A tissue-specific transcription enhancer element is loca rearranged immunoglobulin heavy chain gene

Cell 33, 717-728 DOI: 10.1016/0092-8674(83)90014-4

Citation Report

#	Article	IF	CITATIONS
1	Gene regulation: Enhancer elements activated by steroid hormones?. Nature, 1983, 304, 687-688.	13.7	39
2	Reciprocal chromosome translocation between c-myc and immunoglobulin γ2b genes. Nature, 1983, 305, 240-243.	13.7	66
3	Cell-type specific expression of a transfected immunoglobulin gene. Nature, 1983, 306, 77-79.	13.7	121
4	Molecular biology: Enhancers, chromosome position effects, and transgenic mice. Nature, 1983, 306, 313-314.	13.7	22
5	Expression of a microinjected immunoglobulin gene in the spleen of transgenic mice. Nature, 1983, 306, 332-336.	13.7	211
6	Cholera toxin genes: nucleotide sequence, deletion analysis and vaccine development. Nature, 1983, 306, 551-557.	13.7	717
7	Cell-specific expression controlled by the 5′-flanking region of insulin and chymotrypsin genes. Nature, 1983, 306, 557-561.	13.7	710
8	Oncogenesis: Paradox and paradigm: the message and meaning of myc. Nature, 1983, 306, 733-736.	13.7	41
9	Identification of reciprocal translocation sites within the c-myc oncogene and immunoglobulin μ locus in a Burkitt lymphoma. Nature, 1983, 306, 799-803.	13.7	113
10	DNase I hypersensitive sites in the chromatin of human μ immunoglobulin heavy-chain genes. Nature, 1983, 306, 809-812.	13.7	120
11	DNA fragments from F9 PyEC mutants increase expression of heterologous genes in transfected F9 cells. Cell, 1983, 35, 693-699.	13.5	160
12	The human c-myc oncogene: Structural consequences of translocation into the igh locus in Burkitt lymphoma. Cell, 1983, 34, 779-787.	13.5	767
13	Correct developmental expression of a cloned alcohol dehydrogenase gene transduced into the drosophila germ line. Cell, 1983, 34, 59-73.	13.5	290
14	Transcription enhancer identified near the human Cμ immunoglobulin heavy chain gene is unavailable to the translocated c-myc gene in a Burkitt lymphoma. Nature, 1983, 306, 806-809.	13.7	106
15	Nucleotide sequences of Immunoglobulin μ heavy chain deletion mutants. Nucleic Acids Research, 1983, 11, 7471-7485.	6.5	15
16	Transcriptional activity of the human psendogene Φα globin compared with α globin, its functional gene counterpart. Nucleic Acids Research, 1983, 11, 7717-7733.	6.5	32
17	BK viral enhancer element and a human cellular homolog. Science, 1983, 222, 749-755.	6.0	200
18	Expression of cloned imunoglobulin genes introduced into mouse L cells. Nucleic Acids Research, 1983, 11, 7981-7997.	6.5	26

TION RED

#	Article	IF	CITATIONS
19	A functional component of the sea urchin H2A gene modulator contains an extended sequence homology to a viral enhancer. Nucleic Acids Research, 1983, 11, 8123-8136.	6.5	32
20	An enhancer element is located 340 base pairs upstream from the adenovirus-2 E1A capsite. Nucleic Acids Research, 1983, 11, 8747-8760.	6.5	147
21	cis and trans activation of globin gene transcription in transient assays Proceedings of the National Academy of Sciences of the United States of America, 1983, 80, 7428-7432.	3.3	283
22	Functional immunoglobulin M production after transfection of cloned immunoglobulin heavy and light chain genes into lymphoid cells Proceedings of the National Academy of Sciences of the United States of America, 1983, 80, 6351-6355.	3.3	134
23	Structure of the human interleukin 2 gene Proceedings of the National Academy of Sciences of the United States of America, 1983, 80, 7437-7441.	3.3	194
24	Activation of the c-myc gene by translocation: a model for translational control Proceedings of the National Academy of Sciences of the United States of America, 1983, 80, 7476-7480.	3.3	201
25	Translocation of an immunoglobulin kappa locus to a region 3' of an unrearranged c-myc oncogene enhances c-myc transcription Proceedings of the National Academy of Sciences of the United States of America, 1983, 80, 7581-7585.	3.3	210
26	Transcriptional enhancer elements in the mouse immunoglobulin heavy chain locus. Science, 1983, 221, 663-665.	6.0	166
27	Sequence of the murine and human cellular myc oncogenes and two modes of myc transcription resulting from chromosome translocation in B lymphoid tumours EMBO Journal, 1983, 2, 2375-2383.	3.5	411
28	Tissue-specific and light-regulated expression of a pea nuclear gene encoding the small subunit of ribulose-1,5-bisphosphate carboxylase EMBO Journal, 1984, 3, 1671-1679.	3.5	282
29	Modulation of enhancer activity by the hormone responsive regulatory element from mouse mammary tumor virus EMBO Journal, 1984, 3, 1891-1899.	3.5	69
30	Activation of immunoglobulin mu gene expression involves stepwise demethylation EMBO Journal, 1984, 3, 3013-3021.	3.5	21
31	Synthesis of two mRNAs by utilization of alternate polyadenylation sites: expression of SV40-mouse immunoglobulin mu chain gene recombinants in Cos monkey cells EMBO Journal, 1984, 3, 689-699.	3.5	40
32	Introduction of Human Î ³ 1 Immunoglobulin Genes into Fertilized Mouse Eggs1. Journal of Biochemistry, 1984, 96, 357-363.	0.9	59
33	Advances in thalassemia research. Blood, 1984, 63, 738-758.	0.6	127
34	A close association between sites of DNase I hypersensitivity and sites of enhanced cleavage by micrococcal nuclease in the 5′-flanking region of the actively transcribed ovalbumin gene EMBO Journal, 1984, 3, 1137-1144.	3.5	39
35	Transcriptional regulation of a herpes simplex virus immediate early gene is mediated through an enhancer-type sequence EMBO Journal, 1984, 3, 389-395.	3.5	72
36	Transcriptional analysis of human zeta globin genes EMBO Journal, 1984, 3, 1533-1540.	3.5	29

#	Article	IF	CITATIONS
37	Deletion of the IgH enhancer does not reduce immunoglobulin heavy chain production of a hybridoma IgD class switch variant EMBO Journal, 1984, 3, 2473-2476.	3.5	114
38	Tissue-specific expression is conferred by a sequence from the 5′ end of the rat albumin gene EMBO Journal, 1984, 3, 2505-2510.	3.5	192
39	Unrearranged immunoglobulin lambda variable region is transcribed in kappa-producing myelomas EMBO Journal, 1984, 3, 3031-3035.	3.5	28
41	Immunoglobulin gene expression and DNA methylation in murine pre-B cell lines EMBO Journal, 1984, 3, 677-681.	3.5	9
42	Long identical repeats in the mouse gamma 2b switch region and their implications for the mechanism of class switching EMBO Journal, 1984, 3, 2033-2040.	3.5	15
43	Stimulation of in vitro transcription from the SV40 early promoter by the enhancer involves a specific trans-acting factor EMBO Journal, 1984, 3, 3129-3133.	3.5	192
44	Multiple enhancer domains in the 3′ terminus of the Prague strain of Rous sarcoma virus. Nucleic Acids Research, 1984, 12, 6427-6442.	6.5	163
45	Short and long range activation by the SV40 enhancer. Nucleic Acids Research, 1984, 12, 5589-5608.	6.5	115
46	Trasiocation affects normalc-mycpromoter usage and activates fifteen crypticc-myctranscription starts in plasmacytoma M603. Nucleic Acids Research, 1984, 12, 8987-9007.	6.5	29
47	The MLV and SV40 enhancers have a similar pattern of transcriptional activation. Nucleic Acids Research, 1984, 12, 8801-8818.	6.5	17
48	Induction of immunoglobulin gene expression in mouse fibroblasts by cycloheximide treatment Journal of Experimental Medicine, 1984, 160, 1937-1942.	4.2	62
49	JC virus enhancer-promoter active in human brain cells. Science, 1984, 226, 1337-1339.	6.0	213
50	Introduction of new genetic material into pluripotent haematopoietic stem cells of the mouse. Nature, 1984, 310, 476-480.	13.7	528
51	An enhancer sequence from bovine papilloma virus DNA consists of two essential regions. Nucleic Acids Research, 1984, 12, 2901-2916.	6.5	85
52	The Molecular Genetics of Human Hemoglobin. Progress in Molecular Biology and Translational Science, 1984, 31, 315-465.	1.9	385
53	Magic Enhancers?. DNA and Cell Biology, 1984, 3, 1-5.	5.1	99
54	Prospects for human gene therapy. Science, 1984, 226, 401-409.	6.0	542
55	Transfer and Expression of Immunoglobulin Genes. Annual Review of Immunology, 1984, 2, 239-256.	9.5	37

#	Article	IF	CITATIONS
56	Identification and sequence analysis of the 5′ end of the major chicken vitellogenin gene. Nucleic Acids Research, 1984, 12, 1117-1135.	6.5	72
57	The Primary Structure of μ-Chain-Disease Protein BOT. Peculiar Amino-Acid Sequence of the N-Terminal 42 Positions. Hoppe-Seyler's Zeitschrift Für Physiologische Chemie, 1984, 365, 105-118.	1.7	10
58	Transcription control region within the protein-coding portion of adenovirus E1A genes Molecular and Cellular Biology, 1984, 4, 1293-1305.	1.1	66
59	Lipopolysaccharide-induced transcription of the kappa immunoglobulin locus occurs on both alleles and is independent of methylatlon status. Nucleic Acids Research, 1984, 12, 1911-1923.	6.5	67
60	Control of neuronal gene expression. Science, 1984, 225, 1308-1315.	6.0	129
61	The use of cloned gene probes to study differentiation in teratocarcinomas. Cell Differentiation, 1984, 15, 257-267.	1.3	10
62	A lymphocyte-specific enhancer in the mouse immunoglobulin \hat{I}^{e} gene. Nature, 1984, 307, 80-82.	13.7	449
63	Mode of proviral activation of a putative mammary oncogene (int-1) on mouse chromosome 15. Nature, 1984, 307, 131-136.	13.7	615
64	Activation of a translocated human c-myc gene by an enhancer in the immunoglobulin heavy-chain locus. Nature, 1984, 307, 334-340.	13.7	272
65	The molecular biology of immunoglobulin D. Nature, 1984, 307, 417-422.	13.7	161
66	Induction of altered chromatin structures by simian virus 40 enhancer and promoter elements. Nature, 1984, 307, 708-714.	13.7	245
67	Determination of the leukaemogenicity of a murine retrovirus by sequences within the long terminal repeat. Nature, 1984, 308, 467-470.	13.7	434
68	Non-function of a Moloney murine leukaemia virus regulatory sequence in F9 embryonal carcinoma cells. Nature, 1984, 308, 470-472.	13.7	310
69	Gene regulation: Latterday lessons of lambda and lac. Nature, 1984, 308, 687-688.	13.7	2
70	Long terminal repeats of human T-cell leukaemia virus II genome determine target cell specificity. Nature, 1984, 309, 276-279.	13.7	96
71	Expression of a VHCκ chimaeric protein in mouse myeloma cells. Nature, 1984, 309, 364-367.	13.7	61
72	Correct transcription of an immunoglobulin l̂º gene requires an upstream fragment containing conserved sequence elements. Nature, 1984, 310, 71-74.	13.7	703
73	Regulated expression of an introduced MHC H–2Kbm1 gene in murine embryonal carcinoma cells. Nature, 1984, 310, 415-418.	13.7	61

		CITATION REPORT	
#	Article	IF	CITATIONS
74	Cell type-specific enhancer element associated with a mouse MHC gene, EÎ ² . Nature, 1984, 310, 594-597.	13.7	182
75	The structure, rearrangement and expression of $D\hat{l}^2$ gene segments of the murine T-cell antigen receptor. Nature, 1984, 311, 344-349.	13.7	299
76	Cell-surface antigens expressed on L-cells transfected with whole DNA from non-expressing and expressing cells. Nature, 1984, 312, 68-69.	13.7	37
77	Polyoma virus DNA replication requires an enhancer. Nature, 1984, 312, 242-246.	13.7	313
78	Molecular biology: Multiple levels of gene control in eukaryotic cells. Nature, 1984, 312, 308-309.	13.7	10
79	Novel immunoglobulin heavy chains are produced from DJH gene segment rearrangements in lymphoid cells. Nature, 1984, 312, 418-423.	13.7	276
80	Gene regulation: Repression of activators. Nature, 1984, 312, 594-595.	13.7	21
81	Adenovirus-2 E1A products repress enhancer-induced stimulation of transcription. Nature, 1984, 312, 608-612.	13.7	572
82	Signal Sequences Associated with Fibroin Gene Expression are Identical in Fibroin-Producer and -Nonproducer Tissues. (differential expression/transcription signals/cell-free transcription/silk) Tj ETQq0 0 0 rgB ⁻	Г/О 0e6 lock	1011f 50 417
83	SV40-alpha-globulin hybrid minichromosomes. Differences in DNase I hypersensitivity of promoter and enhancer sequences. FEBS Journal, 1984, 144, 545-553.	0.2	6
84	c-myc involvement in chromosomal translocations in mice and men. Journal of Cellular Physiology, 1984, 121, 199-208.	2.0	16
85	Insertion of a short repetitive sequence (D881) in a sea urchin gene: A typical interspersed repeat?. Journal of Molecular Evolution, 1984, 20, 195-201.	0.8	10
86	RNA polymerase III control regions in retrovirus LTR, alu-type repetitive DNA, and papovavirus. Journal of Theoretical Biology, 1984, 108, 339-348.	0.8	9
87	Immunoglobulin genes: Rearrangement and translocation in human lymphoid malignancy. Journal of Clinical Immunology, 1984, 4, 1-11.	2.0	49
88	Genetic modifications during cellular aging. Molecular and Cellular Biochemistry, 1984, 64, 15-30.	1.4	24
89	Tumor progression, oncogenes and the evolution of metastatic phenotypic diversity. Clinical and Experimental Metastasis, 1984, 2, 85-105.	1.7	57
90	Human monoclonal antibodies. Molecular and Cellular Biochemistry, 1984, 62, 109-20.	1.4	47

91	Sequences in the long terminal repeats of the moloney murine sarcoma virus-124 genome which control transforming gene function. Virology, 1984, 137, 32-40.	1.1	6
----	---	-----	---

#	Article	IF	CITATIONS
92	Nucleotide sequence of the large terminal repeat of two different strains of gibbon ape leukemia virus. Virology, 1984, 137, 201-205.	1.1	22
93	Effects of orientation and position on the activity of a herpes simplex virus immediate early gene far-upstream region. Virology, 1984, 137, 439-444.	1.1	39
94	Models for the rearrangements of immunoglobulin genes: a computer view. Trends in Biochemical Sciences, 1984, 9, 293-296.	3.7	15
95	Tissue-specific enhancers. Trends in Biochemical Sciences, 1984, 9, 81-82.	3.7	4
96	The use of promoter fusions in Drosophila genetics: Isolation of mutations affecting the heat shock response. Cell, 1984, 37, 979-991.	13.5	206
97	Translocation of the myc cellular oncogene to the immunoglobulin heavy chain locus in murine plasmacytomas is an imprecise reciprocal exchange. Cell, 1984, 36, 973-982.	13.5	136
98	c-fos protein can induce cellular transformation: A novel mechanism of activation of a cellular oncogene. Cell, 1984, 36, 51-60.	13.5	613
99	Molecular immunology: growth into adolescence. Trends in Biochemical Sciences, 1984, 9, 137-138.	3.7	0
100	Differential response of multiple ϵ-globin cap sites to cis- and trans-acting controls. Cell, 1984, 38, 399-407.	13.5	55
101	Site-specific recombination between immunoglobulin D and JH segments that were introduced into the genome of a murine pre-B cell line. Cell, 1984, 37, 105-112.	13.5	79
102	Specific interaction between enhancer-containing molecules and cellular components. Cell, 1984, 36, 403-411.	13.5	418
103	An unusual repetitive structure of caerulein mRNA from the skin of Xenopus laevis. Gene, 1984, 31, 295-299.	1.0	13
104	An SV40 "enhancer trap―incorporates exogenous enhancers or generates enhancers from its own sequences. Cell, 1984, 36, 983-992.	13.5	256
105	Assembly of transcriptionally active chromatin in Xenopus oocytes requires specific DNA binding factors. Cell, 1984, 38, 511-521.	13.5	81
106	Cis-acting and trans-acting regulatory mutations define two types of promoters controlled by the qa-1F gene of Neurospora. Cell, 1984, 36, 493-502.	13.5	42
107	Fibroblast lines expressing activated c-myc oncogenes are tumorigenic in nude mice and syngeneic animals. Cell, 1984, 39, 339-348.	13.5	222
108	Tissue-specific expression of the rat pancreatic elastase I gene in transgenic mice. Cell, 1984, 38, 639-646.	13.5	240
109	Prokaryote invertible DNA systems are highly conserved. Trends in Biochemical Sciences, 1984, 9, 82-83.	3.7	4

#	Article	IF	CITATIONS
110	Linkage map of two HLA-SBβ and two HLA-SBα-related genes: an intron in one of the SBβ genes contains a processed pseudogene. Cell, 1984, 38, 241-249.	13.5	122
111	The Mutation and Polymorphism of the Human beta-Globin Gene and its Surrounding DNA. Annual Review of Genetics, 1984, 18, 131-171.	3.2	402
112	Histone H1 binding at the 5' end of the rat albumin gene. Biochemistry, 1984, 23, 2977-2983.	1.2	19
113	The Molecular Genetics of Cellular Oncogenes. Annual Review of Genetics, 1984, 18, 553-612.	3.2	747
114	Molecular analysis of erythropoiesis. Experimental Cell Research, 1984, 155, 321-344.	1.2	31
115	A tissue-specific transcription enhancer element in the human immunoglobulin λ light chain locus. FEBS Letters, 1984, 175, 152-158.	1.3	7
116	Mechanisms of glucocorticoid hormone action. The Journal of Steroid Biochemistry, 1984, 20, 77-88.	1.3	70
117	Enhancer elements share local homologous twist-angle variations with a helical periodicity. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1984, 783, 246-257.	2.4	9
118	Transcriptionally active chromatin. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1984, 782, 343-393.	2.4	350
119	Methylation, expression and chromosomal position of genes in mammals. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1984, 782, 1-9.	2.4	100
120	The contribution of chromosomal translocations to antigenic variation in Trypanosoma brucei. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 1984, 307, 13-26.	2.4	32
121	Human α- and β-globin gene transcription in mouse erythroleukaemia cells. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 1984, 307, 261-270.	2.4	0
122	A transcription enhancer acts in vitro over distances of hundreds of base-pairs on both circular and linear templates but not on chromatin-reconstituted DNA. Journal of Molecular Biology, 1984, 180, 577-600.	2.0	102
123	Rat immunoglobulin E heavy chain locus. Journal of Molecular Biology, 1984, 177, 19-32.	2.0	29
124	Accumulation of rare and moderately abundant mRNAs in mouse L-cells is mainly post-transcriptionally regulated. Journal of Molecular Biology, 1984, 178, 869-880.	2.0	82
125	Organization and expression of non-Alu family interspersed repetitive DNA sequences in the mouse genome. Journal of Molecular Biology, 1984, 173, 419-436.	2.0	53
126	Identification of herpes simplex virus DNA sequences which encode a trans-acting polypeptide responsible for stimulation of immediate early transcription. Journal of Molecular Biology, 1984, 180, 1-19.	2.0	675
127	Enhancer-like properties of the 60/81 bp elements in the ribosomal gene spacer of Xenopus laevis. Cell, 1984, 37, 285-289.	13.5	211

#	Article	IF	CITATIONS
128	Activation and somatic mutation of the translocated c-myc gene in Burkitt lymphoma cells. Cell, 1984, 36, 339-348.	13.5	355
129	Tumorigenesis by mouse mammary tumor virus: Proviral activation of a cellular gene in the common integration region int-2. Cell, 1984, 37, 529-536.	13.5	389
130	Transcriptional activation of the translocated c-myc oncogene in mouse plasmacytomas: Similar RNA levels in tumor and proliferating normal cells. Cell, 1984, 37, 521-528.	13.5	131
131	Differences in human α- and β-globin gene expression in mouse erythroleukemia cells: The role of intragenic sequences. Cell, 1984, 38, 251-263.	13.5	341
132	Introduction of a μ immunoglobulin gene into the mouse germ line: Specific expression in lymphoid cells and synthesis of functional antibody. Cell, 1984, 38, 647-658.	13.5	328
133	A genetic analysis of extinction: Trans-dominant loci regulate expression of liver-specific traits in hepatoma hybrid cells. Cell, 1984, 38, 523-534.	13.5	370
134	Enhanced gene expression by the poly(dT-dG).poly(dC-dA) sequence Molecular and Cellular Biology, 1984, 4, 2622-2630.	1.1	302
135	Adenovirus 5 E2 transcription unit: an E1A-inducible promoter with an essential element that functions independently of position or orientation Molecular and Cellular Biology, 1984, 4, 875-882.	1.1	122
136	Mouse kidney and submaxillary gland renin genes differ in their 5' putative regulatory sequences Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 5489-5493.	3.3	46
137	Upstream activation sites of the CYC1 gene of Saccharomyces cerevisiae are active when inverted but not when placed downstream of the "TATA box" Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 7860-7864.	3.3	216
138	Expression of an immunoglobulin heavy chain gene transfected into lymphocytes Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 1292-1296.	3.3	51
139	T-cell growth factor: complete nucleotide sequence and organization of the gene in normal and malignant cells Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 1634-1638.	3.3	109
140	Repeated consensus sequence and pseudopromoters in the four coordinately regulated tubulin genes of Chlamydomonas reinhardi Molecular and Cellular Biology, 1984, 4, 1115-1124.	1.1	77
141	Stable transfer and expression of exogenous human globin genes in human erythroleukemia (K562) cells Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 5315-5319.	3.3	31
142	Expression of the Thy-1 glycoprotein gene by DNA-mediated gene transfer Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 5532-5536.	3.3	60
143	Structure of the 5' ends of immunoglobulin genes: a novel conserved sequence Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 2650-2654.	3.3	577
144	Biochemical genetics of the mouse IgM system. Canadian Journal of Biochemistry and Cell Biology, 1984, 62, 217-224.	1.3	3
145	Location of sequences in polyomavirus DNA that are required for early gene expression in vivo and in vitro Molecular and Cellular Biology, 1984, 4, 2594-2609.	1.1	71

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
146	Fine mapping of an immunoglobulin gene activator Molecular and Cellular Biology, 1984, 4, 1042-1049.	1.1	174
147	Promoter dependence of enhancer activity Molecular and Cellular Biology, 1984, 4, 1664-1668.	1.1	28
148	Complex regulation of simian virus 40 early-region transcription from different overlapping promoters Molecular and Cellular Biology, 1984, 4, 1900-1914.	1.1	75
149	Genetic properties and chromatin structure of the yeast gal regulatory element: an enhancer-like sequence Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 7865-7869.	3.3	145
150	Two regulatory elements for immunoglobulin kappa light chain gene expression Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 7041-7045.	3.3	209
151	Functional and inducible expression of a transfected murine class II major histocompatibility complex gene Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 2045-2049.	3.3	23
152	Bovine leukemia virus: unique structural features of its long terminal repeats and its evolutionary relationship to human T-cell leukemia virus Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 4741-4745.	3.3	71
153	Chimeric human antibody molecules: mouse antigen-binding domains with human constant region domains Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 6851-6855.	3.3	933
154	Nucleotide sequence analysis of the long terminal repeat of human T-cell leukemia virus type II Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 1079-1083.	3.3	91
155	Stimulation of in vitro transcription from heterologous promoters by the simian virus 40 enhancer Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 308-312.	3.3	109
156	Integration-specific retrovirus expression in embryonal carcinoma cells Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 6627-6631.	3.3	57
157	Enhancer-dependent expression of human kappa immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 7161-7165.	3.3	931
158	Differential methylation of hypoxanthine phosphoribosyltransferase genes on active and inactive human X chromosomes Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 1759-1763.	3.3	211
159	Expression of immunoglobulin heavy chain at a high level in the absence of a proposed immunoglobulin enhancer element in cis Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 2452-2455.	3.3	127
160	tk Enzyme expression in differentiating muscle cells is regulated through an internal segment of the cellular tk gene Molecular and Cellular Biology, 1984, 4, 1777-1784.	1.1	126
162	Identification of a transcriptional enhancer element upstream from the proto-oncogene fos. Science, 1985, 230, 1174-1177.	6.0	180
163	Human Genome Structure. International Review of Cytology, 1985, 96, 51-88.	6.2	11
164	SV40 Promoters and Their Regulation. Progress in Molecular Biology and Translational Science, 1985, 32, 217-236.	1.9	19

#	Article	IF	CITATIONS
165	The Role of Avian Retroviral Ltrs in the Regulation of Gene Expression and Viral Replication. Advances in Virus Research, 1985, 30, 179-223.	0.9	27
166	Activation of the c-myc oncogene by the immunoglobulin heavy-chain gene enhancer after multiple switch region-mediated chromosome rearrangements in a murine plasmacytoma Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 3746-3750.	3.3	65
167	A long and complex enhancer activates transcription of the gene coding for the highly abundant immediate early mRNA in murine cytomegalovirus Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 8325-8329.	3.3	215
168	Role of an RNA cleavage/poly(A) addition site in the production of membrane-bound and secreted IgM mRNA Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 8658-8662.	3.3	96
169	Cloning and sequencing of a c-myc oncogene in a Burkitt's lymphoma cell line that is translocated to a germ line alpha switch region Molecular and Cellular Biology, 1985, 5, 501-509.	1.1	112
170	Polyomavirus enhancer contains multiple redundant sequence elements that activate both DNA replication and gene expression Molecular and Cellular Biology, 1985, 5, 649-658.	1.1	290
171	Enhancer-dependent expression of the rat preproinsulin gene in bovine papillomavirus type 1 vectors Molecular and Cellular Biology, 1985, 5, 3507-3516.	1.1	17
172	Accurate and efficient transcription of human c-myc genes injected into Xenopus laevis oocytes Molecular and Cellular Biology, 1985, 5, 1434-1441.	1.1	20
173	Distinct H-2-linked regulation of T-cell responses to the pre-S and S regions of the same hepatitis B surface antigen polypeptide allows circumvention of nonresponsiveness to the S region Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 8168-8172.	3.3	117
174	Upstream promoter element of the human metallothionein-IIA gene can act like an enhancer element Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 8572-8576.	3.3	131
175	Independent control elements that determine yolk protein gene expression in alternative Drosophila tissues Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 1396-1400.	3.3	168
176	A Molecular Genetic Approach to Understanding the Evolution of Immunoglobulin Gene Structure and Diversity. American Zoologist, 1985, 25, 713-726.	0.7	2
177	Regulation of expression of the human interferon gamma gene Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 8173-8177.	3.3	92
178	Complete sequence of a gene encoding a human type I keratin: sequences homologous to enhancer elements in the regulatory region of the gene Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 1609-1613.	3.3	148
179	The beta 1 domain of the mouse E beta chain is important for restricted antigen presentation to helper T-cell hybridomas Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 1678-1682.	3.3	30
180	Lens-specific expression of the chloramphenicol acetyltransferase gene promoted by 5' flanking sequences of the murine alpha A-crystallin gene in explanted chicken lens epithelia Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 2334-2338.	3.3	127
181	Functional analysis of the transcription control region located within the avian retroviral long terminal repeat Molecular and Cellular Biology, 1985, 5, 438-447.	1.1	117
182	trans Activation of the simian virus 40 late transcription unit by T-antigen Molecular and Cellular Biology, 1985, 5, 1391-1399.	1.1	162

#	Article	IF	CITATIONS
183	Orientation-dependent transcriptional activator upstream of a human U2 snRNA gene Molecular and Cellular Biology, 1985, 5, 1560-1570.	1.1	149
184	Expression of human beta-globin genes in transgenic mice: effects of a flanking metallothionein-human growth hormone fusion gene Molecular and Cellular Biology, 1985, 5, 1977-1983.	1.1	38
185	Murine leukemia virus long terminal repeat sequences can enhance gene activity in a cell-type-specific manner Molecular and Cellular Biology, 1985, 5, 2832-2835.	1.1	105
186	Delineation of transcriptional control signals within the Moloney murine sarcoma virus long terminal repeat Molecular and Cellular Biology, 1985, 5, 1948-1958.	1.1	102
187	Cloning and molecular analysis of the HAP2 locus: a global regulator of respiratory genes in Saccharomyces cerevisiae Molecular and Cellular Biology, 1985, 5, 3410-3416.	1.1	155
188	Control of adenovirus late promoter expression in two human cell lines Molecular and Cellular Biology, 1985, 5, 2433-2442.	1.1	84
189	Basic Science Review: Retroviruses and Human Cancer: Evaluation of T-Lymphocyte Transformation by Human T-Cell Leukemia-Lymphoma Virus. Cancer Investigation, 1985, 3, 145-160.	0.6	4
190	Specific 5' and 3' regions of the mu-chain gene are undermethylated at distinct stages of B-cell differentiation Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 3809-3813.	3.3	26
191	Deletion of a B-cell-specific enhancer affects transfected, but not endogenous, immunoglobulin heavy-chain gene expression Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 5088-5092.	3.3	89
192	Activation regions in a yeast transposon have homology to mating type control sequences and to mammalian enhancers Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 5423-5427.	3.3	110
193	The "beta-like-globin" gene domain in human erythroid cells Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 6384-6388.	3.3	625
194	An enhancer-like element in the adenovirus E2 promoter contains sequences essential for uninduced and E1A-induced transcription Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 381-385.	3.3	158
195	Differential expression of the human gonadotropin alpha gene in ectopic and eutopic cells Molecular and Cellular Biology, 1985, 5, 3157-3167.	1.1	74
196	Linker scanning mutagenesis of the 5'-flanking region of the mouse beta-major-globin gene: sequence requirements for transcription in erythroid and nonerythroid cells Molecular and Cellular Biology, 1985, 5, 1498-1511.	1.1	142
197	Glucocorticoid regulation of mouse mammary tumor virus sequences in transgenic mice Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 5880-5884.	3.3	68
198	Stimulation of sea urchin H2B histone gene transcription by a chromatin-associated protein fraction depends on gene sequences downstream of the transcription start site Molecular and Cellular Biology, 1985, 5, 2764-2769.	1.1	35
199	Lens-specific promoter activity of a mouse gamma-crystallin gene Molecular and Cellular Biology, 1985, 5, 2221-2230.	1.1	73
200	The first intron of the human growth hormone gene contains a binding site for glucocorticoid receptor Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 699-702	3.3	214

		CITATION REPORT		
#	Article		IF	CITATIONS
201	Molecular biology of Type 1 (insulin-dependent) diabetes mellitus. Diabetologia, 1985,	28, 195-203.	2.9	57
202	Functional analysis of the mouse H-2K b gene promoter in embryonal carcinoma cells. I 1985, 21, 601-611.	mmunogenetics,	1.2	10
203	Coding and potential regulatory sequences of a cluster of chorion genes in Drosophila melanogaster. Chromosoma, 1985, 92, 124-135.		1.0	80
204	Analysis of gene expression during hematopoiesis: Present and future applications. Crit Oncology/Hematology, 1985, 4, 67-102.	cical Reviews in	2.0	4
205	The role of c-myc in the proliferation of normal and neoplastic cells. Journal of Clinical In 1985, 5, 65-77.	nmunology,	2.0	48
206	Functional expression of HLA-DP genes transfected into mouse fibroblasts. Nature, 198	35, 313, 61-64.	13.7	98
207	A trans-acting factor is responsible for the simian virus 40 enhancer activity in vitro. Na 458-463.	ture, 1985, 313,	13.7	231
208	Specific expression of an elastase–human growth hormone fusion gene in pancreation transgenic mice. Nature, 1985, 313, 600-602.	acinar cells of	13.7	253
209	Duplications of a mutated simian virus 40 enhancer restore its activity. Nature, 1985, 3	313, 711-714.	13.7	170
210	Cell-type-specific contacts to immunoglobulin enhancers in nuclei. Nature, 1985, 313,	798-801.	13.7	358
211	A hapten-specific chimaeric IgE antibody with human physiological effector function. N 268-270.	ature, 1985, 314,	13.7	295
212	Suppression of leukaemia virus pathogenicity by polyoma virus enhancers. Nature, 198	5, 314, 550-553.	13.7	112
213	Simian virus 40 enhancer increases number of RNA polymerase II molecules on linked D 315, 72-75.	NA. Nature, 1985,	13.7	148
214	Simian virus 40 enhancer increases RNA polymerase density within the linked gene. Na 75-77.	ture, 1985, 315,	13.7	88
215	An immunoglobulin promoter displays cell-type specificity independently of the enhance 1985, 315, 423-425.	er. Nature,	13.7	146
216	A viral enhancer element specifically active in human haematopoietic cells. Nature, 198	5, 315, 597-600.	13.7	103
217	An enhancer-like sequence within the Xenopus U2 gene promoter facilitates the forma transcription complexes. Nature, 1985, 316, 163-167.	tion of stable	13.7	280
218	Control of eukaryotic messenger RNA synthesis by sequence-specific DNA-binding prot 1985, 316, 774-778.	eins. Nature,	13.7	1,353

		Citation Repo	RT	
#	Article	IF	-	CITATIONS
219	Genomic organization of the genes encoding mouse T-cell receptor α-chain. Nature, 1985, 316, 83	2-836. 1	3.7	216
220	Relationship between an enhancer element in the human antithrombin III gene and an immunoglob light-chain gene enhancer. Nature, 1985, 316, 845-848.	ulin 1	3.7	55
221	Cμ-containing transcripts initiate heterogeneously within the IgH enhancer region and contain a n 5′-nontranslatable exon. Nature, 1985, 318, 475-478.	ovel 1	3.7	253
222	The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transger mice. Nature, 1985, 318, 533-538.	hic 1	3.7	1,714
223	Light regulation of plant gene expression by an upstream enhancer-like element. Nature, 1985, 318 579-582.	' 1:	3.7	172
224	The Drosophila developmental gene, engrailed, encodes a sequence-specific DNA binding activity. Nature, 1985, 318, 630-635.	1	3.7	425
225	Molecular Organization of the Class I Genes of Human Major Histocompatibility Complex. Immunological Reviews, 1985, 84, 93-122.	2	.8	61
226	Cell-specific expression of the rat insulin gene: evidence for role of two distinct 5' flanking elements Science, 1985, 230, 912-916.	• 6	.0	743
227	Selection of highly transfectable variant from mouse mastocytoma P815. Somatic Cell and Molecul Genetics, 1985, 11, 467-475.	ar O	.7	125
228	Enhancers and eukaryotic gene transcription. Trends in Genetics, 1985, 1, 224-230.	2	.9	606
229	Immunoglobulin genes in transgenic mice. Trends in Genetics, 1985, 1, 231-236.	2	.9	47
230	Structural wrinkles and the genomic regulatory sites of eukaryotes. Journal of Molecular Evolution, 1985, 22, 150-159.	0	.8	10
231	Comparison of human and chimpanzee $\hat{1}$ %1 blobin genes. Journal of Molecular Evolution, 1985, 22,	309-315. o	.8	20
232	Comparative sequence analysis of rat, rabbit, and human muscle glycogen phosphorylase cDNAs. Fi Journal, 1985, 152, 267-274.	IBS O	.2	40
233	The regulatory locus rλ1 affects the level of λl light chain synthesis in lipopolysaccharide-activated lymphocytes but not the frequency of λl -positive B cell precursors. European Journal of Immunolog 1985, 15, 66-72.	y, 1.	.6	11
234	Transformation of B and non-B cell lines with the 2,4,6- trinitrophenyl (TNP)-specific immunoglobuli genes. European Journal of Immunology, 1985, 15, 1117-1124.	ח 1 .	.6	13
235	Molecular Genetic Analysis of Human Lymphoid Neoplasms. Annals of Internal Medicine, 1985, 102	, 497. 2	.0	77
236	Selection of mouse neuroblastoma cell-specific polyoma virus mutants with stage differentiative advantages of replication EMBO Journal, 1985, 4, 3215-3221.	3	.5	29

#	Article	IF	CITATIONS
237	Chromosome translocation activates heterogeneously initiated, bipolar transcription of a mouse c-myc gene EMBO Journal, 1985, 4, 667-674.	3.5	28
238	Chromosome translocations clustered 5′ of the murine c-myc gene qualitatively affect promoter usage: implications for the site of normal c-myc regulation EMBO Journal, 1985, 4, 1441-1447.	3.5	73
239	The nucleotide sequence of the human int-1 mammary oncogene; evolutionary conservation of coding and non-coding sequences EMBO Journal, 1985, 4, 2905-2909.	3.5	96
240	A transcription enhancer in the Herpesvirus saimiri genome EMBO Journal, 1985, 4, 2669-2674.	3.5	17
241	Characterization of immunoglobulin enhancer deletions in murine plasmacytomas EMBO Journal, 1985, 4, 3689-3693.	3.5	64
242	Structural and functional evidence for differential promoter activity of the two linked delta-crystallin genes in the chicken EMBO Journal, 1985, 4, 445-452.	3.5	46
243	Structure and cell-specific expression of a cloned human retinol binding protein gene: the 5â€2-flanking region contains hepatoma specific transcriptional signals EMBO Journal, 1985, 4, 1981-1989.	3.5	90
244	DNA sequences responsible for tissue-specific expression of a chicken alpha-crystallin gene in mouse lens cells EMBO Journal, 1985, 4, 2589-2595.	3.5	44
245	Specific interaction of cellular factors with the B enhancer of polyoma virus EMBO Journal, 1985, 4, 2675-2685.	3.5	116
246	Cell-type preference of immunoglobulin kappa and lambda gene promoters EMBO Journal, 1985, 4, 2831-2838.	3.5	107
247	Enhancer activity correlates with the oncogenic potential of avian retroviruses EMBO Journal, 1985, 4, 949-956.	3.5	57
248	Independent immunoglobulin class-switch events occurring in a single myeloma cell line Molecular and Cellular Biology, 1985, 5, 856-868.	1.1	87
249	Metal-dependent SV40 viruses containing inducible enhancers from the upstream region of metallothionein genes EMBO Journal, 1985, 4, 3851-3859.	3.5	80
250	Cell type-specific transcriptional enhancement in vitro requires the presence of trans-acting factors EMBO Journal, 1985, 4, 3005-3013.	3.5	118
251	Functional and pseudogenes are similarly organized and may equally contribute to the extensive antibody diversity of the IgVHII family EMBO Journal, 1985, 4, 1225-1230.	3.5	65
252	Immunoglobulin heavy-chain enhancer requires one or more tissue-specific factors. Science, 1985, 227, 266-270.	6.0	283
253	Repression of the immunoglobulin heavy chain enhancer by the adenovirus-2 E1A products. Science, 1985, 230, 1391-1394.	6.0	270
254	Active T-cell receptor genes have intron deoxyribonuclease hypersensitive sites. Science, 1985, 229, 528-534.	6.0	41

#	Article	IF	CITATIONS
255	Structure and transcription of theDrosophila mullerialcohol dehydrogenase genes. Nucleic Acids Research, 1985, 13, 6899-6917.	6.5	105
256	B-Cell Abnormalities in Multiple Sclerosis. Archives of Neurology, 1985, 42, 73.	4.9	20
257	Gene transfer method for transient gene expression, stable transformation, and cotransformation of suspension cell cultures Molecular and Cellular Biology, 1985, 5, 1188-1190.	1.1	42
258	Upstream region of the SUC2 gene confers regulated expression to a heterologous gene in Saccharomyces cerevisiae Molecular and Cellular Biology, 1985, 5, 2521-2526.	1.1	100
259	Xenopusribosomal gene enhancers function when inserted inside the gene they enhance. Nucleic Acids Research, 1985, 13, 8999-9009.	6.5	36
260	Contribution of promoter to tissue-specific expression of the mouse immunoglobulin kappa gene. Science, 1985, 229, 1102-1104.	6.0	81
261	Structural analysis of both products of a reciprocal translocation between c-myc and immunoglobulin loci in Burkitt lymphoma. Nucleic Acids Research, 1985, 13, 2141-2152.	6.5	15
262	Funcitonal activity and chromatin configuration of SV40 enhancer injected inXenopus laevisoocytes. Nucleic Acids Research, 1985, 13, 8065-8081.	6.5	15
263	Evidence for transient requirement of the IgH enhancer. Nucleic Acids Research, 1985, 13, 8901-8912.	6.5	51
264	Steroid Receptor Regulated Transcription of Specific Genes and Gene Networks. Annual Review of Genetics, 1985, 19, 209-252.	3.2	1,939
265	Lambda Chains and Genes in Inbred Mice. Annual Review of Immunology, 1985, 3, 337-365.	9.5	88
266	Mechanisms that Regulate Immunoglobulin Gene Expression. Annual Review of Immunology, 1985, 3, 159-195.	9.5	106
267	Mutational Analyses of the Moloney Murine Sarcoma Virus Enhancer. DNA and Cell Biology, 1985, 4, 193-202.	5.1	19
268	Evolution of the functional human beta-actin gene and its multi-pseudogene family: conservation of noncoding regions and chromosomal dispersion of pseudogenes Molecular and Cellular Biology, 1985, 5, 2720-2732.	1.1	386
269	Selected Topics in Chromatin Structure. Annual Review of Genetics, 1985, 19, 485-536.	3.2	272
270	B lineagespecific interactions of an immunoglobulin enhancer with cellular factors in vivo. Science, 1985, 227, 134-140.	6.0	908
271	A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell, 1985, 41, 521-530.	13.5	1,263
272	The two promoters of the mouse α-amylase gene Amy-1a are differentially activated during parotid gland differentiation. Cell, 1985, 40, 907-912.	13.5	58

	CITATION		
# 273	ARTICLE Structure, organization, and somatic rearrangement of T cell gamma genes. Cell, 1985, 40, 259-269.	IF 13.5	Citations 397
274	Mouse alpha-amylase loci, Amy-1a and Amy-2a, are closely linked. Journal of Molecular Biology, 1985, 182, 359-365.	2.0	20
275	Interaction of a gene-specific transcription factor with the adenovirus major late promoter upstream of the TATA box region. Cell, 1985, 43, 165-175.	13.5	1,342
276	Bovine leukemia virus long terminal repeat: a cell type-specific promoter. Science, 1985, 227, 317-320.	6.0	87
277	Sequence of a genomic DNA clone for the small subunit of ribulose bis-phosphate carboxylase-oxygenase from tobacco. Nucleic Acids Research, 1985, 13, 2373-2386.	6.5	171
278	Transient accumulation of c-fos RNA following serum stimulation requires a conserved $5\hat{a}\in^2$ element and c-fos $3\hat{a}\in^2$ sequences. Cell, 1985, 42, 889-902.	13.5	893
279	Molecular Analysis of Deletion and Nondeletion Hereditary Persistence of Fetal Hemoglobin and Identification of a New Mutation Causing ?-Thalassemia. Annals of the New York Academy of Sciences, 1985, 445, 159-169.	1.8	11
280	Comparison of the transcriptional properties of the friend and moloney retrovirus long terminal repeats: Importance of tandem duplications and of the core enhancer sequence. Virology, 1985, 144, 481-494.	1.1	36
281	Tissue-specific gene expression. Trends in Neurosciences, 1985, 8, 100-104.	4.2	12
282	The endogenous immunoglobulin heavy chain enhancer can activate tandem VH promoters separated by a large distance. Cell, 1985, 43, 659-665.	13.5	88
283	Pleiotropic phenotypic expression in cybrids derived from mouse teratocarcinoma cells fused with rat myoblast cytoplasts. Cell, 1985, 43, 777-791.	13.5	19
284	Protein structures and split genes. Advances in Biophysics, 1985, 19, 91-131.	0.6	44
285	Expression of mouse Amy-2a alpha-amylase genes is regulated by strong pancreas-specific promoters. Journal of Molecular Biology, 1985, 185, 285-293.	2.0	29
286	Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around Jh on chromosome 14 and near a transcriptional unit on 18. Cell, 1985, 41, 899-906.	13.5	1,150
287	Developmentally controlled and tissue-specific expression of unrearranged VH gene segments. Cell, 1985, 40, 271-281.	13.5	728
288	The location of cis-acting regulatory sequences in the human T cell lymphotropic virus type III (HTLV-III/LAV) long terminal repeat. Cell, 1985, 41, 813-823.	13.5	1,029
289	Chromatin-specific hypersensitive sites are assembled on a Xenopus histone gene injected into Xenopus oocytes. Journal of Molecular Biology, 1985, 181, 333-349.	2.0	29
290	Adenovirus E1a proteins repress transcription from the SV40 early promoter. Cell, 1985, 40, 705-716.	13.5	453

ATION R

		CITATION R	EPORT	
#	Article		IF	CITATIONS
291	Cell-specific expression of a transfected human $\hat{l}\pm 1$ -antitrypsin gene. Cell, 1985, 41, 53	\$1-540.	13.5	202
292	Nonfunctional immunoglobulin light chain transcripts in two IgE-producing rat immune implications for the allelic exclusion and transcription activation processes. Gene, 1985	ocytomas; 5, 40, 115-124.	1.0	7
293	Activation of a silent gene is accompanied by its demethylation. Journal of Molecular B 181, 363-371.	iology, 1985,	2.0	13
294	A 46-nucleotide promoter segment from an IFN-Î \pm gene renders an unrelated promoter virus. Cell, 1985, 41, 497-507.	r inducible by	13.5	194
295	Transactivation of a bovine papilloma virus transcriptional regulatory element by the E product. Cell, 1985, 42, 183-191.	2 gene	13.5	513
296	Growth hormone gene expression in eukaryotic cells directed by the Rous sarcoma viru terminal repeat or cytomegalovirus immediate-early promoter. Gene, 1985, 38, 227-23	us long 32.	1.0	52
297	Shuttle vectors to study somatic mutagenesis and regulation of gene expression in the system. Gene, 1985, 39, 147-153.	e immune	1.0	6
298	Transcription cell type specificity is conferred by an immunoglobulin VH gene promote a functional consensus sequence. Cell, 1985, 41, 479-487.	r that includes	13.5	348
299	Cell-type specificity of iminunoglobulin gene expression is regulated by at least three Delements. Cell, 1985, 41, 885-897.)NA sequence	13.5	654
300	A cloned human immunoglobulin heavy chain gene with a novel direct-repeat sequence region. Gene, 1985, 33, 181-189.	e in 5' flanking	1.0	51
301	The positive transcription factor of the 5S RNA gene induces a 5S DNA-specific gyratio oocyte extracts. Cell, 1985, 41, 945-953.	n in xenopus	13.5	106
302	Evolution and structure of the fibrinogen genes. Journal of Molecular Biology, 1985, 18	85, 1-19.	2.0	83
303	Transposition of the immunoglobulin heavy chain enhancer to the myc oncogene in a plasmacytoma. Cell, 1985, 40, 71-79.	murine	13.5	107
304	Properties of REP3: a cis-acting locus required for stable propagation of the Saccharon plasmid 2 microns circle Molecular and Cellular Biology, 1985, 5, 2466-2475.	iyces cerevisiae	1.1	83
305	Glucocorticoid receptor binding and activation of a heterologous promoter by dexame first intron of the human growth hormone gene Molecular and Cellular Biology, 1985	thasone by the , 5, 2984-2992.	1.1	253
306	Transfectomas provide novel chimeric antibodies. Science, 1985, 229, 1202-1207.		6.0	183
307	Structural organization of the P25gene ofBombyx moriand comparative analysis of its with that of the fibroin gene. Nucleic Acids Research, 1985, 13, 1801-1814.	5′ flanking DNA	6.5	65
308	Gene structure and nucleotide sequence for rat cytochrome P-450c. Archives of Bioch Biophysics, 1985, 237, 465-476.	emistry and	1.4	61

	CHATION K	LPUKI	
# 309	ARTICLE Involvement of the bcl-2 gene in human follicular lymphoma. Science, 1985, 228, 1440-1443.	IF 6.0	CITATIONS
310	Developmental regulation of alpha-fetoprotein genes in transgenic mice Molecular and Cellular Biology, 1985, 5, 1639-1648.	1.1	159
311	Time course of arrest of immunoglobulin expression in heterokaryons and early hybrids of human lymphoma cells and mouse fibroblasts. Experimental Cell Research, 1985, 158, 349-359.	1.2	12
312	The 5â€2-flanking sequences of human globin genes contribute to tissue specific expression. Biochemical and Biophysical Research Communications, 1986, 134, 128-133.	1.0	23
313	Oncogenes. Clinica Chimica Acta, 1986, 156, 1-40.	0.5	41
314	Steroid regulation of transfected genes in mouse mammary tumour cells. The Journal of Steroid Biochemistry, 1986, 24, 125-131.	1.3	8
315	Point mutations in the U3 region of the long terminal repeat of moloney murine leukemia virus determine disease specificity of the myeloproliferative sarcoma virus. Virology, 1986, 153, 145-149.	1.1	49
316	Chromosomal loop anchorage of the kappa immunoglobulin gene occurs next to the enhancer in a region containing topoisomerase II sites. Cell, 1986, 44, 273-282.	13.5	948
317	Enhancer binding proteins predicted by informational spectrum method. Biochemical and Biophysical Research Communications, 1986, 141, 831-838.	1.0	27
318	Identification of a protein-binding site that mediates transcriptional response of the c-fos gene to serum factors. Cell, 1986, 46, 567-574.	13.5	923
319	PRE-mRNA Splicing. Annual Review of Genetics, 1986, 20, 671-708.	3.2	724
320	Detailed analysis of the mouse H-2Kb promoter: Enhancer-like sequences and their role in the regulation of class I gene expression. Cell, 1986, 44, 261-272.	13.5	434
321	Developmental Aspects of Immunoglobulin Gene Expression Using Tumor Cells as Models. International Reviews of Immunology, 1986, 1, 215-235.	1.5	0
322	Structure of Transcriptionally Active Chromati. Critical Reviews in Biochemistry, 1986, 21, 1-26.	7.5	81
323	Genes for Cytochrome P-450 and Their Regulatio. Critical Reviews in Biochemistry, 1986, 19, 247-305.	7.5	219
324	CNS and hypoderm regulatory elements of the Drosophila melanogaster dopa decarboxylase gene. Science, 1986, 234, 998-1002.	6.0	104
325	The human β-interferon gene enhancer is under negative control. Cell, 1986, 45, 601-610.	13.5	441
326	During B-cell differentiation enhancer activity and transcription rate of immunoglobulin heavy chain genes are high before mRNA accumulation. Cell, 1986, 45, 45-52.	13.5	116

#	Article	IF	CITATIONS
327	Analysis of promoter and enhancer cell type specificities and the regulation of immunoglobulin gene expression. Gene, 1986, 50, 321-331.	1.0	14
328	Inducible binding of a factor to the c-fos enhancer. Cell, 1986, 47, 777-784.	13.5	328
329	Regulation of human interleukin-2 gene: Functional DNA sequences in the 5′ flanking region for the gene expression in activated T lymphocytes. Cell, 1986, 46, 401-407.	13.5	303
330	Tandem kappa immunoglobulin promoters are equally active in the presence of the kappa enhancer: Implications for models of enhancer function. Cell, 1986, 46, 253-262.	13.5	51
331	SV40 enhancer-binding factors are required at the establishment but not the maintenance step of enhancer-dependent transcriptional activation. Cell, 1986, 47, 241-247.	13.5	61
332	Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation. Cell, 1986, 47, 19-28.	13.5	1,224
333	Trans-acting nuclear protein responsible for induction of rearranged human immunoglobulin heavy chain gene. Cell, 1986, 45, 25-33.	13.5	51
334	A tissue-specific transcription enhancer from the Drosophila yolk protein 1 gene. Cell, 1986, 45, 859-867.	13.5	213
335	The pattern of actin expression in human fibroblast × mouse muscle heterokaryons suggests that human muscle regulatory factors are produced. Cell, 1986, 47, 123-130.	13.5	77
336	Inducibility of κ immunoglobulin enhancer-binding protein NF-κB by a posttranslational mechanism. Cell, 1986, 47, 921-928.	13.5	2,059
337	Molecular mechanism of tissue-specific expression of α-crystallin gene. Advances in Biophysics, 1986, 21, 229-238.	0.6	1
338	Some guidelines for identification of recognition sequences: Regulatory sequences frequently contain (T)GTG/CAC(A), TGA/TCA and (T)CTC/GAG(A). Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1986, 866, 93-108.	2.4	18
339	Sequence signals in eukaryotic upstream regions. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1986, 866, 109-119.	2.4	21
340	The myc Oncogene: Its Role in Transformation and Differentiation. Annual Review of Genetics, 1986, 20, 361-384.	3.2	724
341	Genetic transformation in higher plants. Critical Reviews in Plant Sciences, 1986, 4, 1-46.	2.7	196
342	Complete nucleotide and encoded amino acid sequence of a mammalian myosin heavy chain gene. Journal of Molecular Biology, 1986, 190, 291-317.	2.0	282
343	Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell, 1986, 46, 705-716.	13.5	2,651
344	A transcriptional enhancer with specificity for erythroid cells is located in the long terminal repeat of the Friend murine leukemia virus EMBO Journal, 1986, 5, 1615-1623.	3.5	53

#	Article	IF	CITATIONS
345	The lysozyme enhancer: cell-specific activation of the chicken lysozyme gene by a far-upstream DNA element EMBO Journal, 1986, 5, 719-724.	3.5	107
346	Regulatory elements involved in Drosophila Adh gene expression are conserved in divergent species and separate elements mediate expression in different tissues EMBO Journal, 1986, 5, 1275-1289.	3.5	81
347	Multiple sequence motifs are involved in SV40 enhancer function EMBO Journal, 1986, 5, 387-397.	3.5	471
348	A transcriptional enhancer sequence of HTLV-I is responsible for trans-activation mediated by p40 chi HTLV-I EMBO Journal, 1986, 5, 713-718.	3.5	182
349	Nuclear factors binding specific sequences within the immunoglobulin enhancer interact differentially with other enhancer elements EMBO Journal, 1986, 5, 3251-3258.	3.5	59
350	Secondary genomic rearrangement events in pre-B cells: VHDJH replacement by a LINE-1 sequence and directed class switching EMBO Journal, 1986, 5, 3259-3266.	3.5	206
351	Sequence conservation in the protein coding and intron regions of the engrailed transcription unit EMBO Journal, 1986, 5, 3583-3589.	3.5	97
352	GENE REGULATION AND ITS ROLE IN EVOLUTIONARY PROCESSES. , 1986, , 3-36.		6
353	The mouse immunoglobulin heavy-chain enhancer: effect on transcription in vitro and binding of proteins present in HeLa and lymphoid B cell extracts EMBO Journal, 1986, 5, 1791-1797.	3.5	107
354	The immunoglobulin heavy-chain B-lymphocyte enhancer efficiently stimulates transcription in non-lymphoid cells EMBO Journal, 1986, 5, 553-560.	3.5	127
355	Activation of an enhancerless gene by chromosomal integration Molecular and Cellular Biology, 1986, 6, 4179-4184.	1.1	25
356	Random isolation of gene activator elements from the human genome Molecular and Cellular Biology, 1986, 6, 4185-4194.	1.1	25
357	Construction of novel antibodies by use of DNA transfection: design of plasmid vectors. Philosophical Transactions of the Royal Society A, 1986, 317, 425-432.	1.3	14
358	[11] Comparative phenotypic analysis of available human hybridoma fusion partners. Methods in Enzymology, 1986, 121, 120-140.	0.4	10
359	Regulation of Adenovirus Mrna Formation. Advances in Virus Research, 1986, 31, 169-228.	0.9	71
360	Cellular promoters incorporated into the adenovirus genome: effects of viral regulatory elements on transcription rates and cell specificity of albumin and beta-globin promoters Molecular and Cellular Biology, 1986, 6, 3798-3806.	1.1	50
361	Multiple hormone-inducible enhancers as mediators of differential transcription Molecular and Cellular Biology, 1986, 6, 4526-4538.	1.1	39
362	Multiple regulatory elements in the intergenic region between the alpha-fetoprotein and albumin genes Molecular and Cellular Biology, 1986, 6, 477-487.	1.1	230

#	Article	IF	CITATIONS
363	Cell-specific enhancers in the rat exocrine pancreas Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 3599-3603.	3.3	147
364	Down-regulation of glucocorticoid receptor mRNA by glucocorticoid hormones and recognition by the receptor of a specific binding sequence within a receptor cDNA clone Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 5899-5903.	3.3	242
365	Immunoglobulin heavy chain locus of the rat: striking homology to mouse antibody genes Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 6075-6079.	3.3	73
366	Immunoglobulin J chain gene from the mouse Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 456-460.	3.3	54
367	Liver-specific expression of the mouse alpha-fetoprotein gene is mediated by cis-acting DNA elements Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 8196-8200.	3.3	72
368	Cell-type-specific and regulated expression of a human gamma 1 heavy-chain immunoglobulin gene in transgenic mice Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 2152-2156.	3.3	36
369	The neuronal identifier element is a cis-acting positive regulator of gene expression Proceedings of the United States of America, 1986, 83, 3751-3755.	3.3	65
370	Evolution of the immunoglobulin kappa light chain locus in the rabbit: evidence for differential gene conversion events Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 5180-5183.	3.3	33
371	Tissue-specific transcription enhancement of the fibroin gene characterized by cell-free systems Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 9522-9526.	3.3	66
372	v-abl activates embryonic globin gene expression in mouse erythroleukemia cells Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 2042-2046.	3.3	4
373	The complete sequence of the mouse skeletal alpha-actin gene reveals several conserved and inverted repeat sequences outside of the protein-coding region Molecular and Cellular Biology, 1986, 6, 15-25.	1.1	107
374	Differential expression of mouse beta/goat beta c, mouse beta/goat beta F, and mouse beta/goat epsilon II hybrid globin genes in murine erythroleukemia cells Molecular and Cellular Biology, 1986, 6, 3873-3883.	1.1	0
375	Origin of eukaryotic introns: a hypothesis, based on codon distribution statistics in genes, and its implications Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 2133-2137.	3.3	72
376	Cell-type-specific synthesis of murine immunoglobulin mu RNA from an adenovirus vector Molecular and Cellular Biology, 1986, 6, 123-133.	1.1	34
377	DNA rearrangement causes a high rate of spontaneous mutation at the immunoglobulin heavy-chain locus of a mouse myeloma cell line Molecular and Cellular Biology, 1986, 6, 4228-4235.	1.1	18
378	A calcium ionophore-inducible cellular promoter is highly active and has enhancerlike properties Molecular and Cellular Biology, 1986, 6, 1235-1243.	1.1	59
379	trans Activation of the simian virus 40 enhancer Molecular and Cellular Biology, 1986, 6, 1283-1295.	1.1	50
380	Two different factors act separately or together to specify functionally distinct activities at a single transcriptional enhancer Molecular and Cellular Biology, 1986, 6, 993-1001.	1.1	131

#	Article	IF	Citations
381	Genomic hypomethylation and far-5' sequence alterations are associated with carcinogen-induced activation of the hamster thymidine kinase gene Molecular and Cellular Biology, 1986, 6, 3023-3033.	1.1	24
382	Tissue-specific expression of the rat albumin gene: genetic control of its extinction in microcell hybrids Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 2561-2565.	3.3	103
383	Myeloma mutant with a novel 3' flanking region: loss of normal sequence and insertion of repetitive elements leads to decreased transcription but normal processing of the alpha heavy-chain gene products Molecular and Cellular Biology, 1986, 6, 1903-1916.	1.1	56
384	Repression mediates cell-type-specific expression of the rat growth hormone gene Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 8283-8287.	3.3	109
385	Cellular promoters incorporated into the adenovirus genome: cell specificity of albumin and immunoglobulin expression Molecular and Cellular Biology, 1986, 6, 3791-3797.	1.1	86
386	The mouse immunoglobulin heavy-chain gene enhancer contains sequences that inhibit transcription in vitro in HeLa cell extracts Molecular and Cellular Biology, 1986, 6, 4117-4121.	1.1	14
387	Eel electric organ: hyperexpressing calmodulin system Molecular and Cellular Biology, 1986, 6, 950-954.	1.1	9
388	An RNA polymerase I enhancer in Saccharomyces cerevisiae Molecular and Cellular Biology, 1986, 6, 2089-2097.	1.1	178
389	Effects of the position of the simian virus 40 enhancer on expression of multiple transcription units in a single plasmid Molecular and Cellular Biology, 1986, 6, 2593-2601.	1.1	153
390	Regulation of rat insulin 1 gene expression: evidence for negative regulation in nonpancreatic cells Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 3180-3184.	3.3	193
391	Mutation affecting the expression of immunoglobulin variable regions in the rabbit Proceedings of the United States of America, 1986, 83, 4883-4886.	3.3	37
392	Interaction of a common factor with conserved promoter and enhancer sequences in histone H2B, immunoglobulin, and U2 small nuclear RNA (snRNA) genes Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 6382-6386.	3.3	223
393	Efficient introduction of plasmid DNA into human hemopoietic cells by encapsidation in simian virus 40 pseudovirions Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 6925-6929.	3.3	29
394	Molecular characterization and phylogenetic studies of a wound-inducible proteinase inhibitor I gene in Lycopersicon species Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 7277-7281.	3.3	88
395	Mutational analysis of the immunoglobulin heavy chain promoter region Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 9626-9630.	3.3	102
396	Activation of the adenovirus and BK virus late promoters: effects of the BK virus enhancer and trans-acting viral early proteins Molecular and Cellular Biology, 1986, 6, 3596-3605.	1.1	33
397	Binding in vitro of multiple cellular proteins to immunoglobulin heavy-chain enhancer DNA Molecular and Cellular Biology, 1986, 6, 4168-4178.	1.1	92
398	Transcriptional control of the mouse prealbumin (transthyretin) gene: both promoter sequences and a distinct enhancer are cell specific Molecular and Cellular Biology, 1986, 6, 4697-4708.	1.1	163

#	Article	IF	Citations
399	Murine erythropoietin gene: cloning, expression, and human gene homology Molecular and Cellular Biology, 1986, 6, 849-858.	1.1	193
400	An active chromatin structure acquired by translocated c-myc genes Molecular and Cellular Biology, 1986, 6, 1357-1361.	1.1	18
401	Enhancer sequences responsible for DNase I hypersensitivity in polyomavirus chromatin Molecular and Cellular Biology, 1986, 6, 2249-2252.	1.1	13
402	Nuclear factors bind to regulatory regions of the mouse kappa immunoglobulin gene. Nucleic Acids Research, 1986, 14, 4837-4848.	6.5	45
403	Transcriptional enhancers play a major role in gene expression. BioEssays, 1986, 4, 62-65.	1.2	10
404	Transgenic mice in the study of immunology. BioEssays, 1986, 4, 245-248.	1.2	2
405	Transhybridomas from fusion gene transgenic lymphocytes can be used to produce foreign protein of biological interest. European Journal of Immunology, 1986, 16, 1033-1035.	1.6	3
406	Introns as relict retrotransposons: Implications for the evolutionary origin of eukaryotic mRNA splicing mechanisms. Journal of Theoretical Biology, 1986, 121, 283-291.	0.8	24
407	A nuclear factor that binds to a conserved sequence motif in transcriptional control elements of immunoglobulin genes. Nature, 1986, 319, 154-158.	13.7	1,249
408	Transfer of specificity by murine \hat{I}_{\pm} and \hat{I}^2 T-cell receptor genes. Nature, 1986, 320, 232-238.	13.7	583
409	Synergism between immunoglobulin enhancers and promoters. Nature, 1986, 322, 383-385.	13.7	122
410	A novel VH to VHDJH joining mechanism in heavy-chain-negative (null) pre-B cells results in heavy-chain production. Nature, 1986, 322, 840-842.	13.7	315
411	Distinct factors bind to apparently homolgous sequences in the immunoglobulin heavy-chain enhancer. Nature, 1986, 322, 846-848.	13.7	184
412	Cell-type specific protein binding to the enhancer of simian virus 40 in nuclear extracts. Nature, 1986, 323, 544-548.	13.7	242
413	Light-inducible and tissue-specific pea lhcp gene expression involves an upstream element combining enhancer- and silencer-like properties. Nature, 1986, 323, 551-554.	13.7	139
414	A 3′ enhancer is required for temporal and tissue-specific transcriptional activation of the chicken adult β-globin gene. Nature, 1986, 323, 731-734.	13.7	209
415	Recombination between immunoglobulin variable region gene segments is enhanced by transcription. Nature, 1986, 324, 585-589.	13.7	337
416	Regulation of Genome Rearrangement Events during Lymphocyte Differentiation. Immunological Reviews, 1986, 89, 5-30.	2.8	425

#	Article	IF	CITATIONS
417	Sequences 3'of Immunoglobulin Heavy Chain Genes Influence their Expression. Immunological Reviews, 1986, 89, 31-48.	2.8	11
418	Cell-Type Specific Regulation of a K Immunoglobulin Gene by Promoter and Enhancer Elements. Immunological Reviews, 1986, 89, 49-68.	2.8	21
419	Expression of recombinant immunoglobulin genes to produce novel molecules with specific functions. Immunologic Research, 1986, 5, 210-220.	1.3	1
420	Immunoglobulin synthesis in non-B cell lines. Immunology Letters, 1986, 12, 257-262.	1.1	1
421	Isolation and characterization of a light-inducible, organ-specific gene from potato and analysis of its expression after tagging and transfer into tobacco and potato shoots. Molecular Genetics and Genomics, 1986, 205, 14-22.	2.4	80
422	Regulation of the Assembly and Expression of Variable-Region Genes. Annual Review of Immunology, 1986, 4, 339-368.	9.5	394
423	Genes Encoding Mammalian Neuroendocrine Peptides: Strategies Toward Their Identification and Analysis. Annual Review of Physiology, 1986, 48, 431-446.	5.6	13
424	The Regulation and Expression of c-myc in Normal and Malignant Cells. Annual Review of Immunology, 1986, 4, 317-338.	9.5	198
425	Conserved sequence motifs upstream from the co-ordinately expressed vitellogenin and apo VLDLII genes of chicken. Nucleic Acids Research, 1986, 14, 8669-8680.	6.5	23
426	Molecular analysis of the interaction between an enhancer binding factor and its DNA target. Nucleic Acids Research, 1986, 14, 9595-9611.	6.5	50
427	Complete nucleotide sequence of the gene for human interleukin 1 alpha. Nucleic Acids Research, 1986, 14, 3167-3179.	6.5	186
428	In vivo competition between a metallothionein regulatory element and the SV40 enhancer. Science, 1986, 232, 76-80.	6.0	100
429	Androgen regulation by the long terminal repeat of mouse mammary tumor virus Molecular and Cellular Biology, 1986, 6, 2847-2854.	1.1	148
430	Organ-Specific and Light-Induced Expression of Plant Genes. Science, 1986, 232, 1106-1112.	6.0	324
431	Effect of E1A and E1B viral proteins on the expression of a calcium ionophore–inducible gene and its promoter. Nucleic Acids Research, 1986, 14, 4911-4921.	6.5	3
432	The 5′-Flanking Sequences of the Human Growth Hormone Gene Contain a Cell-Specific Control Element. DNA and Cell Biology, 1986, 5, 503-509.	5.1	27
433	A Sensitive, Nondestructive Assay for Transfected Genes. DNA and Cell Biology, 1986, 5, 257-262.	5.1	12
434	Nuclear activity from F9 embryonal carcinoma cells binding specifically to the enhancers of wild-type polyoma virus and PyEC mutant DNAs. Nucleic Acids Research, 1986, 14, 2845-2861.	6.5	61

#	Article	IF	CITATIONS
435	Identification of a restriction fragment length polymorphism by a CR1 cDNA that correlates with the number of CR1 on erythrocytes Journal of Experimental Medicine, 1986, 164, 50-59.	4.2	188
436	Transcriptional enhancer within the human placental lactogen and growth hormone multigene cluster. Nucleic Acids Research, 1986, 14, 7647-7659.	6.5	50
437	Transgenic mice with mu and kappa genes encoding antiphosphorylcholine antibodies Journal of Experimental Medicine, 1986, 164, 627-641.	4.2	149
438	Functional analysis of the murine IgH enhancer: evidence for negative control of cell-type specificity. Nucleic Acids Research, 1986, 14, 8209-8221.	6.5	127
439	Hair Keratin: Composition, Structure and Biogenesis. , 1986, , 695-721.		26
440	Hypersensitive sites in the 5′ and 3′ flanking regions of the cysteine proteinase I gene ofDictyostelium discoideum. Nucleic Acids Research, 1986, 14, 8703-8722.	6.5	15
441	A 100-kD HeLa cell octamer binding protein (OBP100) interacts differently with two separate octamer-related sequences within the SV40 enhancer Genes and Development, 1987, 1, 1147-1160.	2.7	271
442	Factors that interact with the rat albumin promoter are present both in hepatocytes and other cell types Genes and Development, 1987, 1, 256-267.	2.7	87
443	Tissue-specific expression of the human α1-antitrypsin gene is controlled by multiple cis-regulatory elements. Nucleic Acids Research, 1987, 15, 8399-8415.	6.5	65
444	The SV40 enhancer can be dissected into multiple segments, each with a different cell type specificity Genes and Development, 1987, 1, 65-74.	2.7	305
445	Lysozyme gene activity in chicken macrophages is controlled by positive and negative regulatory elements. Nucleic Acids Research, 1987, 15, 4163-4178.	6.5	96
446	The HLA-DQÎ ² gene upstream region contains an immunoglobulin-like octamer motif that binds cell-type specific nuclear factors. Nucleic Acids Research, 1987, 15, 8057-8067.	6.5	22
447	Development of the primary antibody repertoire. Science, 1987, 238, 1079-1087.	6.0	650
448	Tissue specific expression of the human alpha-1-antitrypsin gene in transgenic mice. Nucleic Acids Research, 1987, 15, 1459-1475.	6.5	125
449	Transgenic Mice with Immunoglobulin Genes. Annual Review of Immunology, 1987, 5, 151-174.	9.5	140
450	Novel transcripts from the Ultrabithorax domain of the bithorax complex Genes and Development, 1987, 1, 307-322.	2.7	193
451	Simian virus 40 (SV40)-transgenic mice that develop tumors are specifically tolerant to SV40 T antigen Journal of Experimental Medicine, 1987, 165, 417-427.	4.2	52
452	A cell type specific factor recognizes the rat thyroglobulin promoter. Nucleic Acids Research, 1987, 15, 8149-8166.	6.5	107

#	Article	IF	CITATIONS
453	A transcriptional activator is located in the coding region of the yeastPGKgene. Nucleic Acids Research, 1987, 15, 6243-6259.	6.5	60
454	Protein-binding sites in Ig gene enhancers determine transcriptional activity and inducibility. Science, 1987, 236, 1573-1577.	6.0	654
455	Nuclear factors binding to the human immunoglobulin heavy-chain gene enhancer. Nucleic Acids Research, 1987, 15, 2851-2869.	6.5	36
456	In vitro binding of several cell-specific and ubiquitous nuclear proteins to the GT-I motif of the SV40 enhancer Genes and Development, 1987, 1, 794-807.	2.7	143
457	Identification of the promoter sequences involved in the cell specific expression of the rat somatostatin gene. Nucleic Acids Research, 1987, 15, 5715-5728.	6.5	82
458	Optimizing gene expression in BPV-transformed cells: effects of cell type on enhancer/promoter interaction. Nucleic Acids Research, 1987, 15, 7137-7153.	6.5	6
459	Chapter 2 The Human Keratin Genes and Their Differential Expression. Current Topics in Developmental Biology, 1987, 22, 5-34.	1.0	112
460	Identification of a rat liver nuclear protein that binds to the enhancer core element of three animal viruses Genes and Development, 1987, 1, 133-146.	2.7	666
461	Experimental Models for Understanding B Lymphocyte Formation. Advances in Immunology, 1987, 41, 181-267.	1.1	123
462	Regulation of Gene Transcription by Multiple Hormones: Organization of Regulatory Elements. Progress in Molecular Biology and Translational Science, 1987, 34, 59-87.	1.9	8
463	Chapter 4 Assembly of immunoglobulin variable region gene segments. New Comprehensive Biochemistry, 1987, , 111-134.	0.1	6
464	Chapter 5 Immunoglobulin heavy chain class switching. New Comprehensive Biochemistry, 1987, 17, 135-151.	0.1	12
465	Chapter 6 Immunoglobulin gene expression. New Comprehensive Biochemistry, 1987, , 153-176.	0.1	0
466	Nucieotlde sequence analysis of alpha-arnylase and thiol protease genes that are hormonally regulated in barley aleurone cells. Nucleic Acids Research, 1987, 15, 2515-2535.	6.5	93
467	DNA segment containing C beta 1, a gene for the constant region of the beta chain of the T-cell antigen receptor, was inserted into chromosome 6 in cells from one patient with human T-cell leukemia Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 4264-4267.	3.3	7
468	Identification of a cell-specific transcriptional enhancer in the first intron of the mouse alpha 2 (type) Tj ETQq1 1 1987, 84, 5590-5594.	0.784314 3.3	rgBT /Overlo 167
469	Enhancer sequences of a retroviral vector determine expression of a gene in multipotent hematopoietic progenitors and committed erythroid cells Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 8662-8666.	3.3	31
470	Regulation of immunoglobulin transcription rates and mRNA processing in proliferating normal B lymphocytes by activators of protein kinase C Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 9135-9139.	3.3	28

ARTICLE IF CITATIONS Handicapped retroviral vectors efficiently transduce foreign genes into hematopoietic stem cells.. 471 3.3 72 Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 2406-2410. Complex protein binding within the mouse immunoglobulin heavy-chain enhancer.. Molecular and 1.1 Cellular Biology, 1987, 7, 4194-4203. Introns are inconsequential to efficient formation of cellular thymidine kinase mRNA in mouse L 473 1.1 33 cells.. Molecular and Cellular Biology, 1987, 7, 4576-4581. In vitro transcription of immunoglobulin genes in a B-cell extract: effects of enhancer and promoter 474 1.1 sequences.. Molecular and Cellular Biology, 1987, 7, 1989-1994. Chromatin fine-structure mapping of the goat beta F gene in fetal erythroid tissue.. Molecular and 475 1.1 2 Cellular Biology, 1987, 7, 2772-2782. Noncoding $3\hat{a}\in^2$ sequences of the transferrin receptor gene are required for mRNA regulation by iron.. EMBO Journal, 1987, 6, 1287-1293. 3.5 198 Secretion of a chimeric T-cell receptor-immunoglobulin protein.. Proceedings of the National 477 3.3 68 Academy of Sciences of the United States of America, 1987, 84, 2936-2940. Tissue-specific activity of the pro-opiomelanocortin gene promoter.. Molecular and Cellular Biology, 1987, 7, 4058-4064. 478 1.1 80 Extinction of expression of immunoglobulin genes in myeloma X fibroblast somatic cell hybrids.. Molecular and Cellular Biology, 1987, 7, 936-939. 479 1.1 31 Transcription of adenovirus 2 major late and peptide IX genes under conditions of in vitro 1.1 nucleosome assembly.. Molecular and Cellular Biology, 1987, 7, 1401-1408. Expression of the c-myc oncogene under control of an immunoglobulin enhancer in E mu-myc 481 1.1 75 transgenic mice.. Molecular and Cellular Biology, 1987, 7, 1436-1444. Multiple DNA sequence elements are necessary for the function of an immunoglobulin heavy chain promoter.. Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 3.3 126 7634-7638. A genetic analysis of extinction: trans-regulation of 16 liver-specific genes in hepatoma-fibroblast 483 hybrid cells.. Proceedings of the National Academy of Sciences of the United States of America, 1987, 3.3 72 84, 1614-1618. Promoter and enhancer elements from the rat elastase I gene function independently of each other and of heterologous enhancers.. Molecular and Cellular Biology, 1987, 7, 3466-3472. 484 1.1 Regulated expression of a complete human beta-globin gene encoded by a transmissible retrovirus 485 170 1.1 vector. Molecular and Cellular Biology, 1987, 7, 887-897. Different activities of viral enhancer elements before and after stable integration of transfected 486 DNAs.. Molecular and Cellular Biology, 1987, 7, 1296-1299. Negative regulation contributes to tissue specificity of the immunoglobulin heavy-chain enhancer.. 487 1.1 130 Molecular and Cellular Biology, 1987, 7, 2558-2567. Tissue-specific enhancer of the human glycoprotein hormone alpha-subunit gene: dependence on 488 1.1 cyclic AMP-inducible elements.. Molecular and Cellular Biology, 1987, 7, 3994-4002.

#	Article	IF	CITATIONS
489	Extinction of alpha-fetoprotein gene expression in somatic cell hybrids involves cis-acting DNA elements Molecular and Cellular Biology, 1987, 7, 2606-2609.	1.1	14
490	High-frequency deletional rearrangement of immunoglobulin kappa gene segments introduced into a pre-B-cell line Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 4949-4953.	3.3	27
491	A mutational analysis of the insulin gene transcription control region: expression in beta cells is dependent on two related sequences within the enhancer Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 8819-8823.	3.3	262
492	Identification of a phenotype-specific enhancer in the first intron of the rat collagen II gene Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 8864-8868.	3.3	165
493	Duplicated CArG box domains have positive and mutually dependent regulatory roles in expression of the human alpha-cardiac actin gene Molecular and Cellular Biology, 1987, 7, 2803-2813.	1.1	216
494	The rat elastase I regulatory element is an enhancer that directs correct cell specificity and developmental onset of expression in transgenic mice Molecular and Cellular Biology, 1987, 7, 2956-2967.	1.1	123
495	The interplay of DNA-binding proteins on the promoter of the mouse albumin gene. Cell, 1987, 51, 963-973.	13.5	567
496	High efficiency gene transfer and expression in normal murine B lymphocytes. Journal of Immunological Methods, 1987, 101, 279-285.	0.6	6
497	Genetic analysis of the cell binding domain region of the chicken fibronectin gene. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1987, 910, 171-181.	2.4	12
498	The cis-acting regulatory elements of immunoglobulin heavy chain gene involved in enhanced immunoglobulin production after lipopolysaccharide (LPS) stimulation. Molecular Immunology, 1987, 24, 759-764.	1.0	2
499	Human interleukin-1 beta gene. Gene, 1987, 52, 95-101.	1.0	86
500	Genetically Engineered Antibody Molecules and Their Application. Annals of the New York Academy of Sciences, 1987, 507, 187-198.	1.8	26
501	A comparison of bovine growth hormone expression directed by bGH genomic or intronless DNA in transiently transfected eukaryotic cells. Gene, 1987, 57, 47-52.	1.0	17
502	[72] Identification of regulatory elements of cloned genes with functional assays. Methods in Enzymology, 1987, 152, 704-720.	0.4	443
503	Identification and purification of a human lymphoid-specific octamer-binding protein (OTF-2) that activates transcription of an immunoglobulin promoter in vitro. Cell, 1987, 51, 783-793.	13.5	416
504	Comparison of the cis-acting control regions of two coordinately controlled genes involved in ethanol utilization in Aspergillus nidulans. Gene, 1987, 51, 205-216.	1.0	120
505	Activation of cryptic promoters of human c-myc genes in microinjected Xenopus laevis oocytes. Journal of Molecular Biology, 1987, 193, 497-505.	2.0	3
506	c-mos Upstream sequence exhibits species-specific enhancer activity and binds murine-specific nuclear proteins. Journal of Molecular Biology, 1987, 193, 255-266.	2.0	19

#	Article	IF	CITATIONS
507	Splice commitment dictates neuron-specific alternative RNA processing in calcitonin/CGRP gene expression. Cell, 1987, 48, 517-524.	13.5	227
508	Reconstitution of functionally active antibody directed against creatine kinase from separately expressed heavy and light chains in non-lymphoid cells. Gene, 1987, 51, 21-29.	1.0	44
509	The role of the κ enhancer and its binding factor NF-κB in the developmental regulation of κ gene transcription. Cell, 1987, 48, 121-128.	13.5	272
510	A transcriptional enhancer located between adult beta-globin and embryonic epsilon-globin genes in chicken and duck. Gene, 1987, 58, 167-175.	1.0	15
511	Regulation of inducible and tissue-specific gene expression. Science, 1987, 236, 1237-1245.	6.0	1,719
512	A pituitary-specific trans-acting factor can stimulate transcription from the growth hormone promoter in extracts of nonexpressing cells. Cell, 1987, 50, 267-275.	13.5	304
513	A lymphoproliferative abnormality associated with inappropriate expression of the Thy-1 antigen in transgenic mice. Cell, 1987, 51, 7-19.	13.5	50
514	Electric field-mediated gene transfer (electroporation) into mouse friend and human K562 erythroleukemic cells. Gene Analysis Techniques, 1987, 4, 50-56.	1.1	22
515	Activation of V kappa gene rearrangement in pre-B cells follows the expression of membrane-bound immunoglobulin heavy chains EMBO Journal, 1987, 6, 3299-3305.	3.5	169
516	Promoter and enhancer elements containing a conserved sequence motif are recognized by nuclear factor III, a protein stimulating adenovirus DNA replication EMBO Journal, 1987, 6, 3771-3778.	3.5	101
517	Cell type-specificity elements of the immunoglobulin heavy chain gene enhancer EMBO Journal, 1987, 6, 1323-1330.	3.5	240
518	An enhancer element lies 3′ to the human A gamma globin gene EMBO Journal, 1987, 6, 2997-3004.	3.5	126
519	One cell-specific and three ubiquitous nuclear proteins bind in vitro to overlapping motifs in the domain B1 of the SV40 enhancer EMBO Journal, 1987, 6, 3005-3013.	3.5	122
520	In vitro binding of cell-specific and ubiquitous nuclear proteins to the octamer motif of the SV40 enhancer and related motifs present in other promoters and enhancers EMBO Journal, 1987, 6, 3015-3025.	3.5	142
521	Interactions of cellular proteins involved in the transcriptional regulation of the human immunodeficiency virus EMBO Journal, 1987, 6, 3761-3770.	3.5	278
522	Binding of a nuclear factor to a consensus sequence in the 5′ flanking region of zein genes from maize. EMBO Journal, 1987, 6, 17-22.	3.5	144
523	Six distinct nuclear factors interact with the 75-base-pair repeat of the Moloney murine leukemia virus enhancer Molecular and Cellular Biology, 1987, 7, 1101-1110.	1.1	356
524	The conserved decanucleotide from the immunoglobulin heavy chain promoter induces a very high transcriptional activity in B-cells when introduced into an heterologous promoter EMBO Journal, 1987, 6, 1685-1690.	3.5	131

#	Article	IF	CITATIONS
525	Cis- and trans-acting elements responsible for the cell-specific expression of the human alpha 1-antitrypsin gene EMBO Journal, 1987, 6, 2759-2766.	3.5	159
526	Driven by the same Ig enhancer and SV40 T promoter ras induced lung adenomatous tumors, myc induced pre-B cell lymphomas and SV40 large T gene a variety of tumors in transgenic mice EMBO Journal, 1987, 6, 4055-4065.	3.5	117
527	A Pituitary-Specific Factor Interacts with an Upstream Promoter Element in the Rat Growth Hormone Gene*. Molecular Endocrinology, 1987, 1, 90-96.	3.7	57
528	Localization of sequences in wheat endosperm protein genes which confer tissue-specific expression in tobacco. EMBO Journal, 1987, 6, 3559-3564.	3.5	195
529	Tissue-specific expression of the human growth hormone gene is conferred in part by the binding of a specific trans-acting factor EMBO Journal, 1987, 6, 971-981.	3.5	206
530	Developmental regulation by an enhancer from the <i>Sgs-4</i> gene of <i>Drosophila</i> . EMBO Journal, 1987, 6, 207-214.	3.5	35
531	Promoter and enhancer elements in the rearranged alpha chain gene of the human T cell receptor EMBO Journal, 1987, 6, 3307-3312.	3.5	50
532	Regulated expression of the Ren-2 gene in transgenic mice derived from parental strains carrying only the Ren-1 gene EMBO Journal, 1987, 6, 983-987.	3.5	74
533	Discrete elements within the SV40 enhancer region display different cell-specific enhancer activities EMBO Journal, 1987, 6, 1017-1025.	3.5	215
534	Genomic organization, sequence analysis and expression of all five genes encoding the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from tomato. Molecular Genetics and Genomics, 1987, 209, 247-256.	2.4	148
535	Identification of an enhancer-like element upstream from a cell cycle dependent human H4 histone gene. Journal of Cellular Physiology, 1987, 132, 552-558.	2.0	26
536	Provision of the immunoglobulin heavy chain enhancer downstream of a test gene is sufficient to confer lymphoid-specific expression in transgenic mice. European Journal of Immunology, 1987, 17, 465-469.	1.6	38
537	Regulation of immunoglobulin gene transcription by labile represser factor(s). European Journal of Immunology, 1987, 17, 1249-1256.	1.6	16
538	Transient gene expression in untransformed lymphocytes. European Journal of Immunology, 1987, 17, 1499-1502.	1.6	20
539	Structure and function of chimaeric antibodies. BioEssays, 1987, 6, 175-177.	1.2	0
540	Organization and expression of the Plasmodium knowlesi circumsporozoite antigen gene. Molecular and Biochemical Parasitology, 1987, 23, 233-245.	0.5	32
541	Pharmaceuticals from transgenic livestock. Trends in Biotechnology, 1987, 5, 20-24.	4.9	84
542	A transcription factor which binds to the enhancers of SV40, immunoglobulin heavy chain and U2 snRNA genes. Nature, 1987, 325, 268-272.	13.7	185

#	Article	IF	CITATIONS
543	TÎ ³ protein is expressed on murine fetal thymocytes as a disulphide-linked heterodimer. Nature, 1987, 325, 720-723.	13.7	85
544	Enhancer-mediated activation of a growth-regulated promoter. FEBS Journal, 1987, 162, 333-338.	0.2	3
545	Rat glycine methyltransferase. Complete amino acid sequence deduced from a cDNA clone and characterization of the genomic DNA. FEBS Journal, 1987, 168, 141-151.	0.2	40
546	Prediction of 'hot spots' in SV40 enhancer and relation with experimental data. FEBS Journal, 1987, 170, 247-252.	0.2	35
547	A homologous in vitro system to analyze transcription of a mouse immunoglobulin mu heavy-chain gene. FEBS Journal, 1988, 172, 679-685.	0.2	6
548	Enhancer sequences and the regulation of gene transcription. FEBS Journal, 1988, 176, 485-495.	0.2	157
550	Somatic Generation of Immune Diversity (Nobel Lecture). Angewandte Chemie International Edition in English, 1988, 27, 1028-1039.	4.4	7
551	Engineering of antibodies. BioEssays, 1988, 8, 74-78.	1.2	18
552	The mechanistic role of enhancer elements in eukaryotic transcription. BioEssays, 1988, 8, 104-107.	1.2	17
553	Nucleotide sequence analysis of the C.AKR Lyt-2 agene: structural polymorphism in alleles encoding the Lyt-2.1 T-cell surface alloantigen. Immunogenetics, 1988, 28, 345-352.	1.2	14
554	Structure and expression of the Lyt-3 agene of C.AKR mice. Immunogenetics, 1988, 28, 353-361.	1.2	15
555	The expression of immunoglobulin genes. Trends in Immunology, 1988, 9, 278-281.	7.5	4
556	Somatic generation of immune diversity. In Vitro Cellular & Developmental Biology, 1988, 24, 253-265.	1.0	20
557	Deletion and hypermethylation of thymidine kinase gene in V79 Chinese hamster cells resistant to bromodeoxyuridine. Somatic Cell and Molecular Genetics, 1988, 14, 567-581.	0.7	17
558	DNA bending induced by specific interaction of decamer binding proteins with immunoglobulin gene control sequences. Journal of Structural Biology, 1988, 101, 145-158.	0.9	4
559	Antibody structure and antibody engineering. Advanced Drug Delivery Reviews, 1988, 2, 129-142.	6.6	1
560	Somatic generation of immune diversity. Bioscience Reports, 1988, 8, 3-26.	1.1	33
561	Complete sequence and organization of the murine .betaglucuronidase gene. Biochemistry, 1988, 27, 7131-7140.	1.2	44

		CITATION REPORT		
#	Article		IF	CITATIONS
562	Enhancers: Mechanisms of Action and Cell Specificity. Annual Review of Cell Biology, 198	8, 4, 127-153.	26.0	162
563	Structure and expression of a Manduca sexta larval cuticle gene homologous to Drosoph genes. Journal of Molecular Biology, 1988, 203, 411-423.	ila cuticle	2.0	350
564	Identification of an orthologous mammalian cytokeratin gene. Journal of Molecular Biolog 204, 841-856.	ʒy, 1988,	2.0	98
565	The Promoter Region of the Human Transferrin Receptor Gene. Annals of the New York Ad Sciences, 1988, 526, 54-64.	cademy of	1.8	12
566	An Ultrabithorax protein binds sequences near its own and the Antennapedia P1 promote 55, 1069-1081.	ers. Cell, 1988,	13.5	193
567	A promoter of the rat insulin-like growth factor II gene consists of minimal control elemer Journal of Molecular Biology, 1988, 199, 61-81.	nts.	2.0	91
568	Regulation of SV40 early gene expression. Biochemistry and Cell Biology, 1988, 66, 567-5	577.	0.9	35
569	Nuclease Hypersensitive Sites in Chromatin. Annual Review of Biochemistry, 1988, 57, 15	9-197.	5.0	1,231
570	Redundancy of information in enhancers as a principle of mammalian transcription contro of Molecular Biology, 1988, 201, 81-90.	ol. Journal	2.0	68
571	Stable propagation of the active transcriptional state of an immunoglobulin μ gene requ continuous enhancer function. Cell, 1988, 55, 645-654.	uires	13.5	50
572	Probability that the commitment of murine erythroleukemia cell differentiation is determi c-myc level. Journal of Molecular Biology, 1988, 202, 779-786.	ined by the	2.0	57
573	Purification of a nuclear trans-acting factor involved in the regulated transcription of a hu immunoglobulin heavy chain gene. Cell, 1988, 53, 723-730.	iman	13.5	43
574	The half-life of immunoglobulin mRNA increases during B-cell differentiation: a possible ro targeting to membrane-bound polysomes Genes and Development, 1988, 2, 1003-1011	le for 	2.7	57
575	Transgenic Mice: Applications to the Study of the Nervous System. Annual Review of Neu 1988, 11, 353-372.	roscience,	5.0	46
576	A survey on intron and exon lengths. Nucleic Acids Research, 1988, 16, 9893-9908.		6.5	568
577	In vivofunctional analysis ofin vitroprotein binding sites in the immunoglobulin heavy cha enhancer. Nucleic Acids Research, 1988, 16, 3239-3253.	in	6.5	64
578	Identification and purification of EBP1: a HeLa cell protein that binds to a region overlapp 'core' of the SV40 enhancer Genes and Development, 1988, 2, 991-1002.	ing the	2.7	76
579	The $5\hat{a}\in^2$ flanking region of the gene for the Epstein-Barr virus-encoded nuclear antigen 2 type specificcis-acting regulatory element that activates transcription in transfected B-ce Acids Research, 1988, 16, 8391-8410.		6.5	62

#	Article	IF	CITATIONS
580	Genes activated in the presence of an immunoglobulin enhancer or promoter are negatively regulated by a T-lymphoma cell line Molecular and Cellular Biology, 1988, 8, 1932-1939.	1.1	58
581	Strong transcriptional activation of translocated c-myc genes occurs without a strong nearby enhancer or promoter. Nucleic Acids Research, 1988, 16, 77-96.	6.5	16
582	The muscle creatine kinase gene is regulated by multiple upstream elements, including a muscle-specific enhancer Molecular and Cellular Biology, 1988, 8, 62-70.	1.1	264
583	Systematic binding analysis of the insulin gene transcription control region: insulin and immunoglobulin enhancers utilize similar transactivators Molecular and Cellular Biology, 1988, 8, 2620-2627.	1.1	127
584	Detection of two tissue-specific DNA-binding proteins with affinity for sites in the mouse beta-globin intervening sequence 2 Molecular and Cellular Biology, 1988, 8, 381-392.	1.1	71
585	Altered Expression and Function of the Insulin Receptor in a Family with Lipoatrophic Diabetes*. Journal of Clinical Endocrinology and Metabolism, 1988, 67, 1284-1293.	1.8	26
586	Deletional analysis of the promoter region of the human transferrin receptor gene. Nucleic Acids Research, 1988, 16, 629-646.	6.5	38
587	Comparison of intron-dependent and intron-independent gene expression Molecular and Cellular Biology, 1988, 8, 4395-4405.	1.1	375
588	Sigma region located between C, and C, genes of human immunoglobulin heavy chain: possible involvement of tRNA-like structure in RNA splicing. Nucleic Acids Research, 1988, 16, 9497-9511.	6.5	24
589	Mutational analysis of the contribution of sequence motifs within the IgH enhancer to tissue specific transcriptional activation. Nucleic Acids Research, 1988, 16, 6085-6096.	6.5	54
590	Trans-activation of transcription, from promoters containing immunoglobulin gene octamer sequences, by myeloma cell mRNA inXenopusoocytes. Nucleic Acids Research, 1988, 16, 4903-4913.	6.5	11
591	Isolation of a recombinant copy of the gene encoding C/EBP Genes and Development, 1988, 2, 786-800.	2.7	995
592	Octamer-binding proteins from B or HeLa cells stimulate transcription of the immunoglobulin heavy-chain promoter in vitro Genes and Development, 1988, 2, 1227-1237.	2.7	133
593	The B-cell-specific Oct-2 protein contains POU box- and homeo box-type domains Genes and Development, 1988, 2, 1570-1581.	2.7	445
594	Heart and bone tumors in transgenic mice Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 2648-2652.	3.3	95
595	B-cell control region at the 5' end of a major histocompatibility complex class II gene: sequences and factors Molecular and Cellular Biology, 1988, 8, 3975-3987.	1.1	75
596	A beta-cell-specific protein binds to the two major regulatory sequences of the insulin gene enhancer Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 4228-4231.	3.3	105
597	Two regulatory domains flank the mouse H19 gene Molecular and Cellular Biology, 1988, 8, 4707-4715.	1.1	107

#	Article	IF	CITATIONS
598	Expression of T-cell receptor alpha-chain genes in transgenic mice Molecular and Cellular Biology, 1988, 8, 5459-5469.	1.1	59
599	A conserved sequence in the T-cell receptor beta-chain promoter region Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 3551-3554.	3.3	75
600	Rapid induction of IgM-secreting murine plasmacytomas by pristane and an immunoglobulin heavy-chain promoter/enhancer-driven c-myc/v-Ha-ras retrovirus Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 6067-6071.	3.3	44
601	B-cell-specific enhancer activity of conserved upstream elements of the class II major histocompatibility complex DQB gene Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 6909-6913.	3.3	46
602	Targeting of an inducible toxic phenotype in animal cells Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 7572-7576.	3.3	238
603	Transgenic rabbits with lymphocytic leukemia induced by the c-myc oncogene fused with the immunoglobulin heavy chain enhancer Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 3130-3134.	3.3	65
604	Purification and characterization of a high-mobility-group-like DNA-binding protein that stimulates rRNA synthesis in vitro Molecular and Cellular Biology, 1988, 8, 3406-3414.	1.1	65
605	Localization of a repressive sequence contributing to B-cell specificity in the immunoglobulin heavy-chain enhancer Molecular and Cellular Biology, 1988, 8, 988-992.	1.1	63
606	The NF-kappa B-binding site mediates phorbol ester-inducible transcription in nonlymphoid cells Molecular and Cellular Biology, 1988, 8, 3526-3531.	1.1	91
607	The cell-specific enhancer of the mouse transthyretin (prealbumin) gene binds a common factor at one site and a liver-specific factor(s) at two other sites Molecular and Cellular Biology, 1988, 8, 81-90.	1.1	126
608	A genomic DNA segment from Petunia hybrida leads to increased transformation frequencies and simple integration patterns Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 8568-8572.	3.3	37
609	Introns increase transcriptional efficiency in transgenic mice Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 836-840.	3.3	705
610	Identification and characterization of two functional domains within the murine heavy-chain enhancer Molecular and Cellular Biology, 1988, 8, 145-152.	1.1	96
611	DNase I- and micrococcal nuclease-hypersensitive sites in the human apolipoprotein B gene are tissue specific Molecular and Cellular Biology, 1988, 8, 71-80.	1.1	54
612	Transcription of T cell receptor beta-chain genes is controlled by a downstream regulatory element EMBO Journal, 1988, 7, 745-750.	3.5	173
613	Functional redundancy in the tissue-specific enhancer of the Drosophila Sgs-4 gene EMBO Journal, 1988, 7, 2559-2567.	3.5	37
614	Cell lineage specificity of chromatin configuration around the immunoglobulin heavy chain enhancer EMBO Journal, 1988, 7, 2393-2399.	3.5	33
615	Identification of a novel lymphoid specific octamer binding protein (OTF-2B) by proteolytic clipping bandshift assay (PCBA) EMBO Journal, 1988, 7, 4221-4229.	3.5	271

#	Article	IF	CITATIONS
616	Purification of a NF1-like DNA-binding protein from rat liver and cloning of the corresponding cDNA EMBO Journal, 1988, 7, 3115-3123.	3.5	233
617	Nuclear factors in human brain cells bind specifically to the JCV regulatory region EMBO Journal, 1988, 7, 1205-1210.	3.5	77
618	A T cell-specific enhancer is located in a DNase I-hypersensitive area at the 3′ end of the CD3-delta gene EMBO Journal, 1988, 7, 2401-2407.	3.5	80
619	Both immunoglobulin promoter and enhancer sequences are targets for suppression in myeloma-fibroblast hybrid cells EMBO Journal, 1988, 7, 3093-3098.	3.5	33
620	The t(5;14) chromosomal translocation in a case of acute lymphocytic leukemia joins the interleukin-3 gene to the immunoglobulin heavy chain gene. Blood, 1989, 73, 2081-2085.	0.6	144
621	IgH enhancer-mediated deregulation of N-myc gene expression in transgenic mice: generation of lymphoid neoplasias that lack c-myc expression EMBO Journal, 1989, 8, 1121-1128.	3.5	86
622	A novel, inducible and T cell-specific enhancer located at the 3′ end of the T cell receptor alpha locus EMBO Journal, 1989, 8, 729-733.	3.5	165
623	The immunoglobulin kappa locus contains a second, stronger B-cell-specific enhancer which is located downstream of the constant region EMBO Journal, 1989, 8, 1959-1964.	3.5	201
624	Genetic basis of the antibody repertoire in Xenopus: analysis of the Vh diversity EMBO Journal, 1989, 8, 2989-3001.	3.5	53
625	Octamer transcription factors bind to two different sequence motifs of the immunoglobulin heavy chain promoter EMBO Journal, 1989, 8, 2001-2008.	3.5	127
626	Transgenic expression of the muscle-specific intermediate filament protein desmin in nonmuscle cells Journal of Cell Biology, 1989, 108, 1009-1024.	2.3	40
627	Identification of an octamer-binding site in the mouse kappa light-chain immunoglobulin enhancer Molecular and Cellular Biology, 1989, 9, 4239-4247.	1.1	39
628	A thyroid-specific nuclear protein essential for tissue-specific expression of the thyroglobulin promoter EMBO Journal, 1989, 8, 2537-2542.	3.5	338
629	An enhancer located in a CpG-island 3′ to the TCR/CD3-epsilon gene confers T lymphocyte-specificity to its promoter EMBO Journal, 1989, 8, 2527-2535.	3.5	58
630	T cell tolerance to Mlsa encoded antigens in T cell receptor V beta 8.1 chain transgenic mice EMBO Journal, 1989, 8, 719-727.	3.5	169
631	The octamer-binding proteins form multi-proteinDNA complexes with the HSV alpha TIF regulatory protein EMBO Journal, 1989, 8, 4229-4238.	3.5	213
632	Genetically Engineered Antibody Molecules. Advances in Immunology, 1989, 44, 65-92.	1.1	73
633	The Oct-2 protein binds cooperatively to adjacent octamer sites Genes and Development, 1989, 3, 1625-1638.	2.7	146

#	Article	IF	CITATIONS
634	Structure of a mouse erythroid 5-aminolevulinate synthase gene and mapping of erythroid-specific DNAse I hypersensitive sites. Nucleic Acids Research, 1989, 17, 7013-7028.	6.5	53
635	Lineage-specific expression of a T cell receptor variable gene promoter controlled by upstream sequences Journal of Experimental Medicine, 1989, 169, 1213-1231.	4.2	23
636	Thymidylate synthase gene expression is stimulated by some (but not all) introns. Nucleic Acids Research, 1989, 17, 645-658.	6.5	46
637	Evidence for a complex regulatory array in the first intron of the human adenosine deaminase gene Genes and Development, 1989, 3, 1384-1400.	2.7	124
638	A cis-Acting Sequence within the Rat Ribosomal DNA Enhancer Region Can Modulate RNA Polymerase II-Directed Transcription of the Metallothionein I Gene In Vitro. DNA and Cell Biology, 1989, 8, 311-320.	5.1	10
639	Thyroid Hormone Receptors and Action: The 5′-Flanking Region of the Rat Growth Hormone Gene can Mediate Regulated Gene Expression. Endocrine Research, 1989, 15, 495-545.	0.6	2
640	A developmental-specific factor binds to suppressor sites flanking the immunoglobulin heavy-chain enhancer Genes and Development, 1989, 3, 1255-1266.	2.7	113
641	Multiple regulatory elements of the murine γ2-crystallin promoter. Nucleic Acids Research, 1989, 17, 3563-3582.	6.5	69
642	An enhancer associated with the mouse immunoglobin λf gene is specific for λ light chain producing cells. Nucleic Acids Research, 1989, 17, 5307-5322.	6.5	13
643	Differential requirements for cell-specific elastase I enhancer domains in transfected cells and transgenic mice Genes and Development, 1989, 3, 687-696.	2.7	71
644	Long-range activation of transcription by SV40 enhancer is affected by ?inhibitory? or ?permissive? DNA sequences between enhancer and promoter. Somatic Cell and Molecular Genetics, 1989, 15, 591-603.	0.7	13
645	Selective suppression of endogenous β-globin gene expression by transferred β-globin/TK chimeric gene in murine erythroleukemia cells. Cell Differentiation and Development, 1989, 27, 9-18.	0.4	0
646	Negative regulation of the hepatitis B virus pre-S1 promoter by internal DNA sequences. Virology, 1989, 170, 251-260.	1.1	22
647	Enhancer function in viral and cellular gene regulation. Biochimica Et Biophysica Acta: Reviews on Cancer, 1989, 989, 97-110.	3.3	14
648	A chromosomal basis of lymphoid malignancy in man. FEBS Journal, 1989, 185, 1-17.	0.2	40
649	Analysis ofAdh gene regulation inDrosophila: Studies using somatic transformation. Genesis, 1989, 10, 210-219.	3.1	22
650	Tissue- and developmental stage-specific expression of the rat ornithine carbamoyltransferase gene in transgenic mice. Genesis, 1989, 10, 393-401.	3.1	16
651	Interleukin-1 alpha gene intron containing variable repeat region coding for the SP1 transcription factor recognition sequence is polymorphic. Molecular Carcinogenesis, 1989, 2, 68-71.	1.3	14

#	Article	IF	CITATIONS
652	TCR VÎ ² genes in man and mouse and the factors that shape the linkage pattern of immune receptor genes. Trends in Immunology, 1989, 10, 14-17.	7.5	5
653	Human Monoclonal Antibody Technology-Are its Achievements, Challenges, and Potential Appreciated?. Scandinavian Journal of Immunology, 1989, 29, 257-264.	1.3	10
654	Expression of Human Anti-Tetanus Toxoid Antibody in Transfected Murine Myeloma Cells. Nature Biotechnology, 1989, 7, 799-804.	9.4	29
655	Recombinant Proteins of Therapeutic Interest Expressed by Lymphoid Cell Lines Derived from Transgenic Mice. Nature Biotechnology, 1989, 7, 1049-1054.	9.4	7
656	Eukaryotic Transcriptional Regulatory Proteins. Annual Review of Biochemistry, 1989, 58, 799-839.	5.0	1,352
657	The keratin BIIIB gene family: Isolation of cDNA clones and structure of a gene and a related pseudogene. Genomics, 1989, 4, 182-191.	1.3	40
658	Antigen/MHC-specific T cells are preferentially exported from the thymus in the presence of their MHC ligand. Cell, 1989, 58, 1035-1046.	13.5	378
659	Transcriptional activation by the Antennapedia and fushi tarazu proteins in cultured Drosophila cells. Cell, 1989, 57, 1017-1030.	13.5	149
660	Cloning and nucleotide sequence analysis of genes coding for the major chlorophyll-binding protein of the moss Physcomitrella patens and the halotolerant alga Dunaliella salina. Gene, 1989, 76, 299-312.	1.0	54
661	Analysis of distal flanking regions of maize 19-kDa zein genes. Gene, 1989, 80, 249-258.	1.0	18
662	Glucocorticoid regulation of the rat cytochrome P450c (P450IA1) gene: Receptor binding within intron I. Archives of Biochemistry and Biophysics, 1989, 269, 93-105.	1.4	74
663	Convenient plasmid vectors for construction of chimeric mouse/human antibodies. FEBS Letters, 1989, 244, 301-306.	1.3	9
664	The activity of the mouse renin promoter in cells that do not normally produce renin is dependent upon the presence of a functional enhancer. FEBS Letters, 1989, 255, 241-247.	1.3	16
665	Nucleotide sequence of Suncus murinus immunoglobulin μ gene and comparison with mouse and human μ genes. FEBS Letters, 1989, 247, 317-322.	1.3	17
666	Hypothesis: The removal of VH gene downstream sequences is required for its expression in mature B cells. Molecular Immunology, 1989, 26, 721-725.	1.0	0
667	Evolutionary conservation of splice sites in sterile Cμ transcripts and of immunoglobulin heavy chain (IgH) enhancer region sequences. Molecular Immunology, 1989, 26, 1007-1010.	1.0	12
668	Mechanism and Developmental Program of Immunoglobulin Gene Rearrangement in Mammals. Annual Review of Genetics, 1989, 23, 605-636.	3.2	153
669	Proteins binding to site C2 (muE3) in the immunoglobulin heavy-chain enhancer exist in multiple oligomeric forms Molecular and Cellular Biology, 1989, 9, 776-786.	1.1	46

#	Article	IF	CITATIONS
670	Transcription from a murine T-cell receptor V beta promoter depends on a conserved decamer motif similar to the cyclic AMP response element Molecular and Cellular Biology, 1989, 9, 4835-4845.	1.1	47
671	The Xenopus laevis U2 gene distal sequence element (enhancer) is composed of four subdomains that can act independently and are partly functionally redundant Molecular and Cellular Biology, 1989, 9, 1682-1690.	1.1	24
672	Promoter upstream elements of the chicken cardiac myosin light-chain 2-A gene interact with trans-acting regulatory factors for muscle-specific transcription Molecular and Cellular Biology, 1989, 9, 2513-2525.	1.1	92
673	Negative transcriptional regulatory element that functions in embryonal carcinoma cells Molecular and Cellular Biology, 1989, 9, 4032-4037.	1.1	11
674	A region in the coding sequence is required for high-level expression of murine histone H3 gene Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 4450-4454.	3.3	24
675	Inherited immunodeficiency with a defect in a major histocompatibility complex class II promoter-binding protein differs in the chromatin structure of the HLA-DRA gene Molecular and Cellular Biology, 1989, 9, 296-302.	1.1	46
676	Tissue-specific transcription of the mouse alpha-fetoprotein gene promoter is dependent on HNF-1 Molecular and Cellular Biology, 1989, 9, 4204-4212.	1.1	140
677	Identification of a yeast protein with properties similar to those of the immunoglobulin heavy-chain enhancer-binding protein NF-muE3 Molecular and Cellular Biology, 1989, 9, 4535-4540.	1.1	10
678	Developmental appearance of transcription factors that regulate liver-specific expression of the aldolase B gene Molecular and Cellular Biology, 1989, 9, 4923-4931.	1.1	65
679	Tissue-specific genetic variation in the level of mouse alcohol dehydrogenase is controlled transcriptionally in kidney and posttranscriptionally in liver Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 5903-5907.	3.3	21
680	Thymidine kinase obliteration: creation of transgenic mice with controlled immune deficiency Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 2698-2702.	3.3	174
681	Multiple enhancer-like sequences in the HLA-B7 gene Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 5247-5251.	3.3	36
682	Intron and upstream sequences regulate expression of the Drosophila beta 3-tubulin gene in the visceral and somatic musculature, respectively Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 3215-3218.	3.3	64
683	B-lymphoma cells process and present their endogenous immunoglobulin to major histocompatibility complex-restricted T cells Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 282-286.	3.3	216
684	The bcl-2 candidate proto-oncogene product is a 24-kilodalton integral-membrane protein highly expressed in lymphoid cell lines and lymphomas carrying the t(14;18) translocation Molecular and Cellular Biology, 1989, 9, 701-710.	1.1	335
685	[32] Production and properties of chimeric antibody molecules. Methods in Enzymology, 1989, 178, 459-476.	0.4	84
686	[35] Recombinant antibodies possessing novel effector functions. Methods in Enzymology, 1989, 178, 515-527.	0.4	12
689	Topography of Oxytocin and Vasopressin Neurons in the Forebrain of <i>Equus caballus:</i> Further Support of Proposed Evolutionary Relationships for Proopiomelanocortin, Oxytocin and Vasopressin Neurons. Brain, Behavior and Evolution, 1989, 33, 193-204.	0.9	13

#	Article	IF	CITATIONS
690	Functional analysis and nucleotide sequence of the promoter region of the murine hck gene Molecular and Cellular Biology, 1990, 10, 4603-4611.	1.1	20
691	Complex regulation of the immunoglobulin mu heavy-chain gene enhancer: microB, a new determinant of enhancer function Molecular and Cellular Biology, 1990, 10, 3145-3154.	1.1	72
692	The immunoglobulin heavy-chain enhancer functions as the promoter for I mu sterile transcription Molecular and Cellular Biology, 1990, 10, 2619-2624.	1.1	68
693	Regulation of the human T-cell receptor alpha gene enhancer: multiple ubiquitous and T-cell-specific nuclear proteins interact with four hypomethylated enhancer elements Molecular and Cellular Biology, 1990, 10, 4720-4727.	1.1	55
694	Immunoglobulin heavy-chain enhancer is required to maintain transfected gamma 2A gene expression in a pre-B-cell line Molecular and Cellular Biology, 1990, 10, 1076-1083.	1.1	13
695	Regulation of chimeric phosphoenolpyruvate carboxykinase genes by the trans-dominant locus TSE1 Molecular and Cellular Biology, 1990, 10, 2660-2668.	1.1	11
696	Interaction of a nuclear protein with a palindromic sequence of the mouse immunoglobulin lambda 2-chain gene promoter is important for its transcription Molecular and Cellular Biology, 1990, 10, 5894-5902.	1.1	2
697	Identification of a novel factor that interacts with an immunoglobulin heavy-chain promoter and stimulates transcription in conjunction with the lymphoid cell-specific factor OTF2 Molecular and Cellular Biology, 1990, 10, 2145-2153.	1.1	22
698	A T cell-specific transcriptional enhancer within the human T cell receptor delta locus. Science, 1990, 247, 1225-1229.	6.0	137
699	Structural Analyses of Human Developmentally Regulated Vh3 Genes. Scandinavian Journal of Immunology, 1990, 31, 257-267.	1.3	48
700	The Early Expression of Some Human Autoantibody-Associated Heavy Chain Variable Region Genes is Controlled by Specific Regulatory Elements. Scandinavian Journal of Immunology, 1990, 31, 673-678.	1.3	23
701	A second B cell-specific enhancer 3' of the immunoglobulin heavy-chain locus. Nature, 1990, 344, 165-168.	13.7	214
702	A factor known to bind to the endogenous Ig heavy chain enhancer only in lymphocytes is a ubiquitously active transcription factor. FEBS Journal, 1990, 187, 507-513.	0.2	4
703	Retrovirus vector-targeted inducible expression of human β-interferon gene to B-cells. Virology, 1990, 178, 419-428.	1.1	14
704	The intron of the yeast actin gene contains the promoter for an antisense RNA. Current Genetics, 1990, 17, 269-273.	0.8	18
705	Octamer transcription factors and the cell typeâ€specificity of immunoglobulin gene expression. FASEB Journal, 1990, 4, 1444-1449.	0.2	108
706	Distinct positive and negative elements control the limited hepatocyte and choroid plexus expression of transthyretin in transgenic mice EMBO Journal, 1990, 9, 869-878.	3.5	138
707	An E mu-v-abl transgene elicits plasmacytomas in concert with an activated myc gene EMBO Journal, 1990, 9, 897-905.	3.5	78

#	Article	IF	CITATIONS
708	Separate elements control DJ and VDJ rearrangement in a transgenic recombination substrate EMBO Journal, 1990, 9, 117-125.	3.5	210
709	Distribution of mutations around rearranged heavy-chain antibody variable-region genes Molecular and Cellular Biology, 1990, 10, 5187-5196.	1.1	123
710	Genetic Analysis of Mammalian Cell Differentiation. Annual Review of Cell Biology, 1990, 6, 69-94.	26.0	75
711	[40] Assembly of enhancers, promoters, and splice signals to control expression of transferred genes. Methods in Enzymology, 1990, 185, 512-527.	0.4	15
712	A highly conserved intronic sequence is involved in transcriptional regulation of the alpha 1(I) collagen gene Molecular Biology of the Cell, 1990, 1, 487-498.	6.5	64
713	TFE3: a helix-loop-helix protein that activates transcription through the immunoglobulin enhancer muE3 motif Genes and Development, 1990, 4, 167-179.	2.7	472
714	cis-acting sequences required for class II gene regulation by interferon gamma and tumor necrosis factor alpha in a murine macrophage cell line Journal of Experimental Medicine, 1990, 171, 1283-1299.	4.2	38
715	Regulation of transcription of the human T cell antigen receptor delta chain gene. A T lineage-specific enhancer element is located in the J delta 3-C delta intron Journal of Experimental Medicine, 1990, 171, 75-83.	4.2	53
716	Structural correlates of high antibody affinity: three engineered amino acid substitutions can increase the affinity of an anti-p-azophenylarsonate antibody 200-fold Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 4814-4817.	3.3	97
717	A novel enhancer in the immunoglobulin lambda locus is duplicated and functionally independent of NF kappa B Genes and Development, 1990, 4, 978-992.	2.7	102
718	Functional analysis of elements affecting expression of the beta-actin gene of carp Molecular and Cellular Biology, 1990, 10, 3432-3440.	1.1	81
719	The Pathogenesis of Burkitt's Lymphoma. Advances in Cancer Research, 1990, 55, 133-270.	1.9	399
720	Structural and functional comparisons of the Drosophila virilis and Drosophila melanogaster rough genes Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 5916-5920.	3.3	41
721	From Human Autoantibodies to the Fetal Antibody Repertoire to B Cell Malignancy: It's a Small World After All. International Reviews of Immunology, 1990, 5, 239-251.	1.5	35
722	Identification of tissue specific nuclear proteins: DNA sequence and protein binding regions in the T cell receptor beta J-C intron. Nucleic Acids Research, 1990, 18, 3027-3027.	6.5	8
723	Intervening sequences increase efficiency of RNA 3' processing and accumulation of cytoplasmic RNA. Nucleic Acids Research, 1990, 18, 937-947.	6.5	317
724	Position Effects on Eukaryotic Gene Expression. Annual Review of Cell Biology, 1990, 6, 679-714.	26.0	373
725	Torsional stress stabilizes extended base unpairing in suppressor sites flanking immunoglobulin heavy chain enhancer. Biochemistry, 1990, 29, 9551-9560.	1.2	137

#	Article	IF	CITATIONS
726	The importance of the 3′-enhancer region in immunoglobulinxgene expression. Nucleic Acids Research, 1990, 18, 5609-5615.	6.5	102
727	Nucleolin gene organization in rodents: highly conserved sequenced within three of the 13 introns. Gene, 1990, 88, 187-196.	1.0	42
728	A cell type-preferred silencer element that controls the neural-specific expression of the SCG10 gene. Neuron, 1990, 4, 583-594.	3.8	193
729	Regulation of the immunoglobulin gene transcription. Biochimie, 1990, 72, 7-17.	1.3	21
730	Extinction of an immunoglobulin l [°] promoter in cell hybrids is mediated by the octamer motif and correlates with suppression of Oct-2 expression. Cell, 1990, 61, 467-474.	13.5	73
731	Molecular Biology, Gene Expression, and Medicine. , 1990, , 3-51.		1
732	Structure and chromosome localization of the human eosinophil-derived neurotoxin and eosinophil cationic protein genes: Evidence for intronless coding sequences in the ribonuclease gene superfamily. Genomics, 1990, 7, 535-546.	1.3	104
733	[39] Vectors used for expression in mammalian cells. Methods in Enzymology, 1990, 185, 487-511.	0.4	175
734	Two distinct transcription factors that bind the immunoglobulin enhancer microE5/kappa 2 motif. Science, 1990, 247, 467-470.	6.0	488
735	Tissue and cell specific expression of a renin promoter-reporter gene construct in transgenic mice. Biochemical and Biophysical Research Communications, 1990, 170, 344-350.	1.0	69
736	Expression of genes containing the IgH enhancer in non-lymphoid cells. Molecular Immunology, 1990, 27, 713-722.	1.0	0
737	Analysis of the expression of murine λ genes transfected into immunocompetent cell lines. Molecular Immunology, 1990, 27, 115-127.	1.0	5
738	Heavy and light chain contributions to antigen binding in an anti-digoxin chain recombinant antibody produced by transfection of cloned anti-digoxin antibody genes. Molecular Immunology, 1990, 27, 901-909.	1.0	20
739	Expression of the rat aldolase B gene: A liver-specific proximal promoter and an intronic activator. Biochemical and Biophysical Research Communications, 1991, 176, 722-729.	1.0	19
740	Immunoglobulin heavy-chain joining genes in the rat: comparison with mouse and human. Gene, 1991, 102, 261-264.	1.0	12
741	The strength and periodicity of D. melanogaster circadian rhythms are differentially affected by alterations in period gene expression. Neuron, 1991, 6, 753-766.	3.8	56
742	Evaluation of Lymphoid-Specific Enhancer Addition or Substitution in a Basic Retrovirus Vector. Human Gene Therapy, 1991, 2, 307-315.	1.4	22
743	Human Immunoglobulin Heavy-Chain Variable Region Genes: Organization, Polymorphism, and Expression. Advances in Immunology, 1991, 49, 1-74.	1.1	215

#	Article	IF	CITATIONS
744	High level expression of human proteins in murine hybridoma cells: induction by methotrexate in the absence of gene amplification. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1991, 1088, 217-224.	2.4	23
745	Efficient gene transfer and expression in primary B lymphocytes. Journal of Immunological Methods, 1991, 141, 53-62.	0.6	12
746	Production of genetically engineered antibodies in myeloma cells: Design, expression, and applications. Methods, 1991, 2, 125-135.	1.9	5
747	Chimeric mouse-human anti-carcinoma antibodies that mediate different anti-tumor cell biological activities. Human Antibodies, 1991, 2, 84-93.	0.6	11
748	Sequence variations in the 5' flanking and IVS-II regions of the G gamma- and A gamma-globin genes of beta S chromosomes with five different haplotypes. Blood, 1991, 77, 2488-2496.	0.6	100
749	Characterization of the hormone responsive element involved in the regulation of the progesterone receptor gene EMBO Journal, 1991, 10, 1875-1883.	3.5	206
750	Regulation and a possible stage-specific function of Oct-2 during pre-B-cell differentiation Molecular and Cellular Biology, 1991, 11, 4885-4894.	1.1	48
751	A common transcriptional activator is located in the coding region of two replication-dependent mouse histone genes Molecular and Cellular Biology, 1991, 11, 2929-2936.	1.1	31
752	Novel protein-DNA interactions associated with increased immunoglobulin transcription in response to antigen plus interleukin-5 Molecular and Cellular Biology, 1991, 11, 5197-5205.	1.1	47
753	Coordination of immunoglobulin DJH transcription and D-to-JH rearrangement by promoter-enhancer approximation Molecular and Cellular Biology, 1991, 11, 2096-2107.	1.1	75
754	The 5'-flanking region of the mouse thymidylate synthase gene is necessary but not sufficient for normal regulation in growth-stimulated cells Molecular and Cellular Biology, 1991, 11, 1023-1029.	1.1	37
755	Dominant male sterility in mice caused by insertion of a transgene Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 10327-10331.	3.3	28
756	Positive and negative regulation of immunoglobulin gene expression by a novel B-cell-specific enhancer element Molecular and Cellular Biology, 1991, 11, 75-83.	1.1	16
757	Identification of an enhancer required for the expression of a mouse major urinary protein gene in the submaxillary gland Molecular and Cellular Biology, 1991, 11, 4244-4252.	1.1	15
758	Proto-splice site model of intron origin. Journal of Theoretical Biology, 1991, 151, 405-416.	0.8	43
759	A differentiation stage-specific factor interacts with mouse carbonic anhydrase form I gene and a conserved sequence in mammalian l²-globin genes. Differentiation, 1991, 47, 135-141.	1.0	3
760	Allelic exclusion of membrane but not secreted immunoglobulin in a mature B cell line. European Journal of Immunology, 1991, 21, 55-62.	1.6	6
761	A transcriptional enhancer of the mouse T cell receptor δgene locus. European Journal of Immunology, 1991, 21, 807-810.	1.6	31

#	Article	IF	CITATIONS
762	c-myc Gene in a murine plasmocytoma without visible chromosomal translocations moves to chromosome 12f1 with pvt-1 and rearranges with IgH enhancer-Sμ sequences. International Journal of Cancer, 1991, 49, 102-108.	2.3	12
763	Expression of immunoglobulin genes in common variable immunodeficiency. Journal of Clinical Immunology, 1991, 11, 262-267.	2.0	7
764	Identification of transcriptional regulatory activity within the 5′ A-type monomer sequence of the mouse LINE-1 retroposon. Mammalian Genome, 1991, 2, 41-50.	1.0	58
765	A new cAMP response element in the transcribed region of the human c-fos gene. Nucleic Acids Research, 1991, 19, 4153-4159.	6.5	38
766	The pllaswoacfloma J558b lacks constitutivdy active NF-×B and is deficient in early response gene activation. Nucleic Acids Research, 1991, 19, 7235-7241.	6.5	5
767	Polymerase chain reaction facilitates the cloning, CDRgrafting, and rapid expression of a murine monoclonal antibody directed against the CD18 component of leukocyte integrins. Nucleic Acids Research, 1991, 19, 2471-2476.	6.5	66
768	Modulation of the IgH enhancer's cell type specificity through a genetic switch Genes and Development, 1991, 5, 29-37.	2.7	103
769	Cisandtrans-actingelements involved in the activation ofArabidopsis thalianaAl gene encoding the translation elongation factor EF-lî±. Nucleic Acids Research, 1991, 19, 1305-1310.	6.5	72
770	An intron binding protein is required for transformation ability of p53. Nucleic Acids Research, 1991, 19, 4747-4752.	6.5	41
771	DNA looping and Sp1 multimer links: a mechanism for transcriptional synergism and enhancement Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 5670-5674.	3.3	240
772	Comparative Analysis of Sequences at the 5′ End of the Human and Mouse Apolipoprotein B Genes. DNA and Cell Biology, 1991, 10, 329-338.	0.9	17
773	Complex pattern of immunoglobulin mu gene expression in normal and transgenic mice: nonoverlapping regulatory sequences govern distinct tissue specificities Genes and Development, 1991, 5, 932-943.	2.7	95
774	LEF-1, a gene encoding a lymphoid-specific protein with an HMG domain, regulates T-cell receptor alpha enhancer function [corrected]. Genes and Development, 1991, 5, 880-894.	2.7	588
775	Presence of regulatory sequences within intron 2 of the mouse thymidine kinase gene. Nucleic Acids Research, 1991, 19, 6805-6809.	6.5	19
776	An enhancer at the 3′ end of the mouse immunoglobulin heavy chain locus. Nucleic Acids Research, 1991, 19, 933-937.	6.5	113
777	mRNA transcripts initiating within the human immunoglobulin mu heavy chain enhancer region contain a non-translatable exon and are extremely heterogeneous at the $5\hat{a}\in^2$ end. Nucleic Acids Research, 1991, 19, 2427-2433.	6.5	30
778	Aglycosylated Chimeric Mouse/Human IgG1 Antibody Retains Some Effector Function. Hybridoma, 1991, 10, 211-217.	0.9	46
779	Functional modularity in the SP6xpromoter. Nucleic Acids Research, 1991, 19, 4347-4354.	6.5	20

#	Article	IF	Citations
780	Structure, expression, and regulation of the murine renin genes Hypertension, 1991, 18, 446-457.	1.3	115
781	Sequencing of selected regions of the human immunoglobulin heavy-chain gene locus that completes the sequence from Jh through the delta constant region. DNA Sequence, 1991, 1, 347-355.	0.7	11
782	Detection of somatic DNA recombination in the transgenic mouse brain. Science, 1991, 254, 81-86.	6.0	118
783	CHROMATIN AND NUCLEAR MATRIX IN DEVELOPMENT AND IN CARCINOGENESIS - A THEORY. International Journal of Oncology, 1992, 1, 357-72.	1.4	1
784	Identification of USF as the ubiquitous murine factor that binds to and stimulates transcription from the immunoglobulin λ2 chain promoter. Nucleic Acids Research, 1992, 20, 287-293.	6.5	25
785	Transcriptional enhancer related DNA sequences: anomalous1H NMR NOE crosspeaks. Nucleic Acids Research, 1992, 20, 525-532.	6.5	21
786	Functional analysis of defined mutations in the immunoglobulin heavy-chain enhancer in transgenic mice. Nucleic Acids Research, 1992, 20, 1503-1509.	6.5	24
787	Intron requirement for expression of the human purine nucleoside phosphorylase gene. Nucleic Acids Research, 1992, 20, 3191-3198.	6.5	76
788	Myelin basic protein gene contains separate enhancers for oligodendrocyte and Schwann cell expression Journal of Cell Biology, 1992, 119, 605-616.	2.3	145
789	Cloning and Reexpression of a Functional Human IgM Anti-Lipid A Antibody. Hybridoma, 1992, 11, 667-675.	0.9	9
790	An embryonically expressed gene is a target for c-Myc regulation via the c-Myc-binding sequence Genes and Development, 1992, 6, 2513-2523.	2.7	139
791	Regulation of Immunoglobulin Gene Transcription. International Review of Cytology, 1992, 133, 121-149.	6.2	42
792	A promoter element that exerts positive and negative control of the interleukin 2-responsive J-chain gene Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 5966-5970.	3.3	32
793	Purification of core-binding factor, a protein that binds the conserved core site in murine leukemia virus enhancers Molecular and Cellular Biology, 1992, 12, 89-102.	1.1	219
794	Variable breakpoints in Burkitt lymphoma cells with chromosomal t(8; 14) translocation separate c-myc and the IgH locus up to several hundred kb. Human Molecular Genetics, 1992, 1, 625-632.	1.4	100
795	Organization of immunoglobulin heavy chain constant and joining region genes in the channel catfish. Molecular Immunology, 1992, 29, 151-159.	1.0	38
796	Intragenic regulatory elements contribute to transcriptional control of the neurofilament light gene. Gene, 1992, 116, 205-214.	1.0	49
797	The use of a wild-type dihydrofolate reductase-encoding cDNA as a dominant selectable marker and induction of expression by methotrexate. Gene, 1992, 121, 365-369.	1.0	5

#	Article	IF	CITATIONS
798	A tissue-specific MAR/SAR DNA-binding protein with unusual binding site recognition. Cell, 1992, 70, 631-645.	13.5	497
799	Regulation of α-amylase-encoding gene expression in germinating seeds and cultured cells of rice. Gene, 1992, 122, 247-253.	1.0	46
800	The octamer motif in immunoglobulin genes: Extraction of structural constraints from two-dimensional NMR studies. Biochemistry, 1992, 31, 7477-7487.	1.2	44
801	Expression of Diphtheria Toxin A-Chain in Mature B-Cells: A Potential Approach to Therapy of B-Lymphoid Malignancy. Leukemia and Lymphoma, 1992, 7, 457-462.	0.6	22
802	The -6.1-kilobase chicken lysozyme enhancer is a multifactorial complex containing several cell-type-specific elements Molecular and Cellular Biology, 1992, 12, 2339-2350.	1.1	41
803	Quantitation of immunoglobulin mu-gamma 1 heavy chain switch region recombination by a digestion-circularization polymerase chain reaction method Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 6978-6982.	3.3	80
804	Expression of heat shock-regulated human growth hormone genes containing or lacking introns by NIH-3T3 and wish cell lines. Cell Biology and Toxicology, 1992, 8, 139-56.	2.4	3
805	Downstream activating sequence within the coding region of a yeast gene: specific binding in vitro of RAP1 protein. Molecular Genetics and Genomics, 1992, 236, 65-75.	2.4	25
806	Activation of immunoglobulin control elements in trasgenic mice. Immunogenetics, 1992, 35, 24-32.	1.2	9
807	Regulatory sequences clustered at the 5? end of the first intron of the human thymidylate synthase gene function in cooperation with the promoter region. Somatic Cell and Molecular Genetics, 1992, 18, 409-415.	0.7	18
808	Historical perspective of molecular biology and the role of the cardiologist. Current Problems in Cardiology, 1992, 17, 9-72.	1.1	1
809	High-level expression of a human immunoglobulin γ1 transgene depends on switch region sequences. European Journal of Immunology, 1992, 22, 1185-1191.	1.6	21
810	Characterization of nuclear protein binding to the interferon-γ promoter in quiescent and activated human T cells. European Journal of Immunology, 1992, 22, 2419-2428.	1.6	28
811	Genetic polymorphism of human interleukin-1α. European Journal of Immunology, 1993, 23, 1240-1245.	1.6	64
812	Preferential clustering of chromosomal breakpoints in Burkitt's lymphomas and L3 type acute lymphoblastic leukemias with a t(8;14) translocation. Genes Chromosomes and Cancer, 1993, 8, 1-7.	1.5	37
813	Somatic Generation of Immune Diversity. Scandinavian Journal of Immunology, 1993, 38, 305-319.	1.3	14
814	Chicken Tyrosine Hydroxylase Gene: Isolation and Functional Characterization of the 5′ Flanking Region. Journal of Neurochemistry, 1993, 61, 2215-2224.	2.1	11
815	POU domain transcription factors. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1993, 1173, 1-21.	2.4	228

#	Article	IF	CITATIONS
816	Comparison of nucleotide sequences from upstream of the DQ52 gene to the Sμ region of immunoglobulin heavy-chain gene loci between Suncus murinus, mouse and human. Molecular Immunology, 1993, 30, 461-467.	1.0	4
817	Cloning, expression and characterization of a murine-human chimeric antibody with specificity for pre-S2 surface antigen of hepatitis B virus. Molecular Immunology, 1993, 30, 1647-1654.	1.0	17
818	Transgenic mice and transhybridomas producing chimeric mouse/human anti-human interleukin-2 receptor recombinant antibodies. Gene, 1993, 137, 101-107.	1.0	0
819	Partial cloning of the rat choline acetyltransferase gene and in situ localization of its transcripts in the cell body of cholinergic neurons in the brain stem and spinal cord. Molecular Brain Research, 1993, 17, 101-111.	2.5	13
820	Organisation of the ovine immunoglobulin Cϵ gene locus: evidence for a deletion 5′ of the gene. Veterinary Immunology and Immunopathology, 1993, 39, 381-393.	0.5	5
821	Vectors for the expression of PCR-amplified immunoglobulin variable domains with human constant regions. Nucleic Acids Research, 1993, 21, 2921-2929.	6.5	17
822	Elongation factor SII-dependent transcription by RNA polymerase II through a sequence-specific DNA-binding protein Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 1917-1921.	3.3	104
823	Stimulation of gene expression by introns: conversion of an inhibitory intron to a stimulatory intron by alteration of the splice donor sequence. Nucleic Acids Research, 1993, 21, 5901-5908.	6.5	37
824	Presentation of a viral T cell epitope expressed in the CDR3 region of a self immunoglobulin molecule. Science, 1993, 259, 224-227.	6.0	124
825	Engineered Immunoglobulin Molecules as Vehicles for T Cell Epitopes. International Reviews of Immunology, 1993, 10, 265-278.	1.5	19
826	Analysis of the <i>Drosophila</i> Gene for the Laminin B1 Chain. DNA and Cell Biology, 1993, 12, 573-587.	0.9	6
827	The immunoglobulin mu enhancer core establishes local factor access in nuclear chromatin independent of transcriptional stimulation Genes and Development, 1993, 7, 2016-2032.	2.7	106
828	An evaluation of the potential to use tumor-associated antigens as targets for antitumor T cell therapy using transgenic mice expressing a retroviral tumor antigen in normal lymphoid tissues Journal of Experimental Medicine, 1993, 177, 1681-1690.	4.2	64
829	A myelin proteolipid protein-LacZ fusion protein is developmentally regulated and targeted to the myelin membrane in transgenic mice Journal of Cell Biology, 1993, 123, 443-454.	2.3	115
830	The Concept of the Gene: Short History and Present Status. Quarterly Review of Biology, 1993, 68, 173-223.	0.0	166
831	The Design of Intron for Gene Expression in Saccharomyces cerevisiae Nippon Nogeikagaku Kaishi, 1993, 67, 853-856.	0.0	0
832	Pi, a pre-B-cell-specific enhancer element in the immunoglobulin heavy-chain enhancer Molecular and Cellular Biology, 1993, 13, 5957-5969.	1.1	33
833	E2A expression, nuclear localization, and in vivo formation of DNA- and non-DNA-binding species during B-cell development Molecular and Cellular Biology, 1993, 13, 7321-7333.	1.1	70

#	Article	IF	CITATIONS
834	PU.1 is a component of a multiprotein complex which binds an essential site in the murine immunoglobulin lambda 2-4 enhancer Molecular and Cellular Biology, 1993, 13, 6452-6461.	1.1	184
835	The immunoglobulin heavy chain locus contains another B-cell-specific 3' enhancer close to the alpha constant region Molecular and Cellular Biology, 1993, 13, 1547-1553.	1.1	85
836	Interspersion of an unusual GCN4 activation site with a complex transcriptional repression site in Ty2 elements of Saccharomyces cerevisiae Molecular and Cellular Biology, 1993, 13, 2091-2103.	1.1	18
837	Combinatorial regulation by promoter and intron 1 regions of the metallothionein SpMTA gene in the sea urchin embryo Molecular and Cellular Biology, 1993, 13, 993-1001.	1.1	24
838	Introns are essential for growth-regulated expression of the mouse thymidylate synthase gene Molecular and Cellular Biology, 1993, 13, 1565-1571.	1.1	39
839	NF-HB (BSAP) is a repressor of the murine immunoglobulin heavy-chain 3' alpha enhancer at early stages of B-cell differentiation Molecular and Cellular Biology, 1993, 13, 3611-3622.	1.1	137
840	Elements in the immunoglobulin heavy-chain enhancer directly regulate simian virus 40 ori-dependent DNA replication Molecular and Cellular Biology, 1993, 13, 5629-5636.	1.1	10
841	Mutations of the intronic IgH enhancer and its flanking sequences differentially affect accessibility of the JH locus EMBO Journal, 1993, 12, 4635-4645.	3.5	170
842	V(D)J recombination in B cells is impaired but not blocked by targeted deletion of the immunoglobulin heavy chain intron enhancer EMBO Journal, 1993, 12, 2321-2327.	3.5	196
843	Goals for signal transduction pathways: linking up with transcriptional regulation EMBO Journal, 1994, 13, 4717-4728.	3.5	54
844	Sequences affecting the V(D)J recombinational activity of the IgH intronic enhancer in a transgenic substrate. Nucleic Acids Research, 1994, 22, 792-798.	6.5	20
845	Different Potential of Cellular and Viral Activators of Transcription Revealed in Oocytes and Early Embryos of <i>Xenopus laevis</i> . Biological Chemistry Hoppe-Seyler, 1994, 375, 105-112.	1.4	15
846	Translational enhancement of H-ferritin mRNA by interleukin-1β acts through 5′ leader sequences distinct from the iron responsive element. Nucleic Acids Research, 1994, 22, 2678-2686.	6.5	53
847	A Human Gene Encoding a Putative Basic Helix–Loop–Helix Phosphoprotein Whose mRNA Increases Rapidly in Cycloheximide-Treated Blood Mononuclear Cells. DNA and Cell Biology, 1994, 13, 125-147.	0.9	125
848	Specific combinations of human serum albumin introns direct high level expression of albumin in transfected COS cells and in the milk of transgenic mice. Transgenic Research, 1994, 3, 365-375.	1.3	29
849	Lymphocyte expression in transgenic trout by mouse immunoglobulin promoter/enhancer. Immunogenetics, 1994, 40, 1-8.	1.2	15
850	Human HE2 (?B) and ?A motifs show the same function as whole IgH intronic enhancer in transgenic mice. Molecular and Cellular Biochemistry, 1994, 137, 33-37.	1.4	2
851	Spi-1/PU.1: an oncogene of the Ets family. Biochimica Et Biophysica Acta: Reviews on Cancer, 1994, 1198, 149-163.	3.3	49

#	Article	IF	CITATIONS
852	Mammalian Cell Expression of Single–Chain Fv (sFv) Antibody Proteins and Their C–terminal Fusions with Interleukin–2 and Other Effector Domains. Nature Biotechnology, 1994, 12, 890-897.	9.4	48
853	The genetic engineering of monoclonal antibodies. Journal of Immunological Methods, 1994, 168, 149-165.	0.6	62
854	Nuclear Pre-mRna Processing in Higher Plants. Progress in Molecular Biology and Translational Science, 1994, 47, 149-193.	1.9	75
855	Dependence of enhancer-mediated transcription of the immunoglobulin mu gene on nuclear matrix attachment regions. Science, 1994, 265, 1221-1225.	6.0	215
856	Evidence for a cell-specific negative regulatory element in the first intron of the gene for bovine elastin. Biochemical Journal, 1994, 300, 147-152.	1.7	14
859	Functional analysis of the V gamma 3 promoter of the murine gamma delta T-cell receptor Molecular and Cellular Biology, 1994, 14, 803-814.	1.1	13
860	Stably integrated mouse mammary tumor virus long terminal repeat DNA requires the octamer motifs for basal promoter activity Molecular and Cellular Biology, 1994, 14, 1191-1203.	1.1	35
861	Pan/E2A expression precedes immunoglobulin heavy-chain expression during B lymphopoiesis in nontransformed cells, and Pan/E2A proteins are not detected in myeloid cells Molecular and Cellular Biology, 1994, 14, 4087-4096.	1.1	22
862	Production of a Paraquat-Specific Murine Single Chain Fv Fragment1. Journal of Biochemistry, 1995, 118, 480-487.	0.9	14
863	A Potato Sus3 Sucrose Synthase Gene Contains a Context-Dependent 3' Element and a Leader Intron with Both Positive and Negative Tissue-Specific Effects. Plant Cell, 1995, 7, 1395.	3.1	1
864	B-cell-specific demethylation of BTK, the defective gene in X-linked agammaglobulinemia. Immunogenetics, 1995, 42, 129-35.	1.2	6
865	Bop: a new T-cell-restricted gene located upstream of and opposite to mouse CD8b. Immunogenetics, 1995, 42, 353-61.	1.2	19
866	Differential promoter activity in benign and malignant human cells of skin origin*. Experimental Dermatology, 1995, 4, 317-321.	1.4	1
867	Genetically engineered antibodies and their application to brain delivery. Advanced Drug Delivery Reviews, 1995, 15, 147-175.	6.6	8
868	Derivation and partial analysis of two highly active myeloma cell transfectants. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1995, 1260, 147-156.	2.4	0
869	Journey to the surface of the cell: Fos regulation and the SRE EMBO Journal, 1995, 14, 4905-4913.	3.5	349
870	Immunoglobulin gene transcription ceases upon deletion of a distant enhancer EMBO Journal, 1995, 14, 6229-6238.	3.5	68
871	Random activation of a transgene under the control of a hybrid hCD2 locus control region/Ig enhancer regulatory element EMBO Journal, 1995, 14, 575-584.	3.5	48

#	Article	IF	CITATIONS
872	A Sensitive <i>lacZ</i> -Based Expression Vector for Analyzing Transcriptional Control Elements in Eukaryotic Cells. DNA and Cell Biology, 1995, 14, 635-642.	0.9	22
873	Pip, a novel IRF family member, is a lymphoid-specific, PU.1-dependent transcriptional activator Genes and Development, 1995, 9, 1377-1387.	2.7	416
874	A potato Sus3 sucrose synthase gene contains a context-dependent 3' element and a leader intron with both positive and negative tissue-specific effects Plant Cell, 1995, 7, 1395-1403.	3.1	93
875	The immunoglobulin heavy-chain matrix-associating regions are bound by Bright: a B cell-specific trans-activator that describes a new DNA-binding protein family Genes and Development, 1995, 9, 3067-3082.	2.7	235
876	Combinatorial regulation of transcription II: the immunoglobulin μ heavy chain gene. Immunity, 1995, 2, 427-438.	6.6	114
877	The first intron of the mouse neurofilament light gene (NF-L) increase gene expression. Molecular Brain Research, 1995, 32, 241-251.	2.5	10
878	Upstream and intron regulatory regions for expression of the rat neuron-specific enolase gene. Molecular Brain Research, 1995, 28, 19-28.	2.5	23
879	Spatial regulation of SpMTA metallothionein gene expression in sea urchin embryos by a regulatory cassette in intron 1. Mechanisms of Development, 1995, 50, 131-137.	1.7	17
880	Identification and functional characterization of a highly conserved sequence in the intron of the kappa light chain gene. Molecular Immunology, 1996, 33, 973-988.	1.0	0
881	Gene-targeted deletion and replacement mutations of the T-cell receptor beta-chain enhancer: the role of enhancer elements in controlling V(D)J recombination accessibility Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 7871-7876.	3.3	155
882	Lessons learned, promises kept: a biologist's eye view of the Genome Project Genome Research, 1996, 6, 773-780.	2.4	15
883	Analysis of Gene Function in Lymphocytes by RAG-2-Deficient Blastocyst Complementation. Advances in Immunology, 1996, 62, 31-59.	1.1	13
884	Concerted repression of an immunoglobulin heavy-chain enhancer, 3' alpha E(hs1,2) Proceedings of the United States of America, 1996, 93, 4392-4397.	3.3	35
885	The DNA methylation machinery as a target for anticancer therapy. , 1996, 70, 1-37.		80
886	Enhancers of hypermutation. Immunogenetics, 1996, 45, 59-64.	1.2	32
887	Dual function of the intron of the rat insulin I gene in regulation of gene expression. Diabetologia, 1996, 39, 1165-1172.	2.9	12
888	Early Bâ€Cell Factor (EBF) Downâ€Regulates Immunoglobulin Heavy Chain Intron Enhancer Function in a Plasmacytoma Cell Line. Scandinavian Journal of Immunology, 1996, 44, 89-92.	1.3	9
890	ACCESSIBILITY CONTROL OF ANTIGEN-RECEPTOR VARIABLE-REGION GENE ASSEMBLY: Role ofcis-Acting Elements. Annual Review of Immunology, 1996, 14, 459-481.	9.5	287

#	Article	IF	CITATIONS
891	Chromatin Domains and Prediction of MAR Sequences. International Review of Cytology, 1996, 162A, 279-388.	6.2	186
892	Cellular and Molecular Analysis of Lymphoid Development Using RAG-Deficient Mice. International Reviews of Immunology, 1996, 13, 257-288.	1.5	20
893	Anti-laminin Reactivity and Glomerular Immune Deposition by in Vitro Recombinant Antibodies. Autoimmunity, 1997, 26, 231-243.	1.2	12
894	A Transgenic Marker for Mouse B Lymphoid Precursors. Journal of Experimental Medicine, 1997, 185, 653-662.	4.2	52
895	Somatic Transgene Immunization with DNA Encoding an Immunoglobulin Heavy Chain. DNA and Cell Biology, 1997, 16, 611-625.	0.9	35
896	Expression of the (Recombinant) Endogenous Immunoglobulin Heavy-Chain Locus Requires the Intronic Matrix Attachment Regions. Molecular and Cellular Biology, 1997, 17, 2658-2668.	1.1	37
897	Expression of recombinant human ceruloplasmin - an absolute requirement for splicing signals in the expression cassette. FEBS Letters, 1997, 407, 132-136.	1.3	21
898	Evaluation of novel control elements by construction of eukaryotic expression vectors. Gene, 1997, 188, 191-198.	1.0	6
899	In vivo role of B lymphocytes in somatic transgene immunization. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 6352-6357.	3.3	30
900	Suspensor-derived polyembryony caused by altered expression of valyl-tRNA synthetase in the twn2 mutant of Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 7349-7355.	3.3	105
901	Increased transcription of the Eμ-myc transgene and mRNA stabilisation produce only a modest elevation in Myc protein. Oncogene, 1997, 14, 2735-2739.	2.6	6
902	Immunity to Plasmodium falciparum malaria sporozoites by somatic transgene immunization. Nature Biotechnology, 1997, 15, 876-881.	9.4	34
904	Tissue specific and vitamin D responsive gene expression in bone. Molecular Biology Reports, 1998, 25, 45-61.	1.0	18
905	Lymphadenopathy, splenomegaly, and altered immunoglobulin production in BCL3 transgenic mice. Oncogene, 1998, 16, 2333-2343.	2.6	70
906	Transgenic N-myc mouse model for indolent B cell lymphoma: tumor characterization and analysis of genetic alterations in spontaneous and retrovirally accelerated tumors. Oncogene, 1998, 17, 2073-2085.	2.6	29
907	DNA immunization inrelB-deficient mice discloses a role for dendritic cells in IgM  →   IgG1 swit European Journal of Immunology, 1998, 28, 516-524.	tchin vivo. 1.6	25
908	Characterization of myocyte enhancer factor 2 (MEF2) expression in B and T cells: MEF2C is a B cell-restricted transcription factor in lymphocytes. Molecular Immunology, 1998, 35, 445-458.	1.0	72
909	Lymphoid-specific transcription mediated by the conserved octamer site: Who is doing what?. Seminars in Immunology, 1998, 10, 155-163.	2.7	67

#	Article	IF	CITATIONS
910	Regulatory Elements Required for Human Angiotensinogen Expression in HepG2 Cells Are Dispensable in Transgenic Mice. Hypertension, 1998, 31, 734-740.	1.3	24
911	A model for spontaneous B-lineage lymphomas in IgHÂ-HOX11 transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 13853-13858.	3.3	30
912	Characteristics of the Intron Involvement in the Mitogen-induced Expression of Zfp-36. Journal of Biological Chemistry, 1998, 273, 506-517.	1.6	44
913	ETS-Core Binding Factor: a Common Composite Motif in Antigen Receptor Gene Enhancers. Molecular and Cellular Biology, 1998, 18, 1322-1330.	1.1	58
914	Regulation of Promoter and Intron Enhancer Activity in Immunoglobulin Heavy hain Genes during Bâ€Cell Differentiation. Microbiology and Immunology, 1998, 42, 399-405.	0.7	0
915	The Ig mutator is dependent on the presence, position, and orientation of the large intron enhancer. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 2396-2399.	3.3	46
916	Production of Transgenic Rodents by the Microinjection of Cloned DNA into Fertilized One-Celled Eggs. , 1999, 97, 61-100.		3
917	The Ig heavy chain intronic enhancer core region is necessary and sufficient to promote efficient class switch recombination. International Immunology, 1999, 11, 1709-1713.	1.8	38
918	Recombination and transcription of the endogenous Ig heavy chain locus is effected by the Ig heavy chain intronic enhancer core region in the absence of the matrix attachment regions. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 1526-1531.	3.3	82
919	In vitro comparison of the antigen-binding and stability properties of the various molecular forms of IgA antibodies assembled and produced in CHO cells. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 3029-3034.	3.3	63
920	Construction and Characterization of a Chimeric Fusion Protein Consisting of an Anti-idiotype Antibody Mimicking a Breast Cancer-Associated Antigen and the Cytokine GM-CSF. Hybridoma, 1999, 18, 193-202.	0.9	12
921	Stimulation of Tat-associated kinase-independent transcriptional elongation from the human immunodeficiency virus type-1 long terminal repeat by a cellular enhancer. EMBO Journal, 1999, 18, 1378-1386.	3.5	23
922	The immunoglobulin lambda light chain enhancer consists of three modules which synergize in activation of transcription. European Journal of Immunology, 1999, 29, 713-724.	1.6	17
923	Expression of an immunoglobulin heavy chain transgene in macrophage as well as lymphocyte lineagesin vivo. European Journal of Immunology, 1999, 29, 1219-1227.	1.6	2
924	Evidence that a Single Replication Fork Proceeds from Early to Late Replicating Domains in the IgH Locus in a Non–B Cell Line. Molecular Cell, 1999, 3, 321-330.	4.5	67
925	Catfish Oct2 binding affinity and functional preference for octamer motifs, and interaction with OBF-1. Developmental and Comparative Immunology, 1999, 23, 199-211.	1.0	21
926	Structure and Chromosomal Assignment of the Sterol 12α-Hydroxylase Gene (CYP8B1) in Human and Mouse: Eukaryotic Cytochrome P-450 Gene Devoid of Introns. Genomics, 1999, 56, 184-196.	1.3	65
927	Transcriptional Regulation of Syndecan-1 Expression by Growth Factors. Progress in Molecular Biology and Translational Science, 1999, 63, 109-138.	1.9	24

#	Article	IF	CITATIONS
928	Cux/CDP Homeoprotein Is a Component of NF-μNR and Represses the Immunoglobulin Heavy Chain Intronic Enhancer by Antagonizing the Bright Transcription Activator. Molecular and Cellular Biology, 1999, 19, 284-295.	1.1	76
929	The 3′ IgH regulatory region: A complex structure in a search for a function. Advances in Immunology, 2000, 75, 317-345.	1.1	90
930	Nuclear localization and transactivating capacities of the papillary renal cell carcinoma-associated TFE3 and PRCC (fusion) proteins. Oncogene, 2000, 19, 69-74.	2.6	75
931	Antibody Engineering at the Millennium. BioTechniques, 2000, 29, 128-145.	0.8	116
933	A Single 3′α hs1,2 Enhancer in the Rabbit IgH Locus. Journal of Immunology, 2000, 165, 6400-6405.	0.4	12
934	Transcriptional activation by LR1 at the Emicro enhancer and switch region sites. Nucleic Acids Research, 2000, 28, 2651-2657.	6.5	23
935	The Origin, Development and Present Status of the Concept of the Gene A Short Historical Account of the Discoveries. Current Genomics, 2000, 1, 29-40.	0.7	2
936	Role of OCA-B in 3â€2-IgH Enhancer Function. Journal of Immunology, 2000, 164, 5306-5312.	0.4	50
937	Regulation of Germline Promoters by the Two Human Ig Heavy Chain 3′ α Enhancers. Journal of Immunology, 2000, 164, 6380-6386.	0.4	28
938	An Upstream Oct-1- and Oct-2-Binding Silencer GovernsB29(Igβ) Gene Expression. Journal of Immunology, 2000, 164, 2550-2556.	0.4	29
939	Analysis of Cell ell Contact Mediated by Ig Superfamily Cell Adhesion Molecules. Current Protocols in Cell Biology, 2001, 11, Unit 9.5.	2.3	1
940	Activation of the Sarcophaga lectin gene promoter by (A + T)-stretch binding protein. FEBS Journal, 2001, 268, 2506-2511.	0.2	7
941	Regulated T-cell development: a victim of multiple conspiracies. Immunology, 2001, 104, 8-10.	2.0	4
942	Production of Transgenic Rodents by the Microinjection of Cloned DNA into Fertilized One-Cell Eggs. Molecular Biotechnology, 2001, 17, 151-182.	1.3	16
943	PERSPECTIVE: TRANSPOSABLE ELEMENTS, PARASITIC DNA, AND GENOME EVOLUTION. Evolution; International Journal of Organic Evolution, 2001, 55, 1-24.	1.1	518
944	Surrogate Light Chain-Mediated Interaction of a Soluble Pre-B Cell Receptor with Adherent Cell Lines. Journal of Immunology, 2001, 167, 6403-6411.	0.4	61
945	A Pivotal Role for DNase I-Sensitive Regions 3b and/or 4 in the Induction of Somatic Hypermutation of IgH Genes. Journal of Immunology, 2001, 167, 811-820.	0.4	35
946	HS1,2 Enhancer Regulation of Germline ε and γ2b Promoters in Murine B Lymphocytes: Evidence for Specific Promoter-Enhancer Interactions. Journal of Immunology, 2001, 167, 3257-3265.	0.4	49

#	Article	IF	CITATIONS
947	The human growth hormone locus control region mediates long-distance transcriptional activation independent of nuclear matrix attachment regions. Nucleic Acids Research, 2001, 29, 3356-3361.	6.5	13
948	Studies on CD4 T Cell Immunity Using Somatic Transgene Immunization. International Reviews of Immunology, 2001, 20, 613-625.	1.5	1
949	Deletional analyses reveal an essential role for the hs3b/hs4 IgH 3′ enhancer pair in an Ig-secreting but not an earlier-stage B cell line. International Immunology, 2001, 13, 1003-1012.	1.8	31
950	PERSPECTIVE: TRANSPOSABLE ELEMENTS, PARASITIC DNA, AND GENOME EVOLUTION. Evolution; International Journal of Organic Evolution, 2001, 55, 1.	1.1	55
951	Transcriptional Activation by a Matrix Associating Region-binding Protein. Journal of Biological Chemistry, 2001, 276, 21325-21330.	1.6	30
952	Replication and Subnuclear Location Dynamics of the Immunoglobulin Heavy-Chain Locus in B-Lineage Cells. Molecular and Cellular Biology, 2002, 22, 4876-4889.	1.1	86
953	Cutting Edge: Distal Regulatory Elements Are Required to Achieve Selective Expression of IFN-Î ³ in Th1/Tc1 Effector Cells. Journal of Immunology, 2002, 169, 6664-6667.	0.4	55
954	Historical Development of the Concept of the Gene. Journal of Medicine and Philosophy, 2002, 27, 257-286.	0.4	53
955	Oct2 transcription factor of a teleost fish: activation domains and function from an enhancer. Archives of Biochemistry and Biophysics, 2002, 404, 55-61.	1.4	14
956	Dominant, Hierarchical Induction of Peripheral Tolerance during Foreign Antigen-Driven B Cell Development. Immunity, 2002, 17, 317-327.	6.6	48
957	CSK-3 parameters in lymphocytes of schizophrenic patients. Psychiatry Research, 2002, 112, 51-57.	1.7	30
958	Myeloma expression systems. Journal of Immunological Methods, 2002, 261, 1-20.	0.6	64
959	Intron-dependent stimulation of marker gene expression in cultured insect cells. Insect Molecular Biology, 2002, 11, 87-95.	1.0	25
960	lgH Intronic Enhancer Element HE2 (μB) Functions as a cis-Activator in Choroid Plexus Cells at the Cellular Level as well as in Transgenic Mice. Journal of Neurochemistry, 2002, 64, 961-966.	2.1	11
961	Transgenic studies on the regulation of the anterior pituitary gland function by the hypothalamus. Frontiers in Neuroendocrinology, 2003, 24, 11-26.	2.5	10
962	In Vivo Gene Transfer Studies on the Regulation and Function of the Vasopressin and Oxytocin Genes. Journal of Neuroendocrinology, 2003, 15, 109-125.	1.2	38
963	Lentivirus Vectors Incorporating the Immunoglobulin Heavy Chain Enhancer and Matrix Attachment Regions Provide Position-Independent Expression in B Lymphocytes. Journal of Virology, 2003, 77, 7341-7351.	1.5	40
964	Selective Regulation of Mature IgG1 Transcription by CD86 and β2-Adrenergic Receptor Stimulation. Journal of Immunology, 2003, 170, 5143-5151.	0.4	74

#	Article	IF	CITATIONS
965	Transcription of Immunoglobulin Genes. , 2004, , 83-100.		3
966	Combinatorial Control of DNase I-hypersensitive Site Formation and Erasure by Immunoglobulin Heavy Chain Enhancer-binding Proteins. Journal of Biological Chemistry, 2004, 279, 7331-7338.	1.6	6
968	Regulation of Immunoglobulin Promoter Activity by TFII-I Class Transcription Factors. Journal of Biological Chemistry, 2004, 279, 5460-5469.	1.6	37
969	How I became one of the fathers of a superfamily. Nature Medicine, 2004, 10, 1027-1031.	15.2	29
970	Differential Eµ enhancer activity and expression of BOB.1/OBF.1, Oct2, PU.1, and immunoglobulin in reactive B-cell populations, B-cell non-Hodgkin lymphomas, and Hodgkin lymphomas. Journal of Pathology, 2004, 202, 60-69.	2.1	81
971	Human polymeric IgA is superior to IgG and single-chain Fv of the same monoclonal specificity to inhibit urease activity associated with Helicobacter pylori. Molecular Immunology, 2004, 41, 1013-1022.	1.0	12
973	Hypothesis: Biological role for J intronic matrix attachment regions in the molecular mechanism of antigenâ€driven somatic hypermutation. Immunology and Cell Biology, 2005, 83, 383-391.	1.0	4
974	The immunoglobulin heavy-chain locus in zebrafish: identification and expression of a previously unknown isotype, immunoglobulin Z. Nature Immunology, 2005, 6, 295-302.	7.0	377
975	Organization and Expression of Genes Encoding IgA Heavy Chain, Polymeric Ig Receptor, and J Chain. , 2005, , 183-194.		2
976	The Acute Box cis-Element in Human Heavy Ferritin mRNA 5′-Untranslated Region Is a Unique Translation Enhancer That Binds Poly(C)-binding Proteins. Journal of Biological Chemistry, 2005, 280, 30032-30045.	1.6	29
977	DNA looping induced by a transcriptional enhancer in vivo. Nucleic Acids Research, 2005, 33, 3743-3750.	6.5	73
978	Enhancer. , 2006, , 493-500.		0
979	MECHANISM AND CONTROL OF V(D)J RECOMBINATION AT THE IMMUNOGLOBULIN HEAVY CHAIN LOCUS. Annual Review of Immunology, 2006, 24, 541-570.	9.5	502
980	ELISA. , 2006, , 490-490.		0
981	Biased dA/dT somatic hypermutation as regulated by the heavy chain intronic iEμ enhancer and 3′Eα enhancers in human lymphoblastoid B cells. Molecular Immunology, 2006, 43, 1817-1826.	1.0	11
982	Hypothesis: A biological role for germline transcription in the mechanism of V(D)J recombination – implications for initiation of allelic exclusion. Immunology and Cell Biology, 2006, 84, 396-403.	1.0	1
983	Interferon Î ³ -Induced Gene Expression of the Novel Secretory Phospholipase A2 Type IID in Human Monocyte-Derived Macrophages is Inhibited by Lipopolysaccharide. Inflammation, 2006, 29, 108-117.	1.7	15
984	Critical roles of the immunoglobulin intronic enhancers in maintaining the sequential rearrangement of IgH and Igk loci. Journal of Experimental Medicine, 2006, 203, 1721-1732.	4.2	45

#	Article	IF	CITATIONS
985	Extracellular Matrix. , 2006, , 543-547.		0
986	Transcription of a Productively Rearranged Ig VDJCα Does Not Require the Presence of HS4 in the <i>Igh</i> 3′ Regulatory Region. Journal of Immunology, 2007, 178, 6297-6306.	0.4	9
987	Localizing hotspots of antisense transcription. Nucleic Acids Research, 2007, 35, 1488-1500.	6.5	30
988	Conserved elements within first intron of aquaporin-5 (Aqp5) function as transcriptional enhancers. Biochemical and Biophysical Research Communications, 2007, 356, 26-31.	1.0	7
989	Enhancer and promoter activity in the JH to IGHM intron of the Pekin duck, Anas platyrhynchos. Developmental and Comparative Immunology, 2007, 31, 286-295.	1.0	2
990	Reduced Neuron-Specific Expression of the TAF1 Gene Is Associated with X-Linked Dystonia-Parkinsonism. American Journal of Human Genetics, 2007, 80, 393-406.	2.6	239
991	Construction of gene expression systems in insect cell lines using promoters from the silkworm, Bombyx mori. Journal of Biotechnology, 2008, 133, 9-17.	1.9	13
992	Chapter 1 Cisâ€Regulatory Elements and Epigenetic Changes Control Genomic Rearrangements of the IgH Locus. Advances in Immunology, 2008, 99, 1-32.	1.1	61
993	Analysis of clonotypic switch junctions reveals multiple myeloma originates from a single class switch event with ongoing mutation in the isotype-switched progeny. Blood, 2008, 112, 1894-1903.	0.6	16
994	Role of Defective Oct-2 and OCA-B Expression in Immunoglobulin Production and Kaposi's Sarcoma-Associated Herpesvirus Lytic Reactivation in Primary Effusion Lymphoma. Journal of Virology, 2009, 83, 4308-4315.	1.5	13
995	Small DNA tumour viruses and their contributions to our understanding of transcription control. Virology, 2009, 384, 369-374.	1.1	12
996	Chemokine receptor <i>Ccr5</i> deficiency induces alternative macrophage activation and improves longâ€ŧerm renal allograft outcome. European Journal of Immunology, 2010, 40, 267-278.	1.6	34
997	Oct1 loss of function induces a coordinate metabolic shift that opposes tumorigenicity. Nature Cell Biology, 2009, 11, 320-327.	4.6	89
998	Long Noncoding RNAs as Enhancers of Gene Expression. Cold Spring Harbor Symposia on Quantitative Biology, 2010, 75, 325-331.	2.0	72
999	Both the constitutive Cauliflower Mosaic Virus 35S and tissue-specific AGAMOUS enhancers activate transcription autonomously in Arabidopsis thaliana. Plant Molecular Biology, 2010, 74, 293-305.	2.0	34
1000	Transcriptional Enhancers in Animal Development and Evolution. Current Biology, 2010, 20, R754-R763.	1.8	403
1001	The IgH 3′ regulatory region and its implication in lymphomagenesis. European Journal of Immunology, 2010, 40, 3306-3311.	1.6	20
1002	Enhancing somatic nuclear reprogramming by Oct4 gain-of-function in cloned mouse embryos. International Journal of Developmental Biology, 2010, 54, 1649-1657	0.3	24

	Сітатіс	on Report	
#	Article	IF	Citations
1004	Long Noncoding RNAs with Enhancer-like Function in Human Cells. Cell, 2010, 143, 46-58.	13.5	1,664
1005	Functional and Mechanistic Diversity of Distal Transcription Enhancers. Cell, 2011, 144, 327-339.	13.5	718
1006	Familial hemophagocytic lymphohistiocytosis type 3 (FHL3) caused by deep intronic mutation and inversion in UNC13D. Blood, 2011, 118, 5783-5793.	0.6	115
1008	The p53-Bak Apoptotic Signaling Axis Plays an Essential Role in Regulating Differentiation of the Ocular Lens. Current Molecular Medicine, 2012, 12, 901-916.	0.6	25
1009	The Tumor Suppressor p53 Regulates c-Maf and Prox-1 to Control Lens Differentiation. Current Molecular Medicine, 2012, 12, 917-928.	0.6	23
1010	Lineage-specific adjacent IFNG and IL26 genes share a common distal enhancer element. Genes and Immunity, 2012, 13, 481-488.	2.2	24
1011	The Chromatin Fingerprint of Gene Enhancer Elements. Journal of Biological Chemistry, 2012, 287, 30888-30896.	1.6	77
1012	Discovery and Characterization of Secretory IgD in Rainbow Trout: Secretory IgD Is Produced through a Novel Splicing Mechanism. Journal of Immunology, 2012, 188, 1341-1349.	0.4	140
1013	Simian Virus 40 Strains with Novel Properties Generated by Replacing the Viral Enhancer with Synthetic Oligonucleotides. Journal of Virology, 2012, 86, 3135-3142.	1.5	4
1014	Genomic approaches towards finding cis-regulatory modules in animals. Nature Reviews Genetics, 2012, 13, 469-483.	7.7	200
1015	Analysis of Cellâ€Cell Contact Mediated by Ig Superfamily Cell Adhesion Molecules. Current Protocols in Cell Biology, 2013, 61, 9.5.1-9.5.85.	2.3	4
1016	Functional evolution of cis-regulatory modules of STMADS11 superclade MADS-box genes. Plant Molecular Biology, 2013, 83, 489-506.	2.0	5
1017	Genome organization and long-range regulation of gene expression by enhancers. Current Opinion in Cell Biology, 2013, 25, 387-394.	2.6	139
1018	Regulators of chromatin state and transcription in <scp>CD</scp> 4 <scp>T</scp> â€eell polarization. Immunology, 2013, 139, 299-308.	2.0	27
1019	Variability of Inducible Expression across the Hematopoietic System of Tetracycline Transactivator Transgenic Mice. PLoS ONE, 2013, 8, e54009.	1.1	26
1020	What history tells us XXXV. Enhancers: Their existence and characteristics have raised puzzling issues since their discovery. Journal of Biosciences, 2014, 39, 741-745.	0.5	2
1021	The Eμ Enhancer Region Influences H Chain Expression and B Cell Fate without Impacting IgVH Repertoire and Immune Response In Vivo. Journal of Immunology, 2014, 193, 1171-1183.	0.4	29
1022	Integrating Diverse Datasets Improves Developmental Enhancer Prediction. PLoS Computational Biology, 2014, 10, e1003677.	1.5	149

.

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1023	Enhancer biology and enhanceropathies. Nature Structural and Molecular Biology, 201	4, 21, 210-219.	3.6	259
1024	Mice with megabase humanization of their immunoglobulin genes generate antibodies normal mice. Proceedings of the National Academy of Sciences of the United States of 111, 5153-5158.	as efficiently as America, 2014,	3.3	346
1025	Transcriptional regulation in the immune system: a status report. Trends in Immunolog 190-194.	₅ y, 2014, 35,	2.9	24
1027	Mechanisms of mutational robustness in transcriptional regulation. Frontiers in Genet 322.	cs, 2015, 6,	1.1	89
1028	Enhancers, enhancers – from their discovery to today's universe of transcription Biological Chemistry, 2015, 396, 311-327.	enhancers.	1.2	82
1029	In the loop: promoter–enhancer interactions and bioinformatics. Briefings in Bioinfo bbv097.	rmatics, 2016, 17,	3.2	115
1030	What are super-enhancers?. Nature Genetics, 2015, 47, 8-12.		9.4	598
1031	Using transgenic reporter assays to functionally characterize enhancers in animals. Ge 106, 185-192.	nomics, 2015,	1.3	63
1032	Transcription-controlling regulatory elements of the eukaryotic genome. Molecular Bic 185-194.	logy, 2015, 49,	0.4	6
1033	Genomic Views of Transcriptional Enhancers: Essential Determinants of Cellular Identit Activity-Dependent Responses in the CNS. Journal of Neuroscience, 2015, 35, 13819-1		1.7	33
1034	Architectural and Functional Commonalities between Enhancers and Promoters. Cell, 2 948-959.	2015, 162,	13.5	277
1035	lgG Structure and Function. , 2016, , 15-22.			7
1036	Chromatin remodeling effects on enhancer activity. Cellular and Molecular Life Science 2897-2910.	2s, 2016, 73,	2.4	25
1037	Structures of Preferred Human IgV Genes–Based Protective Antibodies Identify How Residues Contact Diverse Antigens and Assign Source of Specificity to CDR3 Loop Var Immunology, 2016, 196, 4723-4730.	Conserved ation. Journal of	0.4	18
1038	Enhancer, epigenetics, and human disease. Current Opinion in Genetics and Developm	ent, 2016, 36, 27-33.	1.5	19
1039	Identification and function of enhancers in the human genome. Human Molecular Gen R190-R197.	etics, 2016, 25,	1.4	26
1040	Regulation of disease-associated gene expression in the 3D genome. Nature Reviews N Biology, 2016, 17, 771-782.	Iolecular Cell	16.1	294
1041	Genome-scale deletion screening of human long non-coding RNAs using a paired-guide CRISPR–Cas9 library. Nature Biotechnology, 2016, 34, 1279-1286.	RNA	9.4	380

#	Article	IF	CITATIONS
1042	Enhanced Identification of Transcriptional Enhancers Provides Mechanistic Insights into Diseases. Trends in Genetics, 2016, 32, 76-88.	2.9	87
1043	Enrichment analysis of Alu elements with different spatial chromatin proximity in the human genome. Protein and Cell, 2016, 7, 250-266.	4.8	23
1044	Enhancers as non-coding RNA transcription units: recent insights and future perspectives. Nature Reviews Genetics, 2016, 17, 207-223.	7.7	614
1045	Early-life stress changes expression of GnRH and kisspeptin genes and DNA methylation of GnRH3 promoter in the adult zebrafish brain. General and Comparative Endocrinology, 2016, 227, 84-93.	0.8	17
1046	RNA Exosome and Non-coding RNA-Coupled Mechanisms in AID-Mediated Genomic Alterations. Journal of Molecular Biology, 2017, 429, 3230-3241.	2.0	14
1047	NFAT5 and SLC4A10 Loci Associate with Plasma Osmolality. Journal of the American Society of Nephrology: JASN, 2017, 28, 2311-2321.	3.0	24
1048	Recombinant human plasma phospholipid transfer protein (PLTP) to prevent bacterial growth and to treat sepsis. Scientific Reports, 2017, 7, 3053.	1.6	26
1049	A Brief Introduction to Chromatin Regulation and Dynamics. , 2017, , 1-34.		1
1050	Emerging roles of transcriptional enhancers in chromatin looping and promoter-proximal pausing of RNA polymerase II. Journal of Biological Chemistry, 2018, 293, 13786-13794.	1.6	39
1051	A tissue-specific enhancer of the C. elegans nhr-67/tailless gene drives coordinated expression in uterine stem cells and the differentiated anchor cell. Gene Expression Patterns, 2018, 30, 71-81.	0.3	9
1052	High-resolution genome-wide functional dissection of transcriptional regulatory regions and nucleotides in human. Nature Communications, 2018, 9, 5380.	5.8	117
1053	Genomeâ€Wide Maps of Transcription Regulatory Elements and Transcription Enhancers in Development and Disease. , 2018, 9, 439-455.		12
1054	The Chromatin Reader ZMYND8 Regulates Igh Enhancers to Promote Immunoglobulin Class Switch Recombination. Molecular Cell, 2018, 72, 636-649.e8.	4.5	34
1055	A novel enhancer RNA, Hmrhl, positively regulates its host gene, phkb, in chronic myelogenous leukemia. Non-coding RNA Research, 2019, 4, 96-108.	2.4	10
1056	B cells engineered to express pathogen-specific antibodies protect against infection. Science Immunology, 2019, 4, .	5.6	87
1057	Interplay between small RNA pathways shapes chromatin landscapes in C. elegans. Nucleic Acids Research, 2019, 47, 5603-5616.	6.5	20
1058	Cis- and trans-factors affecting AID targeting and mutagenic outcomes in antibody diversification. Advances in Immunology, 2019, 141, 51-103.	1.1	26
1059	Dynamics of transcriptional enhancers and chromosome topology in gene regulation. Development Growth and Differentiation, 2019, 61, 343-352.	0.6	13

#	Article	IF	CITATIONS
1060	Super-enhancers in transcriptional regulation and genome organization. Nucleic Acids Research, 2019, 47, 11481-11496.	6.5	85
1061	Transcriptional control by enhancers and enhancer RNAs. Transcription, 2019, 10, 171-186.	1.7	49
1062	Discovery platform for inhibitors of IgH gene enhancer activity. Cancer Biology and Therapy, 2019, 20, 571-581.	1.5	6
1063	Histone H3 lysine K4 methylation and its role in learning and memory. Epigenetics and Chromatin, 2019, 12, 7.	1.8	113
1064	Gene regulatory networks STARR-ing B cells. Nature Immunology, 2020, 21, 110-112.	7.0	0
1065	Enhancers as regulators of antigen receptor loci three-dimensional chromatin structure. Transcription, 2020, 11, 37-51.	1.7	9
1066	Regulation of plant architecture by a new histone acetyltransferase targeting gene bodies. Nature Plants, 2020, 6, 809-822.	4.7	33
1067	Mouse Models of c-myc Deregulation Driven by IgH Locus Enhancers as Models of B-Cell Lymphomagenesis. Frontiers in Immunology, 2020, 11, 1564.	2.2	14
1068	Immunoglobulins or Antibodies: IMCT® Bridging Genes, Structures and Functions. Biomedicines, 2020, 8, 319.	1.4	39
1069	Transcriptional Enhancers in <i>Drosophila</i> . Genetics, 2020, 216, 1-26.	1.2	31
1070	Progress, Challenges, and Surprises in Annotating the Human Genome. Annual Review of Genomics and Human Genetics, 2020, 21, 55-79.	2.5	20
1071	Evaluating Enhancer Function and Transcription. Annual Review of Biochemistry, 2020, 89, 213-234.	5.0	123
1072	Transcriptional control by enhancers: working remotely for improved performance. Transcription, 2020, 11, 1-2.	1.7	1
1073	Towards a comprehensive catalogue of validated and target-linked human enhancers. Nature Reviews Genetics, 2020, 21, 292-310.	7.7	229
1074	Spirits in the Material World: Enhancer RNAs in Transcriptional Regulation. Trends in Biochemical Sciences, 2021, 46, 138-153.	3.7	39
1075	Genomic editing of intronic enhancers unveils their role in fine-tuning tissue-specific gene expression in <i>Arabidopsis thaliana</i> . Plant Cell, 2021, 33, 1997-2014.	3.1	43
1076	A Novel Position-Specific Encoding Algorithm (SeqPose) of Nucleotide Sequences and Its Application for Detecting Enhancers. International Journal of Molecular Sciences, 2021, 22, 3079.	1.8	9
1077	Fish-Ing for Enhancers in the Heart. International Journal of Molecular Sciences, 2021, 22, 3914.	1.8	5

#	Article	IF	CITATIONS
1078	Molecular Complexes at Euchromatin, Heterochromatin and Centromeric Chromatin. International Journal of Molecular Sciences, 2021, 22, 6922.	1.8	35
1079	Enhancing B-Cell Malignancies—On Repurposing Enhancer Activity towards Cancer. Cancers, 2021, 13, 3270.	1.7	5
1080	lnitiation of <i>Otx2</i> expression in the developing mouse retina requires a unique enhancer and either <i>Ascl1</i> or <i>Neurog2</i> activity. Development (Cambridge), 2021, 148, .	1.2	16
1081	The Impact of Space and Time on the Functional Output of the Genome. Cold Spring Harbor Perspectives in Biology, 2021, , a040378.	2.3	10
1082	Enhancers with tissue-specific activity are enriched in intronic regions. Genome Research, 2021, 31, 1325-1336.	2.4	21
1084	Choice of selectable marker affects recombinant protein expression in cells and exosomes. Journal of Biological Chemistry, 2021, 297, 100838.	1.6	14
1085	Transcriptional enhancers and their communication with gene promoters. Cellular and Molecular Life Sciences, 2021, 78, 6453-6485.	2.4	25
1086	Transcriptional Regulation by (Super)Enhancers: From Discovery to Mechanisms. Annual Review of Genomics and Human Genetics, 2021, 22, 127-146.	2.5	59
1087	The Molecular Biology of JC Virus, Causative Agent of Progressive Multifocal Leukoencephalopathy. , 1992, , 25-158.		72
1088	Gene Transfer into Mouse Embryos. , 1986, 4, 1-36.		6
1089	Differential Expression of the Genes Encoding the Keratins of Cultured Human Epidermal Cells. , 1986, , 85-107.		3
1090	Replication of SV40 and Polyoma Virus Chromosomes. , 1986, , 99-246.		123
1091	DNA Methylation in Early Mammalian Development. Springer Series in Molecular Biology, 1984, , 189-219.	1.9	36
1092	Chromatin Structure and Gene Expression. Springer Series in Molecular Biology, 1984, , 293-351.	1.9	27
1093	DNA Methylation and Gene Expression. Springer Series in Molecular Biology, 1984, , 147-164.	1.9	18
1094	The Evolution of Phenotypic Diversity in Metastatic Tumor Cells. , 1985, , 71-89.		8
1095	Genetic Rearrangements of Human Immunoglobulin Genes. , 1984, , 75-95.		1
1096	Expression of Cloned Immunoglobulin Genes. , 1985, , 117-134.		2

#	Article	IF	CITATIONS
1097	Introduction and Regulation of Cloned Genes for Agricultural Livestock Improvement. , 1986, 37, 151-161.		6
1098	Transgenic Mice: Gene Transfer into the Germ Line. , 1986, , 189-221.		4
1099	Structure and Expression of Human Placental Hormone Genes. Advances in Experimental Medicine and Biology, 1986, 205, 267-280.	0.8	8
1100	Murine T-Cell Receptor Genes. Advances in Experimental Medicine and Biology, 1987, 213, 13-17.	0.8	1
1101	High Level Production of Proteins in Mammalian Cells. , 1987, , 155-198.		8
1102	DNase I Hypersensitive Sites: A Structural Feature of Chromatin Associated with Gene Expression. , 1985, , 77-101.		12
1103	Regulatory Elements in Steroid Hormone Inducible Genes: Structure and Evolution of DNA Sequences Recognized by Steroid Hormone Receptors. , 1985, , 121-141.		5
1104	Genetically Engineered Antitumor Monoclonal Antibodies. , 1995, , 393-432.		2
1105	Retrovirus and Proto-oncogene Involvement in the Etiology of Breast Neoplasia. , 1987, , 323-351.		4
1106	Multiple Nonhistonel Protein-DNA Complexes in Chromatin Regulate the Cell- and Stage-Specific Activity of an Eukaryotic Gene. Results and Problems in Cell Differentiation, 1987, 14, 255-269.	0.2	12
1107	Cell-Type Specificity of Transcription: The Immunoglobulin Heavy Chain Enhancer as a Model System. Nucleic Acids and Molecular Biology, 1987, , 221-240.	0.2	4
1108	Expression of Cellular Oncogenes. Current Topics in Microbiology and Immunology, 1984, 112, 73-115.	0.7	63
1109	Structure and Function of the Genome of HTLV. Current Topics in Microbiology and Immunology, 1985, 115, 177-209.	0.7	18
1110	Humoral Immunity in the Human Neonate. , 1987, , 27-36.		8
1111	Synergy of an IgH Promoter-Enhancer-Driven c-myc/v-Ha-ras Retrovirus and Pristane in the Induction of Murine Plasmacytomas. Current Topics in Microbiology and Immunology, 1988, 141, 115-124.	0.7	4
1112	Insulin Gene Regulation. Handbook of Experimental Pharmacology, 1990, , 93-111.	0.9	1
1113	The Structural and Functional Domain Organization of the Chicken Lysozyme Gene Locus. Nucleic Acids and Molecular Biology, 1989, , 133-147.	0.2	9
1114	New and Old Aspects of the Ontogeny of Immune Responses. , 1989, , 33-59.		4

	CITATION RI		
# 1115	ARTICLE The Differential Expression of Keratin Genes in Human Epidermal Cells. , 1988, , 287-309.	IF	Citations
1116	Gene Expression during Spermatogenesis. , 1993, , 181-232.		41
1117	Transgenic Mouse Models to Study VDJ Recombination. , 1994, , 1-14.		2
1118	Stimulation of in Vitro Transcription from Heterologous Promoters by the SV40 Enhancer. , 1984, , 7-21.		6
1119	Transcriptional Enhancement by Specific Regulatory Protein – DNA Complexes. , 1984, , 79-92.		7
1120	Position Effects and Gene Expression in the Transgenic Mouse. , 1984, , 123-134.		2
1121	Developmental Regulation of Secreted and Membrane Forms of Immunoglobulin Î $^1\!\!/$ Chain. , 1989, , 275-301.		18
1122	Factors Regulating Immunoglobulin-Gene Transcription. , 1989, , 327-342.		14
1123	Construction of Vectors for Immunoglobulin Reverse Genetics. , 1985, , 55-67.		2
1124	Analysis of cis- and trans-Acting Factors Regulating Gene Transcription. , 1990, , 75-93.		3
1125	Interaction of the Glucocorticoid Receptor with Specific DNA Sequences. , 1986, , 325-357.		6
1126	Muscle Cell Differentiation and Growth. , 1989, , 34-65.		1
1127	Immunoglobulins: Structure, Function, and Genes. , 1987, , 49-140.		7
1128	RECOMBINANT GENE TRANSFER IN ANIMALS: THE POTENTIAL FOR IMPROVING GROWTH IN LIVESTOCK. , 1986, , 293-313.		1
1129	Protein Coding Genes of Higher Eukaryotes: Promoter Elements and trans-Acting Factors. , 1986, , 79-99.		10
1130	Transcriptional regulation of immunoglobulin gene expression. Molecular Aspects of Cellular Regulation, 1991, 6, 399-421.	1.4	27
1131	Molecular Mechanism of Class Switch Recombination. , 2004, , 307-326.		7
1132	The helix-loop-helix protein Id inhibits differentiation of murine erythroleukemia cells Journal of Biological Chemistry, 1994, 269, 5078-5084.	1.6	69

#	Article	IF	CITATIONS
1133	Hormonal regulation of the bovine prolactin promoter in rat pituitary tumor cells Journal of Biological Chemistry, 1985, 260, 12246-12251.	1.6	136
1134	5'-Flanking DNA of the rat growth hormone gene mediates regulated expression by thyroid hormone Journal of Biological Chemistry, 1985, 260, 11744-11748.	1.6	86
1135	Glucocorticoids regulate the expression of a rat growth hormone gene lacking 5' flanking sequences Journal of Biological Chemistry, 1986, 261, 291-297.	1.6	29
1136	The functional human dihydrofolate reductase gene Journal of Biological Chemistry, 1984, 259, 3933-3943.	1.6	223
1137	True genes for human U1 small nuclear RNA. Copy number, polymorphism, and methylation Journal of Biological Chemistry, 1984, 259, 2013-2021.	1.6	145
1138	Response elements of the androgen-regulated C3 gene Journal of Biological Chemistry, 1992, 267, 4456-4466.	1.6	102
1139	The tetrameric structure of NF-mu NR provides a mechanism for cooperative binding to the immunoglobulin heavy chain mu enhancer Journal of Biological Chemistry, 1992, 267, 624-634.	1.6	10
1140	Mutagenesis of the Arg-Gly-Asp triplet in human complement component C3 does not abolish binding of iC3b to the leukocyte integrin complement receptor type III (CR3, CD11b/CD18) Journal of Biological Chemistry, 1992, 267, 635-643.	1.6	50
1141	Structural and transcriptional analysis of a chicken myosin heavy chain gene subset Journal of Biological Chemistry, 1987, 262, 16536-16545.	1.6	40
1142	Human Immunoglobulin Heavy Chain Genes. Journal of Biological Chemistry, 1989, 264, 12745-12748.	1.6	28
1143	Identification of control elements 3' to the human keratin 1 gene that regulate cell type and differentiation-specific expression Journal of Biological Chemistry, 1993, 268, 377-384.	1.6	57
1144	Recombination of exogenous interleukin 2 receptor gene flanked by immunoglobulin recombination signal sequences in a pre-B cell line and transgenic mice Journal of Biological Chemistry, 1991, 266, 18387-18394.	1.6	20
1145	Cell-specific Expression of Mouse Albumin Promoter. Journal of Biological Chemistry, 1989, 264, 9171-9179.	1.6	36
1146	An enhancer element in the far upstream spacer region of rat ribosomal RNA gene Journal of Biological Chemistry, 1987, 262, 11616-11622.	1.6	39
1147	Purification and functional characterization of transcription factor SII from calf thymus. Role in RNA polymerase II elongation Journal of Biological Chemistry, 1987, 262, 5227-5232.	1.6	86
1148	The enhancer of the immunoglobulin heavy chain locus is flanked by presumptive chromosomal loop anchorage elements Journal of Biological Chemistry, 1987, 262, 5394-5397.	1.6	214
1149	Expression of chimeric human beta- and delta-globin genes during erythroid differentiation Journal of Biological Chemistry, 1987, 262, 4819-4826.	1.6	17
1150	Characterization of the phosphoenolpyruvate carboxykinase (GTP) promoter-regulatory region. I. Multiple hormone regulatory elements and the effects of enhancers Journal of Biological Chemistry, 1986, 261, 9714-9720.	1.6	96

ARTICLE IF CITATIONS # The laminin B2 chain promoter contains unique repeat sequences and is active in transient 1151 35 1.6 transfection.. Journal of Biological Chemistry, 1988, 263, 8384-8389. Linkage, evolution, and expression of the rat apolipoprotein A-I, C-III, and A-IV genes.. Journal of 1.6 179 Biological Chemistry, 1986, 261, 13268-13277. Interaction of Nuclear Factors with Multiple Sites in the Somatic Cytochrome c Promoter. Journal of 1153 1.6 231 Biological Chemistry, 1989, 264, 14361-14368. The human alpha-fetoprotein gene. Sequence organization and the 5' flanking region.. Journal of 1154 Biological Chemistry, 1985, 260, 5055-5060. Structure of the promoter of the rat type II procollagen gene.. Journal of Biological Chemistry, 1985, 1155 1.6 65 260, 4441-4447. Intron positions are conserved in the 5' end region of myosin heavy-chain genes.. Journal of Biological Chemistry, 1985, 260, 468-471. 1.6 Isolation and sequence of a rat chymotrypsin B gene.. Journal of Biological Chemistry, 1984, 259, 1157 1.6 123 14265-14270. A similar 5'-flanking region is required for estrogen and progesterone induction of ovalbumin gene expression.. Journal of Biological Chemistry, 1984, 259, 9967-9970. 1.6 57 Nuclear Factors from Expressing Tissues Interact in Vitro with a Rat α-2u Globulin Gene Intron. Journal 1159 1.6 10 of Biological Chemistry, 1989, 264, 1754-1759. Human placental lactogen transcriptional enhancer. Tissue specificity and binding with specific 1.6 proteins. Journal of Biological Chemistry, 1990, 265, 12940-12948. The mouse ribosomal protein L7 gene. Its primary structure and functional analysis of the promoter 1161 79 1.6 region.. Journal of Biological Chemistry, 1990, 265, 11465-11473. The chymotrypsin enhancer core. Journal of Biological Chemistry, 1989, 264, 20744-20751. 1162 1.6 Role of the Intronic Elements in the Endogenous Immunoglobulin Heavy Chain Locus. Journal of 1163 1.6 22 Biological Chemistry, 1999, 274, 4858-4862. Analysis of the Promoter of the <i>ninaE</i> Opsin Gene in <i>Drosophila melanogaster</i> Genetics, 1987, 116, 565-578. 1164 1.2 TCR Recognition and Selection In Vivo. Cold Spring Harbor Symposia on Quantitative Biology, 1989, 54, 1167 2.0 6 119-128. Mechanisms of Transcriptional Regulation in Lymphocyte Progenitors: Insight from an Analysis of the 1168 Terminal Transferase Promoter. Cold Spring Harbor Symposia on Quantitative Biology, 1999, 64, 87-98. Nucleotide sequence of an mRNA transcribed in latent growth-transforming virus infection indicates 1169 1.5356 that it may encode a membrane protein. Journal of Virology, 1984, 51, 411-419. A 3' end fragment encompassing the transcriptional enhancers of nondefective Friend virus confers 1170 1.5 erythroleukemogenicity on Moloney leukemia virus. Journal of Virology, 1984, 52, 248-254.

#	Article	IF	CITATIONS
1171	Transcriptional activity of avian retroviral long terminal repeats directly correlates with enhancer activity. Journal of Virology, 1985, 53, 515-521.	1.5	86
1172	Tissue selectivity of murine leukemia virus infection is determined by long terminal repeat sequences. Journal of Virology, 1985, 55, 862-866.	1.5	159
1173	DNA sequence of the lymphotropic variant of minute virus of mice, MVM(i), and comparison with the DNA sequence of the fibrotropic prototype strain. Journal of Virology, 1986, 57, 656-669.	1.5	183
1174	Gene coding for the late 11,000-dalton polypeptide of the Tian Tan strain of vaccinia virus and its 5'-flanking region: nucleotide sequence. Journal of Virology, 1986, 57, 693-696.	1.5	8
1175	Properties of intracellular bovine papillomavirus chromatin. Journal of Virology, 1986, 58, 500-507.	1.5	30
1176	Rearrangements and insertions in the Moloney murine leukemia virus long terminal repeat alter biological properties in vivo and in vitro. Journal of Virology, 1986, 60, 204-214.	1.5	39
1177	Construction and characterization of hybrid polyomavirus genomes. Journal of Virology, 1986, 60, 960-971.	1.5	63
1178	Dsi-1, a region with frequent proviral insertions in Moloney murine leukemia virus-induced rat thymomas. Journal of Virology, 1987, 61, 1164-1170.	1.5	41
1179	B-lymphoma induction by reticuloendotheliosis virus: characterization of a mutated chicken syncytial virus provirus involved in c-myc activation. Journal of Virology, 1987, 61, 2084-2090.	1.5	33
1180	Herpes simplex virus immediate-early promoters are responsive to virus and cell trans-acting factors. Journal of Virology, 1987, 61, 2286-2296.	1.5	121
1181	Alterations in binding characteristics of the human immunodeficiency virus enhancer factor. Journal of Virology, 1988, 62, 218-225.	1.5	91
1182	Rearrangement of a common cellular DNA domain on chromosome 4 in human primary liver tumors. Journal of Virology, 1988, 62, 629-632.	1.5	47
1183	trans-activation of the simian virus 40 enhancer by a pX product of human T-cell leukemia virus type I. Journal of Virology, 1988, 62, 644-648.	1.5	26
1184	Tissue preferential expression of the hepatitis B virus (HBV) surface antigen gene in two lines of HBV transgenic mice. Journal of Virology, 1988, 62, 649-654.	1.5	73
1185	Properties of the human hepatitis B virus enhancer: position effects and cell-type nonspecificity. Journal of Virology, 1988, 62, 1305-1313.	1.5	84
1186	Human T-cell leukemia virus types I and II exhibit different DNase I protection patterns. Journal of Virology, 1988, 62, 1339-1346.	1.5	72
1187	The hepatitis B virus enhancer modulates transcription of the hepatitis B virus surface antigen gene from an internal location. Journal of Virology, 1988, 62, 1437-1441.	1.5	52
1188	Simian virus 40 revertant enhancers exhibit restricted host ranges for enhancer function. Journal of Virology, 1988, 62, 3364-3370.	1.5	13

ARTICLE IF CITATIONS Distinct segments within the enhancer region collaborate to specify the type of leukemia induced by 1189 1.5 128 nondefective Friend and Moloney viruses. Journal of Virology, 1989, 63, 328-337. Cell-type-specific control elements of the lymphotropic papovavirus enhancer. Journal of Virology, 1990, 64, 1657-1666. 1.5 Immunoglobulin Heavy-Chain Enhancer Is Required To Maintain Transfected Î³2A Gene Expression in a 1191 1.1 10 Pre-B-Cell Line. Molecular and Cellular Biology, 1990, 10, 1076-1083. The Immunoglobulin Heavy-Chain Enhancer Functions as the Promoter for Il¼ Sterile Transcription. 1.1 Molecular and Cellular Biology, 1990, 10, 2619-2624. Regulation of chimeric phosphoenolpyruvate carboxykinase genes by the trans-dominant locus TSE1. 1193 1.1 3 Molecular and Cellular Biology, 1990, 10, 2660-2668. Complex Regulation of the Immunoglobulin μ Heavy-Chain Gene Enhancer: μB, a New Determinant of Enhancer Function. Molecular and Cellular Biology, 1990, 10, 3145-3154. 1194 1.1 Novel Protein-DNA Interactions Associated with Increased Immunoglobulin Transcription in Response 1195 1.1 28 to Antigen Plus Interleukin-5. Molecular and Cellular Biology, 1991, 11, 5197-5205. Coordination of immunoglobulin DJH transcription and D-to-JH rearrangement by promoter-enhancer 1196 1.1 approximation. Molecular and Cellular Biology, 1991, 11, 2096-2107. A Common Transcriptional Activator Is Located in the Coding Region of Two Replication-Dependent 1197 20 1.1 Mouse Histone Genes. Molecular and Cellular Biology, 1991, 11, 2929-2936. Purification of core-binding factor, a protein that binds the conserved core site in murine leukemia 1.1 virus enhancers. Molecular and Cellular Biology, 1992, 12, 89-102. i€, a Pre-B-Cell-Specific Enhancer Element in the Immunoglobulin Heavy-Chain Enhancer. Molecular and 1199 1.1 15 Cellular Biology, 1993, 13, 5957-5969. PU.1 is a Component of a Multiprotein Complex Which Binds an Essential Site in the Murine 1.1 Immunoglobulin λ2-4 Enhancer. Molecular and Cellular Biology, 1993, 13, 6452-6461. E2A Expression, Nuclear Localization, and In Vivo Formation of DNA- and Non-DNA-Binding Species 1201 1.1 40 during B-Cell Development. Molecular and Cellular Biology, 1993, 13, 7321-7333. Interspersion of an Unusual GCN4 Activation Site with a Complex Transcriptional Repression Site in 1.1 Ty2 Elements of <i>Saccharomyces cerevisiae</i>. Molecular and Cellular Biology, 1993, 13, 2091-2103. NF-HB (BSAP) is a Repressor of the Murine Immunoglobulin Heavy-Chain 3'α Enhancer at Early Stages of 1203 42 1.1 B-Cell Differentiation. Molecular and Cellular Biology, 1993, 13, 3611-3622. Elements in the Immunoglobulin Heavy-Chain Enhancer Directly Regulate Simian Virus 40 1204 1.1 ori-Dependent DNA Replication. Molecular and Cellular Biology, 1993, 13, 5629-5636. Stably Integrated Mouse Mammary Tumor Virus Long Terminal Repeat DNA Requires the Octamer Motifs 1205 1.1 16 for Básal Promoter Activity. Molecular and Cellular Biology, 1994, 14, 1191-1203. Pan/E2A Expression Precedes Immunoglobulin Heavy-Chain Expression during B Lymphopoiesis in 1206 Nontransformed Cells, and Pan/E2A Proteins Are Not Detected in Myeloid Cells. Molecular and 1.1 Cellular Biology, 1994, 14, 4087-4096.

#	Article	IF	CITATIONS
1207	Location of Sequences in Polyomavirus DNA That Are Required for Early Gene Expression In Vivo and In Vitro. Molecular and Cellular Biology, 1984, 4, 2594-2609.	1.1	56
1208	Complex Regulation of Simian Virus 40 Early-Region Transcription from Different Overlapping Promoters. Molecular and Cellular Biology, 1984, 4, 1900-1914.	1.1	58
1209	Upstream Region of the <i>SUC2</i> Gene Confers Regulated Expression to a Heterologous Gene in <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 1985, 5, 2521-2526.	1.1	68
1210	Evolution of the Functional Human β-Actin Gene and Its Multi-Pseudogene Family: Conservation of Noncoding Regions and Chromosomal Dispersion of Pseudogenes. Molecular and Cellular Biology, 1985, 5, 2720-2732.	1.1	221
1211	Murine Leukemia Virus Long Terminal Repeat Sequences Can Enhance Gene Activity in a Cell-Type-Specific Manner. Molecular and Cellular Biology, 1985, 5, 2832-2835.	1.1	87
1212	Cloning and Molecular Analysis of the <i>HAP2</i> Locus: a Global Regulator of Respiratory Genes in <i>Saccharomyces cerevisiae</i> . Molecular and Cellular Biology, 1985, 5, 3410-3416.	1.1	94
1213	Functional Analysis of the Transcription Control Region Located Within the Avian Retroviral Long Terminal Repeat. Molecular and Cellular Biology, 1985, 5, 438-447.	1.1	93
1214	Cloning and Sequencing of a c- <i>myc</i> Oncogene in a Burkitt's Lymphoma Cell Line That Is Translocated to a Germ Line Alpha Switch Region. Molecular and Cellular Biology, 1985, 5, 501-509.	1.1	53
1215	Polyomavirus Enhancer Contains Multiple Redundant Sequence Elements That Activate Both DNA Replication and Gene Expression. Molecular and Cellular Biology, 1985, 5, 649-658.	1.1	212
1216	Orientation-Dependent Transcriptional Activator Upstream of a Human U2 snRNA Gene. Molecular and Cellular Biology, 1985, 5, 1560-1570.	1.1	108
1217	Developmental Regulation of α-Fetoprotein Genes in Transgenic Mice. Molecular and Cellular Biology, 1985, 5, 1639-1648.	1.1	79
1218	Delineation of Transcriptional Control Signals Within the Moloney Murine Sarcoma Virus Long Terminal Repeat. Molecular and Cellular Biology, 1985, 5, 1948-1958.	1.1	66
1219	Lens-Specific Promoter Activity of a Mouse γ-Crystallin Gene. Molecular and Cellular Biology, 1985, 5, 2221-2230.	1.1	33
1220	Properties of <i>REP3</i> : a <i>cis</i> -Acting Locus Required for Stable Propagation of the <i>Saccharomyces cerevisiae</i> Plasmid 2 1¼m Circle. Molecular and Cellular Biology, 1985, 5, 2466-2475.	1.1	43
1221	The Complete Sequence of the Mouse Skeletal α-Actin Gene Reveals Several Conserved and Inverted Repeat Sequences Outside of the Protein-Coding Region. Molecular and Cellular Biology, 1986, 6, 15-25.	1.1	68
1222	Cellular Promoters Incorporated into the Adenovirus Genome: Effects of Viral Regulatory Elements on Transcription Rates and Cell Specificity of Albumin and β-Globin Promoters. Molecular and Cellular Biology, 1986, 6, 3798-3806.	1.1	24
1223	Multiple regulatory elements in the intergenic region between the alpha-fetoprotein and albumin genes. Molecular and Cellular Biology, 1986, 6, 477-487.	1.1	136
1224	Myeloma mutant with a novel 3' flanking region: loss of normal sequence and insertion of repetitive elements leads to decreased transcription but normal processing of the alpha heavy-chain gene products. Molecular and Cellular Biology, 1986, 6, 1903-1916.	1.1	36

#	Article	IF	CITATIONS
1225	An RNA polymerase I enhancer in Saccharomyces cerevisiae. Molecular and Cellular Biology, 1986, 6, 2089-2097.	1.1	121
1226	Effects of the Position of the Simian Virus 40 Enhancer on Expression of Multiple Transcription Units in a Single Plasmid. Molecular and Cellular Biology, 1986, 6, 2593-2601.	1.1	91
1227	Androgen Regulation by the Long Terminal Repeat of Mouse Mammary Tumor Virus. Molecular and Cellular Biology, 1986, 6, 2847-2854.	1.1	47
1228	Promoter and Enhancer Elements from the Rat Elastase I Gene Function Independently of each other and of Heterologous Enhancers. Molecular and Cellular Biology, 1987, 7, 3466-3472.	1.1	14
1229	Tissue-Specific Enhancer of the Human Glycoprotein Hormone α-Subunit Gene: Dependence on Cyclic AMP-Inducible Elements. Molecular and Cellular Biology, 1987, 7, 3994-4002.	1.1	126
1230	Regulated Expression of a Complete Human β-Globin Gene Encoded by a Transmissible Retrovirus Vector. Molecular and Cellular Biology, 1987, 7, 887-897.	1.1	79
1231	Six Distinct Nuclear Factors Interact with the 75-Base-Pair Repeat of the Moloney Murine Leukemia Virus Enhancer. Molecular and Cellular Biology, 1987, 7, 1101-1110.	1.1	252
1232	Transcription of Adenovirus 2 Major Late and Peptide IX Genes under Conditions of In Vitro Nucleosome Assembly. Molecular and Cellular Biology, 1987, 7, 1401-1408.	1.1	59
1233	Expression of the c- <i>myc</i> Oncogene under Control of an Immunoglobulin Enhancer in EÂμ- <i>myc</i> Transgenic Mice. Molecular and Cellular Biology, 1987, 7, 1436-1444.	1.1	29
1234	Negative regulation contributes to tissue specificity of the immunoglobulin heavy-chain enhancer. Molecular and Cellular Biology, 1987, 7, 2558-2567.	1.1	80
1235	Duplicated CArG box domains have positive and mutually dependent regulatory roles in expression of the human alpha-cardiac actin gene. Molecular and Cellular Biology, 1987, 7, 2803-2813.	1.1	144
1236	Identification and Characterization of Two Functional Domains within the Murine Heavy-Chain Enhancer. Molecular and Cellular Biology, 1988, 8, 145-152.	1.1	76
1237	Detection of Two Tissue-Specific DNA-Binding Proteins with Affinity for Sites in the Mouse β-Globin Intervening Sequence 2. Molecular and Cellular Biology, 1988, 8, 381-392.	1.1	52
1238	The Muscle Creatine Kinase Gene Is Regulated by Multiple Upstream Elements, Including a Muscle-Specific Enhancer. Molecular and Cellular Biology, 1988, 8, 62-70.	1.1	146
1239	Comparison of Intron-Dependent and Intron-Independent Gene Expression. Molecular and Cellular Biology, 1988, 8, 4395-4405.	1.1	234
1240	Two Regulatory Domains Flank the Mouse H19 Gene. Molecular and Cellular Biology, 1988, 8, 4707-4715.	1.1	49
1241	Localization of a repressive sequence contributing to B-cell specificity in the immunoglobulin heavy-chain enhancer. Molecular and Cellular Biology, 1988, 8, 988-992.	1.1	37
1242	Genes Activated in the Presence of an Immunoglobulin Enhancer or Promoter Are Negatively Regulated by a T-Lymphoma Cell Line. Molecular and Cellular Biology, 1988, 8, 1932-1939.	1.1	20

#	Article	IF	CITATIONS
1243	The NF-κB-Binding Site Mediates Phorbol Ester-Inducible Transcription in Nonlymphoid Cells. Molecular and Cellular Biology, 1988, 8, 3526-3531.	1.1	56
1244	Inherited Immunodeficiency with a Defect in a Major Histocompatibility Complex Class II Promoter-Binding Protein Differs in the Chromatin Structure of the HLA-DRA Gene. Molecular and Cellular Biology, 1989, 9, 296-302.	1.1	21
1245	Tissue-Specific Transcription of the Mouse α-Fetoprotein Gene Promoter Is Dependent on HNF-1. Molecular and Cellular Biology, 1989, 9, 4204-4212.	1.1	68
1246	Transcription from a Murine T-Cell Receptor Vβ Promoter Depends on a Conserved Decamer Motif Similar to the Cyclic AMP Response Element. Molecular and Cellular Biology, 1989, 9, 4835-4845.	1.1	29
1247	The <i>Xenopus laevis</i> U2 Gene Distal Sequence Element (Enhancer) Is Composed of Four Subdomains That Can Act Independently and Are Partly Functionally Redundant. Molecular and Cellular Biology, 1989, 9, 1682-1690.	1.1	19
1248	Promoter Upstream Elements of the Chicken Cardiac Myosin LightChain 2-A Gene Interact with <i>trans-Ading</i> Regulatory Factors for Muscle-Specific Transcription. Molecular and Cellular Biology, 1989, 9, 2513-2525.	1.1	60
1249	DNA methylation and gene expression. Microbiological Reviews, 1991, 55, 451-458.	10.1	585
1250	Evidence for Cell-Specific Regulation of Transcription of the Rat α _{2A} -Adrenergic Receptor Gene. Hypertension, 1996, 27, 1018-1024.	1.3	11
1251	Anomalous rearrangements of the immunoglobulin heavy chain genes in human leukemias support the loop-out mechanism of class switch Journal of Clinical Investigation, 1992, 90, 2299-2303.	3.9	12
1252	Wie werden unsere Gene ein- und ausgeschaltet?. , 2000, , 7-14.		Ο
1252 1255	Wie werden unsere Gene ein- und ausgeschaltet?. , 2000, , 7-14. Achieving Appropriate Glycosylation During the Scaleup of Antibody Production. , 2004, , 53-78.		0 0
1255	Achieving Appropriate Glycosylation During the Scaleup of Antibody Production. , 2004, , 53-78.		0
1255 1258	Achieving Appropriate Glycosylation During the Scaleup of Antibody Production. , 2004, , 53-78. Protein Engineering of Antibody Molecules. , 1973, , 311-317. Rearrangement and Activation of C-MYC Oncogene by Chromosome Translocation in B Cell Neoplasias.		0 2
1255 1258 1259	Achieving Appropriate Glycosylation During the Scaleup of Antibody Production. , 2004, , 53-78. Protein Engineering of Antibody Molecules. , 1973, , 311-317. Rearrangement and Activation of C-MYC Oncogene by Chromosome Translocation in B Cell Neoplasias. , 1984, , 91-116.	0.0	0 2 2
1255 1258 1259 1260	Achieving Appropriate Glycosylation During the Scaleup of Antibody Production. , 2004, , 53-78. Protein Engineering of Antibody Molecules. , 1973, , 311-317. Rearrangement and Activation of C-MYC Oncogene by Chromosome Translocation in B Cell Neoplasias. , 1984, , 91-116. Transcription by RNA Polymerase II. , 1984, , 65-97. Toward an Understanding of Gene Expression in Plants. Stadler Genetics Symposia Series, 1984, ,	0.0	0 2 2 3
1255 1258 1259 1260 1261	Achieving Appropriate Glycosylation During the Scaleup of Antibody Production. , 2004, , 53-78. Protein Engineering of Antibody Molecules. , 1973, , 311-317. Rearrangement and Activation of C-MYC Oncogene by Chromosome Translocation in B Cell Neoplasias. , 1984, , 91-116. Transcription by RNA Polymerase II. , 1984, , 65-97. Toward an Understanding of Gene Expression in Plants. Stadler Genetics Symposia Series, 1984, , 605-625.	0.0	0 2 2 3 0
1255 1258 1259 1260 1261 1262	Achieving Appropriate Glycosylation During the Scaleup of Antibody Production. , 2004, , 53-78. Protein Engineering of Antibody Molecules. , 1973, , 311-317. Rearrangement and Activation of C-MYC Oncogene by Chromosome Translocation in B Cell Neoplasias. , 1984, , 91-116. Transcription by RNA Polymerase IL. , 1984, , 65-97. Toward an Understanding of Gene Expression in Plants. Stadler Genetics Symposia Series, 1984, , 605-625. Molecular Genetics and Individuality. , 1984, , 61-75. Correct Developmental and Tissue Specific Expression of a Cloned Alcohol Dehydrogenase Gene	0.0	0 2 2 3 0

#	Article	IF	CITATIONS
1265	Control Elements Located within the Major Intervening Sequences of Murine Kappa Light Chain Genes. , 1984, , 93-104.		0
1266	Expression of crystalline genes by cloned cultured cells Seibutsu Butsuri, 1984, 24, 258-261.	0.0	0
1267	Enhancers as Transcriptional Control Elements. , 1984, , 26-34.		1
1268	SV40 als Modellsystem zum Studium eukaryontischer Genregulation. , 1985, , 177-188.		0
1269	Transcription Control in Eucaryotes-Enhancers and Promoters. , 1985, , 267-283.		0
1270	Strategies for Stable Human Monoclonal Antibody Production. , 1985, , 71-91.		4
1272	Negative Control of Viral and Cellular Enhancer Activity by the Products of the Immortalizing E1A Gene of Human Adenovirus-2. Jerusalem Symposia on Quantum Chemistry and Biochemistry, 1985, , 87-99.	0.2	0
1273	DNA-Mediated Tranformation of Lymphoid Cells. , 1985, , 21-29.		1
1274	Control of transcription and mRNA processing. , 1986, , 341-382.		0
1275	Murine T-Cell Receptor Genes and the Problems of Cellular Recognition and Repertoire Selection. , 1986, , 137-142.		0
1276	Novel Antibodies by DNA Transfection. , 1986, , 309-314.		1
1277	Cell-Type-Specific Synthesis of Murine Immunoglobulin μ RNA from an Adenovirus Vector. Molecular and Cellular Biology, 1986, 6, 123-133.	1.1	20
1278	Regulation of Alpha-Amylase Gene Expression. , 1986, , 47-54.		1
1279	Activation of the c-myc Oncogene. , 1986, 38, 399-406.		2
1281	Molecular Genetics of Murine Lupus. , 1986, , 500-511.		0
1282	Genetic Elements Governing Adenoviral Gene Expression. , 1986, , 161-191.		2
1283	Expression of Transfected Genes. , 1986, , 223-241.		3
1284	Mammalian Gene Transfer and Gene Expression. Advances in Experimental Medicine and Biology, 1986, 205, 319-349.	0.8	1

#	Article	IF	CITATIONS
1285	Regulation of the Assembly and Expression of Immunoglobulin Genes: Variable Region Assembly and Heavy Chain Class Switching. , 1986, , 1-17.		0
1286	The SV40 Early Promoter. , 1987, , 53-83.		1
1287	Molecular Mechanisms of Epidermal Growth Factor Regulation of Prolactin Gene Transcription. , 1987, , 473-498.		0
1288	Transfectomas Provide Antibodies with Novel Structures and Functions. , 1987, , 167-178.		0
1289	Developmental and Hormonal Regulation of Neuroendocrine Gene Transcription. , 1987, 43, 499-534.		5
1291	Human Hybridomas. , 1987, , 273-298.		0
1292	Assembled Genes. , 1987, , 497-547.		0
1293	Functions of Chromatin and the Expression of Genes. , 1987, , 599-684.		1
1294	The Human Growth-Hormone Gene Family. , 1987, , 121-135.		0
1295	Transcriptional and Post-Transcriptional Strategies in Neuroendocrine Gene Expression. , 1988, 5, 317-334.		0
1296	The Cell-Specific Enhancer of the Mouse Transthyretin (Prealbumin) Gene Binds a Common Factor at One Site and a Liver-Specific Factor(s) at Two Other Sites. Molecular and Cellular Biology, 1988, 8, 81-90.	1.1	70
1297	Identification of the Cis-Acting Elements and Trans-Acting Factors That Mediate Cell-Specific and Thyroid Hormone Stimulation of Growth Hormone Gene Expression. , 1988, 44, 53-114.		5
1298	DNase I- and Micrococcal Nuclease-Hypersensitive Sites in the Human Apolipoprotein B Gene Are Tissue Specific. Molecular and Cellular Biology, 1988, 8, 71-80.	1.1	19
1299	Cell-type-specific regulation of growth hormone gene expression. , 1989, , 19-28.		1
1300	A chromosomal basis of lymphoid malignancy in man. , 1989, , 129-145.		0
1301	Thyroid Specific Gene Expression. Advances in Experimental Medicine and Biology, 1989, 261, 373-389.	0.8	1
1302	Transcriptional Regulation of Immunoglobulin Heavy Chain and T-Cell Receptor Beta Chain Genes. , 1989, 254, 77-86.		0
1303	Regulation of Myofibrillar Protein Gene Expression. , 1989, , 103-122.		0

#	Article	IF	CITATIONS
1304	Recombination of the c-myc Gene with IgH Enhancer-Sî¼ Sequences in a Murine Plasmacytoma (DCPC 21) Without Visible Chromosomal Translocations. Current Topics in Microbiology and Immunology, 1990, 166, 267-278.	0.7	0
1305	Molecular genetic survey of 5 kindreds with kininogen deficiency in Japan. Okayama Igakkai Zasshi, 1990, 102, 377-389.	0.0	0
1306	Molecular genetics of immunoglobulin variable regions. , 1990, , 219-250.		0
1307	Identification of a Novel Factor That Interacts with an Immunoglobulin Heavy-Chain Promoter and Stimulates Transcription in Conjunction with the Lymphoid Cell-Specific Factor OTF2. Molecular and Cellular Biology, 1990, 10, 2145-2153.	1.1	12
1308	Functional Analysis of Elements Affecting Expression of the β-Actin Gene of Carpt. Molecular and Cellular Biology, 1990, 10, 3432-3440.	1.1	31
1309	Regulation of the Human T-Cell Receptor α Gene Enhancer: Multiple Ubiquitous and T-Cell-Specific Nuclear Proteins Interact with Four Hypomethylated Enhancer Elements. Molecular and Cellular Biology, 1990, 10, 4720-4727.	1.1	37
1310	Functional Analysis and Nucleotide Sequence of the Promoter Region of the Murine <i>hck</i> Gene. Molecular and Cellular Biology, 1990, 10, 4603-4611.	1.1	8
1311	Distribution of Mutations around Rearranged Heavy-Chain Antibody Variable-Region Genes. Molecular and Cellular Biology, 1990, 10, 5187-5196.	1.1	56
1312	Interaction of a Nuclear Protein with a Palindromic Sequence of the Mouse Immunoglobulin λ2-Chain Gene Promoter Is Important for Its Transcription. Molecular and Cellular Biology, 1990, 10, 5894-5902.	1.1	1
1313	EBV Genome Organization in Lymphoblastoid Cell Lines Established Following Enhancement With Aflatoxin B1 and Relevance to Nasopharyngeal Carcinoma. , 1991, , 391-405.		0
1314	Positive and Negative Regulation of Immunoglobulin Gene Expression by a Novel B-Cell-Specific Enhancer Element. Molecular and Cellular Biology, 1991, 11, 75-83.	1.1	8
1315	The 5′-Flanking Region of the Mouse Thymidylate Synthase Gene Is Necessary But Not Sufficient for Normal Regulation in Growth-Stimulated Cells. Molecular and Cellular Biology, 1991, 11, 1023-1029.	1.1	19
1316	Identification of an Enhancer Required for the Expression of a Mouse Major Urinary Protein Gene in the Submaxillary Gland. Molecular and Cellular Biology, 1991, 11, 4244-4252.	1.1	7
1317	Regulation and a Possible Stage-Specific Function of Oct-2 during Pre-B-Cell Differentiation. Molecular and Cellular Biology, 1991, 11, 4885-4894.	1.1	23
1318	Stimulation of Lymphocytes by Anti-Idiotypes Bearing the Internal Image of Viral Antigens. , 1992, , 121-133.		0
1320	The — 6.1-Kilobase Chicken Lysozyme Enhancer Is a Multifactorial Complex Containing Several Cell-Type-Specific Elements. Molecular and Cellular Biology, 1992, 12, 2339-2350.	1.1	17
1321	Combinatorial Regulation by Promoter and Intron 1 Regions of the Metallothionein SpMTA Gene in the Sea Urchin Embryo. Molecular and Cellular Biology, 1993, 13, 993-1001.	1.1	5
1322	The Immunoglobulin Heavy Chain Locus Contains Another B-Cell-Specific 3' Enhancer Close to the α Constant Region. Molecular and Cellular Biology, 1993, 13, 1547-1553.	1.1	45

#	Article	IF	CITATIONS
1323	Introns are Essential for Growth-Regulated Expression of the Mouse Thymidylate Synthase Gene. Molecular and Cellular Biology, 1993, 13, 1565-1571.	1.1	10
1324	Functional analysis of the VI'3 promoter of the murine l'δT-cell receptor. Molecular and Cellular Biology, 1994, 14, 803-814.	1.1	7
1325	DNA vaccination by somatic transgene immunization. Principles and Practice, 1998, , 143-156.	0.3	0
1328	Genetics and Epigenetics: A Historical Overview. , 2019, , 1-46.		0
1330	Enhancer RNA: biogenesis, function, and regulation. Essays in Biochemistry, 2020, 64, 883-894.	2.1	35
1332	Rapid Rescue of Cellular Transcriptional Activator Elements by Amplification of a Single Copy Selection Gene. Journal of Biological Chemistry, 1989, 264, 12278-12283.	1.6	1
1333	Enhanced Gene Expression by the Poly(dT-dG) · Poly(dC-dA) Sequence. Molecular and Cellular Biology, 1984, 4, 2622-2630.	1.1	118
1334	Adenovirus 5 E2 Transcription Unit: an E1A-Inducible Promoter with an Essential Element That Functions Independently of Position or Orientation. Molecular and Cellular Biology, 1984, 4, 875-882.	1.1	91
1335	Fine Mapping of an Immunoglobulin Gene Activator. Molecular and Cellular Biology, 1984, 4, 1042-1049.	1.1	98
1336	Repeated Consensus Sequence and Pseudopromoters in the Four Coordinately Regulated Tubulin Genes of <i>Chlamydomonas reinhardi</i> . Molecular and Cellular Biology, 1984, 4, 1115-1124.	1.1	38
1337	Transcription Control Region Within the Protein-Coding Portion of Adenovirus E1A Genes. Molecular and Cellular Biology, 1984, 4, 1293-1305.	1.1	45
1338	Promoter Dependence of Enhancer Activity. Molecular and Cellular Biology, 1984, 4, 1664-1668.	1.1	25
1339	tk Enzyme Expression in Differentiating Muscle Cells Is Regulated Through an Internal Segment of the Cellular <i>tk</i> Gene. Molecular and Cellular Biology, 1984, 4, 1777-1784.	1.1	87
1340	Stimulation of Sea Urchin H2B Histone Gene Transcription by a Chromatin-Associated Protein Fraction Depends on Gene Sequences Downstream of the Transcription Start Site. Molecular and Cellular Biology, 1985, 5, 2764-2769.	1.1	23
1341	Glucocorticoid Receptor Binding and Activation of a Heterologous Promoter by Dexamethasone by the First Intron of the Human Growth Hormone Gene. Molecular and Cellular Biology, 1985, 5, 2984-2992.	1.1	82
1342	Differential Expression of the Human Gonadotropin α Gene in Ectopic and Eutopic Cells. Molecular and Cellular Biology, 1985, 5, 3157-3167.	1.1	23
1343	Enhancer-Dependent Expression of the Rat Preproinsulin Gene in Bovine Papillomavirus Type 1 Vectors. Molecular and Cellular Biology, 1985, 5, 3507-3516.	1.1	11
1344	Independent Immunoglobulin Class-Switch Events Occurring in a Single Myeloma Cell Line. Molecular and Cellular Biology, 1985, 5, 856-868.	1.1	45

ARTICLE IF CITATIONS Gene transfer method for transient gene expression, stable transformation, and cotransformation of 1345 18 1.1 suspension cell cultures. Molecular and Cellular Biology, 1985, 5, 1188-1190. <i>trans</i> Activation of the Simian Virus 40 Late Transcription Unit by T-Antigen. Molecular and 1346 1.1 134 Cellular Biology, 1985, 5, 1391-1399. Accurate and Efficient Transcription of Human c-<i>myc</i> Genes Injected into <i>Xenopus laevis</i> 1347 1.1 17 Oocytes. Molecular and Cellular Biology, 1985, 5, 1434-1441. Linker Scanning Mutagenesis of the 5â€2-Flanking Region of the Mouse Î2-Major-Globin Gene: Sequence Requirements for Transcription in Erythroid and Nonerythroid Cells. Molecular and Cellular Biology, 1985, 5, 1498-1511. 1348 Expression of Human Î²-Globin Genes in Transgenic Mice: Effects of a Flanking Metallothionein-Human 1349 1.1 26 Growth Hormone Fusion Gene. Molecular and Cellular Biology, 1985, 5, 1977-1983. Control of Adenovirus Late Promoter Expression in Two Human Cell Lines. Molecular and Cellular 1.1 Biology, 1985, 5, 2433-2442. Activation of the Adenovirus and BK Virus Late Promoters: Effects of the BK Virus Enhancer and 1351 1.1 14 <i>trans</i>-Acting Viral Early Proteins. Molecular and Cellular Biology, 1986, 6, 3596-3605. Cellular Promoters Incorporated into the Adenovirus Genome: Cell Specificity of Albumin and 1.1 Immunoglobulin Expression. Molecular and Cellular Biology, 1986, 6, 3791-3797. Differential Expression of Mouse \hat{l}^2/Goat $\hat{l}^2(\text{sup}, C(\text{sup}), Mouse \hat{l}^2/\text{Goat} \hat{l}^2(\text{sup}, \text{and Mouse } \hat{l}^2/\text{Goat})$ 1353 Îμ^{II} Hybrid Globin Genes in Murine Erythroleukemia Cells. Molecular and Cellular Biology, 1.1 0 1986, 6, 3873-3883. The mouse immunoglobulin heavy-chain gene enhancer contains sequences that inhibit transcription 1354 1.1 in vitro in HeLa cell extracts. Molecular and Cellular Biology, 1986, 6, 4117-4121. Binding in vitro of multiple cellular proteins to immunoglobulin heavy-chain enhancer DNA. 1355 1.1 65 Molecular and Cellular Biology, 1986, 6, 4168-4178. Activation of an enhancerless gene by chromosomal integration. Molecular and Cellular Biology, 1.1 1986, 6, 4179-4184. Random Isolation of Gene Activator Elements from the Human Genome. Molecular and Cellular 1357 1.1 12 Biology, 1986, 6, 4185-4194. DNA rearrangement causes a high rate of spontaneous mutation at the immunoglobulin heavy-chain 1.1 locus of a mouse myeloma cell line. Molecular and Cellular Biology, 1986, 6, 4228-4235. Multiple hormone-inducible enhancers as mediators of differential transcription. Molecular and 1359 1.1 27 Cellular Biology, 1986, 6, 4526-4538. Transcriptional control of the mouse prealbumin (transthyretin) gene: both promoter sequences and 1.1 93 a distinct enhancer are cell specific. Molecular and Cellular Biology, 1986, 6, 4697-4708. Murine erythropoietin gene: cloning, expression, and human gene homology. Molecular and Cellular 1361 1.1 54 Biology, 1986, 6, 849-858. Eel electric organ: hyperexpressing calmodulin system. Molecular and Cellular Biology, 1986, 6, 1.1 950-954.

#	Article	IF	CITATIONS
1363	A calcium ionophore-inducible cellular promoter is highly active and has enhancerlike properties. Molecular and Cellular Biology, 1986, 6, 1235-1243.	1.1	31
1364	trans Activation of the simian virus 40 enhancer. Molecular and Cellular Biology, 1986, 6, 1283-1295.	1.1	31
1365	An active chromatin structure acquired by translocated c-myc genes. Molecular and Cellular Biology, 1986, 6, 1357-1361.	1.1	13
1366	Two different factors act separately or together to specify functionally distinct activities at a single transcriptional enhancer. Molecular and Cellular Biology, 1986, 6, 993-1001.	1.1	75
1367	Enhancer sequences responsible for DNase I hypersensitivity in polyomavirus chromatin. Molecular and Cellular Biology, 1986, 6, 2249-2252.	1.1	10
1368	Genomic Hypomethylation and Far-5′ Sequence Alterations Are Associated with Carcinogen-Induced Activation of the Hamster Thymidine Kinase Gene. Molecular and Cellular Biology, 1986, 6, 3023-3033.	1.1	6
1369	Tissue-Specific Activity of the Pro-Opiomelanocortin Gene Promoter. Molecular and Cellular Biology, 1987, 7, 4058-4064.	1.1	26
1370	Complex protein binding within the mouse immunoglobulin heavy-chain enhancer. Molecular and Cellular Biology, 1987, 7, 4194-4203.	1.1	52
1371	Introns Are Inconsequential to Efficient Formation of Cellular Thymidine Kinase mRNA in Mouse L Cells. Molecular and Cellular Biology, 1987, 7, 4576-4581.	1.1	25
1372	Extinction of Expression of Immunoglobulin Genes in Myeloma × Fibroblast Somatic Cell Hybrids. Molecular and Cellular Biology, 1987, 7, 936-939.	1.1	22
1373	Different Activities of Viral Enhancer Elements before and after Stable Integration of Transfected DNAs. Molecular and Cellular Biology, 1987, 7, 1296-1299.	1.1	2
1374	In Vitro Transcription of Immunoglobulin Genes in a B-Cell Extract: Effects of Enhancer and Promoter Sequences. Molecular and Cellular Biology, 1987, 7, 1989-1994.	1.1	15
1375	Extinction of alpha-fetoprotein gene expression in somatic cell hybrids involves cis-acting DNA elements. Molecular and Cellular Biology, 1987, 7, 2606-2609.	1.1	6
1376	Chromatin fine-structure mapping of the goat beta F gene in fetal erythroid tissue. Molecular and Cellular Biology, 1987, 7, 2772-2782.	1.1	1
1377	The rat elastase I regulatory element is an enhancer that directs correct cell specificity and developmental onset of expression in transgenic mice. Molecular and Cellular Biology, 1987, 7, 2956-2967.	1.1	66
1378	B-Cell Control Region at the 5′ End of a Major Histocompatibility Complex Class II Gene: Sequences and Factors. Molecular and Cellular Biology, 1988, 8, 3975-3987.	1.1	63
1379	Expression of T-cell Receptor Alpha-Chain Genes in Transgenic Mice. Molecular and Cellular Biology, 1988, 8, 5459-5469.	1.1	19
1380	Systematic Binding Analysis of the Insulin Gene Transcription Control Region: Insulin and Immunoglobulin Enhancers Utilize Similar Transactivators. Molecular and Cellular Biology, 1988, 8, 2620-2627	1.1	79

#	Article	IF	CITATIONS
1381	Purification and Characterization of a High-Mobility-Group-Like DNA-Binding Protein That Stimulates rRNA Synthesis In Vitro. Molecular and Cellular Biology, 1988, 8, 3406-3414.	1.1	41
1382	Identification of an Octamer-Binding Site in the Mouse Kappa Light-Chain Immunoglobulin Enhancer. Molecular and Cellular Biology, 1989, 9, 4239-4247.	1.1	23
1383	Identification of a Yeast Protein with Properties Similar to Those of the Immunoglobulin Heavy-Chain Enhancer-Binding Protein NF-μE3. Molecular and Cellular Biology, 1989, 9, 4535-4540.	1.1	10
1384	Developmental Appearance of Transcription Factors That Regulate Liver-Specific Expression of the Aldolase B Gene. Molecular and Cellular Biology, 1989, 9, 4923-4931.	1.1	36
1385	The <i>bcl</i> -2 Candidate Proto-Oncogene Product Is a 24-Kilodalton Integral-Membrane Protein Highly Expressed in Lymphoid Cell Lines and lymphomas Carrying the t(14;18) Translocation. Molecular and Cellular Biology, 1989, 9, 701-710.	1.1	98
1386	Proteins Binding to Site C2 (μE3) in the Immunoglobulin Heavy-Chain Enhancer Exist in Multiple Oligomeric Forms. Molecular and Cellular Biology, 1989, 9, 776-786.	1.1	30
1387	Negative Transcriptional Regulatory Element That Functions in Embryonal Carcinoma Cells. Molecular and Cellular Biology, 1989, 9, 4032-4037.	1.1	8
1410	Journey to the surface of the cell: Fos regulation and the SRE. EMBO Journal, 1995, 14, 4905-13.	3.5	124
1411	Immunoglobulin gene transcription ceases upon deletion of a distant enhancer. EMBO Journal, 1995, 14, 6229-38.	3.5	27
1412	Goals for signal transduction pathways: linking up with transcriptional regulation. EMBO Journal, 1994, 13, 4717-28.	3.5	19
1413	Random activation of a transgene under the control of a hybrid hCD2 locus control region/lg enhancer regulatory element. EMBO Journal, 1995, 14, 575-84.	3.5	22
1414	T cell tolerance to Mlsa encoded antigens in T cell receptor V beta 8.1 chain transgenic mice. EMBO Journal, 1989, 8, 719-27.	3.5	60
1415	A novel, inducible and T cell-specific enhancer located at the 3' end of the T cell receptor alpha locus. EMBO Journal, 1989, 8, 729-33.	3.5	94
1416	IgH enhancer-mediated deregulation of N-myc gene expression in transgenic mice: generation of lymphoid neoplasias that lack c-myc expression. EMBO Journal, 1989, 8, 1121-8.	3.5	32
1417	The immunoglobulin kappa locus contains a second, stronger B-cell-specific enhancer which is located downstream of the constant region. EMBO Journal, 1989, 8, 1959-64.	3.5	92
1418	Octamer transcription factors bind to two different sequence motifs of the immunoglobulin heavy chain promoter. EMBO Journal, 1989, 8, 2001-8.	3.5	57
1419	An enhancer located in a CpG-island 3' to the TCR/CD3-epsilon gene confers T lymphocyte-specificity to its promoter. EMBO Journal, 1989, 8, 2527-35.	3.5	45
1420	A thyroid-specific nuclear protein essential for tissue-specific expression of the thyroglobulin promoter. EMBO Journal, 1989, 8, 2537-42.	3.5	110

#	Article	IF	CITATIONS
1421	Genetic basis of the antibody repertoire in Xenopus: analysis of the Vh diversity. EMBO Journal, 1989, 8, 2989-3001.	3.5	13
1422	The octamer-binding proteins form multi-proteinDNA complexes with the HSV alpha TIF regulatory protein. EMBO Journal, 1989, 8, 4229-38.	3.5	152
1423	V(D)J recombination in B cells is impaired but not blocked by targeted deletion of the immunoglobulin heavy chain intron enhancer. EMBO Journal, 1993, 12, 2321-7.	3.5	69
1424	Mutations of the intronic IgH enhancer and its flanking sequences differentially affect accessibility of the JH locus. EMBO Journal, 1993, 12, 4635-45.	3.5	61
1425	Characterization of the hormone responsive element involved in the regulation of the progesterone receptor gene. EMBO Journal, 1991, 10, 1875-83.	3.5	50
1426	Transcription of T cell receptor beta-chain genes is controlled by a downstream regulatory element. EMBO Journal, 1988, 7, 745-50.	3.5	103
1427	Nuclear factors in human brain cells bind specifically to the JCV regulatory region. EMBO Journal, 1988, 7, 1205-10.	3.5	34
1428	Both immunoglobulin promoter and enhancer sequences are targets for suppression in myeloma-fibroblast hybrid cells. EMBO Journal, 1988, 7, 3093-8.	3.5	10
1429	Purification of a NF1-like DNA-binding protein from rat liver and cloning of the corresponding cDNA. EMBO Journal, 1988, 7, 3115-23.	3.5	113
1430	Identification of a novel lymphoid specific octamer binding protein (OTF-2B) by proteolytic clipping bandshift assay (PCBA). EMBO Journal, 1988, 7, 4221-9.	3.5	135
1431	Cell lineage specificity of chromatin configuration around the immunoglobulin heavy chain enhancer. EMBO Journal, 1988, 7, 2393-9.	3.5	13
1432	A T cell-specific enhancer is located in a DNase I-hypersensitive area at the 3' end of the CD3-delta gene. EMBO Journal, 1988, 7, 2401-7.	3.5	53
1433	Functional redundancy in the tissue-specific enhancer of the Drosophila Sgs-4 gene. EMBO Journal, 1988, 7, 2559-67.	3.5	29
1434	Separate elements control DJ and VDJ rearrangement in a transgenic recombination substrate. EMBO Journal, 1990, 9, 117-25.	3.5	93
1435	Distinct positive and negative elements control the limited hepatocyte and choroid plexus expression of transthyretin in transgenic mice. EMBO Journal, 1990, 9, 869-78.	3.5	44
1436	An E mu-v-abl transgene elicits plasmacytomas in concert with an activated myc gene. EMBO Journal, 1990, 9, 897-905.	3.5	33
1437	Binding of a nuclear factor to a consensus sequence in the 5' flanking region of zein genes from maize. EMBO Journal, 1987, 6, 17-22.	3.5	80
1438	Developmental regulation by an enhancer from the Sgs-4 gene of Drosophila. EMBO Journal, 1987, 6, 207-14.	3.5	16

#	Article	IF	CITATIONS
1439	Tissue-specific expression of the human growth hormone gene is conferred in part by the binding of a specific trans-acting factor. EMBO Journal, 1987, 6, 971-81.	3.5	70
1440	Regulated expression of the Ren-2 gene in transgenic mice derived from parental strains carrying only the Ren-1 gene. EMBO Journal, 1987, 6, 983-7.	3.5	13
1441	Discrete elements within the SV40 enhancer region display different cell-specific enhancer activities. EMBO Journal, 1987, 6, 1017-25.	3.5	151
1442	The conserved decanucleotide from the immunoglobulin heavy chain promoter induces a very high transcriptional activity in B-cells when introduced into an heterologous promoter. EMBO Journal, 1987, 6, 1685-90.	3.5	65
1443	Cis- and trans-acting elements responsible for the cell-specific expression of the human alpha 1-antitrypsin gene. EMBO Journal, 1987, 6, 2759-66.	3.5	85
1444	An enhancer element lies 3' to the human A gamma globin gene. EMBO Journal, 1987, 6, 2997-3004.	3.5	64
1445	One cell-specific and three ubiquitous nuclear proteins bind in vitro to overlapping motifs in the domain B1 of the SV40 enhancer. EMBO Journal, 1987, 6, 3005-13.	3.5	72
1446	In vitro binding of cell-specific and ubiquitous nuclear proteins to the octamer motif of the SV40 enhancer and related motifs present in other promoters and enhancers. EMBO Journal, 1987, 6, 3015-25.	3.5	81
1447	Activation of V kappa gene rearrangement in pre-B cells follows the expression of membrane-bound immunoglobulin heavy chains. EMBO Journal, 1987, 6, 3299-305.	3.5	65
1448	Promoter and enhancer elements in the rearranged alpha chain gene of the human T cell receptor. EMBO Journal, 1987, 6, 3307-12.	3.5	27
1449	Localization of sequences in wheat endosperm protein genes which confer tissue-specific expression in tobacco. EMBO Journal, 1987, 6, 3559-64.	3.5	90
1450	Interactions of cellular proteins involved in the transcriptional regulation of the human immunodeficiency virus. EMBO Journal, 1987, 6, 3761-70.	3.5	199
1451	Promoter and enhancer elements containing a conserved sequence motif are recognized by nuclear factor III, a protein stimulating adenovirus DNA replication. EMBO Journal, 1987, 6, 3771-8.	3.5	50
1452	Driven by the same Ig enhancer and SV40 T promoter ras induced lung adenomatous tumors, myc induced pre-B cell lymphomas and SV40 large T gene a variety of tumors in transgenic mice. EMBO Journal, 1987, 6, 4055-65.	3.5	62
1453	Noncoding 3' sequences of the transferrin receptor gene are required for mRNA regulation by iron. EMBO Journal, 1987, 6, 1287-93.	3.5	81
1454	Cell type-specificity elements of the immunoglobulin heavy chain gene enhancer. EMBO Journal, 1987, 6, 1323-30.	3.5	160
1455	Structural and functional evidence for differential promoter activity of the two linked delta-crystallin genes in the chicken. EMBO Journal, 1985, 4, 445-52.	3.5	21
1456	Chromosome translocation activates heterogeneously initiated, bipolar transcription of a mouse c-myc gene. EMBO Journal, 1985, 4, 667-74.	3.5	13

#	Article	IF	CITATIONS
1457	Enhancer activity correlates with the oncogenic potential of avian retroviruses. EMBO Journal, 1985, 4, 949-56.	3.5	44
1458	Functional and pseudogenes are similarly organized and may equally contribute to the extensive antibody diversity of the IgVHII family. EMBO Journal, 1985, 4, 1225-30.	3.5	26
1459	Chromosome translocations clustered 5' of the murine c-myc gene qualitatively affect promoter usage: implications for the site of normal c-myc regulation. EMBO Journal, 1985, 4, 1441-7.	3.5	32
1460	Structure and cell-specific expression of a cloned human retinol binding protein gene: the 5'-flanking region contains hepatoma specific transcriptional signals. EMBO Journal, 1985, 4, 1981-9.	3.5	41
1461	DNA sequences responsible for tissue-specific expression of a chicken alpha-crystallin gene in mouse lens cells. EMBO Journal, 1985, 4, 2589-95.	3.5	20
1462	A transcription enhancer in the Herpesvirus saimiri genome. EMBO Journal, 1985, 4, 2669-74.	3.5	11
1463	Specific interaction of cellular factors with the B enhancer of polyoma virus. EMBO Journal, 1985, 4, 2675-85.	3.5	105
1464	Cell-type preference of immunoglobulin kappa and lambda gene promoters. EMBO Journal, 1985, 4, 2831-8.	3.5	70
1465	The nucleotide sequence of the human int-1 mammary oncogene; evolutionary conservation of coding and non-coding sequences. EMBO Journal, 1985, 4, 2905-9.	3.5	39
1466	Cell type-specific transcriptional enhancement in vitro requires the presence of trans-acting factors. EMBO Journal, 1985, 4, 3005-13.	3.5	81
1467	Selection of mouse neuroblastoma cell-specific polyoma virus mutants with stage differentiative advantages of replication. EMBO Journal, 1985, 4, 3215-21.	3.5	32
1468	Characterization of immunoglobulin enhancer deletions in murine plasmacytomas. EMBO Journal, 1985, 4, 3689-93.	3.5	22
1469	Metal-dependent SV40 viruses containing inducible enhancers from the upstream region of metallothionein genes. EMBO Journal, 1985, 4, 3851-9.	3.5	39
1470	Sequence of the murine and human cellular myc oncogenes and two modes of myc transcription resulting from chromosome translocation in B lymphoid tumours. EMBO Journal, 1983, 2, 2375-83.	3.5	207
1471	Transcriptional regulation of a herpes simplex virus immediate early gene is mediated through an enhancer-type sequence. EMBO Journal, 1984, 3, 389-95.	3.5	72
1472	Immunoglobulin gene expression and DNA methylation in murine pre-B cell lines. EMBO Journal, 1984, 3, 677-81.	3.5	2
1473	Synthesis of two mRNAs by utilization of alternate polyadenylation sites: expression of SV40-mouse immunoglobulin mu chain gene recombinants in Cos monkey cells. EMBO Journal, 1984, 3, 689-99.	3.5	32
1474	A close association between sites of DNase I hypersensitivity and sites of enhanced cleavage by micrococcal nuclease in the 5'-flanking region of the actively transcribed ovalbumin gene. EMBO Journal, 1984, 3, 1137-44.	3.5	17

# 1475	ARTICLE Transcriptional analysis of human zeta globin genes. EMBO Journal, 1984, 3, 1533-40.	IF 3.5	CITATIONS 20
1476	Tissue-specific and light-regulated expression of a pea nuclear gene encoding the small subunit of ribulose-1,5-bisphosphate carboxylase. EMBO Journal, 1984, 3, 1671-9.	3.5	154
1477	Modulation of enhancer activity by the hormone responsive regulatory element from mouse mammary tumor virus. EMBO Journal, 1984, 3, 1891-9.	3.5	38
1478	Long identical repeats in the mouse gamma 2b switch region and their implications for the mechanism of class switching. EMBO Journal, 1984, 3, 2033-40.	3.5	5
1479	Deletion of the IgH enhancer does not reduce immunoglobulin heavy chain production of a hybridoma IgD class switch variant. EMBO Journal, 1984, 3, 2473-6.	3.5	54
1480	Tissue-specific expression is conferred by a sequence from the 5' end of the rat albumin gene. EMBO Journal, 1984, 3, 2505-10.	3.5	113
1481	Activation of immunoglobulin mu gene expression involves stepwise demethylation. EMBO Journal, 1984, 3, 3013-21.	3.5	10
1482	Unrearranged immunoglobulin lambda variable region is transcribed in kappa-producing myelomas. EMBO Journal, 1984, 3, 3031-5.	3.5	7
1483	Stimulation of in vitro transcription from the SV40 early promoter by the enhancer involves a specific trans-acting factor. EMBO Journal, 1984, 3, 3129-33.	3.5	138
1484	Multiple sequence motifs are involved in SV40 enhancer function. EMBO Journal, 1986, 5, 387-97.	3.5	320
1485	The immunoglobulin heavy-chain B-lymphocyte enhancer efficiently stimulates transcription in non-lymphoid cells. EMBO Journal, 1986, 5, 553-60.	3.5	76
1486	A transcriptional enhancer sequence of HTLV-I is responsible for trans-activation mediated by p40 chi HTLV-I. EMBO Journal, 1986, 5, 713-8.	3.5	147
1487	The lysozyme enhancer: cell-specific activation of the chicken lysozyme gene by a far-upstream DNA element. EMBO Journal, 1986, 5, 719-24.	3.5	66
1488	Regulatory elements involved in Drosophila Adh gene expression are conserved in divergent species and separate elements mediate expression in different tissues. EMBO Journal, 1986, 5, 1275-89.	3.5	45
1489	A transcriptional enhancer with specificity for erythroid cells is located in the long terminal repeat of the Friend murine leukemia virus. EMBO Journal, 1986, 5, 1615-23.	3.5	53
1490	The mouse immunoglobulin heavy-chain enhancer: effect on transcription in vitro and binding of proteins present in HeLa and lymphoid B cell extracts. EMBO Journal, 1986, 5, 1791-7.	3.5	62
1491	Nuclear factors binding specific sequences within the immunoglobulin enhancer interact differentially with other enhancer elements. EMBO Journal, 1986, 5, 3251-8.	3.5	42
1492	Secondary genomic rearrangement events in pre-B cells: VHDJH replacement by a LINE-1 sequence and directed class switching. EMBO Journal, 1986, 5, 3259-66.	3.5	87

#	Article	IF	CITATIONS
1493	Sequence conservation in the protein coding and intron regions of the engrailed transcription unit. EMBO Journal, 1986, 5, 3583-9.	3.5	71
1495	Mannose binding protein is involved in first-line host defence: evidence from transgenic mice. Immunology, 1995, 85, 153-9.	2.0	43
1496	Production of heavy-chain class-switch variants of human monoclonal antibody by recombinant DNA technology. Clinical and Experimental Immunology, 1988, 71, 508-16.	1.1	23
1500	Every enhancer works with every promoter for all the combinations tested: could new regulatory pathways evolve by enhancer shuffling?. Gene Expression, 1991, 1, 71-81.	0.5	35
1501	Molecular architecture of enhancer–promoter interaction. Current Opinion in Cell Biology, 2022, 74, 62-70.	2.6	17
1502	Human monoclonal antibodies: Methods of production and some aspects of their application in oncology. Medical Oncology and Tumor Pharmacotherapy, 1984, 1, 235-46.	1.0	9
1503	Non-Darwinian Molecular Biology. Frontiers in Genetics, 2022, 13, 831068.	1.1	4
1504	Biology of interleukin-2. Survey of Immunologic Research, 1984, 3, 122-6.	0.4	5
1505	Different ways to modify monoclonal antibodies. Medical Oncology and Tumor Pharmacotherapy, 1984, 1, 227-233.	1.0	14
1506	Programmed development in the mouse embryo. Development (Cambridge), 1984, 83, 197-231.	1.2	17
1507	Coming full circle: On the origin and evolution of the looping model for enhancer–promoter communication. Journal of Biological Chemistry, 2022, 298, 102117.	1.6	21
1508	Transcriptional enhancers at 40: evolution of a viral DNA element to nuclear architectural structures. Trends in Genetics, 2022, 38, 1019-1047.	2.9	11
1509	Prostate Cancer Epigenetic Plasticity and Enhancer Heterogeneity: Molecular Causes, Consequences and Clinical Implications. Advances in Experimental Medicine and Biology, 2022, , 255-275.	0.8	1
1512	3′ IgH Enhancer Elements Shift Synergistic Interactions During B Cell Development. Journal of Immunology, 1998, 160, 4896-4903.	0.4	49
1513	lg Heavy Chain Expression and Class Switching In Vitro from an Allele Lacking the 3′ Enhancers DNase I-Hypersensitive hs3A and hs1,2. Journal of Immunology, 1999, 162, 2791-2803.	0.4	25
1514	An unusual clonotypic determinant on a cytotoxic T lymphocyte line is encoded by an immunoglobulin heavy chain variable region gene Journal of Immunology, 1985, 135, 4204-4214.	0.4	7
1515	A deep learning based two-layer predictor to identify enhancers and their strength. Methods, 2023, 211, 23-30.	1.9	1
1517	Noncoding RNAs in human health and diseases. , 2023, , 139-152.		0

		CITATION REPORT		
#	Article		IF	CITATIONS
1518	Toward a comprehensive catalog of regulatory elements. Human Genetics, 2023, 142, 1091-11	11.	1.8	4
1524	The Hidden Layer of RNA Variants. RNA Technologies, 2023, , 343-369.		0.2	0