and Cellular Biology, 1990, 10, 4603-4611.	2.3	8
1322	Interaction of a Nuclear Protein with a Palindromic Sequence of the Mouse Immunoglobulin î»2-Chain Gene Promoter Is Important for Its Transcription. Molecular and Cellular Biology, 1990, 10, 5894-5902.	2.3	1

#	Article	IF	CITATIONS
1323	EBV Genome Organization in Lymphoblastoid Cell Lines Established Following Enhancement With Aflatoxin B1 and Relevance to Nasopharyngeal Carcinoma., 1991,, 391-405.		0
1324	Positive and Negative Regulation of Immunoglobulin Gene Expression by a Novel B-Cell-Specific Enhancer Element. Molecular and Cellular Biology, 1991, 11, 75-83.	2.3	8
1325	Characterization of the <i>BCR</i> Promoter in Philadelphia Chromosome-Positive and -Negative Cell Lines. Molecular and Cellular Biology, 1991, 11, 1854-1860.	2.3	17
1326	Identification of an Enhancer Required for the Expression of a Mouse Major Urinary Protein Gene in the Submaxillary Gland. Molecular and Cellular Biology, 1991, 11, 4244-4252.	2.3	7
1327	Regulation and a Possible Stage-Specific Function of Oct-2 during Pre-B-Cell Differentiation. Molecular and Cellular Biology, 1991, 11, 4885-4894.	2.3	23
1328	Transforming Growth Factor \hat{l}^2 and Cyclosporin A Inhibit the Inducible Activity of the Interleukin-2 Gene in T Cells Through a Noncanonical Octamer-Binding Site. Molecular and Cellular Biology, 1993, 13, 1155-1162.	2.3	75
1329	The Immunoglobulin Heavy Chain Locus Contains Another B-Cell-Specific 3' Enhancer Close to the $\hat{l}\pm$ Constant Region. Molecular and Cellular Biology, 1993, 13, 1547-1553.	2.3	45
1330	Patent Evaluation: A novel immunoglobulin gene enhancer. Current Opinion in Therapeutic Patents, 1993, 3, 459-460.	0.0	0
1331	Functional analysis of the Vϒ3 promoter of the murine ϒδT-cell receptor. Molecular and Cellular Biology, 1994, 14, 803-814.	2.3	7
1332	DNA vaccination by somatic transgene immunization. Principles and Practice, 1998, , 143-156.	0.3	0
1337	Genetics and Epigenetics: A Historical Overview., 2019,, 1-46.		0
1340	Enhancer RNA: biogenesis, function, and regulation. Essays in Biochemistry, 2020, 64, 883-894.	4.7	35
1343	Rapid Rescue of Cellular Transcriptional Activator Elements by Amplification of a Single Copy Selection Gene. Journal of Biological Chemistry, 1989, 264, 12278-12283.	3.4	1
1344	Repression of polyoma virus DNA replication by 5′-flanking region of mouse DNA polymerase β gene containing transcriptional silencer elements. Journal of Biological Chemistry, 1989, 264, 16887-16891.	3.4	3
1346	Enhanced Gene Expression by the Poly(dT-dG) · Poly(dC-dA) Sequence. Molecular and Cellular Biology, 1984, 4, 2622-2630.	2.3	118
1347	Adenovirus 5 E2 Transcription Unit: an E1A-Inducible Promoter with an Essential Element That Functions Independently of Position or Orientation. Molecular and Cellular Biology, 1984, 4, 875-882.	2.3	91
1348	Fine Mapping of an Immunoglobulin Gene Activator. Molecular and Cellular Biology, 1984, 4, 1042-1049.	2.3	98
1349	Repeated Consensus Sequence and Pseudopromoters in the Four Coordinately Regulated Tubulin Genes of <i>Chlamydomonas reinhardi</i> . Molecular and Cellular Biology, 1984, 4, 1115-1124.	2.3	38

#	Article	IF	CITATIONS
1350	Transcription Control Region Within the Protein-Coding Portion of Adenovirus E1A Genes. Molecular and Cellular Biology, 1984, 4, 1293-1305.	2.3	45
1351	tk Enzyme Expression in Differentiating Muscle Cells Is Regulated Through an Internal Segment of the Cellular <i>tk</i> Gene. Molecular and Cellular Biology, 1984, 4, 1777-1784.	2.3	87
1352	Stimulation of Sea Urchin H2B Histone Gene Transcription by a Chromatin-Associated Protein Fraction Depends on Gene Sequences Downstream of the Transcription Start Site. Molecular and Cellular Biology, 1985, 5, 2764-2769.	2.3	23
1353	Glucocorticoid Receptor Binding and Activation of a Heterologous Promoter by Dexamethasone by the First Intron of the Human Growth Hormone Gene. Molecular and Cellular Biology, 1985, 5, 2984-2992.	2.3	82
1354	Differential Expression of the Human Gonadotropin \hat{l}_{\pm} Gene in Ectopic and Eutopic Cells. Molecular and Cellular Biology, 1985, 5, 3157-3167.	2.3	23
1355	Enhancer-Dependent Expression of the Rat Preproinsulin Gene in Bovine Papillomavirus Type 1 Vectors. Molecular and Cellular Biology, 1985, 5, 3507-3516.	2.3	11
1356	Independent Immunoglobulin Class-Switch Events Occurring in a Single Myeloma Cell Line. Molecular and Cellular Biology, 1985, 5, 856-868.	2.3	45
1357	Characterization, expression, and evolution of the mouse embryonic zeta-globin gene. Molecular and Cellular Biology, 1985, 5, 1025-1033.	2.3	25
1358	Gene transfer method for transient gene expression, stable transformation, and cotransformation of suspension cell cultures. Molecular and Cellular Biology, 1985, 5, 1188-1190.	2.3	18
1359	<i>trans</i> Activation of the Simian Virus 40 Late Transcription Unit by T-Antigen. Molecular and Cellular Biology, 1985, 5, 1391-1399.	2.3	134
1360	Accurate and Efficient Transcription of Human c- <i>myc</i> Genes Injected into <i>Xenopus laevis</i> Oocytes. Molecular and Cellular Biology, 1985, 5, 1434-1441.	2.3	17
1361	Linker Scanning Mutagenesis of the 5′-Flanking Region of the Mouse β-Major-Globin Gene: Sequence Requirements for Transcription in Erythroid and Nonerythroid Cells. Molecular and Cellular Biology, 1985, 5, 1498-1511.	2.3	81
1362	Characterization of the Functional Gene and Several Processed Pseudogenes in the Human Triosephosphate Isomerase Gene Family. Molecular and Cellular Biology, 1985, 5, 1694-1706.	2.3	38
1363	Expression of Human \hat{l}^2 -Globin Genes in Transgenic Mice: Effects of a Flanking Metallothionein-Human Growth Hormone Fusion Gene. Molecular and Cellular Biology, 1985, 5, 1977-1983.	2.3	26
1364	Control of Adenovirus Late Promoter Expression in Two Human Cell Lines. Molecular and Cellular Biology, 1985, 5, 2433-2442.	2.3	63
1365	5′-Flanking Sequence Required for Regulated Expression of a Muscle-Specific <i>Drosophila melanogaster</i> Actin Gene. Molecular and Cellular Biology, 1986, 6, 3388-3396.	2.3	25
1366	Tissue-Specific Expression of the Rat Alpha _{2u} Globulin Gene Family. Molecular and Cellular Biology, 1986, 6, 3563-3567.	2.3	28
1367	Activation of the Adenovirus and BK Virus Late Promoters: Effects of the BK Virus Enhancer and <i>trans</i> -Acting Viral Early Proteins. Molecular and Cellular Biology, 1986, 6, 3596-3605.	2.3	14

#	Article	IF	CITATIONS
1368	Differential Expression of Mouse β/Goat β ^c , Mouse β/Goat β ^F , and Mouse β/Goat ε ^{II} Hybrid Globin Genes in Murine Erythroleukemia Cells. Molecular and Cellular Biology, 1986, 6, 3873-3883.	2.3	0
1369	Different tissue-specific expression of the amylase gene Amy-1 in mice and rats. Molecular and Cellular Biology, 1986, 6, 4067-4076.	2.3	17
1370	The mouse immunoglobulin heavy-chain gene enhancer contains sequences that inhibit transcription in vitro in HeLa cell extracts. Molecular and Cellular Biology, 1986, 6, 4117-4121.	2.3	7
1371	Binding in vitro of multiple cellular proteins to immunoglobulin heavy-chain enhancer DNA. Molecular and Cellular Biology, 1986, 6, 4168-4178.	2.3	65
1372	Activation of an enhancerless gene by chromosomal integration. Molecular and Cellular Biology, 1986, 6, 4179-4184.	2.3	17
1373	Random Isolation of Gene Activator Elements from the Human Genome. Molecular and Cellular Biology, 1986, 6, 4185-4194.	2.3	12
1374	DNA rearrangement causes a high rate of spontaneous mutation at the immunoglobulin heavy-chain locus of a mouse myeloma cell line. Molecular and Cellular Biology, 1986, 6, 4228-4235.	2.3	9
1375	Delimiting regulatory sequences of the Drosophila melanogaster Ddc gene. Molecular and Cellular Biology, 1986, 6, 4548-4557.	2.3	19
1376	Transcriptional control of the mouse prealbumin (transthyretin) gene: both promoter sequences and a distinct enhancer are cell specific. Molecular and Cellular Biology, 1986, 6, 4697-4708.	2.3	93
1377	Eel electric organ: hyperexpressing calmodulin system. Molecular and Cellular Biology, 1986, 6, 950-954.	2.3	4
1378	trans Activation of the simian virus 40 enhancer. Molecular and Cellular Biology, 1986, 6, 1283-1295.	2.3	31
1379	An active chromatin structure acquired by translocated c-myc genes. Molecular and Cellular Biology, 1986, 6, 1357-1361.	2.3	13
1380	Enhancer sequences responsible for DNase I hypersensitivity in polyomavirus chromatin. Molecular and Cellular Biology, 1986, 6, 2249-2252.	2.3	10
1381	Tissue-Specific Activity of the Pro-Opiomelanocortin Gene Promoter. Molecular and Cellular Biology, 1987, 7, 4058-4064.	2.3	26
1382	Complex protein binding within the mouse immunoglobulin heavy-chain enhancer. Molecular and Cellular Biology, 1987, 7, 4194-4203.	2.3	52
1383	Cell-Specific Expression of the Human Gastrin Gene: Evidence for a Control Element Located Downstream of the TATA Box. Molecular and Cellular Biology, 1987, 7, 4329-4336.	2.3	29
1384	Introns Are Inconsequential to Efficient Formation of Cellular Thymidine Kinase mRNA in Mouse L Cells. Molecular and Cellular Biology, 1987, 7, 4576-4581.	2.3	25
1385	At Least Two Nuclear Proteins Bind Specifically to the Rous Sarcoma Virus Long Terminal Repeat Enhancer. Molecular and Cellular Biology, 1987, 7, 787-798.	2.3	79

#	ARTICLE	IF	CITATIONS
1386	Extinction of Expression of Immunoglobulin Genes in Myeloma $\tilde{A}-$ Fibroblast Somatic Cell Hybrids. Molecular and Cellular Biology, 1987, 7, 936-939.	2.3	22
1387	Different Activities of Viral Enhancer Elements before and after Stable Integration of Transfected DNAs. Molecular and Cellular Biology, 1987, 7, 1296-1299.	2.3	2
1388	In Vitro Transcription of Immunoglobulin Genes in a B-Cell Extract: Effects of Enhancer and Promoter Sequences. Molecular and Cellular Biology, 1987, 7, 1989-1994.	2.3	15
1389	Extinction of alpha-fetoprotein gene expression in somatic cell hybrids involves cis-acting DNA elements. Molecular and Cellular Biology, 1987, 7, 2606-2609.	2.3	6
1390	Chromatin fine-structure mapping of the goat beta F gene in fetal erythroid tissue. Molecular and Cellular Biology, 1987, 7, 2772-2782.	2.3	1
1391	The rat elastase I regulatory element is an enhancer that directs correct cell specificity and developmental onset of expression in transgenic mice. Molecular and Cellular Biology, 1987, 7, 2956-2967.	2.3	66
1392	B-Cell Control Region at the 5′ End of a Major Histocompatibility Complex Class II Gene: Sequences and Factors. Molecular and Cellular Biology, 1988, 8, 3975-3987.	2.3	63
1393	Multiple Hepatic <i>trans</i> -Acting Factors Are Required for In Vitro Transcription of the Human Alpha-1-Antitrypsin Gene. Molecular and Cellular Biology, 1988, 8, 4362-4369.	2.3	33
1394	Differential Regulation of the Two Glyceraldehyde-3-Phosphate Dehydrogenase Genes During <i>Drosophila</i> Development. Molecular and Cellular Biology, 1988, 8, 5200-5205.	2.3	13
1395	Expression of T-cell Receptor Alpha-Chain Genes in Transgenic Mice. Molecular and Cellular Biology, 1988, 8, 5459-5469.	2.3	19
1396	Role for DNA replication in beta-globin gene activation. Molecular and Cellular Biology, 1988, 8, 1301-1308.	2.3	27
1397	Systematic Binding Analysis of the Insulin Gene Transcription Control Region: Insulin and Immunoglobulin Enhancers Utilize Similar Transactivators. Molecular and Cellular Biology, 1988, 8, 2620-2627.	2.3	79
1398	Identification of an Octamer-Binding Site in the Mouse Kappa Light-Chain Immunoglobulin Enhancer. Molecular and Cellular Biology, 1989, 9, 4239-4247.	2.3	23
1399	Identification of a Yeast Protein with Properties Similar to Those of the Immunoglobulin Heavy-Chain Enhancer-Binding Protein NF-Î1/4E3. Molecular and Cellular Biology, 1989, 9, 4535-4540.	2.3	10
1400	The Rat Albumin Promoter Is Composed of Six Distinct Positive Elements within 130 Nucleotides. Molecular and Cellular Biology, 1989, 9, 4750-4758.	2.3	38
1401	Developmental Appearance of Transcription Factors That Regulate Liver-Specific Expression of the Aldolase B Gene. Molecular and Cellular Biology, 1989, 9, 4923-4931.	2.3	36
1402	Proteins Binding to Site C2 (μE3) in the Immunoglobulin Heavy-Chain Enhancer Exist in Multiple Oligomeric Forms. Molecular and Cellular Biology, 1989, 9, 776-786.	2.3	30
1403	Purification and Properties of the Rous Sarcoma Virus Internal Enhancer Binding Factor. Molecular and Cellular Biology, 1989, 9, 1929-1939.	2.3	19

#	Article	IF	CITATIONS
1404	Negative Transcriptional Regulatory Element That Functions in Embryonal Carcinoma Cells. Molecular and Cellular Biology, 1989, 9, 4032-4037.	2.3	8
1405	TISSUE-SPECIFIC AND PRETRANSLATIONAL CHARACTER OF VARIANTS OF THE ROSY LOCUS CONTROL ELEMENT IN DROSOPHILA MELANOGASTER. Genetics, 1984, 108, 953-968.	2.9	38
1438	Journey to the surface of the cell: Fos regulation and the SRE. EMBO Journal, 1995, 14, 4905-13.	7.8	124
1439	Immunoglobulin gene transcription ceases upon deletion of a distant enhancer. EMBO Journal, 1995, 14, 6229-38.	7.8	27
1440	Goals for signal transduction pathways: linking up with transcriptional regulation. EMBO Journal, 1994, 13, 4717-28.	7.8	19
1441	Random activation of a transgene under the control of a hybrid hCD2 locus control region/lg enhancer regulatory element. EMBO Journal, 1995, 14, 575-84.	7.8	22
1442	T cell tolerance to Mlsa encoded antigens in T cell receptor V beta 8.1 chain transgenic mice. EMBO Journal, 1989, 8, 719-27.	7.8	60
1443	A novel, inducible and T cell-specific enhancer located at the 3' end of the T cell receptor alpha locus. EMBO Journal, 1989, 8, 729-33.	7.8	94
1444	IgH enhancer-mediated deregulation of N-myc gene expression in transgenic mice: generation of lymphoid neoplasias that lack c-myc expression. EMBO Journal, 1989, 8, 1121-8.	7.8	32
1445	The immunoglobulin kappa locus contains a second, stronger B-cell-specific enhancer which is located downstream of the constant region. EMBO Journal, 1989, 8, 1959-64.	7.8	92
1446	Octamer transcription factors bind to two different sequence motifs of the immunoglobulin heavy chain promoter. EMBO Journal, 1989, 8, 2001-8.	7.8	57
1447	The spatial and temporal expression pattern of sevenless is exclusively controlled by gene-internal elements. EMBO Journal, 1989, 8, 2381-6.	7.8	38
1448	An enhancer located in a CpG-island 3' to the TCR/CD3-epsilon gene confers T lymphocyte-specificity to its promoter. EMBO Journal, 1989, 8, 2527-35.	7.8	45
1449	A thyroid-specific nuclear protein essential for tissue-specific expression of the thyroglobulin promoter. EMBO Journal, 1989, 8, 2537-42.	7.8	110
1450	A family of octamer-specific proteins present during mouse embryogenesis: evidence for germline-specific expression of an Oct factor. EMBO Journal, 1989, 8, 2543-50.	7.8	246
1451	Octamer binding proteins confer transcriptional activity in early mouse embryogenesis. EMBO Journal, 1989, 8, 2551-7.	7.8	117
1452	V(D)J recombination in B cells is impaired but not blocked by targeted deletion of the immunoglobulin heavy chain intron enhancer. EMBO Journal, 1993, 12, 2321-7.	7.8	69
1453	Mutations of the intronic IgH enhancer and its flanking sequences differentially affect accessibility of the JH locus. EMBO Journal, 1993, 12, 4635-45.	7.8	61

#	Article	IF	CITATIONS
1454	Both Oct-1 and Oct-2A contain domains which can activate the ubiquitously expressed U2 snRNA genes. EMBO Journal, 1991, 10, 2291-6.	7.8	15
1455	Transcription of T cell receptor beta-chain genes is controlled by a downstream regulatory element. EMBO Journal, 1988, 7, 745-50.	7.8	103
1456	Two different liver-specific factors stimulate in vitro transcription from the human alpha 1-antitrypsin promoter. EMBO Journal, 1988, 7, 2075-87.	7.8	127
1457	Both immunoglobulin promoter and enhancer sequences are targets for suppression in myeloma-fibroblast hybrid cells. EMBO Journal, 1988, 7, 3093-8.	7.8	10
1458	Purification of a NF1-like DNA-binding protein from rat liver and cloning of the corresponding cDNA. EMBO Journal, 1988, 7, 3115-23.	7.8	113
1459	Identification of a novel lymphoid specific octamer binding protein (OTF-2B) by proteolytic clipping bandshift assay (PCBA). EMBO Journal, 1988, 7, 4221-9.	7.8	135
1460	Cell lineage specificity of chromatin configuration around the immunoglobulin heavy chain enhancer. EMBO Journal, 1988, 7, 2393-9.	7.8	13
1461	A T cell-specific enhancer is located in a DNase I-hypersensitive area at the 3' end of the CD3-delta gene. EMBO Journal, 1988, 7, 2401-7.	7.8	53
1462	Functional redundancy in the tissue-specific enhancer of the Drosophila Sgs-4 gene. EMBO Journal, 1988, 7, 2559-67.	7.8	29
1463	Tissue specific trans-acting factor interaction with proximal rat prolactin gene promoter sequences. EMBO Journal, 1988, 7, 1721-33.	7.8	5
1464	Separate elements control DJ and VDJ rearrangement in a transgenic recombination substrate. EMBO Journal, 1990, 9, 117-25.	7.8	93
1465	Distinct positive and negative elements control the limited hepatocyte and choroid plexus expression of transthyretin in transgenic mice. EMBO Journal, 1990, 9, 869-78.	7.8	44
1466	The cell type-specific octamer transcription factor OTF-2 has two domains required for the activation of transcription. EMBO Journal, 1990, 9, 1635-43.	7.8	77
1467	Developmental regulation by an enhancer from the Sgs-4 gene of Drosophila. EMBO Journal, 1987, 6, 207-14.	7.8	16
1468	Tissue-specific expression of the human growth hormone gene is conferred in part by the binding of a specific trans-acting factor. EMBO Journal, 1987, 6, 971-81.	7.8	70
1469	Regulated expression of the Ren-2 gene in transgenic mice derived from parental strains carrying only the Ren-1 gene. EMBO Journal, 1987, 6, 983-7.	7.8	13
1470	Discrete elements within the SV40 enhancer region display different cell-specific enhancer activities. EMBO Journal, 1987, 6, 1017-25.	7.8	151
1471	The conserved decanucleotide from the immunoglobulin heavy chain promoter induces a very high transcriptional activity in B-cells when introduced into an heterologous promoter. EMBO Journal, 1987, 6, 1685-90.	7.8	65

#	Article	IF	CITATIONS
1472	Cloning of a Nicotiana plumbaginifolia protoplast-specific enhancer-like sequence. EMBO Journal, 1987, 6, 2525-30.	7.8	2
1473	Cis- and trans-acting elements responsible for the cell-specific expression of the human alpha 1-antitrypsin gene. EMBO Journal, 1987, 6, 2759-66.	7.8	85
1474	An enhancer element lies 3' to the human A gamma globin gene. EMBO Journal, 1987, 6, 2997-3004.	7.8	64
1475	One cell-specific and three ubiquitous nuclear proteins bind in vitro to overlapping motifs in the domain B1 of the SV40 enhancer. EMBO Journal, 1987, 6, 3005-13.	7.8	72
1476	In vitro binding of cell-specific and ubiquitous nuclear proteins to the octamer motif of the SV40 enhancer and related motifs present in other promoters and enhancers. EMBO Journal, 1987, 6, 3015-25.	7.8	81
1477	Activation of V kappa gene rearrangement in pre-B cells follows the expression of membrane-bound immunoglobulin heavy chains. EMBO Journal, 1987 , 6 , $3299-305$.	7.8	65
1478	Promoter and enhancer elements in the rearranged alpha chain gene of the human T cell receptor. EMBO Journal, 1987, 6, 3307-12.	7.8	27
1479	Interactions of cellular proteins involved in the transcriptional regulation of the human immunodeficiency virus. EMBO Journal, 1987, 6, 3761-70.	7.8	199
1480	Promoter and enhancer elements containing a conserved sequence motif are recognized by nuclear factor III, a protein stimulating adenovirus DNA replication. EMBO Journal, 1987, 6, 3771-8.	7.8	50
1481	The chicken progesterone receptor: sequence, expression and functional analysis. EMBO Journal, 1987, 6, 3985-94.	7.8	48
1482	Driven by the same Ig enhancer and SV40 T promoter ras induced lung adenomatous tumors, myc induced pre-B cell lymphomas and SV40 large T gene a variety of tumors in transgenic mice. EMBO Journal, 1987, 6, 4055-65.	7.8	62
1483	Noncoding 3' sequences of the transferrin receptor gene are required for mRNA regulation by iron. EMBO Journal, 1987, 6, 1287-93.	7.8	81
1484	Cell type-specificity elements of the immunoglobulin heavy chain gene enhancer. EMBO Journal, 1987, 6, 1323-30.	7.8	160
1485	Interaction of the TGGCA-binding protein with upstream sequences is required for efficient transcription of mouse mammary tumor virus. EMBO Journal, 1987, 6, 1355-60.	7.8	77
1486	Structural and functional evidence for differential promoter activity of the two linked delta-crystallin genes in the chicken. EMBO Journal, 1985, 4, 445-52.	7.8	21
1487	Chromosome translocation activates heterogeneously initiated, bipolar transcription of a mouse c-myc gene. EMBO Journal, 1985, 4, 667-74.	7.8	13
1488	Enhancer activity correlates with the oncogenic potential of avian retroviruses. EMBO Journal, 1985, 4, 949-56.	7.8	44
1489	Functional and pseudogenes are similarly organized and may equally contribute to the extensive antibody diversity of the IgVHII family. EMBO Journal, 1985, 4, 1225-30.	7.8	26

#	ARTICLE	IF	CITATIONS
1490	Chromosome translocations clustered 5' of the murine c-myc gene qualitatively affect promoter usage: implications for the site of normal c-myc regulation. EMBO Journal, 1985, 4, 1441-7.	7.8	32
1491	Structure and cell-specific expression of a cloned human retinol binding protein gene: the 5'-flanking region contains hepatoma specific transcriptional signals. EMBO Journal, 1985, 4, 1981-9.	7.8	41
1492	A transcription enhancer in the Herpesvirus saimiri genome. EMBO Journal, 1985, 4, 2669-74.	7.8	11
1493	Specific interaction of cellular factors with the B enhancer of polyoma virus. EMBO Journal, 1985, 4, 2675-85.	7.8	105
1494	Cell-type preference of immunoglobulin kappa and lambda gene promoters. EMBO Journal, 1985, 4, 2831-8.	7.8	70
1495	The nucleotide sequence of the human int-1 mammary oncogene; evolutionary conservation of coding and non-coding sequences. EMBO Journal, 1985, 4, 2905-9.	7.8	39
1496	Cell type-specific transcriptional enhancement in vitro requires the presence of trans-acting factors. EMBO Journal, 1985, 4, 3005-13.	7.8	81
1497	Selection of mouse neuroblastoma cell-specific polyoma virus mutants with stage differentiative advantages of replication. EMBO Journal, 1985, 4, 3215-21.	7.8	32
1498	The SV40 enhancer influences viral late transcription in vitro and in vivo but not on replicating templates. EMBO Journal, 1985, 4, 3247-52.	7.8	14
1499	Multiple upstream regulatory elements control the expression of the Drosophila white gene. EMBO Journal, 1985, 4, 3501-8.	7.8	155
1500	Characterization of immunoglobulin enhancer deletions in murine plasmacytomas. EMBO Journal, 1985, 4, 3689-93.	7.8	22
1501	Metal-dependent SV40 viruses containing inducible enhancers from the upstream region of metallothionein genes. EMBO Journal, 1985, 4, 3851-9.	7.8	39
1502	Sequence of the murine and human cellular myc oncogenes and two modes of myc transcription resulting from chromosome translocation in B lymphoid tumours. EMBO Journal, 1983, 2, 2375-83.	7.8	207
1503	Transcriptional regulation of a herpes simplex virus immediate early gene is mediated through an enhancer-type sequence. EMBO Journal, 1984, 3, 389-95.	7.8	72
1504	Immunoglobulin gene expression and DNA methylation in murine pre-B cell lines. EMBO Journal, 1984, 3, 677-81.	7.8	2
1505	A close association between sites of DNase I hypersensitivity and sites of enhanced cleavage by micrococcal nuclease in the 5'-flanking region of the actively transcribed ovalbumin gene. EMBO Journal, 1984, 3, 1137-44.	7.8	17
1506	Transcriptional analysis of human zeta globin genes. EMBO Journal, 1984, 3, 1533-40.	7.8	20
1507	Modulation of enhancer activity by the hormone responsive regulatory element from mouse mammary tumor virus. EMBO Journal, 1984, 3, 1891-9.	7.8	38

#	Article	IF	CITATIONS
1508	Deletion of the IgH enhancer does not reduce immunoglobulin heavy chain production of a hybridoma IgD class switch variant. EMBO Journal, 1984, 3, 2473-6.	7.8	54
1509	Tissue-specific expression is conferred by a sequence from the 5' end of the rat albumin gene. EMBO Journal, 1984, 3, 2505-10.	7.8	113
1510	Activation of immunoglobulin mu gene expression involves stepwise demethylation. EMBO Journal, 1984, 3, 3013-21.	7.8	10
1511	Unrearranged immunoglobulin lambda variable region is transcribed in kappa-producing myelomas. EMBO Journal, 1984, 3, 3031-5.	7.8	7
1512	Stimulation of in vitro transcription from the SV40 early promoter by the enhancer involves a specific trans-acting factor. EMBO Journal, 1984, 3, 3129-33.	7.8	138
1513	Multiple sequence motifs are involved in SV40 enhancer function. EMBO Journal, 1986, 5, 387-97.	7.8	320
1514	The immunoglobulin heavy-chain B-lymphocyte enhancer efficiently stimulates transcription in non-lymphoid cells. EMBO Journal, 1986, 5, 553-60.	7.8	76
1515	Direct evidence that p40x of human T-cell leukemia virus type I is a trans-acting transcriptional activator. EMBO Journal, 1986, 5, 561-5.	7.8	183
1516	A transcriptional enhancer sequence of HTLV-I is responsible for trans-activation mediated by p40 chi HTLV-I. EMBO Journal, 1986, 5, 713-8.	7.8	147
1517	The lysozyme enhancer: cell-specific activation of the chicken lysozyme gene by a far-upstream DNA element. EMBO Journal, 1986, 5, 719-24.	7.8	66
1518	Several hundred base pairs upstream of Drosophila hsp23 and 26 genes are required for their heat induction in transformed flies. EMBO Journal, 1986, 5, 755-61.	7.8	24
1519	Regulatory elements involved in Drosophila Adh gene expression are conserved in divergent species and separate elements mediate expression in different tissues. EMBO Journal, 1986, 5, 1275-89.	7.8	45
1520	Idiotypic selection of an antibody mutant with changed hapten binding specificity, resulting from a point mutation in position 50 of the heavy chain. EMBO Journal, 1986, 5, 1561-6.	7.8	13
1521	A transcriptional enhancer with specificity for erythroid cells is located in the long terminal repeat of the Friend murine leukemia virus. EMBO Journal, 1986, 5, 1615-23.	7.8	53
1522	The mouse immunoglobulin heavy-chain enhancer: effect on transcription in vitro and binding of proteins present in HeLa and lymphoid B cell extracts. EMBO Journal, 1986, 5, 1791-7.	7.8	62
1523	Coordination of murine parotid secretory protein and salivary amylase expression. EMBO Journal, 1986, 5, 1891-6.	7.8	11
1524	The hormone regulatory element of mouse mammary tumour virus mediates progesterone induction. EMBO Journal, 1986, 5, 2237-40.	7.8	149
1525	Nuclear factors binding specific sequences within the immunoglobulin enhancer interact differentially with other enhancer elements. EMBO Journal, 1986, 5, 3251-8.	7.8	42

#	Article	IF	CITATIONS
1526	Sequence conservation in the protein coding and intron regions of the engrailed transcription unit. EMBO Journal, 1986, 5, 3583-9.	7.8	71
1529	Mannose binding protein is involved in first-line host defence: evidence from transgenic mice. Immunology, 1995, 85, 153-9.	4.4	43
1530	Production of heavy-chain class-switch variants of human monoclonal antibody by recombinant DNA technology. Clinical and Experimental Immunology, 1988, 71, 508-16.	2.6	23
1532	Every enhancer works with every promoter for all the combinations tested: could new regulatory pathways evolve by enhancer shuffling?. Gene Expression, 1991, 1, 71-81.	1.2	35
1534	Molecular architecture of enhancer–promoter interaction. Current Opinion in Cell Biology, 2022, 74, 62-70.	5.4	17
1535	Non-Darwinian Molecular Biology. Frontiers in Genetics, 2022, 13, 831068.	2.3	4
1542	Delivery of Ribozymes and Antisense DNA Molecules into Mammalian Cells., 0,, 41-71.		0
1543	Tissue specific phenotypes of polyomavirus A and B enhancer transpositions and duplications: Positional and nonpositional effects on replication in lymphoid cells. Virus Genes, 1987, 1, 23-34.	1.6	9
1544	Biology of interleukin-2. Survey of Immunologic Research, 1984, 3, 122-6.	0.4	5
1545	Different ways to modify monoclonal antibodies. Medical Oncology and Tumor Pharmacotherapy, 1984, 1, 227-233.	1.1	14
1546	Programmed development in the mouse embryo. Development (Cambridge), 1984, 83, 197-231.	2.5	17
1547	Compatibility rules of human enhancer and promoter sequences. Nature, 2022, 607, 176-184.	27.8	67
1548	Enhancer-gene specificity in development and disease. Development (Cambridge), 2022, 149, .	2.5	15
1549	Coming full circle: On the origin and evolution of the looping model for enhancer–promoter communication. Journal of Biological Chemistry, 2022, 298, 102117.	3.4	21
1550	Transcriptional enhancers at 40: evolution of a viral DNA element to nuclear architectural structures. Trends in Genetics, 2022, 38, 1019-1047.	6.7	11
1552	Prostate Cancer Epigenetic Plasticity and Enhancer Heterogeneity: Molecular Causes, Consequences and Clinical Implications. Advances in Experimental Medicine and Biology, 2022, , 255-275.	1.6	1
1553	The spatial organization of transcriptional control. Nature Reviews Genetics, 2023, 24, 53-68.	16.3	53
1554	Distal and proximal control of rhythmic gene transcription. Frontiers in Systems Biology, 0, 2, .	0.7	0

#	Article	IF	CITATIONS
1556	Distal transcriptional enhancers and repressors of bidirectional promoters., 2023, , 143-155.		0
1557	ARID1A loss induces polymorphonuclear myeloid-derived suppressor cell chemotaxis and promotes prostate cancer progression. Nature Communications, 2022, 13 , .	12.8	20
1560	Differentiation-Specific, Octamer-Dependent Costimulation of \hat{l}^2 Transcription. Journal of Immunology, 1998, 160, 3899-3907.	0.8	6
1561	3′ IgH Enhancer Elements Shift Synergistic Interactions During B Cell Development. Journal of Immunology, 1998, 160, 4896-4903.	0.8	49
1562	Ig Heavy Chain Expression and Class Switching In Vitro from an Allele Lacking the 3′ Enhancers DNase I-Hypersensitive hs3A and hs1,2. Journal of Immunology, 1999, 162, 2791-2803.	0.8	25
1563	A deep learning based two-layer predictor to identify enhancers and their strength. Methods, 2023, 211, 23-30.	3.8	1
1565	Toward a comprehensive catalog of regulatory elements. Human Genetics, 2023, 142, 1091-1111.	3.8	4
1566	Emerging insights into enhancer biology and function. Transcription, 2023, 14, 68-87.	3.1	3
1568	Enhancers are genes that express organizational RNAs. , 0, 1 , .		4
1569	Characterization of Gene Regulatory Elements in Human Fetal Cortical Development: Enhancing Our Understanding of Neurodevelopmental Disorders and Evolution. Developmental Neuroscience, 2024, 46, 69-83.	2.0	0
1570	The Role of Enhancers in Psoriasis and Atopic Dermatitis. British Journal of Dermatology, 0, , .	1.5	0
1571	Clustered and diverse transcription factor binding underlies cell type specificity of enhancers for housekeeping genes. Genome Research, 2023, 33, 1662-1672.	5.5	1
1572	The Hidden Layer of RNA Variants. RNA Technologies, 2023, , 343-369.	0.3	0
1573	ETV4-Dependent Transcriptional Plasticity Maintains <i>MYC</i> Expression and Results in IMiD Resistance in Multiple Myeloma. Blood Cancer Discovery, 2024, 5, 56-73.	5.0	2
1574	From Genotype to Phenotype: How Enhancers Control Gene Expression and Cell Identity in Hematopoiesis. HemaSphere, 2023, 7, e969.	2.7	0
1575	Enhancer selectivity in space and time: from enhancer–promoter interactions to promoter activation. Nature Reviews Molecular Cell Biology, 0, , .	37.0	0
1576	Osteoarthritis as an Enhanceropathy: Gene Regulation in Complex Musculoskeletal Disease. Current Rheumatology Reports, 0, , .	4.7	0