The effects of the interaction between resonances in the sphere-plane structure; applications to surface enhance

Surface Science 124, 506-528 DOI: 10.1016/0039-6028(83)90806-3

Citation Report

#	Article	IF	CITATIONS
1	Surface enhanced spectroscopy. Progress in Surface Science, 1984, 17, 153-320.	3.8	275
2	Role of waveguide and surface plasmon resonances in surface-enhanced Raman scattering at coldly evaporated metallic films. Solid State Communications, 1984, 52, 197-201.	0.9	35
3	Frequency Shifts of an Electric-Dipole Resonance near a Conducting Surface. Physical Review Letters, 1984, 52, 1041-1044.	2.9	139
4	Effect of Surface Dynamical Fluctuations on Light Scattering by a Nearby Dipole. Physical Review Letters, 1985, 54, 34-37.	2.9	21
5	Spontaneous emission by two atoms with different resonance frequencies near a metal surface. Physical Review B, 1985, 32, 3622-3633.	1.1	19
6	Cluster-model calculation of Raman intensity for vibration of CO adsorbed on copper. Surface Science, 1986, 177, 101-113.	0.8	2
7	Surface plasmon dispersion relation and local field enhancement distribution for a deep sinusoidal grating. Surface Science, 1986, 172, 230-256.	0.8	8
8	Resonant response of a bare metallic grating to S-polarized light. Progress in Surface Science, 1986, 22, 1-99.	3.8	28
9	Chemical accessibility of sers active structures on anodized and electroplated copper surfaces. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1986, 197, 373-379.	0.3	6
10	Optical Response of a Sphere Coupled to a Metal Substrate. Journal of the Physical Society of Japan, 1987, 56, 1587-1602.	0.7	70
11	On the role of local modes in the optics of the metal/electrolyte interface. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 228, 179-196.	0.3	9
12	Field Enhancement in a Spherical Cavity beneath a Metal Surface. Journal of the Physical Society of Japan, 1988, 57, 3188-3197.	0.7	3
13	Interaction of light with an atom near the surface of a superlattice. I. Periodic case. Physical Review B, 1989, 39, 8284-8292.	1.1	4
14	Optical properties of microrough metal surfaces. Progress in Surface Science, 1990, 33, 91-169.	3.8	16
15	Photodissociation near a rough metal surface: Effect of reaction fields. Journal of Chemical Physics, 1990, 93, 9106-9112.	1.2	8
16	Surface modes of two spheres embedded into a third medium. Surface Science, 1991, 245, 207-212.	0.8	8
17	Surface modes of coupled sphere systems. Solid State Communications, 1991, 78, 525-529.	0.9	4
18	Surface modes of a sphere coupled to a semi-infinite medium. Journal of Physics Condensed Matter, 1991, 3, 7857-7866.	0.7	1

ATION RED

#	Article	IF	CITATIONS
19	Coupled electromagnetic modes between a corrugated surface and a thin probe tip. Journal of Chemical Physics, 1991, 95, 2056-2064.	1.2	63
20	Optical absorption by a small sphere above a substrate with inclusion of nonlocal effects. Physical Review B, 1992, 45, 11209-11215.	1.1	72
21	In-situ investigation of low-pressure diamond growth by elastic scattering of light and reflectance spectroscopy. Diamond and Related Materials, 1992, 1, 161-163.	1.8	8
22	Plasmon resonances and near-field optical microscopy: a self-consistent theoretical model. Applied Optics, 1992, 31, 5380.	2.1	30
23	A new method of surface plasmon excitation using metallic fine particles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 217-218, 171-175.	2.6	14
24	Interference of locally excited surface plasmons. Journal of Applied Physics, 1997, 81, 1798-1806.	1.1	120
25	Light emission from surface plasmon polaritons mediated by metallic fine particles. Physical Review B, 1997, 55, 4774-4782.	1.1	56
26	General vector basis function solution of Maxwell's equations. Physical Review E, 1997, 56, 1102-1112.	0.8	120
27	Magneto-optics via the near field. Surface Science, 1998, 406, 32-47.	0.8	19
28	Field Enhancement by a Metallic Sphere on Dielectric Substrates. Optical Review, 1999, 6, 211-214.	1.2	23
29	Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy. Optics Communications, 2000, 182, 321-328.	1.0	426
30	Operation of scanning plasmon near-field microscope with gold and silver tips in tapping mode: demonstration of subtip resolution. Optics Communications, 2000, 185, 83-93.	1.0	21
31	Field-enhanced scanning optical microscope. Optics Letters, 2000, 25, 631.	1.7	17
32	Elastic Scattering by a Metal Sphere with an Adsorbed Molecule as a Model for the Detection of Single Molecules by Scanning Probe Enhanced Elastic Resonant Scattering (SPEERS). Japanese Journal of Applied Physics, 2001, 40, 4391-4394.	0.8	9
33	Investigations of the interference of surface plasmons on rough silver surface by scanning plasmon near-field microscope. Ultramicroscopy, 2001, 88, 127-138.	0.8	19
34	Pure optical contrast in scattering-type scanning near-field microscopy. Journal of Microscopy, 2001, 202, 77-83.	0.8	172
35	ATR-SNOM-Raman spectroscopy. Chemical Physics Letters, 2001, 341, 425-430.	1.2	34
36	Damping of a moving particle near a wall: A relativistic approach. Physical Review B, 2001, 64, .	1.1	20

#	ARTICLE Near-Field Spectral Analysis of Metallic Beads. , 2001, , 97-123.	IF	Citations
37	Resonant electromagnetic field cavity between scanning tunneling microscope tips and substrate. Journal of Applied Physics, 2002, 91, 3028-3036.	1.1	13
39	Light Interaction between Gold Nanoshells Plasmon Resonance and Planar Optical Waveguides. Journal of Physical Chemistry B, 2002, 106, 5609-5612.	1.2	46
40	Apertureless Near-Field Probes. Springer Series in Optical Sciences, 2002, , 75-109.	0.5	3
41	On the Field Enhancement at Laser-illuminated Scanning Probe Tips. Single Molecules, 2002, 3, 281-284.	1.7	11
42	The Imaging of Small Domains of J-Aggregated Dye Molecules by Scanning Near-Field Optical Microscopy. Single Molecules, 2002, 3, 301-309.	1.7	2
43	Vibrational-infrared near-field microscopy. Vibrational Spectroscopy, 2002, 29, 109-114.	1.2	30
44	Microscopic morphology and SERS activity of Ag colloidal particles. Vibrational Spectroscopy, 2002, 30, 17-23.	1.2	114
45	Phonon-enhanced light–matter interaction at the nanometre scale. Nature, 2002, 418, 159-162.	13.7	733
46	Status of THz-to-Visible Nanospectroscopy Development. Journal of Biological Physics, 2003, 29, 195-199.	0.7	6
47	Lowering of the laser crystallization threshold of a-Si:H due to the presence of Si clusters at the surface. Applied Surface Science, 2003, 208-209, 272-276.	3.1	0
48	Optical Absorption Study of the Surface Plasmon Resonance in Gold Nanoparticles Immobilized onto a Gold Substrate by Self-Assembly Technique. Journal of Physical Chemistry B, 2003, 107, 10321-10324.	1.2	190
49	Resonance shift effects in apertureless scanning near-field optical microscopy. Physical Review B, 2003, 67, .	1.1	82
50	Apertureless near-field optical microscopy: Tip–sample coupling in elastic light scattering. Applied Physics Letters, 2003, 83, 5089-5091.	1.5	162
51	Local Electric Field and Scattering Cross Section of Ag Nanoparticles under Surface Plasmon Resonance by Finite Difference Time Domain Method. Journal of Physical Chemistry B, 2003, 107, 7607-7617.	1.2	299
52	Super-Resolution Scanning Near-Field Optical Microscopy. , 2003, , 141-153.		4
53	Enhanced infrared absorption with dielectric nanoparticles. Applied Physics Letters, 2003, 83, 2964-2966.	1.5	90
54	Stokes/anti-Stokes anomalies under surface enhanced Raman scattering conditions. Journal of Chemical Physics, 2004, 120, 11746-11753.	1.2	42

#	Article	IF	CITATIONS
55	Role of multipole moment of the probe in apertureless near-field optical microscopy. Ultramicroscopy, 2004, 101, 111-122.	0.8	13
56	Engineering nanostructures for giant optical fields. Chemical Physics Letters, 2004, 397, 91-95.	1.2	85
57	Nanomechanical Resonance Tuning and Phase Effects in Optical Near-Field Interaction. Nano Letters, 2004, 4, 1669-1672.	4.5	79
58	Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays. Journal of Chemical Physics, 2004, 121, 12606.	1.2	312
59	Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy. Applied Physics Letters, 2004, 85, 5064-5066.	1.5	185
60	Polarized Surface Enhanced Raman Scattering from Aligned Silver Nanowire Rafts. Journal of Physical Chemistry B, 2004, 108, 12724-12728.	1.2	166
61	Near-field microscopy by elastic light scattering from a tip. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2004, 362, 787-805.	1.6	518
62	Evanescent wave scattering and local electric field enhancement at ellipsoidal silver particles in the vicinity of a glass surface. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2004, 21, 1362.	0.8	45
63	Plasmon Hybridization in Nanoparticles near Metallic Surfaces. Nano Letters, 2004, 4, 2209-2213.	4.5	332
64	Engineering nanostructures for single-molecule surface-enhanced Raman spectroscopy. , 2004, , .		0
65	Second harmonic generation enhanced by local surface plasmon resonance. , 2005, , .		0
66	Electrically conductive and optically transparent Sb-doped SnO2 STM-probe for local excitation of electroluminescence. Ultramicroscopy, 2005, 104, 39-45.	0.8	6
67	Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission. Analytical Biochemistry, 2005, 337, 171-194.	1.1	1,225
68	Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields. Chemical Physics Letters, 2005, 403, 62-67.	1.2	326
69	Near-field optical microscopy in the presence of an intermediate layer. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2005, 98, 308-313.	0.2	2
70	Apertureless Near-Field Vibrational Imaging of Block-Copolymer Nanostructures with Ultrahigh Spatial Resolution. ChemPhysChem, 2005, 6, 2197-2203.	1.0	87
71	Surface-enhanced Raman spectroscopy: a brief retrospective. Journal of Raman Spectroscopy, 2005, 36, 485-496.	1.2	1,538
72	Near-field optical microscopy with a scanning tunneling microscope. Review of Scientific Instruments, 2005, 76, 023704.	0.6	8

#	Article	IF	CITATIONS
73	Surface enhanced infrared absorption by coupling phonon and plasma resonance. Applied Physics Letters, 2005, 87, 144102.	1.5	36
74	Photoemission Electron Microscopy as a Tool for the Investigation of Optical Near Fields. Physical Review Letters, 2005, 95, 047601.	2.9	136
75	Scanning Near-Field Optical Microscopic Observation of Surface-Enhanced Raman Scattering Mediated by Metallic Particle-Surface Gap Modes. Japanese Journal of Applied Physics, 2005, 44, 5313-5318.	0.8	10
76	Electrochemical Assembly and Potential-Dependent Plasmon Absorption of Au Nanoclusters Covered with a 4-Aminothiophenol Self-Assembled Monolayer. Journal of Physical Chemistry B, 2005, 109, 9897-9904.	1.2	23
77	Plasmons in the Metallic Nanoparticleâ^'Film System as a Tunable Impurity Problem. Nano Letters, 2005, 5, 2009-2013.	4.5	149
78	A SERS-Active System Based on Silver Nanoparticles Tethered to a Deposited Silver Film. Journal of Physical Chemistry B, 2006, 110, 13722-13727.	1.2	103
79	Nanoscale Resolved Infrared Probing of Crystal Structure and of Plasmonâ^'Phonon Coupling. Nano Letters, 2006, 6, 774-778.	4.5	57
80	Infrared Imaging of Single Nanoparticles via Strong Field Enhancement in a Scanning Nanogap. Physical Review Letters, 2006, 97, 060801.	2.9	81
81	Arrays of microdots of gold nanoparticles immobilized above gold surface probed by optical second-harmonic microscopy. Applied Physics Letters, 2006, 88, 103102.	1.5	6
82	One-dimensional arrays of nanoshell dimers for single molecule spectroscopy via surface-enhanced raman scattering. Journal of Chemical Physics, 2006, 125, 081102.	1.2	36
83	Engineering Nanostructures for Single-Molecule Surface-Enhanced Raman Spectroscopy. Israel Journal of Chemistry, 2006, 46, 283-291.	1.0	1
84	Labeled Gold Nanoparticles Immobilized at Smooth Metallic Substrates:Â Systematic Investigation of Surface Plasmon Resonance and Surface-Enhanced Raman Scattering. Journal of Physical Chemistry B, 2006, 110, 17444-17451.	1.2	218
85	Surface-Enhanced Raman Spectroscopy: a Brief Perspective. , 2006, , 1-17.		110
86	Coupled Plasmonic Plasmon/Photonic Resonance Effects in SERS. , 2006, , 67-85.		15
87	Ultrasensitive Immunoassays Based on Surface-Enhanced Raman Scattering by Immunogold Labels. , 2006, , 427-446.		16
88	Second-harmonic spectroscopy of surface immobilized gold nanospheres above a gold surface supported by self-assembled monolayers. Journal of Chemical Physics, 2006, 125, 174703.	1.2	31
89	Single molecule sensitivity in surface enhanced Raman scattering using surface plasmon. Handai Nanophotonics, 2006, , 101-140.	0.0	1
90	Time-Resolved Photoemission Electron Microscopy. Advances in Imaging and Electron Physics, 2006, 142, 159-323.	0.1	41

#	Article	IF	CITATIONS
91	Linear and nonlinear optical properties of gold nanospheres immobilized on a metallic surface. Physical Review B, 2006, 74, .	1.1	48
92	Hyper-Raman scattering enhanced by anisotropic dimer plasmons on artificial nanostructures. Journal of Chemical Physics, 2007, 127, 111103.	1.2	38
93	Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy. Optics Express, 2007, 15, 8550.	1.7	276
94	Single Molecule Tip-Enhanced Raman Spectroscopy with Silver Tips. Journal of Physical Chemistry C, 2007, 111, 1733-1738.	1.5	314
95	Use of tip-enhanced vibrational spectroscopy for analytical applications in chemistry, biology, and materials science. , 2007, , 115-155.		11
96	Plasmonic Nanostructures:  Artificial Molecules. Accounts of Chemical Research, 2007, 40, 53-62.	7.6	635
97	Tuning resonances on crescent-shaped noble-metal nanoparticles. New Journal of Physics, 2007, 9, 53-53.	1.2	93
98	Surface-Enhanced Raman Spectroscopy and Nanogeometry:  The Plasmonic Origin of SERS. Journal of Physical Chemistry C, 2007, 111, 17985-17988.	1.5	248
99	Plasmonic interactions between a metallic nanoshell and a thin metallic film. Physical Review B, 2007, 76, .	1.1	71
100	Tipâ€enhanced Raman spectroscopy reveals rich nanoscale adsorption chemistry of 2â€mercaptopyridine on Ag. Israel Journal of Chemistry, 2007, 47, 177-184.	1.0	16
101	Surface-Enhanced Raman Spectroscopy for DNA Detection by Nanoparticle Assembly onto Smooth Metal Films. Journal of the American Chemical Society, 2007, 129, 6378-6379.	6.6	302
102	Raman scattering and SEM study of bio-conjugated core-shell CdSe/ZnS quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 241-243.	0.8	28
103	Tip-Enhanced Raman Imaging and Nanospectroscopy: Sensitivity, Symmetry, and Selection Rules. Nanobiotechnology, 2007, 3, 172-196.	1.2	52
104	Optically responsive nanoparticle layers for the label-free analysis of biospecific interactions in array formats. Biosensors and Bioelectronics, 2007, 22, 3174-3181.	5.3	22
105	SERS Aptatags: New Responsive Metallic Nanostructures for Heterogeneous Protein Detection by Surface Enhanced Raman Spectroscopy. Advanced Functional Materials, 2008, 18, 2518-2525.	7.8	81
106	Raman scattering of aryl isocyanide monolayers on atomically flat Au(1 1 1) single crystal surfaces enhanced by gap-mode plasmon excitation. Chemical Physics Letters, 2008, 460, 205-208.	1.2	91
107	STM induced light from nontrivial metal structures: Local variations in emission efficiency. Surface Science, 2008, 602, 176-181.	0.8	7
108	Measurement of the Distribution of Site Enhancements in Surface-Enhanced Raman Scattering. Science, 2008, 321, 388-392.	6.0	988

#	Article	IF	CITATIONS
109	Raman scattering study in bio-conjugated core-shell CdSe/ZnS quantum dots. Journal of Non-Crystalline Solids, 2008, 354, 2885-2887.	1.5	26
110	Plasmon mediated confocal dark-field microscopy. Optics Express, 2008, 16, 17826.	1.7	14
111	Polarization-Dependent Surface-Enhanced Raman Scattering from a Silver-Nanoparticle-Decorated Single Silver Nanowire. Nano Letters, 2008, 8, 3244-3247.	4.5	133
112	Localized Plasmons Seen by Propagating Surface Plasmons: Unique Determination of Their Dielectric Response. Journal of Physical Chemistry C, 2008, 112, 14801-14811.	1.5	9
113	Metallic nanocrystals near ultrasmooth metallic films for surface-enhanced Raman scattering application. Nanotechnology, 2008, 19, 415702.	1.3	10
114	Finite size effects on the electromagnetic field enhancement from low-dimensional silver nanoshell dimer arrays. Journal of Chemical Physics, 2008, 129, 204506.	1.2	3
115	Optical resonances of gold nanoparticles on a gold surface: quantitative correlation of geometry and resonance wavelength. New Journal of Physics, 2008, 10, 113001.	1.2	15
116	Nearfield surface enhanced spectroscopy using targeted nanoparticle deposition. Applied Physics Letters, 2008, 92, 123101.	1.5	17
117	Infrared light absorption of silver film coated on the surface of femtosecond laser microstructured silicon in SF6. Materials Letters, 2009, 63, 2718-2720.	1.3	17
118	Surface-Enhanced Raman Scattering inside Metal Nanoshells. Journal of the American Chemical Society, 2009, 131, 3808-3809.	6.6	84
119	Optical Interference Effects in the Design of Substrates for Surface-Enhanced Raman Spectroscopy. Applied Spectroscopy, 2009, 63, 133-140.	1.2	61
120	Single Nanowire on a Film as an Efficient SERS-Active Platform. Journal of the American Chemical Society, 2009, 131, 758-762.	6.6	210
121	Plasmonic Enhancement of Raman Scattering on Non-SERS-Active Platinum Substrates. Journal of Physical Chemistry C, 2009, 113, 11816-11821.	1.5	72
122	Label-free optical biosensor based on localized surface plasmon resonance of immobilized gold nanorods. Colloids and Surfaces B: Biointerfaces, 2009, 71, 96-101.	2.5	49
123	Some More Observations on the Unique Electrochemical Properties of Electrode–Monolayer–Nanoparticle Constructs. ChemPhysChem, 2010, 11, 2807-2813.	1.0	45
124	Gap-mode SERS studies of azobenzene-containing self-assembled monolayers on Au(111). Journal of Colloid and Interface Science, 2010, 341, 366-375.	5.0	31
125	Analytical expression for the electric field enhancement between two closely-spaced conducting spheres. Journal of Electrostatics, 2010, 68, 299-304.	1.0	31
126	Hybrid microspheres with alternating layers of aÂpolymer and metal nanoparticles. Canadian Journal of Chemistry, 2010, 88, 298-304.	0.6	3

		CITATION REPORT		
#	Article		IF	CITATIONS
127	Fluorescence Enhancement from Individual Plasmonic Gap Resonances. ACS Nano, 2010,	4, 3309-3317.	7.3	63
128	Surface-Enhanced Raman and Resonant Rayleigh Scatterings From Adsorbate Saturated N Journal of Physical Chemistry C, 2010, 114, 7356-7363.	Nanoparticles.	1.5	40
129	Optical Response of Gold-Nanoparticle-Amplified Surface Plasmon Resonance Spectrosco Physical Chemistry C, 2010, 114, 4816-4824.	py. Journal of	1.5	24
130	Gold Nanoparticles on Polarizable Surfaces as Raman Scattering Antennas. ACS Nano, 20 6535-6546.	10, 4,	7.3	88
131	Aptamer-Mediated Surface-Enhanced Raman Spectroscopy Intensity Amplification. Nano 10, 4181-4185.	Letters, 2010,	4.5	110
132	Sub-attomolar HIV-1 DNA detection using surface-enhanced Raman spectroscopy. Analys 1084.	t, The, 2010, 135,	1.7	80
133	Dressing Plasmons in Particle-in-Cavity Architectures. Nano Letters, 2011, 11, 1221-1226		4.5	101
134	Crystal Face Dependent Chemical Effects in Surface-Enhanced Raman Scattering at Atom Gold Facets. Nano Letters, 2011, 11, 1716-1722.	ically Defined	4.5	98
135	Plasmons in Strongly Coupled Metallic Nanostructures. Chemical Reviews, 2011, 111, 39	13-3961.	23.0	2,663
136	Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and mac smooth Au substrate: Effects of size of Ag nanoparticles and the excitation wavelength. J Chemical Physics, 2011, 135, 124705.	roscopically ournal of	1.2	26
137	Quantitative analysis and measurements of near-field interactions in terahertz microscop Express, 2011, 19, 11539.	es. Optics	1.7	19
138	Mode-specific directional emission from hybridized particle-on-a-film plasmons. Optics Ex 19, 12856.	press, 2011,	1.7	14
139	Terahertz Near-Field Microscope: Analysis and Measurements of Scattering Signals. IEEE Ton Terahertz Science and Technology, 2011, 1, 164-168.	Transactions	2.0	18
140	Spectroscopy and Photoelectrochemistry of Organic Monolayers within Sphere-Plane Gol Nano-Gaps. Electrochemistry, 2011, 79, 768-772.	d	0.6	1
141	Enhanced light absorption of Ag films deposited onto femtosecond laser microstructured Materials Letters, 2011, 65, 1927-1930.	silicon.	1.3	5
142	Metallic nanostructures assembled by DNA and related applications in surface-enhancem scattering (SERS) detection. Journal of Materials Chemistry, 2011, 21, 16675.	ent Raman	6.7	19
143	Reversible Tuning of SERS Hot Spots with Aptamers. Advanced Materials, 2011, 23, 4152	-4156.	11.1	75
144	Surface-enhanced Raman scattering at well-defined single crystalline faces of platinum-gr induced by gap-mode plasmon excitation. Journal of Photochemistry and Photobiology A: 2011, 221, 175-180.	oup metals Chemistry,	2.0	29

#	Article	IF	CITATIONS
145	Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy. Physical Review B, 2011, 83, .	1.1	117
146	Broadband near-field mid-infrared spectroscopy and application to phonon resonances in quartz. Optics Express, 2012, 20, 11064.	1.7	9
147	Enhanced Raman scattering mediated by long wave vector surface plasmon polaritons. Physical Review B, 2012, 85, .	1.1	4
148	Near-field spectroscopy of silicon dioxide thin films. Physical Review B, 2012, 85, .	1.1	80
149	Probing redox proteins on a gold surface by single molecule fluorescence spectroscopy. Journal of Chemical Physics, 2012, 136, 235101.	1.2	10
150	Uniquely versatile: nano-site defined materials based on polyphenylene dendrimers. New Journal of Chemistry, 2012, 36, 282-298.	1.4	60
151	Structural Tuning of Optical Antenna Properties for Plasmonic Enhancement of Photocurrent Generation on a Molecular Monolayer System. Journal of Physical Chemistry C, 2012, 116, 20806-20811.	1.5	29
152	Surface-Enhanced Infrared Spectral Investigations of 2,3-Bis(chloromethyl)anthracene-1,4,9,10-tetraone on Copper Nanoparticles. Spectroscopy Letters, 2012, 45, 438-446.	0.5	0
153	Angular-Resolved Polarized Surface Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 9716-9723.	1.5	8
154	Convergence of Terahertz Sciences in Biomedical Systems. , 2012, , .		14
154 155	Convergence of Terahertz Sciences in Biomedical Systems. , 2012, , . Surface Enhanced Raman Scattering. Hyomen Kagaku, 2012, 33, 216-222.	0.0	14 0
		0.0	
155	Surface Enhanced Raman Scattering. Hyomen Kagaku, 2012, 33, 216-222.		0
155 156	Surface Enhanced Raman Scattering. Hyomen Kagaku, 2012, 33, 216-222. Near Field of Strongly Coupled Plasmons: Uncovering Dark Modes. Nano Letters, 2012, 12, 1885-1890. Field Emission of Electrons Generated by the Near Field of Strongly Coupled Plasmons. Physical	4.5	0 74
155 156 157	Surface Enhanced Raman Scattering. Hyomen Kagaku, 2012, 33, 216-222. Near Field of Strongly Coupled Plasmons: Uncovering Dark Modes. Nano Letters, 2012, 12, 1885-1890. Field Emission of Electrons Generated by the Near Field of Strongly Coupled Plasmons. Physical Review Letters, 2012, 108, 237602. Tip-Enhanced Raman Spectroscopy: Near-Fields Acting on a Few Molecules. Annual Review of Physical	4.5 2.9	0 74 60
155 156 157 158	Surface Enhanced Raman Scattering. Hyomen Kagaku, 2012, 33, 216-222. Near Field of Strongly Coupled Plasmons: Uncovering Dark Modes. Nano Letters, 2012, 12, 1885-1890. Field Emission of Electrons Generated by the Near Field of Strongly Coupled Plasmons. Physical Review Letters, 2012, 108, 237602. Tip-Enhanced Raman Spectroscopy: Near-Fields Acting on a Few Molecules. Annual Review of Physical Chemistry, 2012, 63, 379-399. Optical Antenna for Photofunctional Molecular Systems. Chemistry - A European Journal, 2012, 18,	4.5 2.9 4.8	0 74 60 274
155 156 157 158 159	Surface Enhanced Raman Scattering. Hyomen Kagaku, 2012, 33, 216-222. Near Field of Strongly Coupled Plasmons: Uncovering Dark Modes. Nano Letters, 2012, 12, 1885-1890. Field Emission of Electrons Generated by the Near Field of Strongly Coupled Plasmons. Physical Review Letters, 2012, 108, 237602. Tip-Enhanced Raman Spectroscopy: Near-Fields Acting on a Few Molecules. Annual Review of Physical Chemistry, 2012, 63, 379-399. Optical Antenna for Photofunctional Molecular Systems. Chemistry - A European Journal, 2012, 18, 1564-1570. Exploring the origin of tipâ€enhanced Raman scattering; preparation of efficient TERS probes with high	4.5 2.9 4.8 1.7	0 74 60 274 6

#	Article	IF	CITATIONS
163	Coating sulfonated polystyrene microspheres with highly dense gold nanoparticle shell for SERS application. Colloid and Polymer Science, 2013, 291, 2023-2029.	1.0	23
164	Enhancement of SERS Background through Charge Transfer Resonances on Single Crystal Gold Surfaces of Various Orientations. Journal of the American Chemical Society, 2013, 135, 17387-17392.	6.6	64
165	Engineering versatile SERS-active nanoparticles by embedding reporters between Au-core/Ag-shell through layer-by-layer deposited polyelectrolytes. Journal of Materials Chemistry C, 2013, 1, 3695.	2.7	37
166	Electride mediated surface enhanced Raman scattering. Applied Physics Letters, 2013, 103, 131103.	1.5	11
167	Persistent misconceptions regarding SERS. Physical Chemistry Chemical Physics, 2013, 15, 5301.	1.3	261
168	Surface Plasmons. Springer Series in Materials Science, 2013, , 67-92.	0.4	0
169	Largely Enhanced Single-Molecule Fluorescence in Plasmonic Nanogaps Formed by Hybrid Silver Nanostructures. Langmuir, 2013, 29, 2731-2738.	1.6	32
170	Surface optimization of optical antennas for plasmonic enhancement of photoelectrochemical reactions. Electrochimica Acta, 2013, 112, 864-868.	2.6	5
171	Plasmonic Amplifiers: Engineering Giant Light Enhancements by Tuning Resonances in Multiscale Plasmonic Nanostructures. Small, 2013, 9, 1939-1946.	5.2	16
172	Optical control of plasmonic fields by phase-modulated pulse excitations. Optics Express, 2013, 21, 27481.	1.7	8
173	Surface-enhanced Raman spectroscopy: Substrates and materials for research and applications. MRS Bulletin, 2013, 38, 607-611.	1.7	41
175	Ultra onfined Modes in Metal Nanoparticle Arrays for Subwavelength Light Guiding and Amplification. Advanced Optical Materials, 2014, 2, 394-399.	3.6	10
176	Full-wave electromagentic analysis of a plasmonic nanoparticle separated from a plasmonic film by a thin spacer layer. Optics Express, 2014, 22, 19970.	1.7	19
177	Adsorbed state of p-mercaptobenzoic acid on silver nanoparticles. Vibrational Spectroscopy, 2014, 72, 128-133.	1.2	17
178	Highly sensitive Raman spectroscopy using a gap mode plasmon under an attenuated total reflection geometry. Vibrational Spectroscopy, 2014, 73, 19-23.	1.2	7
179	Efficient immobilization of silver nanoparticles on metal substrates through various thiol molecules to utilize a gap mode in surface enhanced Raman scattering. Vibrational Spectroscopy, 2014, 72, 105-110.	1.2	10
180	In situ SERS interrogation of catalytic reaction on three-dimensional gold nanowire carpeted polycarbonate membranes. Analytical Methods, 2014, 6, 4625.	1.3	6
181	Simultaneous SERS and surface-enhanced fluorescence from dye-embedded metal core–shell nanoparticles. Physical Chemistry Chemical Physics, 2014, 16, 8791-8794.	1.3	26

#	Article	IF	CITATIONS
182	Near-field optical effect of a core-shell nanostructure in proximity to a flat surface. Journal of Chemical Physics, 2014, 140, 044109.	1.2	8
183	Surface enhanced Raman scattering with gold nanoparticles: effect of particle shape. Analytical Methods, 2014, 6, 9116-9123.	1.3	236
184	Nanoscale Optical and Mechanical Manipulation of Molecular Alignment in Metal–Molecule–Metal Structures. Journal of Physical Chemistry C, 2014, 118, 21550-21557.	1.5	22
185	Enhanced vibrational spectroscopy, intracellular refractive indexing for label-free biosensing and bioimaging by multiband plasmonic-antenna array. Biosensors and Bioelectronics, 2014, 60, 343-350.	5.3	19
186	Effects of Atomic Geometry and Electronic Structure of Platinum Surfaces on Molecular Adsorbates Studied by Gap-Mode SERS. Journal of the American Chemical Society, 2014, 136, 10299-10307.	6.6	80
187	Critical Importance of a Gap Mode in Surface Enhanced Raman Scattering. Hyomen Kagaku, 2014, 35, 345-350.	0.0	0
188	Relevance of Gap Mode Raman Spectroscopy to Various Substrates. Hyomen Kagaku, 2015, 36, 363-368.	0.0	0
189	High Order Gap Modes of Film-Coupled Nanospheres. Journal of Physical Chemistry C, 2015, 119, 13799-13806.	1.5	11
190	Subsurface nanoimaging by THz pulse near-field microscopy. , 2015, , .		1
191	Gap mode Raman spectroscopy under attenuated total reflection geometry. Journal of Optics (United) Tj ETQq1	1 0.7843 1.0	14 rgBT /Over
191 192	Gap mode Raman spectroscopy under attenuated total reflection geometry. Journal of Optics (United) Tj ETQq1 The critical importance of gap modes in surface enhanced Raman scattering. Faraday Discussions, 2015, 178, 203-220.	1 0.7843 1.0	14 _f gBT /Over 19
	The critical importance of gap modes in surface enhanced Raman scattering. Faraday Discussions, 2015,	1.0	· ·
192	The critical importance of gap modes in surface enhanced Raman scattering. Faraday Discussions, 2015, 178, 203-220. Sputtered gold-coated ITO nanowires by alternating depositions from Indium and ITO targets for	1.6	19
192 193	The critical importance of gap modes in surface enhanced Raman scattering. Faraday Discussions, 2015, 178, 203-220. Sputtered gold-coated ITO nanowires by alternating depositions from Indium and ITO targets for application in surface-enhanced Raman scattering. Applied Surface Science, 2015, 347, 17-22. Unfolding the contents of sub-nm plasmonic gaps using normalising plasmon resonance	1.6 3.1	19 13
192 193 194	The critical importance of gap modes in surface enhanced Raman scattering. Faraday Discussions, 2015, 178, 203-220. Sputtered gold-coated ITO nanowires by alternating depositions from Indium and ITO targets for application in surface-enhanced Raman scattering. Applied Surface Science, 2015, 347, 17-22. Unfolding the contents of sub-nm plasmonic gaps using normalising plasmon resonance spectroscopy. Faraday Discussions, 2015, 178, 185-193.	1.6 3.1 1.6	19 13 52
192 193 194 195	The critical importance of gap modes in surface enhanced Raman scattering. Faraday Discussions, 2015, 178, 203-220. Sputtered gold-coated ITO nanowires by alternating depositions from Indium and ITO targets for application in surface-enhanced Raman scattering. Applied Surface Science, 2015, 347, 17-22. Unfolding the contents of sub-nm plasmonic gaps using normalising plasmon resonance spectroscopy. Faraday Discussions, 2015, 178, 185-193. Intensity enhancement of vibrational sum frequency generation by gap-mode plasmon resonance. Chemical Physics Letters, 2015, 639, 83-87.	1.6 3.1 1.6 1.2	19 13 52 5
192 193 194 195 196	The critical importance of gap modes in surface enhanced Raman scattering. Faraday Discussions, 2015, 178, 203-220. Sputtered gold-coated ITO nanowires by alternating depositions from Indium and ITO targets for application in surface-enhanced Raman scattering. Applied Surface Science, 2015, 347, 17-22. Unfolding the contents of sub-nm plasmonic gaps using normalising plasmon resonance spectroscopy. Faraday Discussions, 2015, 178, 185-193. Intensity enhancement of vibrational sum frequency generation by gap-mode plasmon resonance. Chemical Physics Letters, 2015, 639, 83-87. Nanooptics of Molecular-Shunted Plasmonic Nanojunctions. Nano Letters, 2015, 15, 669-674.	1.6 3.1 1.6 1.2 4.5	19 13 52 5 162

#	Article	IF	CITATIONS
200	Gap mode induced laser trapping of silver nanoparticles on thiophenol-covered silver substrates. Chemical Physics Letters, 2016, 661, 234-239.	1.2	4
201	Infrared Response of Sub-Micron-Scale Structures of Polyoxymethylene: Surface Polaritons in Polymers. Applied Spectroscopy, 2016, 70, 1278-1291.	1.2	9
202	Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nature Reviews Materials, 2016, 1, .	23.3	1,229
203	Plasmonic nanofocusing $\hat{a} \in $ grey holes for light. Advances in Physics: X, 2016, 1, 297-330.	1.5	23
204	Dimensional Evolution of Polyphenylenes: Expanding in All Directions. Chemical Reviews, 2016, 116, 2103-2140.	23.0	113
205	Gap-Plasmon-Enhanced Nanofocusing Near-Field Microscopy. ACS Photonics, 2016, 3, 223-232.	3.2	63
206	Core–Shell Nanoparticle-Enhanced Raman Spectroscopy. Chemical Reviews, 2017, 117, 5002-5069.	23.0	819
207	How Ultranarrow Gap Symmetries Control Plasmonic Nanocavity Modes: From Cubes to Spheres in the Nanoparticle-on-Mirror. ACS Photonics, 2017, 4, 469-475.	3.2	115
208	Emission transformation in CdSe/ZnS quantum dots conjugated to biomolecules. Journal of Photochemistry and Photobiology B: Biology, 2017, 170, 309-313.	1.7	5
209	Electromagnetic study of surface enhanced Raman scattering of plasmonic-biomolecule: An interaction between nanodimer and single biomolecule. Solid State Communications, 2017, 255-256, 47-53.	0.9	8
210	Gap mode induced photocatalytic oxidation of p-alkyl thiophenol molecules on silver films. Chemical Physics Letters, 2017, 675, 63-68.	1.2	11
211	The SERS effect in coordination chemistry. Coordination Chemistry Reviews, 2017, 333, 108-131.	9.5	30
212	Aspects of emission variation in CdSeTe/ZnS quantum dots conjugated to antibodies. Journal of Materials Science: Materials in Electronics, 2017, 28, 7047-7052.	1.1	4
213	Substantially Enhancing Quantum Coherence of Electrons in Graphene via Electron-Plasmon Coupling. Physical Review Letters, 2017, 119, 156803.	2.9	6
214	Electromagnetic theories of surface-enhanced Raman spectroscopy. Chemical Society Reviews, 2017, 46, 4042-4076.	18.7	1,020
215	Versatile Cap Mode Plasmon under ATR Geometry towards Single Molecule Raman, Laser Trapping and Photocatalytic Reactions. Analytical Sciences, 2017, 33, 417-421.	0.8	4
216	A tip–gap mesh-like bilayer SERS substrate for highly sensitive detection. Analytical Methods, 2018, 10, 2251-2256.	1.3	4
217	Mapping Nanoscale Hotspots with Single-Molecule Emitters Assembled into Plasmonic Nanocavities Using DNA Origami. Nano Letters, 2018, 18, 405-411.	4.5	126

#	Article	IF	CITATIONS
218	Comparative Study of Plasmonic Resonances between the Roundest and Randomly Faceted Au Nanoparticles-on-Mirror Cavities. ACS Photonics, 2018, 5, 413-421.	3.2	42
219	Nanoscale Insights into Enhanced Raman Spectroscopy. , 0, , .		Ο
220	Strong confinement of optical fields using localized surface phonon polaritons in cubic boron nitride. Optics Letters, 2018, 43, 2177.	1.7	17
221	Polarization- and Angular-Resolved Optical Response of Molecules on Anisotropic Plasmonic Nanostructures. Nanomaterials, 2018, 8, 418.	1.9	12
222	Impact of Antibody Bioconjugation on Emission and Energy Band Profile of CdSeTe/ZnS Quantum Dots. Journal of Electronic Materials, 2018, 47, 4254-4259.	1.0	1
223	Specific photocatalytic reaction of p-methyl thiophenol and related molecules under the gap mode resonance. Chemical Physics Letters, 2019, 730, 568-574.	1.2	4
224	Plasmonics sheds light on the nanotechnology of daguerreotypes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13724-13726.	3.3	1
225	Morphology-sensitive infrared absorption bands of polymers derived from surface polaritons. AIP Advances, 2019, 9, .	0.6	15
226	Sum-Frequency Spectroscopy Amplified by Plasmonics: The Small Particle Case. Journal of Physical Chemistry C, 2019, 123, 26597-26607.	1.5	16
227	Tip-Enhanced Raman Excitation Spectroscopy (TERES): Direct Spectral Characterization of the Gap-Mode Plasmon. Nano Letters, 2019, 19, 7309-7316.	4.5	31
228	Optically accessible memristive devices. Nanophotonics, 2019, 8, 1579-1589.	2.9	15
229	Spectral redshift of the thermal near field scattered by a probe. Physical Review B, 2019, 99, .	1.1	12
230	Canada's early contributions to plasmonics. Canadian Journal of Chemistry, 2019, 97, 483-487.	0.6	0
231	Wholeâ€exome sequencing identified compound heterozygous variants in <i>ROR2</i> gene in a fetus with Robinow syndrome. Journal of Clinical Laboratory Analysis, 2020, 34, e23074.	0.9	9
232	MiRâ€⊋2 restrains proliferation of rheumatoid arthritis by targeting IL6R and may be concerned with the suppression of NFâ€₽B pathway. Kaohsiung Journal of Medical Sciences, 2020, 36, 20-26.	0.8	14
233	Real-time in situ optical tracking of oxygen vacancy migration in memristors. Nature Electronics, 2020, 3, 687-693.	13.1	43
234	Surface plasmon resonance tuning in gold film on silver nanospheres through optical absorption. Sensing and Bio-Sensing Research, 2020, 30, 100374.	2.2	7
236	Improved Point Dipole Model for Subwavelength Resolution Scattering Near-Field Optical Microscopy (SNOM). International Journal of Antennas and Propagation, 2020, 2020, 1-13.	0.7	2

# 237	ARTICLE Strong-field nano-optics. Reviews of Modern Physics, 2020, 92, .	IF 16.4	CITATIONS
238	2D to 3D transformation of gold nanosheets on human adipose-derived α-elastin nanotemplates. Journal of Industrial and Engineering Chemistry, 2021, 95, 66-72.	2.9	0
239	An overview on molecular imprinted polymers combined with surface-enhanced Raman spectroscopy chemical sensors toward analytical applications. Talanta, 2021, 225, 122031.	2.9	41
240	Core–Shell Plasmonic Nanostructures on Au Films as SERS Substrates: Thickness of Film and Quality Factor of Nanoparticle Matter. Journal of Physical Chemistry C, 2021, 125, 16024-16032.	1.5	6
241	Estimating SERS Properties of Silver-Particle Aggregates through Generalized Mie Theory. , 2006, , 87-103.		21
242	Spectroscopy of Gap Modes in Metal Particle—Surface Systems. , 2001, , 71-95.		21
243	Near-field effects in tip-enhanced Raman scattering. , 2007, , 87-113.		1
244	Chapter 4 Use of tip-enhanced vibrational spectroscopy for analytical applications in chemistry, biology, and materials science. Advances in Nano-optics and Nano-photonics, 2006, , 115-155.	0.0	0
245	Chapter 3 Near-field effects in tip-enhanced Raman scattering. Advances in Nano-optics and Nano-photonics, 2006, , 87-113.	0.0	1
246	Chapter 2 Towards single molecule sensitivity in surface-enhanced Raman scattering. Advances in Nano-optics and Nano-photonics, 2006, , 41-86.	0.0	0
247	Towards single molecule sensitivity in surface-enhanced Raman scattering. , 2007, , 41-86.		0
248	Plasmon-Assisted Spectroscopy and Photochemistry at Well-Defined Metal-molecular Interfaces. Molecular Science, 2011, 5, A0040.	0.2	0
249	Teraherz Pulse Near-Field Microscopes. , 2012, , 233-244.		0
250	Optical Properties and Enhanced Raman Scattering of Adsorbates on Rough Surfaces. , 1987, , 39-51.		1
251	Gap mode induced photocatalytic reactions of p-methyl thiophenol and relating molecules. , 2019, , .		0
252	Dynamics of gap mode induced photocatalytic oxidation of p-alkyl thiophenol. , 2020, , .		0
253	Coupled Plasmonic Plasmon/Photonic Resonance Effects inÂSERS. , 2006, , 67-86.		0
254	Estimating SERS Properties of Silver-Particle Aggregates through Generalized Mie Theory. , 2006, , 87-104.		0

#	Article	IF	CITATIONS
255	Near- and Far-Field Plasmonic Enhancement by Asymmetric Nanosphere Heterodimers. Plasmonics, 2022, 17, 1645-1653.	1.8	4
256	New Trends in Nanoarchitectured SERS Substrates: Nanospaces, 2D Materials, and Organic Heterostructures. Small, 2022, 18, e2107182.	5.2	71
257	Simple and robust analytical model for dipolar resonances in plasmonic particle-substrate systems. Europhysics Letters, 0, , .	0.7	0
258	Control of protein density on nanoparticles for SERS-based immunoassays. Gold Bulletin, 0, , .	1.1	0
259	Toward a New Era of SERS and TERS at the Nanometer Scale: From Fundamentals to Innovative Applications. Chemical Reviews, 2023, 123, 1552-1634.	23.0	82
260	MIPs–SERS Sensor Based on Ag NPs Film for Selective Detection of Enrofloxacin in Food. Biosensors, 2023, 13, 330.	2.3	3