The embryonic cell lineage of the nematode Caenorhab

Developmental Biology 100, 64-119 DOI: 10.1016/0012-1606(83)90201-4

Citation Report

#	Article	IF	CITATIONS
7	Mosaic Analysis in Caenorhabditis elegans. , 2000, 135, 447-462.		11
9	The lin-12 locus specifies cell fates in caenorhabditis elegans. Cell, 1983, 34, 435-444.	13.5	564
10	Generation of asymmetry and segregation of germ-line granules in early C. elegans embryos. Cell, 1983, 35, 15-25.	13.5	533
11	Location of specific messenger RNAs in Caenorhabditis elegans by cytological hybridization. Developmental Biology, 1983, 97, 375-390.	0.9	42
12	Mutations affecting programmed cell deaths in the nematode Caenorhabditis elegans. Science, 1983, 220, 1277-1279.	6.0	377
13	Induction of neuronal branching in Caenorhabditis elegans. Science, 1983, 221, 61-63.	6.0	53
14	The Genetic Control of Cell Lineage During Nematode Development. Annual Review of Genetics, 1984, 18, 489-524.	3.2	127
15	Caenorhabditis elegans: getting to know you. Science, 1984, 225, 40-42.	6.0	12
16	Heterochronic mutants of the nematode Caenorhabditis elegans. Science, 1984, 226, 409-416.	6.0	776
17	Cell-lineage and developmental defects of temperature-sensitive embryonic arrest mutants of the nematodeCaenorhabditis elegans. Wilhelm Roux's Archives of Developmental Biology, 1984, 193, 164-179.	1.4	31
18	Cellular development of a nematode: 3-D computer reconstruction of living embryos. Wilhelm Roux's Archives of Developmental Biology, 1984, 194, 61-68.	1.4	11
19	Embryonic origins of cells in the leech Helobdella triserialis. Developmental Biology, 1984, 104, 65-85.	0.9	158
20	Cell lineage, cell-cell interaction, and segment formation in the ectoderm of a glossiphoniid leech embryo. Developmental Biology, 1984, 104, 143-160.	0.9	114
21	Formation of the first cleavage spindle in nematode embryos. Developmental Biology, 1984, 101, 61-72.	0.9	297
22	Altered cell-division rates after laser-induced cell fusion in nematode embryos. Developmental Biology, 1984, 101, 240-245.	0.9	65
23	Stepwise commitment of blast cell fates during the positional specification of the O and P cell lines in the leech embryo. Developmental Biology, 1984, 106, 326-342.	0.9	85
24	Specification of male development in Caenorhabditis elegans: The fem genes. Developmental Biology, 1984, 105, 234-239.	0.9	132
25	High-frequency excision of transposable element Tc1 in the nematode caenorhabditis elegans is limited to somatic cells. Cell, 1984, 36, 599-605.	13.5	164

TATION REDO

	CHATON R	LPORT	
# 26	ARTICLE Genetic Analysis of Nematode Nerve-Cell Differentiation. BioScience, 1984, 34, 295-299.	IF 2.2	Citations 5
27	The role of stable complexes that repress and activate eucaryotic genes. Cell, 1984, 37, 359-365.	13.5	461
28	Programmed cell death in invertebrates. Trends in Neurosciences, 1984, 7, 179.	4.2	13
29	The immune system uses ion channels, too. Trends in Neurosciences, 1984, 7, 179-181.	4.2	5
31	Neuronal development in Caenorhabditis elegans. Trends in Neurosciences, 1984, 7, 197-202.	4.2	24
32	Cloning of a yolk protein gene family from Caenorhabditis elegans. Journal of Molecular Biology, 1984, 174, 1-18.	2.0	100
33	lsolation and characterization of a sperm-specific gene family in the nematode Caenorhabditis elegans Molecular and Cellular Biology, 1984, 4, 529-537.	1.1	47
34	Properties and Partial Purification of Choline Acetyltransferase from the Nematode Caenorhabditis elegans. Journal of Neurochemistry, 1985, 44, 189-200.	2.1	33
35	The isolation and genetic analysis of aCaenorhabditis elegants translocation (szT1) strain bearing an X-chromosome balancer. Journal of Genetics, 1985, 64, 143-157.	0.4	26
36	Males, hermaphrodites and females: sex determination in Caenorhabbits elegans. Trends in Genetics, 1985, 1, 85-88.	2.9	11
37	THE PHOTOMOVEMENT OF Caenorhabditis elegans, A NEMATODE WHICH LACKS OCELLI. PROOF THAT THE RESPONSE IS TO LIGHT NOT RADIANT HEATING. Photochemistry and Photobiology, 1985, 41, 577-582.	1.3	43
38	ls there a limit on in situ, genomic replication inDrosophila?. The Journal of Experimental Zoology, 1985, 234, 325-328.	1.4	5
39	Temperature-sensitive mutations causing reversible paralysis inCaenorhabditis elegans. The Journal of Experimental Zoology, 1985, 235, 409-421.	1.4	16
40	Monoclonal antibodies which distinguish certain classes of neuronal and supporting cells in the nervous tissue of the nematode Caenorhabditis elegans. Journal of Neuroscience, 1985, 5, 643-653.	1.7	101
41	Developmental neural kinship groups in the leech. Journal of Neuroscience, 1985, 5, 388-407.	1.7	77
42	Identification of excitatory and inhibitory motoneurons in the nematode Ascaris by electrophysiological techniques. Journal of Neuroscience, 1985, 5, 1-8.	1.7	86
43	The neural circuit for touch sensitivity in Caenorhabditis elegans. Journal of Neuroscience, 1985, 5, 956-964.	1.7	943
44	The changing view of neural specificity. Science, 1985, 230, 507-511.	6.0	302

#	Article	IF	CITATIONS
45	Muscle organization in Caenorhabditis elegans: localization of proteins implicated in thin filament attachment and I-band organization Journal of Cell Biology, 1985, 101, 1532-1549.	2.3	244
46	Evolutionary Waves: Patterns in the Origins of Animal Phyla Australian Journal of Zoology, 1985, 33, 153.	0.6	28
47	Cell lineage of zebrafish blastomeres. Developmental Biology, 1985, 108, 78-85.	0.9	156
48	Cell lineage of zebrafish blastomeres. Developmental Biology, 1985, 108, 86-93.	0.9	184
49	Control of cell-cycle timing in early embryos of Caenorhabditis elegans. Developmental Biology, 1985, 107, 337-354.	0.9	74
50	Polyploid tissues in the nematode Caenorhabditis elegans. Developmental Biology, 1985, 107, 128-133.	0.9	183
51	Axonal guidance mutants of Caenorhabditis elegans identified by filling sensory neurons with fluorescein dyes. Developmental Biology, 1985, 111, 158-170.	0.9	427
52	Early events in insect neurogenesis. Developmental Biology, 1985, 111, 206-219.	0.9	381
53	Improved fluorescent compounds for tracing cell lineage. Developmental Biology, 1985, 109, 509-514.	0.9	237
54	Genetic analysis of muscle development in Caenorhabditis elegans. Trends in Neurosciences, 1985, 8, 270-276.	4.2	11
55	Neuronal connectivity in Caenorhabditis elegans. Trends in Neurosciences, 1985, 8, 277-283.	4.2	55
56	Cell lineage mutants in the nematode Caenorhabditis elegans. Trends in Neurosciences, 1985, 8, 288-293.	4.2	18
57	Neural control of behaviour in Ascaris. Trends in Neurosciences, 1985, 8, 294-300.	4.2	60
58	Mapping the distribution of differentiation potential for intestine, muscle, and hypodermis during early development in Caenorhabditis elegans. Cell, 1985, 41, 923-932.	13.5	74
59	Cell Lineage in the Development of Invertebrate Nervous Systems. Annual Review of Neuroscience, 1985, 8, 45-70.	5.0	51
60	lin-12, a nematode homeotic gene, is homologous to a set of mammalian proteins that includes epidermal growth factor. Cell, 1985, 43, 583-590.	13.5	393
61	Muscle-specific expression of a gene affecting acetylcholinesterase in the nematode caenorhabditis elegans. Cell, 1985, 40, 509-514.	13.5	27
62	Cell lineage and the control of Caenorhabditis elegans development. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 1985, 312, 21-38.	2.4	17

#	Article	IF	CITATIONS
63	The genetic analysis of cell lineage in Caenorhabditis elegans. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 1985, 312, 129-137.	2.4	1
64	Plasticity of the differentiated state. Science, 1985, 230, 758-766.	6.0	799
65	DNA glycosylase activities in the nematode, Caenorhabditis elegans. Mutation Research - DNA Repair Reports, 1986, 165, 101-107.	1.9	2
66	Computer-aided three-dimensional reconstruction of nematode embryos from EM serial sections. Experimental Cell Research, 1986, 166, 247-252.	1.2	5
67	Mutant sensory cilia in the nematode Caenorhabditis elegans. Developmental Biology, 1986, 117, 456-487.	0.9	853
68	Binary decisions in neurogenesis. Trends in Neurosciences, 1986, 9, 383-386.	4.2	5
69	Two loci required for cytoplasmic organization in early embryos of Caenorhabditis elegans. Developmental Biology, 1986, 113, 449-460.	0.9	90
70	Cell lineage relationships in the development of the mammalian CNS: Role of cell lineage in control of cerebellar Purkinje cell number. Developmental Biology, 1986, 115, 148-154.	0.9	42
71	Caenorhabditis elegans morphogenesis: The role of the cytoskeleton in elongation of the embryo. Developmental Biology, 1986, 117, 156-173.	0.9	413
72	Replication and expression of an X-linked cluster of Drosophila chorion genes. Developmental Biology, 1986, 117, 294-305.	0.9	52
73	Embryonic expression of a gut-specific esterase in Caenorhabditis elegans. Developmental Biology, 1986, 114, 109-118.	0.9	113
74	Nerve cells in hydra: Monoclonal antibodies identify two lineages with distinct mechanisms for their incorporation into head tissue. Developmental Biology, 1986, 114, 225-237.	0.9	36
75	The Differentiation of Germ and Somatic Cell Lines in Nematodes. Results and Problems in Cell Differentiation, 1986, 13, 1-69.	0.2	69
76	Caenorhabditis elegans compensates for the difference in X chromosome dosage between the sexes by regulating transcript levels. Cell, 1986, 47, 871-881.	13.5	171
77	Pattern formation during vulval development in C. elegans. Cell, 1986, 44, 761-772.	13.5	391
78	A gene involved in the development of the posterior body region of C. elegans. Cell, 1986, 46, 477-487.	13.5	245
79	The structure of the nervous system of the nematode Caenorhabditis elegans. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 1986, 314, 1-340.	2.4	4,371
80	Genetic control of programmed cell death in the nematode C. elegans. Cell, 1986, 44, 817-829.	13.5	1,643

	CITATION	CITATION REPORT	
#	Article	IF	Citations
81	Genes that affect morphogenesis of the murine mandible. Journal of Heredity, 1986, 77, 17-25.	1.0	57
82	FATE MAP OF THE ORGANIZING SHOOT APEX IN GOSSYPIUM. American Journal of Botany, 1986, 73, 947-958.	0.8	26
83	Cell-Specific Gene Expression in the Nematode. International Review of Cytology, 1986, 102, 1-28.	6.2	0
84	Cell Mingling During Mammalian Embryogenesis. Journal of Cell Science, 1986, 1986, 337-356.	1.2	18
85	Isolation and characterization of Caenorhabditis elegans DNA sequences homologous to the v-abl oncogene Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 2172-2176.	3.3	54
86	Der NematodeCaenorhabditis elegans — ein entwicklungsbiologischer Modellorganismus. Biologie in Unserer Zeit, 1986, 16, 1-7.	0.3	5
87	Development of reticulospinal neurons of the zebrafish. I. Time of origin. Journal of Comparative Neurology, 1986, 251, 160-171.	0.9	106
88	Bilateral symmetry in insects: Could it derive from circular asymmetries during early embryogenesis?. Computers and Mathematics With Applications, 1986, 12, 413-418.	1.4	3
89	Lineage analysis of transplanted individual cells in embryos of Drosophila melanogaster. Roux's Archives of Developmental Biology, 1986, 195, 389-398.	1.2	44
90	The major gut esterase locus in the nematode Caenorhabditis elegans. Molecular Genetics and Genomics, 1986, 202, 30-34.	2.4	13
91	Evidence in a nematode for regulation of transposon excision by tissue-specific factors. Molecular Genetics and Genomics, 1986, 202, 410-415.	2.4	26
92	A hypothesis on the biological role of ABH, lewis and P blood group determinant structures in glycosphingolipids and glycoproteins. Glycoconjugate Journal, 1986, 3, 95-108.	1.4	48
93	Cell Division Pattern during Gastrulation of the Ascidian, Halocynthia roretzi. (cell division) Tj ETQq0 0 0 rgBT / 28, 191-201.	Overlock 10 0.6) Tf 50 267 Td 70
94	Genetic programming of development: A model. Differentiation, 1986, 33, 89-100.	1.0	13
95	Laser microbeam-induced fixation for electronmicroscopy: Visualization of transient developmental features in nematode embryos. Experientia, 1986, 42, 1046-1048.	1.2	15
96	Neuronal Circuits: An Evolutionary Perspective. Science, 1986, 233, 849-853.	6.0	169
97	Fluorescence visualization of the distribution of microfilaments in gonads and early embryos of the nematode Caenorhabditis elegans Journal of Cell Biology, 1986, 103, 2241-2252.	2.3	160
98	Transcription of class III genes in cell-free extracts from the nematode Caenorhabditis elegans. Nucleic Acids Research, 1986, 14, 869-881.	6.5	18

#	Article	IF	CITATIONS
99	Microtubules and microtubule-associated proteins from the nematode Caenorhabditis elegans: periodic cross-links connect microtubules in vitro Journal of Cell Biology, 1986, 103, 23-31.	2.3	52
101	Intermediate filaments in muscle and epithelial cells of nematodes Journal of Cell Biology, 1986, 102, 2033-2041.	2.3	63
102	Tissue-Specific Cell Lineages Originate in the Gastrula of the Zebrafish. Science, 1986, 231, 365-368.	6.0	161
103	Determination of cell division axes in the early embryogenesis of Caenorhabditis elegans Journal of Cell Biology, 1987, 105, 2123-2135.	2.3	347
104	Immunochemical localization of myosin heavy chain isoforms and paramyosin in developmentally and structurally diverse muscle cell types of the nematode Caenorhabditis elegans Journal of Cell Biology, 1987, 105, 2763-2770.	2.3	123
105	Genetic analysis of halothane sensitivity in Caenorhabditis elegans. Science, 1987, 236, 952-954.	6.0	77
106	Sevenless, a cell-specific homeotic gene of Drosophila, encodes a putative transmembrane receptor with a tyrosine kinase domain. Science, 1987, 236, 55-63.	6.0	460
107	Understanding Embryonic Development: A Contemporary View. American Zoologist, 1987, 27, 581-591.	0.7	30
108	Caffeine-resistant mutants of <i>Caenorhabditis elegans</i> . Genetical Research, 1987, 49, 105-110.	0.3	9
109	Chapter 6 Cell Lineage Analysis in Mammalian Embryogenesis. Current Topics in Developmental Biology, 1987, 23, 115-146.	1.0	32
110	Chapter 2 Position-Dependent Cell Interactions and Commitments in the Formation of the Leech Nervous System. Current Topics in Developmental Biology, 1987, 21, 31-63.	1.0	4
111	Chapter 3 Roles of Cell Lineage in the Developing Mammalian Brain. Current Topics in Developmental Biology, 1987, 21, 65-97.	1.0	8
112	Aging can be genetically dissected into component processes using long-lived lines of Caenorhabditis elegans Proceedings of the National Academy of Sciences of the United States of America, 1987, 84, 3777-3781.	3.3	168
113	Cell partitioning and mixing in the formation of the CNS: analysis of the cortical somatosensory barrels in chimeric mice. Developmental Brain Research, 1987, 35, 1-9.	2.1	28
114	glp-1 Is required in the germ line for regulation of the decision between mitosis and meiosis in C. elegans. Cell, 1987, 51, 589-599.	13.5	671
115	The glp-1 locus and cellular interactions in early C. elegans embryos. Cell, 1987, 51, 601-611.	13.5	337
116	Fates of the blastomeres of the 16-cell stage Xenopus embryo. Developmental Biology, 1987, 119, 560-578.	0.9	282
117	A provisional epithelium in leech embryo: Cellular origins and influence on a developmental equivalence group. Developmental Biology, 1987, 120, 520-534.	0.9	58

		CITATION REPORT		
#	Article		IF	CITATIONS
118	Fates of the blastomeres of the 32-cell-stage Xenopus embryo. Developmental Biology, 1987, 1	.22, 300-319.	0.9	396
119	Reversal of cellular polarity and early cell-cell interaction in the embryo of Caenorhabditis elega Developmental Biology, 1987, 122, 452-463.	ns.	0.9	123
120	Differentiation of the O and P cell lines in the embryo of the leech. Developmental Biology, 198 97-107.	7, 123,	0.9	44
121	Indeterminate cell lineage of the zebrafish embryo. Developmental Biology, 1987, 124, 269-280).	0.9	103
122	Cell lineage in development. FEBS Letters, 1987, 215, 1-8.		1.3	3
123	Post-embryonic development in Caenorhabditis elegans. International Journal for Parasitology, 17, 223-231.	1987,	1.3	3
124	Moulting of parasitic nematodes. International Journal for Parasitology, 1987, 17, 233-239.		1.3	13
125	Cell lineage analysis in ascidian embryos by intracellular injection of a tracer enzyme. Developm Biology, 1987, 121, 526-541.	ental	0.9	537
126	Retroviruses as tools for the study of cell lineage in mammals. Trends in Neurosciences, 1987, 1 303-304.	.0,	4.2	0
127	Parental DNA strands segregate randomly during embryonic development of Caenorhabditis ele Cell, 1987, 49, 329-336.	egans.	13.5	46
128	A cell that dies during wild-type C. elegans development can function as a neuron in a ced-3 mu Cell, 1987, 51, 1071-1078.	itant.	13.5	281
129	Molecular characterization of the histone gene family of Caenorhabditis elegans. Journal of Molecular Biology, 1987, 196, 27-38.		2.0	38
130	Cellular interactions in early C. elegans embryos. Cell, 1987, 48, 241-250.		13.5	305
131	The use of a charge-coupled device for quantitative optical microscopy of biological structures. Science, 1987, 238, 36-41.		6.0	307
132	Purification and characterization of a carboxylesterase from the intestine of the nematode Caenorhabditis elegans. Biochemistry, 1987, 26, 4101-4107.		1.2	18
133	Development of extraembryonic cell lineages in the mouse embryo. , 1987, , 97-120.			10
134	Cell lineage, cell death, and the developmental origin of identified serotonin- and dopamine-containing neurons in the leech. Journal of Neuroscience, 1987, 7, 1107-1122.		1.7	77
135	EGF homologous sequences encoded in the genome of Drosophila melanogaster, and their rela neurogenic genes EMBO Journal, 1987, 6, 761-766.	tion to	3.5	107

#	Article	IF	CITATIONS
136	Immunocytochemical localization of neurosecretory amines and peptides in the free-living nematode,Goodeyus ulmi. The Histochemical Journal, 1987, 19, 471-475.	0.6	40
137	Thelin-12 locus ofCaenorhabditis elegans. BioEssays, 1987, 6, 70-73.	1.2	9
138	Towards a molecular understanding of differentiation mechanisms in ascidian embryos. BioEssays, 1987, 7, 51-56.	1.2	27
139	Vom Ei zum Organismus— Die Embryonalentwicklung des NematodenCaenorhabditis elegans. Biologie in Unserer Zeit, 1987, 17, 97-106.	0.3	3
140	The transposable genetic element Tc1 in the nematode Caenorhabditis elegans. Trends in Genetics, 1987, 3, 222-225.	2.9	26
141	A genetic pathway for the specification of the vulval cell lineages of Caenorhabditis elegans. Nature, 1987, 326, 259-267.	13.7	337
142	Differentiated parental DNA strands confer developmental asymmetry on daughter cells in fission yeast. Nature, 1987, 326, 466-470.	13.7	156
143	Genetic programming of development: A model. Differentiation, 1987, 33, 89-100.	1.0	Ο
144	UV PHOTOBIOLOGY OF THE NEMATODE Caenorhabditis elegans: ACTION SPECTRA, ABSENCE OF PHOTOREACTIVATION and EFFECTS OF CAFFEINE. Photochemistry and Photobiology, 1987, 46, 483-488.	1.3	11
145	Early embryogenesis inCaenorhabditis elegans: The cytoskeleton and spatial organization of the zygote. BioEssays, 1988, 8, 145-149.	1.2	23
146	An endonuclease fromCaenorhabditis elegans: Partial purification and characterization. Biochemical Genetics, 1988, 26, 447-461.	0.8	60
147	Chromatin diminution and early cleavage in Parascaris univalens (Nematoda). Roux's Archives of Developmental Biology, 1988, 197, 307-320.	1.2	11
148	Localization and segregation of lineage-specific cleavage potential in embryos of Caenorhabditis elegans. Roux's Archives of Developmental Biology, 1988, 197, 282-293.	1.2	24
149	The Caenorhabditis elegans lin-12 gene encodes a transmembrane protein with overall similarity to Drosophila Notch. Nature, 1988, 335, 547-550.	13.7	288
150	Lateral inhibition during vulval induction in Caenorhabditis elegans. Nature, 1988, 335, 551-554.	13.7	213
151	A genetic pathway for the development of the Caenorhabditis elegans HSN motor neurons. Nature, 1988, 336, 638-646.	13.7	466
152	Long-lived lines of Caenorhabditis elegans can be used to establish predictive biomarkers of aging. Experimental Gerontology, 1988, 23, 281-295.	1.2	21
153	Cell lineage and developmental potential of cells in the zebrafish embryo. Trends in Genetics, 1988, 4, 68-74.	2.9	72

#	Article	IF	CITATIONS
154	Primary events in C. elegans sex determination and dosage compensation. Trends in Genetics, 1988, 4, 337-342.	2.9	18
155	An analysis of the role of microfilaments in the establishment and maintenance of asymmetry in Caenorhabditis elegans zygotes. Developmental Biology, 1988, 125, 75-84.	0.9	135
156	Mutants of Caenorhabditis elegans that form dauer-like larvae. Developmental Biology, 1988, 126, 270-293.	0.9	123
157	Development of the central nervous system of the larva of the ascidian, Ciona intestinalis L. Developmental Biology, 1988, 130, 721-736.	0.9	145
158	Development of the central nervous system of the larva of the ascidian, Ciona intestinalis L. Developmental Biology, 1988, 130, 737-766.	0.9	197
159	lin-17 mutations of Caenorhabditis elegans disrupt certain asymmetric cell divisions. Developmental Biology, 1988, 130, 67-73.	0.9	126
160	Early cuticle formation in an adenophorean nematode. International Journal for Parasitology, 1988, 18, 793-801.	1.3	9
161	Potential and limitations of cultivated fibroblasts in the study of senescence in animals. A review on the murine skin fibroblasts system. Archives of Gerontology and Geriatrics, 1988, 7, 31-74.	1.4	22
162	The acetylcholinesterase genes of C. elegans: Identification of a third gene (ace-3) and mosaic mapping of a synthetic lethal phenotype. Neuron, 1988, 1, 165-173.	3.8	119
163	Using the Nematode Caenorhabditis Elegans To Predict Mammalian Acute Lethality To Metallic Salts. Toxicology and Industrial Health, 1988, 4, 469-478.	0.6	183
164	Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell, 1988, 52, 311-320.	13.5	805
165	Control of cell fates within equivalence groups in C. elegans. Trends in Neurosciences, 1988, 11, 259-264.	4.2	28
166	mec-3, a homeobox-containing gene that specifies differentiation of the touch receptor neurons in C. elegans. Cell, 1988, 54, 5-16.	13.5	555
167	xol-1: A gene that controls the male modes of both sex determination and X chromosome dosage compensation in C. elegans. Cell, 1988, 55, 167-183.	13.5	174
168	DNA synthesis and the control of embryonic gene expression in C. elegans. Cell, 1988, 53, 589-599.	13.5	184
169	Cell-cell interactions in the guidance of late-developing neurons in Caenorhabditis elegans. Science, 1988, 239, 643-645.	6.0	39
170	The nematode Caenorhabditis elegans. Science, 1988, 240, 1448-1453.	6.0	107
171	Molecular cloning and transcript analysis of fem-3, a sex-determination gene in Caenorhabditis elegans Genes and Development, 1988, 2, 606-616.	2.7	76

ARTICLE IF CITATIONS # Multipotent precursors can give rise to all major cell types of the frog retina. Science, 1988, 239, 172 6.0 637 1142-1145. Dwarf mice produced by genetic ablation of growth hormone-expressing cells.. Genes and Development, 1988, 2, 453-461. 2.7 304 An atlas of a rare neuronal surface antigen in the rat central nervous system. Journal of 174 1.7 43 Neuroscience, 1988, 8, 3035-3056. Proper expression of myosin genes in transgenic nematodes.. EMBO Journal, 1989, 8, 3419-3428. 98 The minor myosin heavy chain, mhcA, of Caenorhabditis elegans is necessary for the initiation of thick 176 3.5 105 filament assembly.. EMBO Journal, 1989, 8, 3429-3436. Quantitative lineage analysis of the origin of frog primary motor and sensory neurons from cleavage stage blastomeres. Journal of Neuroscience, 1989, 9, 2919-2930. 1.7 Roles for mitotic history in the generation and degeneration of hippocampal neuroarchitecture. 178 1.7 69 Journal of Neuroscience, 1989, 9, 1223-1232. Direct cell lineage analysis in Drosophila melanogaster by time-lapse, three-dimensional optical 179 2.3 110 microscopy of living embryos.. Journal of Cell Biology, 1989, 109, 505-516. Centrosome movement in the early divisions of Caenorhabditis elegans: a cortical site determining 180 2.3 258 centrosome position.. Journal of Cell Biology, 1989, 109, 1185-1193. Mosaic Analysis in the Nematode <i>Caenorhabditis Elegans </i>. Journal of Neurogenetics, 1989, 5, 1-24. The mab-9 gene controls the fate of B, the major male-specific blast cell in the tail region of 182 2.7 34 Caenorhabditis elegans.. Genes and Development, 1989, 3, 1413-1423. The mec-3 gene of Caenorhabditis elegans requires its own product for maintained expression and is 2.7 293 expressed in three neuronal cell types. Genes and Development, 1989, 3, 1823-1833. Genetic control of differentiation of the Caenorhabditis elegans touch receptor neurons. Science, 184 6.0 337 1989, 243, 1027-1033. Cell-cell interactions that specify certain cell fates in C. elegans development. Trends in Genetics, 36 1989, 5, 237-241. 186 Genesis of the Drosophila peripheral nervous system. Trends in Genetics, 1989, 5, 251-255. 2.9 293 Effects of precocene analogs on the nematode Caenorhabditis remanei (var. bangaloreiensis). General and Comparative Endocrinology, 1989, 74, 18-31. Differences in cell pattern formation in early embryology and their bearing on evolutionary changes 188 0.7 6 in morphology. Geobios, 1989, 22, 145-155. Molecular genetic approaches to the study of motility inCaenorhabditis elegans. Cytoskeleton, 1989, 189 4.4 14, 136-145.

#	Article	IF	CITATIONS
190	Retrovesicular ganglion of the nematodeAscaris. Journal of Comparative Neurology, 1989, 284, 374-388.	0.9	50
191	Cytoplasmic determination and distribution of developmental potential in the embryo ofCaenorhabditis elegans. BioEssays, 1989, 10, 99-104.	1.2	6
192	Tailoring and coupling of reaction-diffusion systems to obtain reproducible complex pattern formation during development of the higher organisms. Applied Mathematics and Computation, 1989, 32, 103-135.	1.4	11
193	The Caenorhabditis elegans heterochronic gene lin-14 encodes a nuclear protein that forms a temporal developmental switch. Nature, 1989, 338, 313-319.	13.7	216
194	Rad-2-dependent repair of radiation-induced chromosomal aberrations in Caenorhabditis elegans. Mutation Research DNA Repair, 1989, 218, 25-31.	3.8	13
195	The combined action of two intercellular signaling pathways specifies three cell fates during vulval induction in C. elegans. Cell, 1989, 58, 679-693.	13.5	242
196	Pharyngeal pumping continues after laser killing of the pharyngeal nervous system of C. elegans. Neuron, 1989, 3, 473-485.	3.8	341
197	Genetic control of cell division patterns in the Drosophila embryo. Cell, 1989, 57, 177-187.	13.5	604
198	Transcript analysis of glp-1 and lin-12, homologous genes required for cell interactions during development of C. elegans. Cell, 1989, 58, 565-571.	13.5	209
199	The neural crest cell lineage problem: Neuropoiesis?. Neuron, 1989, 3, 1-12.	3.8	317
200	First bone formation and the dissection of an osteogenic lineage in the embryonic chick tibia is revealed by monoclonal antibodies against osteoblasts. Bone, 1989, 10, 359-375.	1.4	68
201	glp-1 and lin-12, genes implicated in distinct cell-cell interactions in C. elegans, encode similar transmembrane proteins. Cell, 1989, 58, 553-563.	13.5	366
202	Cell autonomy of lin-12 function in a cell fate decision in C. elegans. Cell, 1989, 57, 1237-1245.	13.5	235
203	A hierarchy of regulatory genes controls a larva-to-adult developmental switch in C. elegans. Cell, 1989, 57, 49-57.	13.5	340
204	Transcription in nematodes: Early Ascaris embryos are transcriptionally active. Developmental Biology, 1989, 133, 600-604.	0.9	19
205	Drosophila embryonic neuroblasts in culture: Autonomous differentiation of specific neurotransmitters. Developmental Biology, 1989, 134, 146-157.	0.9	82
206	A sperm-supplied product essential for initiation of normal embryogenesis in Caenorhabditis elegans is encoded by the paternal-effect embryonic-lethal gene, spe-11. Developmental Biology, 1989, 136, 154-166.	0.9	80
207	Cell-cell interactions determine the dorsoventral axis in embryos of an equally cleaving opisthobranch mollusc. Developmental Biology, 1989, 136, 239-253.	0.9	52

#	Article	IF	CITATIONS
208	Clonal origins of cells in the pigmented retina of the zebrafish eye. Developmental Biology, 1989, 131, 60-69.	0.9	66
209	Development of the enteric nervous system in the moth. Developmental Biology, 1989, 131, 70-84.	0.9	72
210	Development of the enteric nervous system in the moth. Developmental Biology, 1989, 131, 85-101.	0.9	55
211	Generation of Cell Diversity during Early Embryogenesis in the Nematode Caenorhabditis elegans. International Review of Cytology, 1989, 114, 81-123.	6.2	28
212	Genetic Control Of Cell Type And Pattern Formation In Caenorhabditis elegans. Advances in Genetics, 1990, 27, 63-116.	0.8	14
213	The Regulatory Hierarchy Controlling Sex Determination And Dosage Compensation IN. Advances in Genetics, 1990, 27, 117-188.	0.8	79
214	Cellular and Molecular Mechanisms of Muscle Cell Differentiation in Ascidian Embryos. International Review of Cytology, 1990, , 221-258.	6.2	38
215	Limitation of the size of the vulval primordium of Caenorhabditis elegans by lin-15 expression in surrounding hypodermis. Nature, 1990, 348, 169-171.	13.7	204
216	Genetic and molecular analysis of EGF-related genes inCaenorhabditis elegans. Molecular Reproduction and Development, 1990, 27, 73-79.	1.0	3
217	Aquatic toxicity testing using the nematode, <i>Caenorhabditis elegans</i> . Environmental Toxicology and Chemistry, 1990, 9, 1285-1290.	2.2	383
218	Segregation of fate during cleavage of frog (Xenopus laevis) blastomeres. Anatomy and Embryology, 1990, 182, 347-362.	1.5	122
219	Functional elements and domains inferred from sequence comparisons of a heat shock gene in two nematodes. Journal of Molecular Evolution, 1990, 31, 3-9.	0.8	56
220	Genetic control of cell communication inC. elegans development. BioEssays, 1990, 12, 265-271.	1.2	11
221	Times of origin of brachial sensory neurons are not correlated with neuronal phenotype. Journal of Comparative Neurology, 1990, 300, 422-432.	0.9	14
222	Mutations affecting embryonic cell migrations inCaenorhabditis elegans. Genesis, 1990, 11, 49-64.	3.1	110
223	Specification of synaptic connections between sensory and motor neurons in the developing spinal cord. Journal of Neurobiology, 1990, 21, 33-50.	3.7	24
224	Establishment and characterization of multipotent neural cell lines using retrovirus vector-mediated oncogene transfer. Journal of Neurobiology, 1990, 21, 356-375.	3.7	374
225	A developmental analysis of spontaneous and reflexive reversals in the nematodeCaenorhabditis elegans. Journal of Neurobiology, 1990, 21, 543-554.	3.7	49

#	Article	IF	CITATIONS
226	Metamorphic-like changes in the nervous system of the nematodeCaenorhabditis elegans. Journal of Neurobiology, 1990, 21, 1085-1091.	3.7	10
227	10 Homologs of Vertebrate Growth Factors in Drosophila melanogaster and Other Invertebrates. Current Topics in Developmental Biology, 1990, 24, 289-328.	1.0	42
228	Lineage, arrangement, and death of clonally related motoneurons in chick spinal cord. Journal of Neuroscience, 1990, 10, 2451-2462.	1.7	250
229	Microinjectable Probes for Tracing Cell Lineage in Development. Methods in Neurosciences, 1990, 2, 375-392.	0.5	4
230	Transitions in Trophectoderm Cellular Shape and Cytoskeletal Organization in the Elongating Pig Blastocyst1. Biology of Reproduction, 1990, 42, 195-205.	1.2	56
231	The Caenorhabditis elegans gene lin-10 is broadly expressed while required specifically for the determination of vulval cell fates Genes and Development, 1990, 4, 357-371.	2.7	81
232	Neural circuitry mediating locomotion in <e1>C</e1> . <e1>elegans </e1> : molecular correlates of inhibitory motor neurons. , 1990, , .		0
233	An Organ-Specific Differentiation Gene, pha-1, from Caenorhabditis elegans. Science, 1990, 250, 686-688.	6.0	93
234	Advances in Research on Caenorhabditis elegans: Application to Plant Parasitic Nematodes. Annual Review of Phytopathology, 1990, 28, 247-269.	3.5	21
235	X-ray Inactivation of <i>Caenorhabditis Elegans</i> Embryos or Larvae. International Journal of Radiation Biology, 1990, 58, 827-833.	1.0	14
236	Caenorhabditis elegans Offers the Potential for Molecular Dissection of the Aging Processes. , 1990, , 45-59.		0
237	Mutations affecting axonal growth and guidance of motor neurons and mechanosensory neurons in the nematode Caenorhabditis elegans. Neuroscience Research Supplement: the Official Journal of the Japan Neuroscience Society, 1990, 13, S171-S190.	0.0	23
238	Terminal differentiation of osteogenic cells in the embryonic chick tibia is revealed by a monoclonal antibody against osteocytes. Bone, 1990, 11, 189-198.	1.4	72
239	The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron, 1990, 4, 61-85.	3.8	841
240	A neuron-specific antigen in C. elegans allows visualization of the entire nervous system. Neuron, 1990, 4, 855-865.	3.8	11
241	Two highly reiterated nucleotide sequences in the low C-value genome of Panagrellus redivivus. Gene, 1990, 93, 199-204.	1.0	13
242	Selective silencing of cell communication influences anteroposterior pattern formation in C. elegans. Cell, 1990, 60, 123-131.	13.5	64
243	DNA methylation and epigenetic inheritance. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 1990, 326, 329-338.	2.4	1,572

0	 	n	
		REPC	IDT
\sim		NLFU	

#	Article	IF	CITATIONS
244	Cell-cell interactions prevent a potential inductive interaction between soma and germline in C. elegans. Cell, 1990, 61, 939-951.	13.5	84
245	Cell interactions coordinate the development of the C. elegans egg-laying system. Cell, 1990, 62, 1041-1052.	13.5	142
246	The tra-1 gene determines sexual phenotype cell-autonomously in C. elegans. Cell, 1990, 63, 1193-1204.	13.5	70
247	CeMyoD accumulation defines the body wall muscle cell fate during C. elegans embryogenesis. Cell, 1990, 63, 907-919.	13.5	211
248	MECHANISMS FOR THE CONTROL OF GENE ACTIVITY DURING DEVELOPMENT. Biological Reviews, 1990, 65, 431-471.	4.7	128
249	Novel origins of lineage founder cells in the direct-developing sea urchin Heliocidaris erythrogramma. Developmental Biology, 1990, 141, 41-54.	0.9	129
250	The Caenorhabditis elegans genes ced-3 and ced-4 act cell autonomously to cause programmed cell death. Developmental Biology, 1990, 138, 33-41.	0.9	518
251	Osteogenic cell lineage analysis is facilitated by organ cultures of embryonic chick periosteum. Developmental Biology, 1990, 141, 319-329.	0.9	43
252	The unc-86 gene product couples cell lineage and cell identity in C. elegans. Cell, 1990, 63, 895-905.	13.5	600
253	Caenorhabditis elegans: A new model system for the study of learning and memory. Behavioural Brain Research, 1990, 37, 89-92.	1.2	227
254	An acid phosphatase as a biochemical marker for intestinal development in the nematode Caenorhabditis elegans. Developmental Biology, 1991, 147, 133-143.	0.9	29
255	Mechanisms and Functions of Cell Death. Annual Review of Cell Biology, 1991, 7, 663-698.	26.0	1,941
256	Cellular interactions involved in the determination of the early C. elegans embryo. Mechanisms of Development, 1991, 34, 85-99.	1.7	45
257	Early determinative events in Caenorhabditis elegans. Current Opinion in Genetics and Development, 1991, 1, 179-184.	1.5	10
258	Does trans-lesion synthesis explain the UV-radiation resistance of DNA synthesis in C. elegans embryos?. Mutation Research DNA Repair, 1991, 255, 163-173.	3.8	12
259	Post-embryonic development of the reproductive system of Pneumonema tiliquae (Nematoda:) Tj ETQq1 1 0.784	l314 rgBT 1.3	/Overlock 10
260	Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans. Cell, 1991, 65, 837-847.	13.5	537
261	On the nature of undead cells in the nematode Caenorhabditis elegans. Philosophical Transactions of the Royal Society B: Biological Sciences, 1991, 331, 263-271.	1.8	24

ARTICLE IF CITATIONS # Thymocyte Activation and Death: a Mechanism for Molding the T Cell Repertoire. Annals of the New 262 1.8 19 York Academy of Sciences, 1991, 636, 52-70. The Egg., 1991, , 7-43. 264 The Exoskeleton., 1991, , 44-74. 3 Musculature., 1991,, 106-128. Secretory–Excretory System., 1991, , 167-182. 266 6 Pseudocoelom., 1991, , 157-166. 268 The Epidermis., 1991,, 96-105. 1 Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. 3.8 650 elegans. Neuron, 1991, 7, 729-742. 271 Sex determination and the generation of sexually dimorphic nervous systems. Neuron, 1991, 6, 177-185. 3.8 18 The Genesis of The Human Genome Project., 1991, 1, 1-75. The posterior nervous system of the nematode Caenorhabditis elegans: serial reconstruction of 273 identified neurons and complete pattern of synaptic interactions. Journal of Neuroscience, 1991, 11, 247 1.7 1-22. Developmental neurobiology of the zebrafish. Journal of Neuroscience, 1991, 11, 311-317. 274 Chapter 15 Fluorescent Dextran Clonal Markers. Methods in Cell Biology, 1991, 36, 285-297. 275 0.5 4 8 Control of Cell Lineage and Cell Fate during Nematode Development. Current Topics in Developmental Biology, 1991, 25, 177-225. 1.0 Examination of Neurons in Wild Type and Mutants of Caenorhabditis Elegans Using Antibodies to 277 59 0.6 Horseradish Peroxidase. Journal of Neurogenetics, 1991, 7, 193-211. Development of left and right $\hat{a} \in$ "the worm turns. Current Biology, 1991, 1, 159-161. 278 1.8 Caenorhabditis elegans: A model system for space biology studies. Experimental Gerontology, 1991, 26, 279 29 1.2 299-309. Evidence from reversal of handedness in C. elegans embryos for early cell interactions determining 166 cell fates. Nature, 1991, 349, 536-538.

ARTICLE IF CITATIONS # Regulation of cellular responsiveness to inductive signals in the developing C. elegans nervous 281 13.7 63 system. Nature, 1991, 350, 712-715. Multiple intercellular signalling systems control the development of the Caenorhabditis elegans 13.7 254 vulva. Nature, 1991, 351, 535-541. 283 Mesenchymal stem cells. Journal of Orthopaedic Research, 1991, 9, 641-650. 1.2 4,258 Altered establishment of cell lineages in theCaenorhabditis elegans embryo after suppression of the first cleavage supports a concentration-dependent decision mechanism. Roux's Archives of Developmental Biology, 1991, 199, 437-448. 284 1.2 Isolation of Caenorhabditis elegans mutants lacking alcohol dehydrogenase activity. Biochemical 285 0.8 20 Genetics, 1991, 29, 313-323. The mec-3 gene contains cis-acting elements mediating positive and negative regulation in cells produced by asymmetric cell division in Caenorhabditis elegans.. Genes and Development, 1991, 5, 2.7 2199-2211 Genetic Control of Cell Interactions in Nematode Development. Annual Review of Genetics, 1991, 25, 288 3.2 30 411-436. Vinculin is essential for muscle function in the nematode.. Journal of Cell Biology, 1991, 114, 715-724. 289 2.3 Control of larval development by chemosensory neurons in Caenorhabditis elegans. Science, 1991, 251, 290 6.0 399 1243-1246. Spatial control of gut-specific gene expression during Caenorhabditis elegans development. Science, 6.0 94 1991, 2<u>52, 5</u>79-5<u>82</u>. Temporal and spatial expression patterns of the small heat shock (hsp16) genes in transgenic 292 300 0.9 Caenorhabditis elegans. Molecular Biology of the Cell, 1992, 3, 221-233. Body-wall muscle formation in Caenorhabditis elegans embryos that lack the MyoD homolog hlh-1. 6.0 98 Science, 1992, 256, 240-243. Cryobiological preservation of Drosophila embryos. Science, 1992, 258, 1932-1935. 294 6.0 167 Pattern Formation in Caenorhabditis Elegans. Advances in Developmental Biology (1992), 1992, 1, 107-161. 1.1 Development of the Infusoriform Embryo of Dicyema japonicum (Mesozoa: Dicyemidae). Biological 296 0.7 44 Bulletin, 1992, 183, 248-257. Development of the Leech Nervous System. International Review of Neurobiology, 1992, 33, 109-193. REPRODUCTIVE ISOLATION IN RHABDITIDAE (NEMATODA: SECERNENTEA); MECHANISMS THAT ISOLATE SIX 298 1.1 59 SPECIES OF THREE GENERA. Evolution; International Journal of Organic Evolution, 1992, 46, 585-594. Expression of the polyubiquitin-encoding gene (ubq-1) in transgenic Caenorhabditis elegans. Gene, 299 1992, 113, 165-173.

#	Article	IF	Citations
300	Prevention of programmed cell death in Caenorhabditis elegans by human bcl-2. Science, 1992, 258, 1955-1957.	6.0	588
301	Developmental and abnormal cell death in C. Elegans. Trends in Neurosciences, 1992, 15, 15-19.	4.2	74
302	Negative regulators of programed cell death. Current Opinion in Genetics and Development, 1992, 2, 635-641.	1.5	7
303	skn-1, a maternally expressed gene required to specify the fate of ventral blastomeres in the early C. elegans embryo. Cell, 1992, 68, 1061-1075.	13.5	356
304	Molecular analysis of the C. elegans sex-determining gene tra-1: A gene encoding two zinc finger proteins. Cell, 1992, 70, 237-249.	13.5	251
305	UNC-5, a transmembrane protein with immunoglobulin and thrombospondin type 1 domains, guides cell and pioneer axon migrations in C. elegans. Cell, 1992, 71, 289-299.	13.5	389
306	The generation of diversity and pattern in animal development. Cell, 1992, 68, 185-199.	13.5	282
307	Mechanisms of asymmetric cell division: Two Bs or not two Bs, that is the question. Cell, 1992, 68, 237-255.	13.5	507
308	The pie-1 and mex-1 genes and maternal control of blastomere identity in early C. elegans embryos. Cell, 1992, 70, 163-176.	13.5	231
309	Reproductive Isolation in Rhabditidae (Nematoda: Secernentea); Mechanisms That Isolate Six Species of Three Genera. Evolution; International Journal of Organic Evolution, 1992, 46, 585.	1.1	48
310	An investigation of the specification of unequal cleavages in leech embryos. Developmental Biology, 1992, 150, 203-218.	0.9	28
311	Genetic approaches to understanding muscle development. Developmental Biology, 1992, 154, 231-244.	0.9	27
312	DNA synthesis in the early embryo of the nematode Ascaris suum. Developmental Biology, 1992, 152, 89-93.	0.9	11
313	Cell-cell communication in the embryo of Caenorhabditis elegans. Developmental Biology, 1992, 151, 401-409.	0.9	34
314	Cell lineages, developmental timing, and spatial pattern formation in embryos of free-living soil nematodes. Developmental Biology, 1992, 151, 597-610.	0.9	70
315	The role of eggshell and underlying vitelline membrane for normal pattern formation in the early C. elegans embryo. Roux's Archives of Developmental Biology, 1992, 202, 10-16.	1.2	44
316	Embryogenesis in C. elegans after elimination of individual blastomeres or induced alteration of the cell division order. Roux's Archives of Developmental Biology, 1992, 202, 17-22.	1.2	14
317	Evidence from mosaic analysis of the masculinizing gene her–1for cell interactions inC. eleganssex determination. Nature, 1992, 355, 551-555.	13.7	87

# 318	ARTICLE Mutations in the Caenorhabditis elegans unc–4 gene alter the synaptic input to ventral cord motor neurons. Nature, 1992, 355, 838-841.	IF 13.7	CITATIONS
319	The C. elegans genome sequencing project: a beginning. Nature, 1992, 356, 37-41.	13.7	518
320	Lighting up Drosophila. Nature, 1992, 356, 107-108.	13.7	8
321	Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature, 1992, 356, 494-499.	13.7	847
322	Induction of gut in Caenorhabditis elegans embryos. Nature, 1992, 357, 255-257.	13.7	207
323	The unc-18 Gene Encodes a Novel Protein Affecting the Kinetics of Acetylcholine Metabolism in the Nematode Caenorhabditis elegans. Journal of Neurochemistry, 1992, 58, 1517-1525.	2.1	170
324	Spindle positioning and cell polarity. Current Biology, 1992, 2, 469-471.	1.8	17
325	INACTIVATION OF WILD-TYPE AND rad MUTANT Caenorhabditis elegans BY 8-METHOXYPSORALEN AND NEAR ULTRAVIOLET RADIATION. Photochemistry and Photobiology, 1992, 55, 103-111.	1.3	7
326	Monoclonal antibodies raised against pre-migratory neural crest reveal population heterogeneity during crest development. Differentiation, 1992, 49, 151-165.	1.0	10
327	What the papers say. Genes controlling specific cell fates inC. elegans embryos. BioEssays, 1992, 14, 705-708.	1.2	2
328	Molecular genetics of cell death in the nematodeCaenorhabditis elegans. Journal of Neurobiology, 1992, 23, 1327-1351.	3.7	75
329	Localization of FMRF amide-like peptides inCaenorhabditis elegans. Journal of Comparative Neurology, 1992, 316, 251-260.	0.9	119
330	Drosophila single-minded gene and the molecular genetics of CNS midline development. The Journal of Experimental Zoology, 1992, 261, 234-244.	1.4	31
331	Regulation of anterior cell-specific mec-3 expression during asymmetric cell division in C. elegans. Developmental Dynamics, 1992, 194, 289-302.	0.8	23
332	Touch receptor development and function inCaenorhabditis elegans. Journal of Neurobiology, 1993, 24, 1433-1441.	3.7	48
333	Changing synaptic specificities in the nervous system ofCaenorhabditis elegans: Differentiation of the DD motoneurons. Journal of Neurobiology, 1993, 24, 1589-1599.	3.7	15
334	Molecular markers of differentiation in Caenorhabditis elegans obtained by promoter trapping. Developmental Dynamics, 1993, 196, 124-132.	0.8	18
335	Targeted single-cell induction of gene products inCaenorhabditis elegans: A new tool for developmental studies. The Journal of Experimental Zoology, 1993, 266, 227-233.	1.4	57

	CITATION RE	IPORT	
#	Article	IF	CITATIONS
336	Phagocyte recognition of cells undergoing apoptosis. Trends in Immunology, 1993, 14, 131-136.	7.5	987
337	emb-5, a gene required for the correct timing of gut precursor cell division during gastrulation in Caenorhabditis elegans, encodes a protein similar to the yeast nuclear protein SPT6. Molecular Genetics and Genomics, 1993, 239, 313-322.	2.4	40
338	Early events in higher-plant embryogenesis. Plant Molecular Biology, 1993, 22, 367-377.	2.0	139
339	Expression of the UNC-5 guidance receptor in the touch neurons of C. elegans steers their axons dorsally. Nature, 1993, 364, 327-330.	13.7	229
340	The GABAergic nervous system of Caenorhabditis elegans. Nature, 1993, 364, 337-341.	13.7	434
341	A Novel Mesoderm-Specific cDNA Isolated from a Mouse Embryonal Carcinoma Cell Line. (embryonal) Tj ETQq1 1 Differentiation, 1993, 35, 551-560.	0.784314 0.6	4 rgBT /Over 40
342	Cell Cycle Arrest of Proliferating Neuronal Cells by Serum Deprivation Can Result in Either Apoptosis or Differentiation. Journal of Neurochemistry, 1993, 60, 1783-1791.	2.1	104
343	In search of new mutants in cell-signaling systems of the nematodeCaenorhabditis elegans. Genetica, 1993, 88, 137-146.	0.5	13
344	Antisymmetry, directional asymmetry, and dynamic morphogenesis. Genetica, 1993, 89, 121-137.	0.5	210
345	Theory of the locomotion of nematodes: Control of the somatic motor neurons by interneurons. Mathematical Biosciences, 1993, 118, 51-82.	0.9	56
346	Intercellular Signaling and Signal Transduction in C. Elegans. Annual Review of Genetics, 1993, 27, 497-521.	3.2	56
347	The maternal gene skn-1 encodes a protein that is distributed unequally in early C. elegans embryos. Cell, 1993, 74, 443-452.	13.5	235
348	Control of cell fates in the central body region of C. elegans by the homeobox gene lin-39. Cell, 1993, 74, 43-55.	13.5	261
349	The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1β-converting enzyme. Cell, 1993, 75, 641-652.	13.5	2,451
350	Community effects and related phenomena in development. Cell, 1993, 75, 831-834.	13.5	192
351	A dual mechanosensory and chemosensory neuron in Caenorhabditis elegans Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 2227-2231.	3.3	427
352	Molecular characterization of the her-1 gene suggests a direct role in cell signaling during Caenorhabditis elegans sex determination Genes and Development, 1993, 7, 216-228.	2.7	100
353	Toward an understanding of the molecular mechanisms of physiological cell death Proceedings of the United States of America, 1993, 90, 786-789.	3.3	585

#	Article	IF	CITATIONS
354	The genetic and RFLP characterization of the left end of linkage group III in Caenorhabditis elegans. Genome, 1993, 36, 712-724.	0.9	8
355	Myosin and paramyosin of Caenorhabditis elegans embryos assemble into nascent structures distinct from thick filaments and multi-filament assemblages. Journal of Cell Biology, 1993, 122, 845-858.	2.3	59
356	Cortical and cytoplasmic flow polarity in early embryonic cells of Caenorhabditis elegans Journal of Cell Biology, 1993, 121, 1343-1355.	2.3	290
357	Migrations of the Caenorhabditis elegans HSNs are regulated by egl-43, a gene encoding two zinc finger proteins Genes and Development, 1993, 7, 2097-2109.	2.7	58
359	Two novel transmembrane protein tyrosine kinases expressed during Caenorhabditis elegans hypodermal development Molecular and Cellular Biology, 1993, 13, 7133-7143.	1.1	25
360	Initial tract formation in the mouse brain. Journal of Neuroscience, 1993, 13, 285-299.	1.7	369
361	The retinal fate of Xenopus cleavage stage progenitors is dependent upon blastomere position and competence: studies of normal and regulated clones. Journal of Neuroscience, 1993, 13, 3193-3210.	1.7	66
362	Axonal guidance defects in a Caenorhabditis elegans mutant reveal cell- extrinsic determinants of neuronal morphology. Journal of Neuroscience, 1993, 13, 4254-4271.	1.7	53
363	The expression of two P-glycoprotein (pgp) genes in transgenic Caenorhabditis elegans is confined to intestinal cells EMBO Journal, 1993, 12, 1615-1620.	3.5	58
364	Baculovirus p35 prevents developmentally programmed cell death and rescues a ced-9 mutant in the nematode Caenorhabditis elegans EMBO Journal, 1994, 13, 2023-2028.	3.5	186
365	Targeted mutations in the Caenorhabditis elegans POU homeo box gene ceh-18 cause defects in oocyte cell cycle arrest, gonad migration, and epidermal differentiation Genes and Development, 1994, 8, 1935-1948.	2.7	80
366	A MAP kinase homolog, mpk-1, is involved in ras-mediated induction of vulval cell fates in Caenorhabditis elegans Genes and Development, 1994, 8, 160-173.	2.7	205
367	Autonomy and nonautonomy in cell fate specification of muscle in the Caenorhabditis elegans embryo: a reciprocal induction. Science, 1994, 263, 1449-1452.	6.0	42
368	An ancient molecular mechanism for establishing embryonic polarity?. Science, 1994, 266, 577-578.	6.0	22
369	The Germline: Familiar and Newly Uncovered Properties. Annual Review of Genetics, 1994, 28, 309-324.	3.2	27
370	Genes critical for muscle development and function in Caenorhabditis elegans identified through lethal mutations. Journal of Cell Biology, 1994, 124, 475-490.	2.3	318
371	The Caenorhabditis elegans UNC-87 protein is essential for maintenance, but not assembly, of bodywall muscle Journal of Cell Biology, 1994, 127, 71-78.	2.3	36
372	Magnetic resonance microscopy of embryonic cell lineages and movements. Science, 1994, 263, 681-684.	6.0	175

#	Article	IF	CITATIONS
373	A four-dimensional digital image archiving system for cell lineage tracing and retrospective embryology. Bioinformatics, 1994, 10, 443-447.	1.8	12
374	Orientation of spindle axis and distribution of plasma membrane proteins during cell division in polarized MDCKII cells Journal of Cell Biology, 1994, 126, 1509-1526.	2.3	199
375	Signals that make you different: receptor-mediated signal transduction in early development. Zygote, 1994, 2, 179-183.	0.5	1
376	Assembly of body wall muscle and muscle cell attachment structures in Caenorhabditis elegans. Journal of Cell Biology, 1994, 124, 491-506.	2.3	192
377	Induction of apoptosis by the mouse Nedd2 gene, which encodes a protein similar to the product of the Caenorhabditis elegans cell death gene ced-3 and the mammalian IL-1 beta-converting enzyme Genes and Development, 1994, 8, 1613-1626.	2.7	578
378	A Simple Model of Neurogenesis and Cell Differentiation Based on Evolutionary Large-Scale Chaos. Artificial Life, 1994, 2, 79-99.	1.0	18
379	Amphid defective mutant ofCaenorhabditis elegans. Genetica, 1994, 94, 195-202.	0.5	6
380	The identification of a Caenorhabditis elegans homolog of p34cdc2 kinase. Molecular Genetics and Genomics, 1994, 245, 781-786.	2.4	18
381	Signal molecules involved in plant embryogenesis. Plant Molecular Biology, 1994, 26, 1305-1313.	2.0	49
382	Cell-cell interactions that modulate neuronal development in the leech. Journal of Neurobiology, 1994, 25, 640-651.	3.7	17
383	Cell polarity and the mechanism of asymmetric cell division. BioEssays, 1994, 16, 925-931.	1.2	23
384	Transgenic hsp 16â€ <i>Lacz</i> strains of the soil nematode <i>caenorhabditis elegans</i> as biological monitors of environmental stress. Environmental Toxicology and Chemistry, 1994, 13, 1211-1220.	2.2	117
385	Patterning in the C. elegans embryo. Trends in Genetics, 1994, 10, 49-54.	2.9	35
386	Cell-Cell Interactions: Receiving signals in the nematode embryo. Current Biology, 1994, 4, 914-916.	1.8	12
387	Purification and characterization of a novel transglutaminase from filarial nematode Brugia malayi. FEBS Journal, 1994, 225, 625-634.	0.2	39
388	The maternal genes apx-1 and glp-1 and establishment of dorsal-ventral polarity in the early C. elegans embryo. Cell, 1994, 77, 95-106.	13.5	224
389	Translational control of maternal glp-1 mRNA establishes an asymmetry in the C. elegans embryo. Cell, 1994, 77, 183-194.	13.5	232
390	C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell, 1994, 76, 665-676.	13.5	1,141

щ		IF	CITATIONS
#	ARTICLE The ins and outs of programmed cell death during C. elegans development. Philosophical Transactions		CITATIONS
391	of the Royal Society B: Biological Sciences, 1994, 345, 243-246.	1.8	92
392	Ich-1, an Ice/ced-3-related gene, encodes both positive and negative regulators of programmed cell death. Cell, 1994, 78, 739-750.	13.5	853
393	Development of sibling inbred sea urchins: Normal embryogenesis, but frequent postembryonic malformation, arrest and lethality. Mechanisms of Development, 1994, 45, 255-268.	1.7	9
394	Larval and Adult Characters in Animal Phytogeny. American Zoologist, 1994, 34, 492-501.	0.7	32
395	Germ-line determination in Caenorhabditis and Ascaris: Will a helicase begin to unravel the mystery?. Parasitology Today, 1994, 10, 110-113.	3.1	6
396	Apoptosis and Programmed Cell Death in Health and Disease. Advances in Clinical Chemistry, 1994, 31, 177-246.	1.8	113
397	Establishment of initial asymmetry in early Caenorhabditis elegans embryos. Current Opinion in Genetics and Development, 1994, 4, 563-568.	1.5	42
398	Hams and egls: genetic analysis of cell migration in Caenorhabditis elegans. Current Opinion in Genetics and Development, 1994, 4, 575-580.	1.5	12
399	Stem cells, clonal progenitors, and commitment to the three lymphocyte linages: T, B, and NK Cells. Immunity, 1994, 1, 529-531.	6.6	26
400	Chapter 6 Mosaic Analysis. Methods in Cell Biology, 1995, 48, 123-146.	0.5	18
401	Stereological estimation of gap junction surface area per neuron in the developing nervous system of the invertebrate Mesocestoides corti. Parasitology, 1995, 111, 505-513.	0.7	4
402	Chapter 10 Laser Killing of Cells in Caenorhabditis elegans. Methods in Cell Biology, 1995, 48, 225-250.	0.5	249
403	Chapter 9 Methods of Studying Behavioral Plasticity in Caenorhabditis elegans. Methods in Cell Biology, 1995, 48, 205-223.	0.5	15
404	Mutations Affecting Sensitivity to Ethanol in the Nematode, Caenorhabditis elegans. Alcoholism: Clinical and Experimental Research, 1995, 19, 1423-1429.	1.4	65
405	The medical significance of physiological cell death. Medicinal Research Reviews, 1995, 15, 299-311.	5.0	17
406	MyoD and myogenesis inC. elegans. BioEssays, 1995, 17, 219-228.	1.2	26
407	Determinants of blastomere identity in the earlyC. elegans embryo. BioEssays, 1995, 17, 405-414.	1.2	29
408	Formation and specification of neurons during the development of the leech central nervous system. Journal of Neurobiology, 1995, 27, 294-309.	3.7	12

#	Article	IF	CITATIONS
409	Cell mixing during early epiboly in the zebrafish embryo. Genesis, 1995, 17, 6-15.	3.1	42
410	Cell fate decisions in the early embryo of the nematodeCaenorhabditis elegans. Genesis, 1995, 17, 155-166.	3.1	8
411	Genetic regulation of mec-3 gene expression implicated in the specification of the mechanosensory neuron cell types in Caenorhabditis elegans. Development Growth and Differentiation, 1995, 37, 551-557.	0.6	69
412	Developmental expression pattern screen for genes predicted in the C. elegans genome sequencing project. Nature Genetics, 1995, 11, 309-313.	9.4	56
413	Expression patterns of predicted genes from the C. elegans genome sequence visualized by FISH in whole organisms. Nature Genetics, 1995, 11, 314-320.	9.4	23
414	A calcium-channel homologue required for adaptation to dopamine and serotonin in Caenorhabditis elegans. Nature, 1995, 375, 73-78.	13.7	296
415	Sequential signalling during Caenorhabditis elegans vulval induction. Nature, 1995, 375, 142-146.	13.7	135
416	Neural regulation of thermotaxis in Caenorhabditis elegans. Nature, 1995, 376, 344-348.	13.7	534
417	Synaptic code for sensory modalities revealed by C. elegans GLR-1 glutamate receptor. Nature, 1995, 378, 82-85.	13.7	389
418	Free radical theory of aging: Alzheimer's disease pathogenesis. Age, 1995, 18, 97-119.	3.0	80
419	Molecular cloning of a gene expressed during early embryonic development in Onchocerca volvulus. Molecular and Biochemical Parasitology, 1995, 69, 161-171.	0.5	14
420	Selective expression of the tba-1 α tubulin gene in a set of mechanosensory and motor neurons during the development of Caenorhabditis elegans. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1995, 1261, 401-416.	2.4	22
422	dad-1, an endogenous programmed cell death suppressor in Caenorhabditis elegans and vertebrates EMBO Journal, 1995, 14, 4434-4441.	3.5	98
423	Embryonic tissue differentiation in Caenorhabditis elegans requires dif-1, a gene homologous to mitochondrial solute carriers EMBO Journal, 1995, 14, 2307-2316.	3.5	22
424	Reversal of a muscle response to GABA during C. elegans male development. Journal of Neuroscience, 1995, 15, 6094-6102.	1.7	25
425	Genetic transformation of the synaptic pattern of a motoneuron class in Caenorhabditis elegans. Journal of Neuroscience, 1995, 15, 1035-1043.	1.7	30
426	Integration of mechanosensory stimuli in Caenorhabditis elegans. Journal of Neuroscience, 1995, 15, 2434-2444.	1.7	207
427	18S ribosomal RNA gene phylogeny for some Rhabditidae related to Caenorhabditis Molecular Biology and Evolution, 1995, 12, 346-58.	3.5	105

#	Article	IF	CITATIONS
428	Cell contacts orient some cell division axes in the Caenorhabditis elegans embryo Journal of Cell Biology, 1995, 129, 1071-1080.	2.3	129
429	Modulation of serotonin-controlled behaviors by Go in Caenorhabditis elegans. Science, 1995, 267, 1648-1651.	6.0	306
430	A Binary Model of Repetitive DNA Sequence in <i>Caenorhabditis elegans</i> . DNA and Cell Biology, 1995, 14, 83-85.	0.9	1
431	Chapter 14 Whole-Mount in Situ Hybridization for the Detection of RNA in Caenorhabditis elegans Embryos. Methods in Cell Biology, 1995, 48, 323-337.	0.5	65
432	Chapter 14 Methods for the Study of Cell Death in the Nematode Caenorhabditis elegans. Methods in Cell Biology, 1995, 46, 323-353.	0.5	16
433	Chapter 13 Blastomere Culture and Analysis. Methods in Cell Biology, 1995, 48, 303-321.	0.5	126
434	Characterization of beta pat-3 heterodimers, a family of essential integrin receptors in C. elegans Journal of Cell Biology, 1995, 129, 1127-1141.	2.3	206
435	On the development of the alternating free-living and parasitic generations of the nematode <i>Rhabdias bufonis</i> . Invertebrate Reproduction and Development, 1995, 28, 193-203.	0.3	15
436	Dominant feminizing mutations implicate protein-protein interactions as the main mode of regulation of the nematode sex-determining gene tra-1 Genes and Development, 1995, 9, 155-167.	2.7	35
437	Sensory regulation of male mating behavior in caenorhabditis elegans. Neuron, 1995, 14, 79-89.	3.8	314
438	par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell, 1995, 81, 611-620.	13.5	999
439	pop-1 Encodes an HMG box protein required for the specification of a mesoderm precursor in Early C. elegans embryos. Cell, 1995, 83, 599-609.	13.5	290
440	The C. elegans gene lin-44, which controls the polarity of certain asymmetric cell divisions, encodes a Wnt protein and acts cell nonautonomously. Cell, 1995, 83, 101-110.	13.5	195
441	xo1-1 acts as an early switch in the C. elegans male/hermaphrodite decision. Cell, 1995, 80, 71-82.	13.5	94
442	The Nematode Caenorhabditis elegans and Its Genome. Science, 1995, 270, 410-414.	6.0	144
443	Life and Death Decisions: ced-9 and Programmed Cell Death in Caenorhabditis elegans. Science, 1995, 270, 931-931.	6.0	7
444	Origin of Bilaterian Body Plans: Evolution of Developmental Regulatory Mechanisms. Science, 1995, 270, 1319-1325.	6.0	401
445	Cellular effects of olomoucine, an inhibitor of cyclin-dependent kinases. Biology of the Cell, 1995, 83, 105-120.	0.7	131

#	Article	IF	CITATIONS
446	mex-1 and the general partitioning of cell fate in the earlyC. elegans embryo. Mechanisms of Development, 1996, 54, 133-147.	1.7	34
447	Activation of the mec-3 promoter in two classes of stereotyped lineages in Caenorhabditis elegans. Mechanisms of Development, 1996, 56, 165-181.	1.7	6
448	Promoter sequences for the establishment of mec-3 expression in the nematode Caenorhabditis elegans. Mechanisms of Development, 1996, 56, 183-196.	1.7	6
449	A Hypothesis on the Pathogenesis of Alzheimer's Disease. Annals of the New York Academy of Sciences, 1996, 786, 152-168.	1.8	47
450	Population energetics of bacterial-feeding nematodes: Stage-specific development and fecundity rates. Soil Biology and Biochemistry, 1996, 28, 271-280.	4.2	50
451	Apoptosis: Programmed cell death in fetal development. European Journal of Obstetrics, Gynecology and Reproductive Biology, 1996, 64, 129-133.	0.5	72
452	Dynamic Interactions between Nerve and Muscle inCaenorhabditis elegans. Developmental Biology, 1996, 175, 154-165.	0.9	13
453	Onset ofC. elegansGastrulation Is Blocked by Inhibition of Embryonic Transcription with an RNA Polymerase Antisense RNA. Developmental Biology, 1996, 178, 472-483.	0.9	117
454	An Alternatively Spliced C. elegans ced-4 RNA Encodes a Novel Cell Death Inhibitor. Cell, 1996, 86, 201-208.	13.5	146
455	G Proteins Are Required for Spatial Orientation of Early Cell Cleavages in C. elegans Embryos. Cell, 1996, 86, 619-629.	13.5	153
456	cul-1 Is Required for Cell Cycle Exit in C. elegans and Identifies a Novel Gene Family. Cell, 1996, 85, 829-839.	13.5	420
457	MEX-3 Is a KH Domain Protein That Regulates Blastomere Identity in Early C. elegans Embryos. Cell, 1996, 87, 205-216.	13.5	253
458	Spatial and Temporal Controls Target pal-1 Blastomere-Specification Activity to a Single Blastomere Lineage in C. elegans Embryos. Cell, 1996, 87, 217-226.	13.5	197
459	Testing patterns and causes of faunal stability in the fossil record, with an example from the Pliocene Lusso Beds of Zaire. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996, 127, 313-337.	1.0	17
460	A supramolecular complex underlying touch sensitivity. Trends in Neurosciences, 1996, 19, 258-261.	4.2	21
461	Molecular genetics of asymmetric cleavage in the early Caenorhabditis elegans embryo. Current Opinion in Genetics and Development, 1996, 6, 408-415.	1.5	142
462	Sensory signaling in Caenorhabditis elegans. Current Opinion in Neurobiology, 1996, 6, 494-499.	2.0	16
463	Chemosensory Neurons Function in Parallel to Mediate a Pheromone Response in C. elegans. Neuron, 1996, 17, 719-728.	3.8	305

#	Article	IF	CITATIONS
464	Evidence for Physical and Functional Association Between EMB-5 and LIN-12 in Caenorhabditis elegans. Science, 1996, 273, 112-115.	6.0	62
465	Four-Dimensional Imaging: Computer Visualization of 3D Movements in Living Specimens. Science, 1996, 273, 603-607.	6.0	133
466	Determination at the Last Cell Cycle before Fate Restriction. Zoological Science, 1996, 13, 15-20.	0.3	4
467	Apoptosis in ocular disease: a molecular overview. Ophthalmic Genetics, 1996, 17, 145-165.	0.5	89
468	hch-1, a gene required for normal hatching and normal migration of a neuroblast in C. elegans, encodes a protein related to TOLLOID and BMP-1 EMBO Journal, 1996, 15, 4111-4122.	3.5	57
469	4 Determination of Xenopus Cell Lineage by Maternal Factors and Cell Interactions. Current Topics in Developmental Biology, 1996, 32, 103-138.	1.0	12
470	Molecular cloning and <i>in vitro</i> expression of <i>C. elegans</i> and parasitic nematode ionotropic receptors. Parasitology, 1996, 113, S175-S190.	0.7	20
471	4 The Cellular Basis of Sea Urchin Gastrulation. Current Topics in Developmental Biology, 1996, 33, 159-262.	1.0	47
472	A multi-well version of in situ hybridization on whole mount embryos of Caenorhabditis elegans. Nucleic Acids Research, 1996, 24, 2119-2124.	6.5	102
473	Cell Interactions in the Sea Urchin Embryo. Advances in Developmental Biochemistry, 1996, 4, 47-98.	0.9	5
474	5 Mechanisms of Programmed Cell Death in Caenorhabditis elegans and Vertebrates. Current Topics in Developmental Biology, 1996, 32, 139-174.	1.0	19
475	Postembryonic segregation of the germ line in sea urchins in relation to indirect development Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 6759-6763.	3.3	56
476	Lineage-specific regulators couple cell lineage asymmetry to the transcription of the Caenorhabditis elegans POU gene unc-86 during neurogenesis Genes and Development, 1996, 10, 1395-1410.	2.7	80
477	Transgenic Caenorhabditis elegans strains as biosensors. Trends in Biotechnology, 1996, 14, 125-129.	4.9	63
478	Cortical domains and the mechanisms of asymmetric cell division. Trends in Cell Biology, 1996, 6, 382-387.	3.6	46
479	Cell-cell communication in nematode embryos: differences between Cephalobus spec. and Caenorhabditis elegans. Development Genes and Evolution, 1996, 206, 25-34.	0.4	10
480	Mesenchymal stem cells: Progenitors, progeny, and pathways. Journal of Bone and Mineral Metabolism, 1996, 14, 193-201.	1.3	32
481	The C. elegans expression pattern database: a beginning. Trends in Genetics, 1996, 12, 370-371.	2.9	21

ARTICLE IF CITATIONS # Replication in UV-Irradiated Caenorhabditis elegans Embryos. Photochemistry and Photobiology, 1996, 482 1.3 18 63, 187-192. 483 Neuronal localization of serotonin inAscaris suum., 1996, 367, 352-360. Cell fate specification and differentiation in the nervous system of Caenorhabditis elegans., 1996, 18, 484 19 73-80. Maternal effect of low temperature on handedness determination inC. elegans embryos. Genesis, 1996, 485 19, 222-230. Evolutionary conservation of a genetic pathway of programmed cell death., 1996, 60, 4-11. 486 81 Pattern formation: Regional specification in the earlyC. elegans embryo. BioEssays, 1996, 18, 591-594. 1.2 488 Cell proliferation control in Drosophila: Flies are not worms. BioEssays, 1996, 18, 781-784. 1.2 14 The cell lineages of two types of embryo and a hermaphroditic gonad in dicyemid mesozoans. 0.6 21 Development Growth and Differentiation, 1996, 38, 453-463. The integration of antagonistic reflexes revealed by laser ablation of identified neurons determines 490 habituation kinetics of the Caenorhabditis elegans tap withdrawal response. Journal of Comparative 0.7 45 Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1996, 179, 675-685. Correct Hox gene expression established independently of position in Caenorhabditis elegans. Nature, 13.7 1996, 382, 353-356. A non-muscle myosin required for embryonic polarity in Caenorhabditis elegans. Nature, 1996, 382, 492 13.7252 455-458. Transcriptional regulator of programmed cell death encoded by Caenorhabditis elegans gene ces-2. 163 Nature, 1996, 382, 545-547 The PIE-1 protein and germline specification in C. elegans embryos. Nature, 1996, 382, 710-712. 494 13.7 318 Repression of gene expression in the embryonic germ lineage of C. elegans. Nature, 1996, 382, 713-716. 13.7 299 The Caenorhabditis elegans gene sem-4 controls neuronal and mesodermal cell development and 496 2.7 76 encodes a zinc finger protein.. Genes and Development, 1996, 10, 1953-1965. Developmental genetic analysis of troponin T mutations in striated and nonstriated muscle cells of 103 Caenorhabditis elegans.. Journal of Cell Biology, 1996, 132, 1061-1077. Developing Caenorhabditis elegans neurons may contain both cell-death protective and killer 498 2.7 211 activities. Genes and Development, 1996, 10, 578-591. emo-1, a Caenorhabditis elegans Sec61p gamma homologue, is required for oocyte development and 499 2.3 ovulation.. Journal of Cell Biology, 1996, 134, 699-714.

#	Article	IF	CITATIONS
500	ADM-1, a protein with metalloprotease- and disintegrin-like domains, is expressed in syncytial organs, sperm, and sheath cells of sensory organs in Caenorhabditis elegans Molecular Biology of the Cell, 1996, 7, 1877-1893.	0.9	43
501	Post-transcriptional regulation of sex determination in Caenorhabditis elegans: widespread expression of the sex-determining gene fem-1 in both sexes Molecular Biology of the Cell, 1996, 7, 1107-1121.	0.9	50
502	Posterior patterning by the Caenorhabditis elegans even-skipped homolog vab-7 Genes and Development, 1996, 10, 1120-1130.	2.7	77
503	VIVE LA DIFFÉRENCE:Males vs Females in Flies vs Worms. Annual Review of Genetics, 1996, 30, 637-702.	3.2	602
504	The SL1 trans-spliced leader RNA performs an essential embryonic function in Caenorhabditis elegans that can also be supplied by SL2 RNA Genes and Development, 1996, 10, 1543-1556.	2.7	53
505	Cardiovascular morphogenesis in zebrafish. Cardiovascular Research, 1996, 31, E17-E24.	1.8	17
506	Fas Antigen/APO-1 (CD95) Expression on Myeloma Cells. Leukemia and Lymphoma, 1996, 23, 521-531.	0.6	12
507	Type IV Collagen Is Detectable in Most, but Not All, Basement Membranes of Caenorhabditis elegans and Assembles on Tissues That Do Not Express It. Journal of Cell Biology, 1997, 137, 1171-1183.	2.3	125
508	<i>end-1</i> encodes an apparent GATA factor that specifies the endoderm precursor in <i>Caenorhabditis elegans</i> embryos. Genes and Development, 1997, 11, 2883-2896.	2.7	203
509	The DAF-3 Smad protein antagonizes TGF-β-related receptor signaling in the <i>Caenorhabditis elegans</i> dauer pathway. Genes and Development, 1997, 11, 2679-2690.	2.7	189
510	Caenorhabditis elegans LET-502 is related to Rho-binding kinases and human myotonic dystrophy kinase and interacts genetically with a homolog of the regulatory subunit of smooth muscle myosin phosphatase to affect cell shape Genes and Development, 1997, 11, 409-422.	2.7	153
511	Conservation of the Centromere/Kinetochore Protein ZW10. Journal of Cell Biology, 1997, 138, 1289-1301.	2.3	104
512	A Novel Cell Ablation Strategy Blocks Tobacco Anther Dehiscence. Plant Cell, 1997, 9, 1527.	3.1	2
513	A novel cell ablation strategy blocks tobacco anther dehiscence Plant Cell, 1997, 9, 1527-1545.	3.1	107
514	Interaction and Regulation of the Caenorhabditis elegans Death Protease CED-3 by CED-4 and CED-9. Journal of Biological Chemistry, 1997, 272, 21449-21454.	1.6	124
515	TEMPORAL PATTERN FORMATION BY HETEROCHRONIC GENES. Annual Review of Genetics, 1997, 31, 611-634.	3.2	106
516	THE TAO OF STEM CELLS IN THE GERMLINE. Annual Review of Genetics, 1997, 31, 455-491.	3.2	94
517	Inhibition of Carnitine Palmitoyltransferase I Augments Sphingolipid Synthesis and Palmitate-induced Apoptosis. Journal of Biological Chemistry, 1997, 272, 3324-3329.	1.6	314

	CITA	CITATION REPORT	
#	Article	IF	CITATIONS
518	MOLECULAR MODELING OF MECHANOTRANSDUCTION IN THE NEMATODECAENORHABDITIS ELEGANS. Annual Review of Physiology, 1997, 59, 659-689.	• 5.6	231
519	The Nematode Caenorhabditis elegans as a Model System to Study Neuronal Cell Death. , 1997, , 255-27	78.	0
520	<i>cis</i> Regulatory Requirements for Hypodermal Cell-Specific Expression of the <i>Caenorhabditis elegans</i> Cuticle Collagen Gene <i>dpy-7</i> . Molecular and Cellular Biology, 1997, 17, 2301-2311.	1.1	178
521	Ras Is Required for a Limited Number of Cell Fates and Not for General Proliferation in <i>Caenorhabditis elegans</i> . Molecular and Cellular Biology, 1997, 17, 2716-2722.	1.1	80
522	A screen for genetic loci on the X chromosome required for bodyâ€wall muscle development during embryogenesis in <i>caenorhabditis elegans</i> . Korean Journal of Biological Sciences, 1997, 1, 355-361	. 0.1	1
523	Neurogenetics of Synaptic Transmission in Caenorhabditis eleguns. Advances in Pharmacology, 1997, 42, 940-944.	1.2	5
524	Genetics of Apoptosis. Advances in Pharmacology, 1997, 41, 35-56.	1.2	7
525	Mutations that prevent associative learning in C. elegans Behavioral Neuroscience, 1997, 111, 354-368	8. O.6	86
526	LEFT-RIGHT ASYMMETRY IN ANIMAL DEVELOPMENT. Annual Review of Cell and Developmental Biology, 1997, 13, 53-82.	4.0	62
528	Genetic Enhancers ofsem-5Define Components of the Gonad-Independent Guidance Mechanism Controlling Sex Myoblast Migration inCaenorhabditis elegansHermaphrodites. Developmental Biology, 1997, 182, 88-100.	0.9	41
529	Assessing Normal Embryogenesis inCaenorhabditis elegansUsing a 4D Microscope: Variability of Development and Regional Specification. Developmental Biology, 1997, 184, 234-265.	0.9	302
530	C. elegansCell Migration Genemig-10Shares Similarities with a Family of SH2 Domain Proteins and Acts Cell Nonautonomously in Excretory Canal Development. Developmental Biology, 1997, 184, 150-164.	0.9	90
531	TheCaenorhabditis elegansOrphan Nuclear Hormone Receptor Genenhr-2Functions in Early Embryonic Development. Developmental Biology, 1997, 184, 303-319.	0.9	23
532	Continuous Observation of Multipotential Retinal Progenitor Cells in Clonal Density Culture. Developmental Biology, 1997, 188, 267-279.	0.9	53
533	Molecular cloning and expression of the Caenorhabditis elegans klp-3, an ortholog of C terminus motor kinesins kar3 and ncd. Journal of Molecular Biology, 1997, 270, 627-639.	2.0	17
534	Why does a nematode have an invariant cell lineage?. Seminars in Cell and Developmental Biology, 1997 8, 341-349.	, 2.3	21
535	How far does cell lineage influence cell fate specification in crustacean embryos?. Seminars in Cell and Developmental Biology, 1997, 8, 379-390.	2.3	42

Evolution of cell lineage. Current Opinion in Genetics and Development, 1997, 7, 543-550.

#	Article	IF	CITATIONS
537	Regulation of Interneuron Function in the C. elegans Thermoregulatory Pathway by the ttx-3 LIM Homeobox Gene. Neuron, 1997, 19, 345-357.	3.8	250
538	unc-8, a DEG/ENaC Family Member, Encodes a Subunit of a Candidate Mechanically Gated Channel That Modulates C. elegans Locomotion. Neuron, 1997, 18, 107-119.	3.8	195
539	Wnt Signaling Polarizes an Early C. elegans Blastomere to Distinguish Endoderm from Mesoderm. Cell, 1997, 90, 695-705.	13.5	470
540	BCL-2 GENE FAMILY IN THE NERVOUS SYSTEM. Annual Review of Neuroscience, 1997, 20, 245-267.	5.0	592
541	The early modern period in cell death. Cell Death and Differentiation, 1997, 4, 347-351.	5.0	26
542	Model Organisms Illuminate Human Genetics and Disease. Molecular Medicine, 1997, 3, 231-237.	1.9	6
543	The worm keeps turning. Nature, 1997, 390, 228-229.	13.7	0
544	Binary specification of the embryonic lineage in Caenorhabditis elegans. Nature, 1997, 390, 294-298.	13.7	168
545	Hox genes misled by local environments. Nature, 1997, 385, 588-589.	13.7	6
546	Mammalian homologues of C. elegans PAR-1 are asymmetrically localized in epithelial cells and may influence their polarity. Current Biology, 1997, 7, 603-606.	1.8	156
547	Cell polarity: Par for the polar course. Current Biology, 1997, 7, R562-R564.	1.8	20
548	Genetic control of programmed cell death and aging in the nematode Caenorhabditis elegans. Experimental Gerontology, 1997, 32, 363-374.	1.2	28
549	Genetic control of cellular suicide. Reproductive Toxicology, 1997, 11, 377-384.	1.3	10
550	Cell death/apoptosis: normal, chemically induced, and teratogenic effect. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1997, 396, 149-161.	0.4	50
551	Worms as an evolutionary model. Trends in Genetics, 1997, 13, 131-134.	2.9	4
552	Worming your way through the genome. Trends in Genetics, 1997, 13, 455-460.	2.9	16
553	Genetic analysis of sterile mutants in the dpy-5 unc-13 (I) genomic region of Caenorhabditis elegans. Molecular Genetics and Genomics, 1997, 255, 60-77.	2.4	11
554	Surfactant stimulation of growth in the nematode Caenorhabditis elegans. Enzyme and Microbial Technology, 1997, 20, 462-470.	1.6	23

#	Article	IF	CITATIONS
555	Molecular neurogenetics of chemotaxis and thermotaxis in the nematodeCaenorhabditis elegans. BioEssays, 1997, 19, 1055-1064.	1.2	46
556	Transgene-coded chimeric proteins as reporters of intracellular proteolysis: Starvation-induced catabolism of alacZ fusion protein in muscle cells ofCaenorhabditis elegans. Journal of Cellular Biochemistry, 1997, 67, 143-153.	1.2	33
557	Deficiency screen based on the monoclonal antibody MH27 to identify genetic loci required for morphogenesis of theCaenorhabditis elegans embryo. , 1997, 210, 19-32.		31
558	Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391, 806-811.	13.7	13,137
559	Nerve agents degraded by enzymatic foams. Nature, 1998, 395, 27-28.	13.7	109
560	Nematode phylogeny and embryology. Nature, 1998, 395, 28-28.	13.7	52
561	Understanding cell migration guidance: lessons from sex myoblast migration in C. elegans. Trends in Genetics, 1998, 14, 322-327.	2.9	30
562	Genetics of programmed cell death in C. elegans: past, present and future. Trends in Genetics, 1998, 14, 410-416.	2.9	468
563	Genetics of RAS signaling in C. elegans. Trends in Genetics, 1998, 14, 466-472.	2.9	201
564	C. elegans neuroscience: genetics to genome. Trends in Genetics, 1998, 14, 506-512.	2.9	38
565	Obtaining value from the human genome: a challenge for the pharmaceutical industry. Drug Discovery Today, 1998, 3, 179-188.	3.2	7
566	Simplified embryonic growth medium for Caenorhabditis elegans. Technical Tips Online, 1998, 3, 46-47.	0.2	1
567	Importance of the basement membrane protein SPARC for viability and fertility in Caenorhabditis elegans. Current Biology, 1998, 8, 1285-S1.	1.8	70
568	Dynamics and ultrastructure of developmental cell fusions in the Caenorhabditis elegans hypodermis. Current Biology, 1998, 8, 1087-1091.	1.8	253
569	The dynactin complex is required for cleavage plane specification in early Caenorhabditis elegans embryos. Current Biology, 1998, 8, 1110-1117.	1.8	196
570	Cuticle chirality and body handedness inCaenorhabditis elegans. , 1998, 23, 164-174.		25
571	Movements and stepwise fusion of endodermal precursor cells in leech. Development Genes and Evolution, 1998, 208, 117-127.	0.4	24
572	Buccal capsule development as a consideration for phylogenetic analysis of Rhabditida (Nemata). Development Genes and Evolution, 1998, 208, 495-503.	0.4	18

#	Article	IF	CITATIONS
573	Mutations in genes encoding extracellular matrix proteins suppress the emb-5 gastrulation defect in Caenorhabditis elegans. Molecular Genetics and Genomics, 1998, 259, 2-12.	2.4	12
574	The role of caspases in T cell development and the control of immune responses. Cellular and Molecular Life Sciences, 1998, 54, 1005-1019.	2.4	15
575	Germ plasm in Caenorhabditis elegans, Drosophila and Xenopus. Development Growth and Differentiation, 1998, 40, 1-10.	0.6	127
576	Centrosome-attracting body: A novel structure closely related to unequal cleavages in the ascidian embryo. Development Growth and Differentiation, 1998, 40, 85-95.	0.6	96
577	Characterization of theC. elegans gapâ€2gene encoding a novel Rasâ€GTPase activating protein and its possible role in larval development. Genes To Cells, 1998, 3, 189-202.	0.5	20
578	The four cdc25 genes from the nematode Caenorhabditis elegans. Gene, 1998, 214, 59-66.	1.0	35
579	Of worms and programmes: Caenorhabditis elegans and the study of development. Studies in History and Philosophy of Science Part C:Studies in History and Philosophy of Biological and Biomedical Sciences, 1998, 29, 81-105.	0.8	72
580	The maternal-to-zygotic transition in embryonic patterning of Caenorhabditis elegans. Current Opinion in Genetics and Development, 1998, 8, 472-480.	1.5	34
581	Control of Alternative Behavioral States by Serotonin in Caenorhabditis elegans. Neuron, 1998, 21, 203-214.	3.8	222
582	vab-8 Is a Key Regulator of Posteriorly Directed Migrations in C. elegans and Encodes a Novel Protein with Kinesin Motor Similarity. Neuron, 1998, 20, 655-666.	3.8	69
583	POP-1 and Anterior–Posterior Fate Decisions in C. elegans Embryos. Cell, 1998, 92, 229-239.	13.5	276
584	The VAB-1 Eph Receptor Tyrosine Kinase Functions in Neural and Epithelial Morphogenesis in C. elegans. Cell, 1998, 92, 633-643.	13.5	221
585	The C. elegans Protein EGL-1 Is Required for Programmed Cell Death and Interacts with the Bcl-2–like Protein CED-9. Cell, 1998, 93, 519-529.	13.5	579
586	The C. elegans Cell Corpse Engulfment Gene ced-7 Encodes a Protein Similar to ABC Transporters. Cell, 1998, 93, 951-960.	13.5	275
587	Candidate Adaptor Protein CED-6 Promotes the Engulfment of Apoptotic Cells in C. elegans. Cell, 1998, 93, 961-972.	13.5	194
588	Cell Nonautonomy of C. elegans daf-2 Function in the Regulation of Diapause and Life Span. Cell, 1998, 95, 199-210.	13.5	335
589	Gastrulation initiation in Caenorhabditis elegans requires the function of gad-1, which encodes a protein with WD repeats. Developmental Biology, 1998, 198, 253-265.	0.9	10
590	The CATA-factor elt-2 is essential for formation of the Caenorhabditis elegans intestine. Developmental Biology, 1998, 198, 286-302.	0.9	260

#	Article	IF	CITATIONS
591	Caenorhabditis elegans as a model for parasitic nematodes. International Journal for Parasitology, 1998, 28, 395-411.	1.3	156
592	A Model of Elegance. American Journal of Human Genetics, 1998, 63, 955-961.	2.6	22
593	Multiphoton laser scanning microscopy for four-dimensional analysis of Caenorhabditis elegans embryonic development. Optics Express, 1998, 3, 325.	1.7	34
594	Handed asymmetry in nematodes. Seminars in Cell and Developmental Biology, 1998, 9, 53-60.	2.3	26
595	Inductive competence, its significance in retinal cell fate determination and a role for Delta–Notch signaling. Seminars in Cell and Developmental Biology, 1998, 9, 241-247.	2.3	29
596	Genetic Requirements for PIE-1 Localization and Inhibition of Gene Expression in the Embryonic Germ Lineage ofCaenorhabditis elegans. Developmental Biology, 1998, 200, 212-224.	0.9	98
597	The Cellular Mechanism of Epithelial Rearrangement during Morphogenesis of theCaenorhabditis elegansDorsal Hypodermis. Developmental Biology, 1998, 204, 263-276.	0.9	124
598	Specification of Gut Cell Fate Differs Significantly between the NematodesAcrobeloides nanusandCaenorhabditis elegans. Developmental Biology, 1998, 204, 3-14.	0.9	43
599	Regulation of the Caenorhabditis elegans gut cysteine protease gene cpr-1: requirement for GATA motifs. Journal of Molecular Biology, 1998, 283, 15-27.	2.0	54
600	Neurobiology of the Caenorhabditis elegans Genome. , 1998, 282, 2028-2033.		810
601	The PerfectC. ELEGANSProject: An Initial Report. Artificial Life, 1998, 4, 141-156.	1.0	15
		1.0	
602	A novel UV-damaged DNA binding protein emerges during the chromatin- eliminating cleavage period in Ascaris suum. Nucleic Acids Research, 1998, 26, 768-777.	6.5	10
602 603	A novel UV-damaged DNA binding protein emerges during the chromatin- eliminating cleavage period in Ascaris suum. Nucleic Acids Research, 1998, 26, 768-777. Caenorhabditis elegans EGL-1 Disrupts the Interaction of CED-9 with CED-4 and Promotes CED-3 Activation. Journal of Biological Chemistry, 1998, 273, 33495-33500.		10 93
	Ascaris suum. Nucleic Acids Research, 1998, 26, 768-777. Caenorhabditis elegans EGL-1 Disrupts the Interaction of CED-9 with CED-4 and Promotes CED-3	6.5	
603	Ascaris suum. Nucleic Acids Research, 1998, 26, 768-777. Caenorhabditis elegans EGL-1 Disrupts the Interaction of CED-9 with CED-4 and Promotes CED-3 Activation. Journal of Biological Chemistry, 1998, 273, 33495-33500. 4 Developmental Genetics of Caenorhabditis elegans Sex Determination. Current Topics in	6.5 1.6	93
603 604	Ascaris suum. Nucleic Acids Research, 1998, 26, 768-777. Caenorhabditis elegans EGL-1 Disrupts the Interaction of CED-9 with CED-4 and Promotes CED-3 Activation. Journal of Biological Chemistry, 1998, 273, 33495-33500. 4 Developmental Genetics of Caenorhabditis elegans Sex Determination. Current Topics in Developmental Biology, 1998, 41, 99-132.	6.5 1.6 1.0	93 23
603 604 605	Ascaris suum. Nucleic Acids Research, 1998, 26, 768-777. Caenorhabditis elegans EGL-1 Disrupts the Interaction of CED-9 with CED-4 and Promotes CED-3 Activation. Journal of Biological Chemistry, 1998, 273, 33495-33500. 4 Developmental Genetics of Caenorhabditis elegans Sex Determination. Current Topics in Developmental Biology, 1998, 41, 99-132. EARLY PATTERNING OF THEC. ELEGANSEMBRYO. Annual Review of Genetics, 1998, 32, 521-545.	6.5 1.6 1.0 3.2	93 23 163

# 609	ARTICLE Reprogramming of early embryonic blastomeres into endodermal progenitors by a <i>Caenorhabditis elegans</i> GATA factor. Genes and Development, 1998, 12, 3809-3814.	lF 2.7	CITATIONS
610	A Putative Catenin–Cadherin System Mediates Morphogenesis of the Caenorhabditis elegans Embryo. Journal of Cell Biology, 1998, 141, 297-308.	2.3	374
611	<i>pha-4,</i> an <i>HNF-3</i> homolog, specifies pharyngeal organ identity in <i>Caenorhabditis elegans</i> . Genes and Development, 1998, 12, 1947-1952.	2.7	191
612	Analysis of a <i>Caenorhabditis elegans</i> Twist homolog identifies conserved and divergent aspects of mesodermal patterning. Genes and Development, 1998, 12, 2623-2635.	2.7	168
613	3 Maternal Control of Pattern Formation in Early Caenorhabditis elegans Embryos. Current Topics in Developmental Biology, 1998, 39, 73-117.	1.0	95
614	Proteolysis in Apoptosis: Enzymes and Substrates. Advances in Molecular and Cell Biology, 1998, , 267-290.	0.1	0
615	Isolation and characterization of lethal mutation near the <i>uncâ€29</i> (LG I) region of <i>Caenorhabditis elegans</i> . Korean Journal of Biological Sciences, 1998, 2, 123-131.	0.1	0
616	Morphology and Differentiation of the Coelomocytes of the Free-Living Stages of Nippostrongylus brasiliensis. Journal of Parasitology, 1998, 84, 730.	0.3	3
617	The role of caspases in apoptosis. Advances in Biochemical Engineering/Biotechnology, 1998, 62, 107-128.	0.6	24
618	Chapter 2 Cell lineage during development. Principles of Medical Biology, 1998, , 13-28.	0.1	0
619	Developmental effect of polyamine depletion in Caenorhabditis elegans. Biochemical Journal, 1998, 333, 309-315.	1.7	30
620	Genes, Behavior, and Developmental Emergentism: One Process, Indivisible?. Philosophy of Science, 1998, 65, 209-252.	0.5	200
621	Control of Neural Development and Function in a Thermoregulatory Network by the LIM Homeobox Gene <i>lin-11</i> . Journal of Neuroscience, 1998, 18, 2084-2096.	1.7	119
622	Gα _s -Induced Neurodegeneration in <i>Caenorhabditis elegans</i> . Journal of Neuroscience, 1998, 18, 2871-2880.	1.7	115
623	EAT-4, a Homolog of a Mammalian Sodium-Dependent Inorganic Phosphate Cotransporter, Is Necessary for Glutamatergic Neurotransmission in <i>Caenorhabditis elegans</i> . Journal of Neuroscience, 1999, 19, 159-167.	1.7	328
624	Distinct Signaling Pathways Mediate Touch and Osmosensory Responses in a Polymodal Sensory Neuron. Journal of Neuroscience, 1999, 19, 1952-1958.	1.7	145
625	Cell Lineages in Caenorhabditis elegans Development. , 1999, , 77-95.		3
626	Netrin UNC-6 and the Regulation of Branching and Extension of Motoneuron Axons from the Ventral Nerve Cord of <i>Caenorhabditis elegans</i> . Journal of Neuroscience, 1999, 19, 7048-7056.	1.7	41

#	Article	IF	CITATIONS
627	Myotactin, a Novel Hypodermal Protein Involved in Muscle–Cell Adhesion inCaenorhabditis elegans. Journal of Cell Biology, 1999, 146, 659-672.	2.3	107
628	Regulation of Metallothionein Gene Transcription. Journal of Biological Chemistry, 1999, 274, 29655-29665.	1.6	89
629	The Nonmuscle Myosin Regulatory Light Chain Gene mlc-4 Is Required for Cytokinesis, Anterior-Posterior Polarity, and Body Morphology during Caenorhabditis elegans Embryogenesis. Journal of Cell Biology, 1999, 146, 439-451.	2.3	191
630	Clonality of Urogenital Organs as Determined by Analysis of Chimeric Mice. Cells Tissues Organs, 1999, 165, 57-66.	1.3	19
631	A Conserved LIM Protein That Affects Muscular Adherens Junction Integrity and Mechanosensory Function in Caenorhabditis elegans. Journal of Cell Biology, 1999, 144, 45-57.	2.3	197
632	Dissection of Cell Division Processes in the One Cell Stage Caenorhabditis elegans Embryo by Mutational Analysis. Journal of Cell Biology, 1999, 144, 927-946.	2.3	165
633	Cytoplasmic Dynein Is Required for Distinct Aspects of Mtoc Positioning, Including Centrosome Separation, in the One Cell Stage Caenorhabditis elegans Embryo. Journal of Cell Biology, 1999, 147, 135-150.	2.3	419
634	Complex Patterns of Alternative Splicing Mediate the Spatial and Temporal Distribution of Perlecan/UNC-52 in Caenorhabditis elegans. Molecular Biology of the Cell, 1999, 10, 3205-3221.	0.9	83
635	Functional genomics. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 8825-8826.	3.3	68
636	F1Aα, a Death Receptor-binding Protein Homologous to theCaenorhabditis elegans Sex-determining Protein, FEM-1, Is a Caspase Substrate That Mediates Apoptosis. Journal of Biological Chemistry, 1999, 274, 32461-32468.	1.6	31
637	COMPARISON OF LETHALITY, REPRODUCTION, AND BEHAVIOR AS TOXICOLOGICAL ENDPOINTS IN THE NEMATODE CAENORHABDITIS ELEGANS. Journal of Toxicology and Environmental Health - Part A: Current Issues, 1999, 58, 451-462.	1.1	130
638	Hierarchy of Habituation Induced by Mechanical Stimuli in Caenorhabditis elegans. Zoological Science, 1999, 16, 423-429.	0.3	6
639	sqv mutants of Caenorhabditis elegans are defective in vulval epithelial invagination. Proceedings of the United States of America, 1999, 96, 968-973.	3.3	120
640	Direct visualization of the elt-2 gut-specific GATA factor binding to a target promoter inside the living Caenorhabditis elegans embryo. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 11883-11888.	3.3	105
641	Oxygenated perfluorocarbon promotes nematode growth and stress-sensitivity in a two-phase liquid culture system. Enzyme and Microbial Technology, 1999, 25, 349-356.	1.6	13
642	Isolation, characterization and immunolocalization of phosphorylcholine-substituted glycolipids in developmental stages ofCaenorhabditis elegans. FEBS Journal, 1999, 266, 952-963.	0.2	74
643	A C. elegans Ror receptor tyrosine kinase regulates cell motility and asymmetric cell division. Nature, 1999, 400, 881-885.	13.7	151
644	Maternal Pumilio acts together with Nanos in germline development in Drosophila embryos. Nature Cell Biology, 1999, 1, 431-437.	4.6	459

#	Article	IF	CITATIONS
645	The Molecular Mechanism of Programmed Cell Death in <i>C. elegans</i> . Annals of the New York Academy of Sciences, 1999, 887, 92-104.	1.8	86
646	Ferromagnetism in the hexaborides. Nature, 1999, 402, 251-253.	13.7	140
647	Variable cell number in nematodes. Nature, 1999, 402, 253-253.	13.7	66
648	Region-specific cell clones in the developing spinal cord of the zebrafish. Development Genes and Evolution, 1999, 209, 135-144.	0.4	27
649	A Caenorhabditis elegans wee1 homolog is expressed in a temporally and spatially restricted pattern during embryonic development. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1999, 1445, 99-109.	2.4	20
650	Evolutionary change in the functional specificity of genes. Trends in Genetics, 1999, 15, 197-202.	2.9	57
651	Patterning the C. elegans embryo: moving beyond the cell lineage. Trends in Genetics, 1999, 15, 307-313.	2.9	61
652	Control of cell migration during Caenorhabditis elegans development. Current Opinion in Cell Biology, 1999, 11, 608-613.	2.6	54
653	Evolution of developmental mechanisms in nematodes. The Journal of Experimental Zoology, 1999, 285, 3-18.	1.4	39
654	Some remarks on the female and male Keimbahn in the light of evolution and history. The Journal of Experimental Zoology, 1999, 285, 197-214.	1.4	7
655	The toxicity of dithiocarbamate fungicides to soil nematodes, assessed using a stress-inducible transgenic strain ofCaenorhabditis elegans. , 1999, 13, 324-333.		32
656	Genetics of Chemotaxis and Thermotaxis in the NematodeCaenorhabditis Elegans. Annual Review of Genetics, 1999, 33, 399-422.	3.2	154
657	1 Maternal Cytoplasmic Factors for Generation of Unique Cleavage Patterns in Animal Embryos. Current Topics in Developmental Biology, 1999, 46, 1-37.	1.0	20
659	Cell polarity in the early Caenorhabditis elegans embryo. Current Opinion in Genetics and Development, 1999, 9, 390-395.	1.5	50
660	Multiple Ephrins Control Cell Organization in C. elegans Using Kinase-Dependent and -Independent Functions of the VAB-1 Eph Receptor. Molecular Cell, 1999, 4, 903-913.	4.5	101
661	MOM-4, a MAP Kinase Kinase Kinase–Related Protein, Activates WRM-1/LIT-1 Kinase to Transduce Anterior/Posterior Polarity Signals in C. elegans. Molecular Cell, 1999, 4, 275-280.	4.5	111
662	Induction of apoptosis in HL-60 cells by eicosapentaenoic acid (EPA) is associated with downregulation of bcl-2 expression. Cancer Letters, 1999, 145, 17-27.	3.2	59
663	Fate maps old and new. Nature Cell Biology, 1999, 1, E103-E109.	4.6	44

#	Article	IF	CITATIONS
664	MIG-13 Positions Migrating Cells along the Anteroposterior Body Axis of C. elegans. Cell, 1999, 98, 25-36.	13.5	74
665	WRM-1 Activates the LIT-1 Protein Kinase to Transduce Anterior/Posterior Polarity Signals in C. elegans. Cell, 1999, 97, 717-726.	13.5	250
666	The Ephrin VAB-2/EFN-1 Functions in Neuronal Signaling to Regulate Epidermal Morphogenesis in C. elegans. Cell, 1999, 99, 781-790.	13.5	154
667	The TRA-1A Sex Determination Protein of C. elegans Regulates Sexually Dimorphic Cell Deaths by Repressing the egl-1 Cell Death Activator Gene. Cell, 1999, 98, 317-327.	13.5	209
668	ACaenorhabditis elegansHomologue ofhunchbackIs Required for Late Stages of Development but Not Early Embryonic Patterning. Developmental Biology, 1999, 205, 240-253.	0.9	68
669	Patterning ofCaenorhabditis elegansPosterior Structures by theAbdominal-BHomolog,egl-5. Developmental Biology, 1999, 207, 215-228.	0.9	89
670	RNA-Mediated Interference of acdc25Homolog inCaenorhabditis elegansResults in Defects in the Embryonic Cortical Membrane, Meiosis, and Mitosis. Developmental Biology, 1999, 206, 15-32.	0.9	48
671	Morphogenesis of theCaenorhabditis elegansMale Tail Tip. Developmental Biology, 1999, 207, 86-106.	0.9	69
672	ELT-3: ACaenorhabditis elegansGATA Factor Expressed in the Embryonic Epidermis during Morphogenesis. Developmental Biology, 1999, 208, 265-280.	0.9	93
673	Developmental Competence of the Gut Endoderm: Genetic Potentiation by GATA and HNF3/Fork Head Proteins. Developmental Biology, 1999, 209, 1-10.	0.9	202
674	Cystic Canal Mutants in Caenorhabditis elegans Are Defective in the Apical Membrane Domain of the Renal (Excretory) Cell. Developmental Biology, 1999, 214, 227-241.	0.9	127
675	Regulative Development in a Nematode Embryo: A Hierarchy of Cell Fate Transformations. Developmental Biology, 1999, 215, 1-12.	0.9	38
676	Organogenesis of the Caenorhabditis elegans Intestine. Developmental Biology, 1999, 216, 114-134.	0.9	252
677	Cell Lineage Analysis: Videomicroscopy Techniques. , 2000, 135, 323-330.		3
678	Chapter 3.3.7 Analyzing neuropeptide function in Caenorhabditis elegans by reverse genetics. Handbook of Behavioral Neuroscience, 1999, , 585-601.	0.0	0
679	4 The Other Side of the Embryo: An Appreciation of the Non-D Quadrants in Leech Embryos. Current Topics in Developmental Biology, 1999, 46, 105-132.	1.0	4
680	Chapter 3.3.5 Caenorhabditis elegans and the genetics of learning. Handbook of Behavioral Neuroscience, 1999, 13, 551-568.	0.0	1
681	Behavior at the Organismal and Molecular Levels: The Case of C. elegans. Philosophy of Science, 2000, 67, S273-S288.	0.5	20

#	Article	IF	CITATIONS
682	clk-1, mitochondria, and physiological rates. BioEssays, 2000, 22, 48-56.	1.2	80
683	TheCaenorhabditis elegans gonad: A test tube for cell and developmental biology. , 2000, 218, 2-22.		214
684	Fusomorphogenesis: Cell fusion in organ formation. , 2000, 218, 30-51.		66
685	New ways to look at axons inCaenorhabditis elegans. , 2000, 48, 47-54.		5
686	Evaluation of fixation methods for ultrastructural study ofCaenorhabditis elegans embryos. , 2000, 49, 212-216.		9
687	Predicting the Function and Subcellular Location ofCaenorhabditis elegansProteins Similar toSaccharomyces cerevisiael ² -Oxidation Enzymes. Yeast, 2000, 1, 188-200.	0.8	21
688	New approach to cell lineage analysis in mammals using the cre-loxP system. , 2000, 56, 34-44.		29
689	Getting into shape: epidermal morphogenesis in Caenorhabditis elegans embryos. BioEssays, 2000, 23, 12-23.	1.2	73
690	A comparison of metalâ€induced lethality and behavioral responses in the nematode <i>Caenorhabditis elegans</i> . Environmental Toxicology and Chemistry, 2000, 19, 3061-3067.	2.2	61
691	Reproductive isolation in Caenorhabditis: terminal phenotypes of hybrid embryos. Evolution & Development, 2000, 2, 9-15.	1.1	40
692	The conserved nuclear receptor Ftz-F1 is required for embryogenesis, moulting and reproduction in Caenorhabditis elegans. Genes To Cells, 2000, 5, 711-723.	0.5	92
693	Temperature-controlled microscopy for imaging living cells: apparatus, thermal analysis and temperature dependency of embryonic elongation in Caenorhabditis elegans. Journal of Microscopy, 2000, 199, 214-223.	0.8	15
694	A common set of engulfment genes mediates removal of both apoptotic and necrotic cell corpses in C. elegans. Nature Cell Biology, 2000, 2, 931-937.	4.6	157
695	Embryonic polarity: Protein stability in asymmetric cell division. Current Biology, 2000, 10, R637-R641.	1.8	12
696	Sex in the worm. Trends in Genetics, 2000, 16, 247-253.	2.9	134
697	Form of the worm:. Trends in Genetics, 2000, 16, 544-551.	2.9	74
698	Secretion of a novel class of iFABPs in nematodes: coordinate use of the Ascaris/Caenorhabditis model systems. Molecular and Biochemical Parasitology, 2000, 105, 223-236.	0.5	46
699	N-tosyl-l-phenylalanyl-chloromethylketone reduces hypoxic–ischemic brain injury in rat pups. European Journal of Pharmacology, 2000, 390, 249-256.	1.7	22

		CITATION REPO	RT	
#	Article	IF	-	CITATIONS
700	Unité et diversité du développement chez les métazoaires. L' Annee Biologique, 2000, 3	Э, 1-22. 0	.2	0
701	Expression ofram-5in the structural cell is required for sensory ray morphogenesis inCaenorhabdit elegansmale tail. EMBO Journal, 2000, 19, 3542-3555.	s 3.	.5	29
702	Perspectives on systems biology. New Generation Computing, 2000, 18, 199-216.	2.	.5	83
703	The embryonic development of the rhabdocoel flatworm Mesostoma lingua (Abildgaard, 1789). Development Genes and Evolution, 2000, 210, 399-415.	0	.4	29
704	Developmental fates of larval tissues after metamorphosis in the ascidian, Halocynthia roretzi. Development Genes and Evolution, 2000, 210, 55-63.	0	.4	78
705	Characterization of an ascidian DEAD-box gene, Ci-DEAD1: specific expression in the germ cells an mRNA localization in the posterior-most blastomeres in early embryos. Development Genes and Evolution, 2000, 210, 0064-0072.		.4	92
706	Analysis of the flt-1 Gene Encoding a ECM Protein, Flectin, in Caenorhabditis elegans. Molecules a Cells, 2000, 10, 226-231.	nd 1.	.0	1
707	Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages. Blood, 2000, 96, 719-726.	O	.6	640
708	Model organisms: comparative physiology or just physiology?. American Journal of Physiology - Ce Physiology, 2000, 279, C2050-C2051.	2.	.1	6
709	The central nervous system, its cellular organisation and development, in the tadpole larva of the ascidian Ciona intestinalis. Acta Biologica Hungarica, 2000, 51, 417-431.	0	.7	14
710	Neurogenetics of vesicular transporters inC. elegans. FASEB Journal, 2000, 14, 2414-2422.	0	.2	42
711	LIN-5 Is a Novel Component of the Spindle Apparatus Required for Chromosome Segregation and Cleavage Plane Specification in Caenorhabditis elegans. Journal of Cell Biology, 2000, 148, 73-86.	2.	.3	96
712	Germ plasm and molecular determinants of germ cell fate. Current Topics in Developmental Biolog 2000, 50, 155-IN2.	çy, 1.	.0	171
713	Pristionchus pacificus: a satellite organism in evolutionary developmental biology. Nematology, 20 2, 81-88.	000, 0	.2	4
714	Membrane fusion as a morphogenetic force in nematode development. Nematology, 2000, 2, 99-	111. о	.2	11
715	Early development of nematode embryos: differences and similarities. Nematology, 2000, 2, 57-64	. O	.2	8
716	Embryonic lineage evolution in nematodes. Nematology, 2000, 2, 65-69.	0	.2	13
717	The demise of the Platonic worm. Nematology, 2000, 2, 71-79.	0	.2	12

		CITATION	Report	
#	Article		IF	Citations
718	Medical significance of <i>Caenorhabditis elegans</i> . Annals of Medicine, 2000, 32, 23-3	0.	1.5	46
719	Caenorhabditis elegans embryonic axial patterning requires two recently discovered poste Hox genes. Proceedings of the National Academy of Sciences of the United States of Ame 4499-4503.	rior-group rica, 2000, 97,	3.3	81
720	Ultrastructure of the post–corpus of Zeldia punctata (Cephalobina) for analysis of the e framework of nematodes related to Caenorhabditis elegans (Rhabditina). Proceedings of t Society B: Biological Sciences, 2000, 267, 1229-1238.	volutionary the Royal	1.2	12
721	The forkhead domain gene unc-130 generates chemosensory neuron diversity in C. elegar Development, 2000, 14, 2472-2485.	ns. Genes and	2.7	48
722	Caenorhabditis elegans β-G Spectrin Is Dispensable for Establishment of Epithelial Polarity Essential for Muscular and Neuronal Function. Journal of Cell Biology, 2000, 149, 915-930		2.3	98
723	Marking cell layers with spectinomycin provides a new tool for monitoring cell fate during development. Journal of Experimental Botany, 2000, 51, 1713-1720.	leaf	2.4	21
724	Animal models of spinal muscular atrophy. Human Molecular Genetics, 2000, 9, 2451-245	57.	1.4	120
725	Prolyl 4-Hydroxylase Is an Essential Procollagen-Modifying Enzyme Required for Exoskelet Formation and the Maintenance of Body Shape in the Nematode Caenorhabditis elegans. Cellular Biology, 2000, 20, 4084-4093.	on Molecular and	1.1	107
726	Targets of TGF-β Signaling in Caenorhabditis elegans Dauer Formation. Developmental Bio 217, 192-204.	ology, 2000,	0.9	140
727	Evolution of Vulva Development in the Cephalobina (Nematoda). Developmental Biology, 68-86.	2000, 221,	0.9	86
728	CHE-3, a Cytosolic Dynein Heavy Chain, Is Required for Sensory Cilia Structure and Functio Caenorhabditis elegans. Developmental Biology, 2000, 221, 295-307.	on in	0.9	183
729	The let-268 Locus of Caenorhabditis elegans Encodes a Procollagen Lysyl Hydroxylase Tha for Type IV Collagen Secretion. Developmental Biology, 2000, 227, 690-705.	t Is Essential	0.9	52
730	gon-4, a Cell Lineage Regulator Required for Gonadogenesis in Caenorhabditis elegans. De Biology, 2000, 228, 350-362.	evelopmental	0.9	37
731	DNA Replication Defects Delay Cell Division and Disrupt Cell Polarity in Early Caenorhabdi Embryos. Developmental Biology, 2000, 228, 225-238.	tis elegans	0.9	122
732	Timing of CNS Cell Generation. Neuron, 2000, 28, 69-80.		3.8	770
733	rpm-1, A Conserved Neuronal Gene that Regulates Targeting and Synaptogenesis in C. ele 2000, 26, 345-356.	gans. Neuron,	3.8	234
734	The TBP-like Factor CeTLF Is Required to Activate RNA Polymerase II Transcription during C Embryogenesis. Molecular Cell, 2000, 6, 705-713.	2. elegans	4.5	109
735	The RFX-Type Transcription Factor DAF-19 Regulates Sensory Neuron Cilium Formation in Molecular Cell, 2000, 5, 411-421.	C. elegans.	4.5	314

#	Article	IF	Citations
736	The ced-8 Gene Controls the Timing of Programmed Cell Deaths in C. elegans. Molecular Cell, 2000, 5, 423-433.	4.5	122
737	Evolution of nematode development. Current Opinion in Genetics and Development, 2000, 10, 443-448.	1.5	34
738	Getting signals crossed in C. elegans. Current Opinion in Genetics and Development, 2000, 10, 523-528.	1.5	6
739	BIOCHEMISTRY:Reading the Worm Genome. Science, 2000, 287, 52-53.	6.0	5
740	Positioning of Longitudinal Nerves in C. elegans by Nidogen. Science, 2000, 288, 150-154.	6.0	100
741	Analysis of Programmed Cell Death in the Nematode Caenorhabditis elegans. Methods in Enzymology, 2000, 322, 76-88.	0.4	12
742	Cryopreservation of Embryos of the New World Screwworm <i>Cochliomyia hominivorax</i> (Diptera: Calliphoridae). Annals of the Entomological Society of America, 2001, 94, 695-701.	1.3	30
743	Ovarian differentiation and human embryo quality. 1. Molecular and morphogenetic homologies between oocytes and embryos in Drosophila, C. elegans, Xenopus and mammals. Reproductive BioMedicine Online, 2001, 3, 138-160.	1.1	24
744	The germline in C. elegans: Origins, proliferation, and silencing. International Review of Cytology, 2001, 203, 139-185.	6.2	90
745	Dynamic Signaling Between Astrocytes and Neurons. Annual Review of Physiology, 2001, 63, 795-813.	5.6	549
746	Molecular aspects of sexual development and reproduction in nematodes and schistosomes. Advances in Parasitology, 2001, 50, 153-198.	1.4	38
747	Spatial and Temporal Patterns of Cell Division during Early Xenopus Embryogenesis. Developmental Biology, 2001, 229, 307-318.	0.9	151
748	Zonula Adherens Formation in Caenorhabditis elegans Requires dlg-1, the Homologue of the Drosophila Gene discs large. Developmental Biology, 2001, 230, 29-42.	0.9	148
749	Comparative Aspects of Animal Oogenesis. Developmental Biology, 2001, 231, 291-320.	0.9	289
750	Analyses of Reproductive Interactions That Occur after Heterospecific Matings within the Genus Caenorhabditis. Developmental Biology, 2001, 232, 105-114.	0.9	68
751	Zygotic Expression of the caudal Homolog pal-1 Is Required for Posterior Patterning in Caenorhabditis elegans Embryogenesis. Developmental Biology, 2001, 229, 71-88.	0.9	61
752	The Caenorhabditis elegans peb-1 Gene Encodes a Novel DNA-Binding Protein Involved in Morphogenesis of the Pharynx, Vulva, and Hindgut. Developmental Biology, 2001, 229, 480-493.	0.9	32
753	Regulation of Cell Fate in Caenorhabditis elegans by a Novel Cytoplasmic Polyadenylation Element Binding Protein. Developmental Biology, 2001, 229, 537-553.	0.9	68

#	Article	IF	CITATIONS
754	The sys-1 Gene and Sexual Dimorphism during Gonadogenesis in Caenorhabditis elegans. Developmental Biology, 2001, 230, 61-73.	0.9	50
755	Development and Evolution of a Variable Left–Right Asymmetry in Nematodes: The Handedness of P11/P12 Migration. Developmental Biology, 2001, 232, 362-371.	0.9	20
756	Early Morphogenesis of the Caenorhabditis elegans Pharynx. Developmental Biology, 2001, 233, 482-494.	0.9	84
757	The Zinc Finger Protein DIE-1 Is Required for Late Events during Epithelial Cell Rearrangement in C. elegans. Developmental Biology, 2001, 236, 165-180.	0.9	57
758	Coordination of ges-1 Expression Between the Caenorhabditis Pharynx and Intestine. Developmental Biology, 2001, 239, 350-363.	0.9	24
759	Protein Localization during Asymmetric Cell Division. Experimental Cell Research, 2001, 271, 66-74.	1.2	19
760	The third and fourth tropomyosin isoforms of Caenorhabditis elegans are expressed in the pharynx and intestines and are essential for development and morphology. Journal of Molecular Biology, 2001, 313, 525-537.	2.0	47
761	Tracing the lineage of tracing cell lineages. Nature Cell Biology, 2001, 3, E216-E218.	4.6	91
762	Identification of human FEM1A, the ortholog of a C. elegans sex-differentiation gene. Gene, 2001, 279, 213-219.	1.0	24
763	C. elegans CED-12 Acts in the Conserved CrkII/DOCK180/Rac Pathway to Control Cell Migration and Cell Corpse Engulfment. Developmental Cell, 2001, 1, 491-502.	3.1	160
764	The C. elegans PH Domain Protein CED-12 Regulates Cytoskeletal Reorganization via a Rho/Rac GTPase Signaling Pathway. Developmental Cell, 2001, 1, 477-489.	3.1	169
765	Specification of Thermosensory Neuron Fate in C. elegans Requires ttx-1, a Homolog of otd/Otx. Neuron, 2001, 31, 943-956.	3.8	148
766	C. elegans Slit Acts in Midline, Dorsal-Ventral, and Anterior-Posterior Guidance via the SAX-3/Robo Receptor. Neuron, 2001, 32, 25-38.	3.8	209
767	Targets of TGFβ-related signaling in Caenorhabditis elegans. Cytokine and Growth Factor Reviews, 2001, 12, 305-312.	3.2	29
768	Restriction of Mesendoderm to a Single Blastomere by the Combined Action of SKN-1 and a GSK-3β Homolog Is Mediated by MED-1 and -2 in C. elegans. Molecular Cell, 2001, 7, 475-485.	4.5	174
769	CED-1 Is a Transmembrane Receptor that Mediates Cell Corpse Engulfment in C. elegans. Cell, 2001, 104, 43-56.	13.5	542
770	A Biological Atlas of Functional Maps. Cell, 2001, 104, 333-339.	13.5	188
771	Comparative survey of early embryogenesis of Secernentea (Nematoda), with phylogenetic implications. Canadian Journal of Zoology, 2001, 79, 82-94.	0.4	31

#	Article	IF	CITATIONS
773	Regulation of Neurotransmitter Vesicles by the Homeodomain Protein UNC-4 and Its Transcriptional Corepressor UNC-37/Groucho in <i>Caenorhabditis elegans</i> Cholinergic Motor Neurons. Journal of Neuroscience, 2001, 21, 2001-2014.	1.7	65
775	Initiation and early patterning of the endoderm. International Review of Cytology, 2001, 203, 383-446.	6.2	18
776	Prevention of Apoptosis of Mammalian Cells by the CED-3-Cleaved Form of CED-9 Archives of Histology and Cytology, 2001, 64, 17-28.	0.2	2
777	High copy arrays containing a sequence upstream of mec-3 alter cell migration and axonal morphology in C. elegans. BMC Developmental Biology, 2001, 1, 2.	2.1	6
778	Characterization of a novel gene expressed in neuromuscular tissues and centrosomes inCaenorhabditis elegans. Cell Biochemistry and Function, 2001, 19, 79-88.	1.4	0
779	Serotonin modulates locomotory behavior and coordinates egg-laying and movement inCaenorhabditis elegans. Journal of Neurobiology, 2001, 49, 303-313.	3.7	133
780	Postembryonic expression ofCaenorhabditis elegans mab-21 and its requirement in sensory ray differentiation. Developmental Dynamics, 2001, 221, 422-430.	0.8	27
781	TheCaenorhabditis elegans Distal-lessorthologceh-43is required for development of the anterior hypodermis. Developmental Dynamics, 2001, 222, 403-409.	0.8	17
782	Multiple enhancers contribute to expression of the NK-2 homeobox geneceh-22 inC. elegans pharyngeal muscle. Genesis, 2001, 31, 156-166.	0.8	15
783	Microevolutionary studies in nematodes: a beginning. BioEssays, 2001, 23, 807-819.	1.2	25
784	Contribution of neurons to habituation to mechanical stimulation inCaenorhabditis elegans. Journal of Neurobiology, 2001, 46, 29-40.	3.7	14
785	Toxicity of the dithiocarbamate fungicide Mancozeb to the nontarget soil nematode,Caenorhabditis elegans. Journal of Biochemical and Molecular Toxicology, 2001, 15, 15-25.	1.4	32
786	Spectrin: The ghost in the machine. BioEssays, 2001, 23, 152-160.	1.2	43
787	The use of functional genomics in C. elegans for studying human development and disease. Journal of Inherited Metabolic Disease, 2001, 24, 127-138.	1.7	60
788	Structural Complexity of Early Embryos: A Study on the Nematode Caenorhabditis elegans. Journal of Biological Physics, 2001, 27, 257-283.	0.7	14
789	Mechanotransduction in Caenorhabditis elegans: The Role of DEG/ENaC Ion Channels. Cell Biochemistry and Biophysics, 2001, 35, 01-18.	0.9	37
790	A POP-1 repressor complex restricts inappropriate cell type-specific gene transcription during Caenorhabditis elegans embryogenesis. EMBO Journal, 2001, 20, 7197-7208.	3.5	87
791	How the worm removes corpses: the nematode C. elegans as a model system to study engulfment. Cell Death and Differentiation, 2001, 8, 564-568.	5.0	58

#	Article	IF	CITATIONS
792	Not being the wrong size. Nature Reviews Molecular Cell Biology, 2001, 2, 48-55.	16.1	61
793	Asymmetric cell division during animal development. Nature Reviews Molecular Cell Biology, 2001, 2, 11-20.	16.1	274
794	Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo. Nature, 2001, 409, 630-633.	13.7	484
795	Glia: listening and talking to the synapse. Nature Reviews Neuroscience, 2001, 2, 185-193.	4.9	1,287
796	Bioinformatics beyond sequence: mapping gene function in the embryo. Nature Reviews Genetics, 2001, 2, 409-417.	7.7	59
797	The natural history of Caenorhabditis elegans research. Nature Reviews Genetics, 2001, 2, 474-479.	7.7	107
798	Engulfment genes cooperate with ced-3 to promote cell death in Caenorhabditis elegans. Nature, 2001, 412, 202-206.	13.7	282
799	http://C.Elegans: Mining the functional genomic landscape. Nature Reviews Genetics, 2001, 2, 681-689.	7.7	24
800	Control of developmental timing in animals. Nature Reviews Genetics, 2001, 2, 690-701.	7.7	121
801	The best supporting actors. Nature, 2001, 412, 674-676.	13.7	13
802	Functional analysis of leucine aminopeptidase in Caenorhabditis elegans Molecular and Biochemical Parasitology, 2001, 113, 223-232.	0.5	24
803	Completion of cytokinesis in C. elegans requires a brefeldin A-sensitive membrane accumulation at the cleavage furrow apex. Current Biology, 2001, 11, 735-746.	1.8	211
804	Asymmetric cell division: fly neuroblast meets worm zygote. Current Opinion in Cell Biology, 2001, 13, 68-75.	2.6	150
805	As good as they get: cells in nematode vulva development and evolution. Current Opinion in Cell Biology, 2001, 13, 715-720.	2.6	29
806	WormBase: network access to the genome and biology of Caenorhabditis elegans. Nucleic Acids Research, 2001, 29, 82-86.	6.5	290
807	Genome-wide analysis of developmental and sex-regulated gene expression profiles in <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 218-223.	3.3	267
808	Activation of Hypodermal Differentiation in the Caenorhabditis elegans Embryo by GATA Transcription Factors ELT-1 and ELT-3. Molecular and Cellular Biology, 2001, 21, 2533-2544.	1.1	107
809	A power law for cells. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 5699-5704.	3.3	46

#	Article	IF	CITATIONS
810	Programmed cell death mediated by ced-3 and ced-4 protects Caenorhabditis elegans from Salmonella typhimurium-mediated killing. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 2735-2739.	3.3	181
811	The Caenorhabditis elegans hif-1 gene encodes a bHLH-PAS protein that is required for adaptation to hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 7916-7921.	3.3	270
812	CREB Is One Component of the Binding Complex of the Ces-2/E2A-HLF Binding Element and Is an Integral Part of the Interleukin-3 Survival Signal. Molecular and Cellular Biology, 2001, 21, 4636-4646.	1.1	36
813	MUP-4 is a novel transmembrane protein with functions in epithelial cell adhesion in Caenorhabditis elegans. Journal of Cell Biology, 2001, 154, 403-414.	2.3	61
814	Cytoplasmic Dynein Light Intermediate Chain Is Required for Discrete Aspects of Mitosis in <i>Caenorhabditis elegans</i> . Molecular Biology of the Cell, 2001, 12, 2921-2933.	0.9	57
815	DLC-1 Is a MAGUK Similar to SAP97 and Is Required for Adherens Junction Formation. Molecular Biology of the Cell, 2001, 12, 3465-3475.	0.9	112
816	On the evolution of early development in the Nematoda. Philosophical Transactions of the Royal Society B: Biological Sciences, 2001, 356, 1521-1531.	1.8	60
817	PIE-1 is a bifunctional protein that regulates maternal and zygotic gene expression in the embryonic germ line of Caenorhabditis elegans. Genes and Development, 2001, 15, 1031-1040.	2.7	350
818	The DAF-7 TGF-beta signaling pathway regulates chemosensory receptor gene expression in C. elegans. Genes and Development, 2002, 16, 3061-3073.	2.7	65
819	Control of neuronal subtype identity by the C. elegans ARID protein CFI-1. Genes and Development, 2002, 16, 972-983.	2.7	44
820	Regulation of Organogenesis by the Caenorhabditis elegans FoxA Protein PHA-4. Science, 2002, 295, 821-825.	6.0	347
821	The GEX-2 and GEX-3 proteins are required for tissue morphogenesis and cell migrations in C. elegans. Genes and Development, 2002, 16, 620-632.	2.7	112
822	A glimpse into the molecular entrails of endoderm formation. Genes and Development, 2002, 16, 893-907.	2.7	159
823	The Exoskeleton Collagens in Caenorhabditis elegans Are Modified by Prolyl 4-Hydroxylases with Unique Combinations of Subunits. Journal of Biological Chemistry, 2002, 277, 29187-29196.	1.6	33
824	cdk-7 is required for mRNA transcription and cell cycle progression in Caenorhabditis elegans embryos. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 5527-5532.	3.3	81
825	The T-box factor MLS-1 acts as a molecular switch during specification of nonstriated muscle in C. elegans. Genes and Development, 2002, 16, 257-269.	2.7	50
826	Regulated Disruption of Inositol 1,4,5-Trisphosphate Signaling inCaenorhabditis elegansReveals New Functions in Feeding and Embryogenesis. Molecular Biology of the Cell, 2002, 13, 1329-1337.	0.9	64
827	Cuticle, Moulting and Exsheathment. , 2002, , 171-210.		13

# 828	ARTICLE Human Use of Non-Human Animals – a Biologist's View. , 0, , 85-99.	IF	Citations
829	N-Tosyl- <i>L</i> -Phenylalanyl-Chloromethyl Ketone Eliminates the Increase in Caspase-3 and Bcl-2 Caused by Brain Injury in the Newborn Rat. Pharmacology, 2002, 66, 115-119.	0.9	4
830	Control of Developmental Timing by MicroRNAs and Their Targets. Annual Review of Cell and Developmental Biology, 2002, 18, 495-513.	4.0	304
831	Malignant Worms: What Cancer Research Can Learn fromC. elegans. Cancer Investigation, 2002, 20, 264-275.	0.6	14
832	The Caenorhabditis elegans EGL-26 Protein Mediates Vulval Cell Morphogenesis. Developmental Biology, 2002, 241, 247-258.	0.9	29
833	Conserved Regulation of the Caenorhabditis elegans labial/Hox1 Gene ceh-13. Developmental Biology, 2002, 242, 96-108.	0.9	66
834	3D-DIASemb: A Computer-Assisted System for Reconstructing and Motion Analyzing in 4D Every Cell and Nucleus in a Developing Embryo. Developmental Biology, 2002, 245, 329-347.	0.9	55
835	Making Worm Guts: The Gene Regulatory Network of the Caenorhabditis elegans Endoderm. Developmental Biology, 2002, 246, 68-85.	0.9	172
836	Cell Lineage, Axis Formation, and the Origin of Germ Layers in the Amphipod Crustacean Orchestia cavimana. Developmental Biology, 2002, 250, 44-58.	0.9	62
837	Composition and Formation of Intercellular Junctions in Epithelial Cells. Science, 2002, 298, 1955-1959.	6.0	383
838	A Mutant Exhibiting Abnormal Habituation Behavior in Caenorhabditis elegans. Journal of Neurogenetics, 2002, 16, 29-44.	0.6	10
839	Interference Between the PHA-4 and PEB-1 Transcription Factors in Formation of the Caenorhabditis elegans Pharynx. Journal of Molecular Biology, 2002, 320, 697-704.	2.0	18
840	MRG-1, a mortality factor-related chromodomain protein, is required maternally for primordial germ cells to initiate mitotic proliferation in C. elegans. Mechanisms of Development, 2002, 114, 61-69.	1.7	33
841	The Articulata hypothesis ? or what is a segment?. Organisms Diversity and Evolution, 2002, 2, 197-215.	0.7	178
842	A Primary Culture System for Functional Analysis of C. elegans Neurons and Muscle Cells. Neuron, 2002, 33, 503-514.	3.8	202
843	The Type I Membrane Protein EFF-1 Is Essential for Developmental Cell Fusion. Developmental Cell, 2002, 2, 355-362.	3.1	214
844	Heads or Tails. Developmental Cell, 2002, 3, 157-166.	3.1	73
845	Genomic approaches to early development of C. elegans. International Congress Series, 2002, 1246, 111-115.	0.2	0

#	Article	IF	CITATIONS
846	Linaje y muerte celular programadas: implicaciones en la biologÃa del desarrollo y en biomedicina Biomedica, 2002, 22, 449.	0.3	0
848	Postmortem Anatomy. , 2002, , 537-571.		4
849	Phagocytosis of apoptotic cells in mammals Caenorhabditis Elegans and drosophila Melanogaster molecular mechanisms and physiological consequences. Frontiers in Bioscience - Landmark, 2002, 7, d1298-1313.	3.0	26
850	Caloric restriction and lifespan: a role for protein turnover?. Mechanisms of Ageing and Development, 2002, 123, 215-229.	2.2	72
851	Caenorhabditis elegans—a paradigm for aging research: advantages and limitations. Mechanisms of Ageing and Development, 2002, 123, 261-274.	2.2	34
852	The Caenorhabditis elegans Skp1-Related Gene Family. Current Biology, 2002, 12, 277-287.	1.8	112
853	Aging: From Radiant Youth to an Abrupt End. Current Biology, 2002, 12, R239-R241.	1.8	5
854	C. elegans PAT-4/ILK Functions as an Adaptor Protein within Integrin Adhesion Complexes. Current Biology, 2002, 12, 787-797.	1.8	286
855	Tubes and the single C. elegans excretory cell. Trends in Cell Biology, 2002, 12, 479-484.	3.6	96
856	Towards a Tralfamadorian view of the embryo: multidimensional imaging of development. Current Opinion in Neurobiology, 2002, 12, 580-586.	2.0	24
857	Cell proliferation and growth inC. elegans. BioEssays, 2002, 24, 38-53.	1.2	13
858	Genetic analysis of nicotinic signaling in worms and flies. Journal of Neurobiology, 2002, 53, 535-541.	3.7	11
859	The Ror receptor tyrosine kinase family. Cellular and Molecular Life Sciences, 2002, 59, 83-96.	2.4	94
860	Looking beyond the details: a rise in system-oriented approaches in genetics and molecular biology. Current Genetics, 2002, 41, 1-10.	0.8	157
861	Developmental potential of fused Caenorhabditis elegans oocytes: generation of giant and twin embryos. Development Genes and Evolution, 2002, 212, 257-266.	0.4	11
862	Expression of the ctenophore Brain Factor 1 forkhead gene ortholog (ctenoBF-1) mRNA is restricted to the presumptive mouth and feeding apparatus: implications for axial organization in the Metazoa. Development Genes and Evolution, 2002, 212, 338-348.	0.4	23
863	Metazoan Motor Models: Kinesin Superfamily inC. elegans. Traffic, 2002, 3, 20-28.	1.3	48
864	2001 Warkany lecture: To die or not to die, the role of apoptosis in normal and abnormal mammalian development. Teratology, 2002, 65, 228-239.	1.8	68

#	Article	IF	CITATIONS
865	Social feeding in Caenorhabditis elegans is induced by neurons that detect aversive stimuli. Nature, 2002, 419, 899-903.	13.7	229
866	The art and design of genetic screens: Caenorhabditis elegans. Nature Reviews Genetics, 2002, 3, 356-369.	7.7	385
867	Evolution of development in closely related species of flies and worms. Nature Reviews Genetics, 2002, 3, 907-907.	7.7	64
868	Redefinition of lymphoid progenitors. Nature Reviews Immunology, 2002, 2, 127-132.	10.6	174
869	Left–right asymmetry in the nervous system: the Caenorhabditis elegans model. Nature Reviews Neuroscience, 2002, 3, 629-640.	4.9	219
870	Oncogenic potential of a C.eleganscdc25 gene is demonstrated by a gain-of-function allele. EMBO Journal, 2002, 21, 665-674.	3.5	44
871	NOBEL LECTURE: C. elegans: The Cell Lineage and Beyond. Bioscience Reports, 2003, 23, 49-66.	1.1	8
872	NOBEL LECTURE: Worms, Life and Death. Bioscience Reports, 2003, 23, 239-303.	1.1	72
873	Hox Gene Loss during Dynamic Evolution of the Nematode Cluster. Current Biology, 2003, 13, 37-40.	1.8	142
874	PAR Proteins Regulate Microtubule Dynamics at the Cell Cortex in C. elegans. Current Biology, 2003, 13, 707-714.	1.8	87
875	Asymmetrically Distributed C. elegans Homologs of AGS3/PINS Control Spindle Position in the Early Embryo. Current Biology, 2003, 13, 1029-1037.	1.8	229
876	Cell Cycle: Check for Asynchrony. Current Biology, 2003, 13, R560-R562.	1.8	5
877	Functional analysis of the single calmodulin gene in the nematode Caenorhabditis elegans by RNA interference and 4-D microscopy. European Journal of Cell Biology, 2003, 82, 557-563.	1.6	14
878	Caenorhabditis elegansexoskeleton collagen COL-19: An adult-specific marker for collagen modification and assembly, and the analysis of organismal morphology. Developmental Dynamics, 2003, 226, 523-539.	0.8	106
879	Mitochondrial ATP synthase controls larval development cell nonautonomously in Caenorhabditis elegans. Developmental Dynamics, 2003, 226, 719-726.	0.8	19
880	Profiling stage-dependent changes of protein expression in Caenorhabditis elegans by mass spectrometric proteome analysis leads to the identification of stage-specific marker proteins. Electrophoresis, 2003, 24, 1809-1817.	1.3	29
881	Genetic basis of male sexual behavior. Journal of Neurobiology, 2003, 54, 93-110.	3.7	46
882	Building a Cell and Anatomy Ontology ofCaenorhabditis elegans. Comparative and Functional Genomics, 2003, 4, 121-126.	2.0	35

#	Article	IF	CITATIONS
883	Caenorhabditis elegans: The Cell Lineage and Beyond (Nobel Lecture). ChemBioChem, 2003, 4, 688-696.	1.3	33
884	Worms, Life, and Death (Nobel Lecture). ChemBioChem, 2003, 4, 697-711.	1.3	164
885	The story of cell fusion: Big lessons from little worms. BioEssays, 2003, 25, 672-682.	1.2	59
886	Proposing a solution to the Articulata-Ecdysozoa controversy. Zoologica Scripta, 2003, 32, 475-482.	0.7	61
887	Suppression of CED-3-independent apoptosis by mitochondrial βNAC in Caenorhabditis elegans. Nature, 2003, 424, 1066-1071.	13.7	107
888	Genetic Analysis of Hypoxia Signaling and Response in <i>C. elegans</i> . Annals of the New York Academy of Sciences, 2003, 995, 191-199.	1.8	58
889	Cell Polarity and the Cytoskeleton in the Caenorhabditis Elegans Zygote. Annual Review of Genetics, 2003, 37, 221-249.	3.2	113
890	Molecular networks controlling epithelial cell polarity in development. Mechanisms of Development, 2003, 120, 1231-1256.	1.7	56
891	The Significance of Muscle Cells for the Origin of Mesoderm in Bilateria. Integrative and Comparative Biology, 2003, 43, 47-54.	0.9	32
892	Electron transport and life span in C. elegans. Advances in Cell Aging and Gerontology, 2003, 14, 177-195.	0.1	2
893	New roles for astrocytes: Redefining the functional architecture of the brain. Trends in Neurosciences, 2003, 26, 523-530.	4.2	1,135
894	Functional analysis of the domains of the C. elegans Ror receptor tyrosine kinase CAM-1. Developmental Biology, 2003, 264, 376-390.	0.9	54
895	Nematoda: Genes, Genomes and the Evolution of Parasitism. Advances in Parasitology, 2003, 54, 101-195.	1.4	83
896	Comparative and experimental embryogenesis of Plectidae (Nematoda). Development Genes and Evolution, 2003, 213, 18-27.	0.4	38
897	Tissue-Specific Activities of C. elegans DAF-16 in the Regulation of Lifespan. Cell, 2003, 115, 489-502.	13.5	699
898	EXT gene family member rib-2 is essential for embryonic development and heparan sulfate biosynthesis in Caenorhabditis elegans. Biochemical and Biophysical Research Communications, 2003, 301, 317-323.	1.0	47
899	Cyclin E expression during development in caenorhabditis elegans. Developmental Biology, 2003, 254, 102-115.	0.9	53
900	The caenorhabditis elegans innexin INX-3 is localized to gap junctions and is essential for embryonic development. Developmental Biology, 2003, 256, 403-417.	0.9	45

#	Article	IF	CITATIONS
901	Tcl-2 encodes a novel protein that acts synergistically with Wnt signaling pathways in C. elegans. Developmental Biology, 2003, 256, 276-289.	0.9	7
902	Embryonic cell lineage of the marine nematode Pellioditis marinaâ~†â~†Supplementary data associated with this article can be found at doi:10.1016/S0012-1606(03)00101-5 Developmental Biology, 2003, 258, 57-69.	0.9	52
903	A gain-of-function mutation in oma-1, a C. elegans gene required for oocyte maturation, results in delayed degradation of maternal proteins and embryonic lethality. Developmental Biology, 2003, 258, 226-239.	0.9	87
904	Dissecting Drosophila embryonic brain development using photoactivated gene expression. Developmental Biology, 2003, 260, 124-137.	0.9	12
905	A genetic analysis of axon guidance in the C. elegans pharynx. Developmental Biology, 2003, 260, 158-175.	0.9	24
906	Essential embryonic roles of the CKI-1 cyclin-dependent kinase inhibitor in cell-cycle exit and morphogenesis in C. elegans. Developmental Biology, 2003, 260, 273-286.	0.9	50
907	Developmental patterning in the Caenorhabditis elegans hindgut. Developmental Biology, 2003, 262, 88-93.	0.9	11
908	The evolution of developmental mechanisms. Developmental Biology, 2003, 264, 15-37.	0.9	93
909	Identification of CHE-13, a novel intraflagellar transport protein required for cilia formation. Experimental Cell Research, 2003, 284, 249-261.	1.2	80
910	Hallmarks of Caenorhabditis elegans N-glycosylation: complexity and controversy. Biochimie, 2003, 85, 25-32.	1.3	69
911	Blood on the tracks: a simple twist of fate?. Trends in Neurosciences, 2003, 26, 292-296.	4.2	14
912	Functional Genomic Analysis of Apoptotic DNA Degradation in C. elegans. Molecular Cell, 2003, 11, 987-996.	4.5	127
913	The role of mitochondria in the life of the nematode, Caenorhabditis elegans. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2003, 1638, 91-105.	1.8	103
914	A Conserved Chromatin Architecture Marks and Maintains the Restricted Germ Cell Lineage in Worms and Flies. Developmental Cell, 2003, 5, 747-757.	3.1	154
915	Calcium-dependent and aspartyl proteases in neurodegeneration and ageing in C. elegans. Ageing Research Reviews, 2003, 2, 451-471.	5.0	16
916	Cell Corpse Engulfment Mediated by C. elegans Phosphatidylserine Receptor Through CED-5 and CED-12. Science, 2003, 302, 1563-1566.	6.0	183
918	Treatment of Hypoxic-Ischemic Brain Injury in Newborn Rats with TPCK 3 h after Hypoxia Decreases Caspase-9 Activation and Improves Neuropathologic Outcome. Developmental Neuroscience, 2003, 25, 34-40.	1.0	12
919	C. elegans PAR-3 and PAR-6 are required for apicobasal asymmetries associated with cell adhesion and gastrulation. Development (Cambridge), 2003, 130, 5339-5350.	1.2	185

#	Article	IF	CITATIONS
920	Differential Requirement for the Nonhelical Tailpiece and the C Terminus of the Myosin Rod inCaenorhabditis elegansMuscle. Molecular Biology of the Cell, 2003, 14, 1677-1690.	0.9	13
921	Mechanisms of cell positioning during C. elegansgastrulation. Development (Cambridge), 2003, 130, 307-320.	1.2	94
922	Computer simulation of the cellular arrangement using physical model in early cleavage of the nematode Caenorhabditis elegans. Bioinformatics, 2003, 19, 704-716.	1.8	16
923	Embryonic handedness choice in C. elegans involves the Cαprotein GPA-16. Development (Cambridge), 2003, 130, 5731-5740.	1.2	66
924	HLH-14 is a C. elegans Achaete-Scute protein that promotes neurogenesis through asymmetric cell division. Development (Cambridge), 2003, 130, 6507-6518.	1.2	38
925	C. elegans ZAG-1, a Zn-finger-homeodomain protein, regulates axonal development and neuronal differentiation. Development (Cambridge), 2003, 130, 3781-3794.	1.2	118
926	Composition and dynamics of the Caenorhabditis elegans early embryonic transcriptome. Development (Cambridge), 2003, 130, 889-900.	1.2	235
927	Translational control of maternal glp-1 mRNA by POS-1 and its interacting protein SPN-4 in Caenorhabditis elegans. Development (Cambridge), 2003, 130, 2495-2503.	1.2	91
928	SDF-9, a protein tyrosine phosphatase-like molecule, regulates the L3/dauer developmental decision through hormonal signaling inC. elegans. Development (Cambridge), 2003, 130, 3237-3248.	1.2	53
929	Investigating C. elegans development through mosaic analysis. Development (Cambridge), 2003, 130, 4761-4768.	1.2	42
930	A Complex II Defect Affects Mitochondrial Structure, Leading to ced-3- and ced-4-dependent Apoptosis and Aging. Journal of Biological Chemistry, 2003, 278, 22031-22036.	1.6	88
931	ANChors away: an actin based mechanism of nuclear positioning. Journal of Cell Science, 2003, 116, 211-216.	1.2	206
932	The Caenorhabditis elegans ems class homeobox gene ceh-2 is required for M3 pharynx motoneuron function. Development (Cambridge), 2003, 130, 3369-3378.	1.2	33
933	Enzymes involved in the biogenesis of the nematode cuticle. Advances in Parasitology, 2003, 53, 85-148.	1.4	50
934	Activity of the Caenorhabditis elegans UNC-86 POU transcription factor modulates olfactory sensitivity. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 9560-9565.	3.3	24
935	The microRNAs of Caenorhabditis elegans. Genes and Development, 2003, 17, 991-1008.	2.7	1,081
936	The Snail-like CES-1 protein of C. elegans can block the expression of theBH3-only cell-death activator gene egl-1 by antagonizing the function of bHLH proteins. Development (Cambridge), 2003, 130, 4057-4071.	1.2	94
937	Laminin α subunits and their role in C. elegansdevelopment. Development (Cambridge), 2003, 130, 3343-3358.	1.2	131

CITATION REPOR			_	
	ίιτατ	ION	KED(JBL

#	Article	IF	CITATIONS
938	UNC-71, a disintegrin and metalloprotease (ADAM) protein, regulates motor axon guidance and sex myoblast migration inC. elegans. Development (Cambridge), 2003, 130, 3147-3161.	1.2	63
939	WormBase: a cross-species database for comparative genomics. Nucleic Acids Research, 2003, 31, 133-137.	6.5	107
940	TheC. elegansHand gene controls embryogenesis and early gonadogenesis. Development (Cambridge), 2003, 130, 2881-2892.	1.2	45
941	Establishment of POP-1 asymmetry in early C. elegansembryos. Development (Cambridge), 2003, 130, 3547-3556.	1.2	61
942	ALES: cell lineage analysis and mapping of developmental events. Bioinformatics, 2003, 19, 851-858.	1.8	27
943	Testing evolutionary convergence on Europa. International Journal of Astrobiology, 2003, 2, 307-312.	0.9	15
944	From Genes to Integrative Physiology: Ion Channel and Transporter Biology in <i>Caenorhabditis elegans</i> . Physiological Reviews, 2003, 83, 377-415.	13.1	73
947	Super models. Physiological Genomics, 2003, 13, 15-24.	1.0	68
948	Distinguishable live erythroid and myeloid cells in β-globin ECFP x lysozyme EGFP mice. Blood, 2003, 101, 903-906.	0.6	20
951	Le nématode Caenorhabditis elegans, un modÔle d'étude pour les interactions hÃ′te-bactéries pathogÔnes. Société De Biologie Journal, 2003, 197, 375-378.	0.3	3
952	The C. elegans che-1 gene encodes a zinc finger transcription factor required for specification of the ASE chemosensory neurons. Development (Cambridge), 2003, 130, 1215-1224.	1.2	143
954	Squeezing an Egg into a Worm: C. elegans Embryonic Morphogenesis. Scientific World Journal, The, 2003, 3, 1370-1381.	0.8	14
955	The biology of the post-genomic era: the proteomics. Acta Biologica Hungarica, 2003, 54, 1-14.	0.7	12
957	Differences in maternal supply and early development of closely related nematode species. International Journal of Developmental Biology, 2004, 48, 655-662.	0.3	29
958	The AHR-1 aryl hydrocarbon receptor and its co-factor the AHA-1 aryl hydrocarbon receptor nuclear translocator specify GABAergic neuron cell fate inC. elegans. Development (Cambridge), 2004, 131, 819-828.	1.2	123
959	A Motor Control Model of the Nematode C. e1egaans. , 0, , .		5
960	Caenorhabditis elegans WASP and Ena/VASP Proteins Play Compensatory Roles in Morphogenesis and Neuronal Cell Migration. Genetics, 2004, 167, 1165-1176.	1.2	99
961	The T-box transcription factors TBX-37 and TBX-38 link GLP-1/Notch signaling to mesoderm induction in C. elegans embryos. Development (Cambridge), 2004, 131, 1967-1978.	1.2	77

<u></u>		D
(пт	ON	Report
		KLI OKI

#	Article	IF	CITATIONS
962	DEVELOPMENT: The Tale Behind the Worm. Science, 2004, 303, 42-42.	6.0	2
963	The Identities of sym-2, sym-3 and sym-4, Three Genes That Are Synthetically Lethal With mec-8 in Caenorhabditis elegansSequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession nos. AY220985, AY221634, AY223545, and AY372076 Genetics, 2004, 168, 1293-1306.	1.2	19
964	Type II platelet-activating factor-acetylhydrolase is essential for epithelial morphogenesis in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13233-13238.	3.3	17
965	Segment-specific prevention of pioneer neuron apoptosis by cell-autonomous, postmitotic Hox gene activity. Development (Cambridge), 2004, 131, 6093-6105.	1.2	105
966	The conserved kinase UNC-51 acts with VAB-8 and UNC-14 to regulate axon outgrowth in C. elegans. Development (Cambridge), 2004, 131, 5991-6000.	1.2	56
967	Hormonal signals produced by DAF-9/cytochrome P450 regulate C. elegans dauer diapause in response to environmental cues. Development (Cambridge), 2004, 131, 1765-1776.	1.2	161
968	Environmentally Induced Foregut Remodeling by PHA-4/FoxA and DAF-12/NHR. Science, 2004, 305, 1743-1746.	6.0	164
969	Tetraspanin protein (TSP-15) is required for epidermal integrity in Caenorhabditis elegans. Journal of Cell Science, 2004, 117, 5209-5220.	1.2	98
970	Caenorhabditis elegans functional genomics: Omic resonance. Briefings in Functional Genomics & Proteomics, 2004, 3, 26-34.	3.8	0
971	SPI: a tool for incorporating gene expression data into a four-dimensional database of Caenorhabditis elegans embryogenesis. Bioinformatics, 2004, 20, 1097-1109.	1.8	5
972	Anaphase-Promoting Complex in Caenorhabditis elegans. Molecular and Cellular Biology, 2004, 24, 2215-2225.	1.1	13
973	The Caenorhabditis elegans F-box protein SEL-10 promotes female development and may target FEM-1 and FEM-3 for degradation by the proteasome. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12549-12554.	3.3	44
974	FGF signaling functions in the hypodermis to regulate fluid balance in C. elegans. Development (Cambridge), 2004, 131, 2595-2604.	1.2	45
975	Caenorhabditis elegans TRPV ion channel regulates 5HT biosynthesis in chemosensory neurons. Development (Cambridge), 2004, 131, 1629-1638.	1.2	69
976	Tales of Cannibalism, Suicide, and Murder: Programmed Cell Death in C. elegans. Current Topics in Developmental Biology, 2004, 65, 1-45.	1.0	36
977	WormBase: a multi-species resource for nematode biology and genomics. Nucleic Acids Research, 2004, 32, 411D-417.	6.5	610
978	The Caenorhabditis elegans pvl-5 Gene Protects Hypodermal Cells From ced-3-Dependent, ced-4-Independent Cell Death. Genetics, 2004, 167, 673-685.	1.2	10
979	The Genetics of Hiding the Corpse: Engulfment and Degradation of Apoptotic Cells in C. elegans and D. melanogaster. Current Topics in Developmental Biology, 2004, 63, 91-143.	1.0	31

#	Article	IF	Citations
980	Neural Stem Cell Purification and Clonal Analysis. , 2003, , 207-229.		0
981	Whole-Genome Analysis of Temporal Gene Expression during Foregut Development. PLoS Biology, 2004, 2, e352.	2.6	82
982	Genetic Models of Mechanotransduction: The NematodeCaenorhabditis elegans. Physiological Reviews, 2004, 84, 1097-1153.	13.1	114
983	Early embryogenesis of the pinewood nematode Bursaphelenchus xylophilus. Development Growth and Differentiation, 2004, 46, 153-161.	0.6	26
984	An evolutionarily conserved gene required for proper microtubule architecture in Caenorhabditis elegans. Genes To Cells, 2004, 9, 83-93.	0.5	17
985	The concept of space and competition in immune regulation. Immunology, 2004, 111, 241-247.	2.0	52
986	The age of model organisms. Nature Reviews Genetics, 2004, 5, 69-76.	7.7	74
987	Of sea urchins and worms: development and cancer. Cell Death and Differentiation, 2004, 11, 11-12.	5.0	9
988	The Caenorhabditis elegans CED-9 protein does not directly inhibit the caspase CED-3, in vitro nor in yeast. Cell Death and Differentiation, 2004, 11, 1309-1316.	5.0	12
989	Dopamine modulates the plasticity of mechanosensory responses in Caenorhabditis elegans. EMBO Journal, 2004, 23, 473-482.	3.5	190
990	The nematode Caenorhabditis elegans as a model of organophosphate-induced mammalian neurotoxicity. Toxicology and Applied Pharmacology, 2004, 194, 248-256.	1.3	146
991	Automatic Tracking, Feature Extraction and Classification of C. elegans Phenotypes. IEEE Transactions on Biomedical Engineering, 2004, 51, 1811-1820.	2.5	140
992	Specification of chemosensory neuron subtype identities in Caenorhabditis elegans. Current Opinion in Neurobiology, 2004, 14, 22-30.	2.0	29
993	Genetic mosaic analysis in the nervous system. Current Opinion in Neurobiology, 2004, 14, 647-653.	2.0	12
994	ZEN-4/MKLP1 Is Required to Polarize the Foregut Epithelium. Current Biology, 2004, 14, 932-941.	1.8	54
995	Invertebrate Learning: What Can't a Worm Learn?. Current Biology, 2004, 14, R617-R618.	1.8	47
996	The Anaphase-Promoting Complex Regulates the Abundance of GLR-1 Glutamate Receptors in the Ventral Nerve Cord of C. elegans. Current Biology, 2004, 14, 2057-2062.	1.8	152
997	Genetic and Pharmacological Suppression of Polyglutamine-Dependent Neuronal Dysfunction in <i>Caenorhabditis elegans</i> . Journal of Molecular Neuroscience, 2004, 23, 061-068.	1.1	15

#	Article	IF	CITATIONS
998	The forces that position a mitotic spindle asymmetrically are tethered until after the time of spindle assembly. Journal of Cell Biology, 2004, 167, 245-256.	2.3	97
999	Dare to Be Different: Asymmetric Cell Division in Drosophila, C. elegans and Vertebrates. Current Biology, 2004, 14, R674-R685.	1.8	398
1000	Comparative Properties of Myogenesis in Invertebrates and in Lower and Higher Vertebrates. Russian Journal of Developmental Biology, 2004, 35, 360-369.	0.1	6
1001	Development and validation of computational models of cellular interaction. Journal of Molecular Histology, 2004, 35, 659-665.	1.0	21
1002	Functional genomics of the nicotinic acetylcholine receptor gene family of the nematode,Caenorhabditis elegans. BioEssays, 2004, 26, 39-49.	1.2	140
1003	External and internal control in plant development. Complexity, 2004, 9, 22-28.	0.9	11
1004	Kowalevsky, comparative evolutionary embryology, and the intellectual lineage of evo-devo. The Journal of Experimental Zoology, 2004, 302B, 19-34.	1.4	28
1005	Biogenic magnetite in the nematode Caenorhabditis elegans. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, S436-9.	1.2	23
1006	Genetic Networks in the Early Development of Caenorhabditis elegans. International Review of Cytology, 2004, 234, 47-100.	6.2	8
1007	Responses to infection and possible recognition strategies in the innate immune system of Caenorhabditis elegans. Molecular Immunology, 2004, , .	1.0	84
1008	Ectopic expression of a Haemonchus contortus GATA transcription factor in Caenorhabditis elegans reveals conserved function in spite of extensive sequence divergence. Molecular and Biochemical Parasitology, 2004, 133, 241-253.	0.5	44
1010	THE ENGULFMENT PROCESS OF PROGRAMMED CELL DEATH INCAENORHABDITIS ELEGANS. Annual Review of Cell and Developmental Biology, 2004, 20, 193-221.	4.0	229
1011	The Caenorhabditis elegans Ror RTK CAM-1 Inhibits EGL-20/Wnt Signaling in Cell Migration. Genetics, 2004, 168, 1951-1962.	1.2	67
1012	Multiple Wnt Signaling Pathways Converge to Orient the Mitotic Spindle in Early C. elegans Embryos. Developmental Cell, 2004, 7, 831-841.	3.1	156
1013	Development through the eyes of functional genomics. Current Opinion in Genetics and Development, 2004, 14, 336-342.	1.5	12
1014	Quantum algorithm for programmed cell death of Caenorhabditis elegans. Biochemical and Biophysical Research Communications, 2004, 321, 515-516.	1.0	2
1015	The worm's sense of smell. Developmental Biology, 2004, 265, 302-319.	0.9	24
1016	Multiple regulatory elements with spatially and temporally distinct activities control the expression of the epithelial differentiation gene lin-26 in C. elegans. Developmental Biology, 2004, 265, 478-490.	0.9	44

#	Article	IF	CITATIONS
1017	An early pharyngeal muscle enhancer from the Caenorhabditis elegans ceh-22 gene is targeted by the Forkhead factor PHA-4. Developmental Biology, 2004, 266, 388-398.	0.9	19
1018	A hidden program in Drosophila peripheral neurogenesis revealed: fundamental principles underlying sensory organ diversity. Developmental Biology, 2004, 269, 1-17.	0.9	139
1019	The coordinate regulation of pharyngeal development in C. elegans by lin-35/Rb, pha-1, and ubc-18. Developmental Biology, 2004, 271, 11-25.	0.9	43
1020	The central nervous system of the ascidian larva: mitotic history of cells forming the neural tube in late embryonic Ciona intestinalis. Developmental Biology, 2004, 271, 239-262.	0.9	130
1021	UNC-39, the C. elegans homolog of the human myotonic dystrophy-associated homeodomain protein Six5, regulates cell motility and differentiation. Developmental Biology, 2004, 272, 389-402.	0.9	25
1022	pha-2 encodes the C. elegans ortholog of the homeodomain protein HEX and is required for the formation of the pharyngeal isthmus. Developmental Biology, 2004, 272, 403-418.	0.9	33
1023	The C. elegans ezrin-radixin-moesin protein ERM-1 is necessary for apical junction remodelling and tubulogenesis in the intestine. Developmental Biology, 2004, 272, 262-276.	0.9	108
1024	eor-1 and eor-2 are required for cell-specific apoptotic death in C. elegans. Developmental Biology, 2004, 274, 125-138.	0.9	26
1025	Early neural cell death: dying to become neurons. Developmental Biology, 2004, 274, 233-244.	0.9	139
1026	C. elegans peb-1 mutants exhibit pleiotropic defects in molting, feeding, and morphology. Developmental Biology, 2004, 276, 352-366.	0.9	11
1027	Identification of lineage-specific zygotic transcripts in early Caenorhabditis elegans embryos. Developmental Biology, 2004, 276, 493-507.	0.9	46
1028	The Caenorhabditis elegans ortholog of C21orf80, a potential new protein O-fucosyltransferase, is required for normal development. Genomics, 2004, 84, 320-330.	1.3	23
1029	Fundamental limits on longitudinal bone growth: growth plate senescence and epiphyseal fusion. Trends in Endocrinology and Metabolism, 2004, 15, 370-374.	3.1	92
1030	Addiction research in a simple animal model: the nematode Caenorhabditis elegans. Neuropharmacology, 2004, 47, 123-131.	2.0	25
1031	Responses to infection and possible recognition strategies in the innate immune system of Caenorhabditis elegans. Molecular Immunology, 2004, 41, 479-493.	1.0	132
1032	The C.elegans ceh-36 Gene Encodes a Putative Homemodomain Transcription Factor Involved in Chemosensory Functions of ASE and AWC Neurons. Journal of Molecular Biology, 2004, 336, 579-587.	2.0	39
1033	Regulation of C. elegans Longevity by Specific Gustatory and Olfactory Neurons. Neuron, 2004, 41, 45-55.	3.8	355
1034	The cytoskeleton and epidermal morphogenesis in. Experimental Cell Research, 2004, 301, 84-90.	1.2	36

	CITATION	REPORT	
#	Article	IF	CITATIONS
1035	The use of Caenorhabditis elegans in parasitic nematode research. Parasitology, 2004, 128, S49-S70.	0.7	59
1036	The <i>C. elegans</i> Cell Cycle: Overview of Molecules and Mechanisms. , 2005, , 051-068.		2
1037	Searching WormBase for Information AboutCaenorhabditis elegans. Current Protocols in Bioinformatics, 2004, 6, 1.8.1.	25.8	1
1038	Fundamental limits on longitudinal bone growth: growth plate senescence and epiphyseal fusion. Trends in Endocrinology and Metabolism, 2004, 15, 370-374.	3.1	54
1039	The Molecular Basis of Touch Sensation As Modeled in Caenorhabditis elegans. , 2005, , 1-29.		0
1041	Gene CATCHRGene Cloning And Tagging for Caenorhabditis elegans using yeast Homologous Recombination: a novel approach for the analysis of gene expression. Nucleic Acids Research, 2005, 33, e163-e163.	6.5	18
1042	The C. elegans Centrosome during Early Embryonic Development. , 2005, , 225-250.		0
1043	TheC.elegansinteractome project. , 2005, , .		0
1044	Tools for Visualizing Multidimensional Images from Living Specimens. Photochemistry and Photobiology, 2005, 81, 1116.	1.3	33
1045	The eutardigrade Thulinia stephaniae has an indeterminate development and the potential to regulate early blastomere ablations. Development (Cambridge), 2005, 132, 1349-1361.	1.2	112
1046	<i>C. elegans</i> knockouts in ubiquinone biosynthesis genes result in different phenotypes during larval development. BioFactors, 2005, 25, 21-29.	2.6	23
1047	The Caenorhabditis elegans lev-8 gene encodes a novel type of nicotinic acetylcholine receptor alpha subunit. Journal of Neurochemistry, 2005, 93, 1-9.	2.1	96
1048	Larval and adult brains1. Evolution & Development, 2005, 7, 483-489.	1.1	78
1049	The role of stress in ageing: research on the nematode, Caenorhabditis elegans. British Journal of Dermatology, 2005, 153, 1-5.	1.4	33
1050	C. elegans cell cycles: invariance and stem cell divisions. Nature Reviews Molecular Cell Biology, 2005, 6, 766-776.	16.1	74
1051	Cell-cycle control in Caenorhabditis elegans: how the worm moves from G1 to S. Oncogene, 2005, 24, 2756-2764.	2.6	27
1052	The simplicity of metazoan cell lineages. Nature, 2005, 433, 152-156.	13.7	39
1053	DRP-1-mediated mitochondrial fragmentation during EGL-1-induced cell death in C. elegans. Nature, 2005, 433, 754-760.	13.7	290

#	Article	IF	CITATIONS
1054	Development of Caenorhabditis elegans pharynx, with emphasis on its nervous system. Acta Pharmacologica Sinica, 2005, 26, 396-404.	2.8	12
1055	Knockdown of the centrosomal component SAS-5 results in defects in nuclear morphology in Caenorhabditis elegans. European Journal of Cell Biology, 2005, 84, 75-82.	1.6	5
1056	Fusogenic Activity of EFF-1 Is Regulated via Dynamic Localization in Fusing Somatic Cells of C. elegans. Current Biology, 2005, 15, 413-423.	1.8	55
1057	MBR-1, a Novel Helix-Turn-Helix Transcription Factor, Is Required for Pruning Excessive Neurites in Caenorhabditis elegans. Current Biology, 2005, 15, 1554-1559.	1.8	43
1058	Neurodegenerative conditions associated with ageing: a molecular interplay?. Mechanisms of Ageing and Development, 2005, 126, 23-33.	2.2	24
1059	The embryonic moult in diplogastrids (Nematoda) – homology of developmental stages and heterochrony as a prerequisite for morphological diversity. Zoologischer Anzeiger, 2005, 244, 79-91.	0.4	24
1060	A mutation in a cuticle collagen causes hypersensitivity to the endocrine disrupting chemical, bisphenol A, in Caenorhabditis elegans. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2005, 570, 71-80.	0.4	29
1061	Detection of nuclei in 4D Nomarski DIC microscope images of early Caenorhabditis elegans embryos using local image entropy and object tracking. BMC Bioinformatics, 2005, 6, 125.	1.2	48
1062	A gene expression fingerprint of C. elegans embryonic motor neurons. BMC Genomics, 2005, 6, 42.	1.2	116
1063	Live imaging and morphometric analysis of embryonic development in the ascidianCiona intestinalis. Genesis, 2005, 43, 136-147.	0.8	23
1064	Drosophila neuroblast 7-3 cell lineage: A model system for studying programmed cell death, Notch/Numb signaling, and sequential specification of ganglion mother cell identity. Journal of Comparative Neurology, 2005, 481, 240-251.	0.9	91
1065	Checkpoint and physiological apoptosis in germ cells proceeds normally in spaceflown Caenorhabditis elegans. Apoptosis: an International Journal on Programmed Cell Death, 2005, 10, 949-954.	2.2	38
1066	Coordinates, DNA content and heterogeneity of cell nuclei and segments of the Caenorhabditis elegans intestine. Histochemistry and Cell Biology, 2005, 124, 359-367.	0.8	4
1067	Unusual cleavage and gastrulation in a freshwater nematode: developmental and phylogenetic implications. Development Genes and Evolution, 2005, 215, 103-108.	0.4	69
1068	Isopentenyl-diphosphate isomerase is essential for viability of Caenorhabditis elegans. Molecular Genetics and Genomics, 2005, 273, 158-166.	1.0	9
1069	Deletion of the Caenorhabditis elegans homologues of the CLN3 gene, involved in human juvenile neuronal ceroid lipofuscinosis, causes a mild progeric phenotype. Journal of Inherited Metabolic Disease, 2005, 28, 1065-1080.	1.7	15
1070	Methods in clonal analysis and applications. Reproduction, Nutrition, Development, 2005, 45, 321-339.	1.9	27
1073	The Caenorhabditis elegans aristaless Orthologue, alr-1, Is Required for Maintaining the Functional and Structural Integrity of the Amphid Sensory Organs. Molecular Biology of the Cell, 2005, 16, 4695-4704	0.9	23

#	Article	IF	Citations
1074	The end of "naÃ⁻ve reductionism― rise of systems biology or renaissance of physiology?. American Journal of Physiology - Cell Physiology, 2005, 288, C968-C974.	2.1	109
1075	The Left–Right Polarity Puzzle: Determining Embryonic Handedness. PLoS Biology, 2005, 3, e292.	2.6	20
1076	Sensitized genetic backgrounds reveal a role for C. elegans FGF EGL-17 as a repellent for migrating CAN neurons. Development (Cambridge), 2005, 132, 4857-4867.	1.2	13
1077	A Gene Network Model for Developing Cell Lineages. Artificial Life, 2005, 11, 249-267.	1.0	33
1078	Genomic Variability within an Organism Exposes Its Cell Lineage Tree. PLoS Computational Biology, 2005, 1, e50.	1.5	124
1079	There's more to a model than code. , 2005, , .		0
1080	Genomics in C. elegans: So many genes, such a little worm. Genome Research, 2005, 15, 1651-1660.	2.4	166
1081	The ever-expanding neuropeptide gene families in the nematode Caenorhabditis elegans. Parasitology, 2005, 131, S109.	0.7	76
1082	The HMX homeodomain protein MLS-2 regulates cleavage orientation, cell proliferation and cell fate specification in the C. eleganspostembryonic mesoderm. Development (Cambridge), 2005, 132, 4119-4130.	1.2	20
1083	ceh-16/engrailed patterns the embryonic epidermis of Caenorhabditis elegans. Development (Cambridge), 2005, 132, 739-749.	1.2	52
1084	Regulation of chemosensory and GABAergic motor neuron development by the C. elegans Aristaless/Arx homolog alr-1. Development (Cambridge), 2005, 132, 1935-1949.	1.2	43
1085	Glia–Neuron Interactions in Nervous System Function and Development. Current Topics in Developmental Biology, 2005, 69, 39-66.	1.0	42
1086	mab-2 encodes RNT-1, a C. elegans Runx homologue essential for controlling cell proliferation in a stem cell-like developmental lineage. Development (Cambridge), 2005, 132, 5043-5054.	1.2	61
1087	Muscle arm development in Caenorhabditis elegans. Development (Cambridge), 2005, 132, 3079-3092.	1.2	58
1088	The myogenic potency of HLH-1 reveals wide-spread developmental plasticity in early C. elegans embryos. Development (Cambridge), 2005, 132, 1795-1805.	1.2	103
1089	Cell-Based Strategies for Bone Regeneration. , 2005, , 67-92.		1
1090	Imaging ofCaenorhabditis eleganssamples and sub-cellular localization of new generation photosensitizers for photodynamic therapy, using non-linear microscopy. Journal Physics D: Applied Physics, 2005, 38, 2625-2632.	1.3	6
1091	Sexual and Temporal Dynamics of Molecular Evolution in C. elegans Development. Molecular Biology and Evolution, 2005, 22, 178-188.	3.5	103

#	Article	IF	CITATIONS
1092	Genetic Analysis of Lysosomal Trafficking inCaenorhabditis elegans. Molecular Biology of the Cell, 2005, 16, 3273-3288.	0.9	238
1093	Serotonin (5HT), Fluoxetine, Imipramine and Dopamine Target Distinct 5HT Receptor Signaling to Modulate Caenorhabditis elegans Egg-Laying Behavior. Genetics, 2005, 169, 1425-1436.	1.2	135
1094	The C. elegans homolog of the mammalian tumor suppressor Dep-1/Scc1 inhibits EGFR signaling to regulate binary cell fate decisions. Genes and Development, 2005, 19, 1328-1340.	2.7	78
1095	Genetics of Graviperception in Animals. Advances in Genetics, 2005, 55, 105-145.	0.8	19
1097	Nematode Neurons: Anatomy and Anatomical Methods in Caenorhabditis elegans. International Review of Neurobiology, 2005, 69, 1-35.	0.9	14
1098	The VAB-1 Eph receptor tyrosine kinase and SAX-3/Robo neuronal receptors function together during C. elegans embryonic morphogenesis. Development (Cambridge), 2005, 132, 3679-3690.	1.2	43
1099	Reevaluation of the Role of the med-1 and med-2 Genes in Specifying the Caenorhabditis elegans Endoderm. Genetics, 2005, 171, 545-555.	1.2	30
1100	The homeodomain protein PAL-1 specifies a lineage-specific regulatory network in the C. elegans embryo. Development (Cambridge), 2005, 132, 1843-1854.	1.2	107
1101	A Toll-interleukin 1 repeat protein at the synapse specifies asymmetric odorant receptor expression via ASK1 MAPKKK signaling. Genes and Development, 2005, 19, 270-281.	2.7	168
1102	The Motor Circuit. International Review of Neurobiology, 2005, 69, 125-167.	0.9	78
1103	ACT-5 Is an Essential Caenorhabditis elegans Actin Required for Intestinal Microvilli Formation. Molecular Biology of the Cell, 2005, 16, 3247-3259.	0.9	91
1104	Imaging of Caenorhabditis elegans neurons by second-harmonic generation and two-photon excitation fluorescence. Journal of Biomedical Optics, 2005, 10, 024015.	1.4	18
1105	A Spindle Checkpoint Functions during Mitosis in the Early Caenorhabditis elegans Embryo. Molecular Biology of the Cell, 2005, 16, 1056-1070.	0.9	80
1106	Innexins: members of an evolutionarily conserved family of gap-junction proteins. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1711, 225-245.	1.4	227
1107	Characterization of a conserved apoptotic marker expressed in Caenorhabditis elegans phagocytic cells. Biochemical and Biophysical Research Communications, 2005, 335, 1231-1238.	1.0	4
1108	lin-35 Rb Acts in the Major Hypodermis to Oppose Ras-Mediated Vulval Induction in C. elegans. Developmental Cell, 2005, 8, 117-123.	3.1	70
1109	The Noncanonical Binding Site of the MED-1 GATA Factor Defines Differentially Regulated Target Genes in the C. elegans Mesendoderm. Developmental Cell, 2005, 8, 427-433.	3.1	57
1110	C. elegans daf-6 Encodes a Patched-Related Protein Required for Lumen Formation. Developmental Cell, 2005, 8, 893-906.	3.1	128

#	ARTICLE The REF-1 Family of bHLH Transcription Factors Pattern C. elegans Embryos through Notch-Dependent and Notch-Independent Pathways. Developmental Cell, 2005, 8, 867-879.	IF 3.1	Citations 85
1112	Cyclin D Regulation of a Sexually Dimorphic Asymmetric Cell Division. Developmental Cell, 2005, 9, 489-499.	3.1	28
1113	Genomic Regulatory Networks and Animal Development. Developmental Cell, 2005, 9, 449-462.	3.1	215
1114	Interactome modeling. FEBS Letters, 2005, 579, 1834-1838.	1.3	99
1115	Transcriptional control and patterning of the pho-1 gene, an essential acid phosphatase expressed in the C. elegans intestine. Developmental Biology, 2005, 279, 446-461.	0.9	51
1116	Cyclin D involvement demarcates a late transition in C. elegans embryogenesis. Developmental Biology, 2005, 279, 244-251.	0.9	17
1117	Convergent genetic programs regulate similarities and differences between related motor neuron classes in Caenorhabditis elegans. Developmental Biology, 2005, 280, 494-503.	0.9	37
1118	SMA-1 spectrin has essential roles in epithelial cell sheet morphogenesis in C. elegans. Developmental Biology, 2005, 283, 157-170.	0.9	52
1119	Genetic redundancy in endoderm specification within the genus Caenorhabditis. Developmental Biology, 2005, 284, 509-522.	0.9	101
1120	MOM-5 Frizzled regulates the distribution of DSH-2 to control C. elegans asymmetric neuroblast divisions. Developmental Biology, 2005, 284, 246-259.	0.9	30
1121	Novel genes controlling ventral cord asymmetry and navigation of pioneer axons in C. elegans. Developmental Biology, 2005, 284, 260-272.	0.9	17
1122	C. elegans HAM-1 positions the cleavage plane and regulates apoptosis in asymmetric neuroblast divisions. Developmental Biology, 2005, 284, 301-310.	0.9	34
1123	The C. elegans Frizzled CFZ-2 is required for cell migration and interacts with multiple Wnt signaling pathways. Developmental Biology, 2005, 285, 447-461.	0.9	57
1124	The UNC-3 Olf/EBF protein represses alternate neuronal programs to specify chemosensory neuron identity. Developmental Biology, 2005, 286, 136-148.	0.9	40
1125	The C. elegans eyes absent ortholog EYA-1 is required for tissue differentiation and plays partially redundant roles with PAX-6. Developmental Biology, 2005, 286, 452-463.	0.9	25
1126	Cell-type specific regulation of serotonergic identity by the C. elegans LIM-homeodomain factor LIM-4. Developmental Biology, 2005, 286, 618-628.	0.9	31
1127	The C. elegans lethal gut-obstructed gob-1 gene is trehalose-6-phosphate phosphatase. Developmental Biology, 2005, 287, 35-47.	0.9	68
1128	The C. elegans nuclear receptor gene fax-1 and homeobox gene unc-42 coordinate interneuron identity by regulating the expression of glutamate receptor subunits and other neuron-specific genes. Developmental Biology, 2005, 287, 74-85.	0.9	38

#	Article	IF	CITATIONS
1129	LIN-23-Mediated Degradation of Î ² -Catenin Regulates the Abundance of GLR-1 Glutamate Receptors in the Ventral Nerve Cord of C. elegans. Neuron, 2005, 46, 51-64.	3.8	84
1130	From oogenesis through gastrulation: developmental regulation of apoptosis. Seminars in Cell and Developmental Biology, 2005, 16, 215-224.	2.3	45
1131	Clearance of apoptotic cells in Caenorhabditis elegans. Seminars in Cell and Developmental Biology, 2005, 16, 295-306.	2.3	98
1132	The cell cycle and development: Lessons from C. elegans. Seminars in Cell and Developmental Biology, 2005, 16, 397-406.	2.3	18
1133	Neural Specification and Differentiation. International Review of Neurobiology, 2005, 69, 73-97.	0.9	0
1134	Comparative Genomics in Eukaryotes. , 2005, , 521-583.		9
1136	NEURONAL SUBSTRATES OF COMPLEX BEHAVIORS INC. ELEGANS. Annual Review of Neuroscience, 2005, 28, 451-501.	5.0	351
1137	Synthetic lethal analysis of Caenorhabditis elegans posterior embryonic patterning genes identifies conserved genetic interactions. Genome Biology, 2005, 6, R45.	13.9	59
1139	Cyclin-Dependent Kinase Inhibitors in Yeast, Animals, and Plants: A Functional Comparison. Critical Reviews in Biochemistry and Molecular Biology, 2006, 41, 293-313.	2.3	50
1140	Wiring optimization can relate neuronal structure and function. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4723-4728.	3.3	509
1141	ADAPTIVE ROLES OF PROGRAMMED CELL DEATH DURING NERVOUS SYSTEM DEVELOPMENT. Annual Review of Neuroscience, 2006, 29, 1-35.	5.0	352
1142	What a couple of dimensions can do for you: Comparative developmental studies using 4D microscopyexamples from tardigrade development. Integrative and Comparative Biology, 2006, 46, 151-161.	0.9	38
1143	Transcription Factors as Molecular Mediators in Cell Death. Annals of the New York Academy of Sciences, 1994, 747, 172-182.	1.8	12
1144	An Overview of <i>C. elegans</i> Biology. , 2006, 351, 1-12.		12
1145	Searching WormBase for Information aboutCaenorhabditis elegans. , 2006, Chapter 1, Unit 1.8.		3
1146	Characterizing pathogenic processes in Batten disease: Use of small eukaryotic model systems. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2006, 1762, 906-919.	1.8	26
1147	Actin-based forces driving embryonic morphogenesis in Caenorhabditis elegans. Current Opinion in Genetics and Development, 2006, 16, 392-398.	1.5	22
1148	C. elegans Dynamin Mediates the Signaling of Phagocytic Receptor CED-1 for the Engulfment and Degradation of Apoptotic Cells. Developmental Cell, 2006, 10, 743-757.	3.1	134

ARTICLE IF CITATIONS The PLZF-like Protein TRA-4 Cooperates with the Gli-like Transcription Factor TRA-1 to Promote Female 1149 3.1 36 Development in C. elegans. Developmental Cell, 2006, 11, 561-573. The C. elegans Developmental Fusogen EFF-1 Mediates Homotypic Fusion in Heterologous Cells and In 3.1 124 Vivo. Developmental Cell, 2006, 11, 471-481. Wnt-dependent spindle polarization in the early C. elegans embryo. Seminars in Cell and 1151 2.3 25 Developmental Biology, 2006, 17, 204-213. Med-type GATA factors and the evolution of mesendoderm specification in nematodes. Developmental 0.9 Biology, 2006, 289, 444-455. The C. elegans histone deacetylase HDA-1 is required for cell migration and axon pathfinding. 1153 0.9 17 Developmental Biology, 2006, 289, 229-242. Nucleoporins NPP-1, NPP-3, NPP-4, NPP-11 and NPP-13 are required for proper spindle orientation in C. elegans. Developmental Biology, 2006, 289, 360-371. Regulation of neuronal lineage decisions by the HES-related bHLH protein REF-1. Developmental 1155 0.9 6 Biology, 2006, 290, 139-151. Characterization of loss-of-function and gain-of-function Eph receptor tyrosine kinase signaling in C. 40 elegans axon targeting and cell migration. Developmental Biology, 2006, 290, 164-176. Translational repression restricts expression of the C. elegans Nanos homolog NOS-2 to the 1157 0.9 72 embryonic germline. Developmental Biology, 2006, 292, 244-252. Quantitative analysis of germline mitosis in adult C. elegans. Developmental Biology, 2006, 292, 142-151. Global cell sorting in the C. elegans embryo defines a new mechanism for pattern formation. 1159 0.9 69 Developmental Biology, 2006, 294, 418-431. Global cell sorting is mediated by local cell–cell interactions in the C. elegans embryo. 29 Developmental Biology, 2006, 294, 432-444. The T-box factor TBX-2 and the SUMO conjugating enzyme UBC-9 are required for ABa-derived 1161 0.9 54 pharyngeal muscle in C. elegans. Developmental Biology, 2006, 295, 664-677. N-ethylmaleimide sensitive factor is required for fusion of the C. elegans uterine anchor cell. Developmental Biology, 2006, 297, 87-102. C. elegans pharyngeal morphogenesis requires both de novo synthesis of pyrimidines and synthesis of 1163 0.9 32 heparan sulfate proteoglycans. Developmental Biology, 2006, 296, 409-420. The C. elegans gene dig-1 encodes a giant member of the immunoglobulin superfamily that promotes 1164 23 fasciculation of neuronal processes. Developmental Biology, 2006, 299, 193-205. Cell Fusion in Development and Disease., 2006, , 219-244. 1165 2 Automated Extraction of Cell Lineages and Spatial Migration Paths in Live C. elegans Embryos from 4D Fluorescence Microscopy Image Sequences. Microscopy and Microanalysis, 2006, 12, 1672-1673.

#	Article	IF	CITATIONS
1168	Initiation of male sperm-transfer behavior in Caenorhabditis elegans requires input from the ventral nerve cord. BMC Biology, 2006, 4, 26.	1.7	38
1169	Cyclin-dependent kinases in C. elegans. Cell Division, 2006, 1, 6.	1.1	23
1170	New developmental insights from high-throughput biological analysis in Caenorhabditis elegans. Clinical Genetics, 2006, 69, 306-314.	1.0	3
1171	Stage- and tissue-specific patterns of cell division in embryonic and larval tissues of amphioxus during normal development. Evolution & Development, 2006, 8, 142-149.	1.1	35
1172	Different roads to form the same gut in nematodes. Evolution & Development, 2006, 8, 362-369.	1.1	14
1173	Degenerins. Annals of the New York Academy of Sciences, 2001, 940, 28-41.	1.8	40
1174	OMA-1 is a P granules-associated protein that is required for germline specification in Caenorhabditis elegans embryos. Genes To Cells, 2006, 11, 383-396.	0.5	24
1175	The nongenotoxic carcinogens naphthalene and para-dichlorobenzene suppress apoptosis in Caenorhabditis elegans. Nature Chemical Biology, 2006, 2, 338-345.	3.9	31
1176	The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nature Neuroscience, 2006, 9, 743-751.	7.1	540
1177	The lineaging of fluorescently-labeled Caenorhabditis elegans embryos with StarryNite and AceTree. Nature Protocols, 2006, 1, 1468-1476.	5.5	101
1178	Developmental apoptosis in C. elegans: a complex CEDnario. Nature Reviews Molecular Cell Biology, 2006, 7, 97-108.	16.1	269
1179	Time-lapse analysis of stem-cell divisions in theArabidopsis thalianaroot meristem. Plant Journal, 2006, 48, 619-627.	2.8	100
1180	A biochemist's guide to Caenorhabditis elegans. Analytical Biochemistry, 2006, 359, 1-17.	1.1	76
1181	Caenorhabditis elegans: A versatile platform for drug discovery. Biotechnology Journal, 2006, 1, 1405-1418.	1.8	142
1182	High-throughput screening of small molecules for bioactivity and target identification in Caenorhabditis elegans. Nature Protocols, 2006, 1, 1906-1914.	5.5	110
1183	Reduction: the Cheshire cat problem and a return to roots. SynthÈse, 2006, 151, 377-402.	0.6	55
1184	Caenorhabditis elegans dpy-14: an essential collagen gene with unique expression profile and physiological roles in early development. Molecular Genetics and Genomics, 2006, 275, 527-539.	1.0	8
1185	Caenorhabditis elegans dpy-5 is a cuticle procollagen processed by a proprotein convertase. Cellular and Molecular Life Sciences, 2006, 63, 1193-1204.	2.4	53

#	Article	IF	CITATIONS
1186	Relationships between the larval growth inhibition ofCaenorhabditis elegans by apigenin derivatives and their structures. Archives of Pharmacal Research, 2006, 29, 582-586.	2.7	21
1187	N-tosyl-l-phenylalanyl-chloromethyl ketone reduces ceramide during hypoxic–ischemic brain injury in newborn rat. European Journal of Pharmacology, 2006, 551, 34-40.	1.7	7
1188	Glia–neuron interactions in the nervous system of Caenorhabditis elegans. Current Opinion in Neurobiology, 2006, 16, 522-528.	2.0	44
1189	Wnt/Frizzled Signaling Controls C. elegans Gastrulation by Activating Actomyosin Contractility. Current Biology, 2006, 16, 1986-1997.	1.8	121
1190	Left–Right Asymmetry: Making the Right Decision Early. Current Biology, 2006, 16, R1039-R1042.	1.8	0
1191	Differential expression pattern of coq-8 gene during development in Caenorhabditis elegans. Gene Expression Patterns, 2006, 6, 433-439.	0.3	2
1192	AceTree: a tool for visual analysis of Caenorhabditis elegans embryogenesis. BMC Bioinformatics, 2006, 7, 275.	1.2	93
1193	A Class of Benzenoid Chemicals Suppresses Apoptosis in C. elegans. ChemBioChem, 2006, 7, 2010-2015.	1.3	11
1194	(Re)defining stem cells. BioEssays, 2006, 28, 301-308.	1.2	54
1195	Endomesoderm specification inCaenorhabditis elegans and other nematodes. BioEssays, 2006, 28, 1010-1022.	1.2	44
1196	Toward a global picture of development: Lessons from genome-scale analysis inCaenorhabditis elegans embryonic development. Developmental Dynamics, 2006, 235, 2009-2017.	0.8	5
1197	Embryology and gonad development in Oscheius shamimi sp. n. (Nematoda: Rhabditida). Nematology, 2006, 8, 211-221.	0.2	12
1198	Semi-supervised analysis of gene expression profiles for lineage-specific development in the Caenorhabditis elegans embryo. Bioinformatics, 2006, 22, e417-e423.	1.8	7
1199	WormBase: Methods for Data Mining and Comparative Genomics. , 2006, 351, 31-50.		9
1200	A Posterior Centre Establishes and Maintains Polarity of the Caenorhabditis elegans Embryo by a Wnt-Dependent Relay Mechanism. PLoS Biology, 2006, 4, e396.	2.6	64
1201	Temporal Regulation of Foregut Development by HTZ-1/H2A.Z and PHA-4/FoxA. PLoS Genetics, 2006, 2, e161.	1.5	57
1202	FGF negatively regulates muscle membrane extension in Caenorhabditis elegans. Development (Cambridge), 2006, 133, 1263-1275.	1.2	26
1203	Specification of the C. elegans MS blastomere by the T-box factor TBX-35. Development (Cambridge), 2006, 133, 3097-3106.	1.2	51

#	Article	IF	CITATIONS
1204	Chromosomal clustering and GATA transcriptional regulation of intestine-expressed genes in C. elegans. Development (Cambridge), 2006, 133, 287-295.	1.2	117
1205	Endocrine signaling in Caenorhabditis elegans controls stress response and longevity. Journal of Endocrinology, 2006, 190, 191-202.	1.2	160
1206	Delayed development and lifespan extension as features of metabolic lifestyle alteration in C. elegans under dietary restriction. Journal of Experimental Biology, 2006, 209, 4129-4139.	0.8	107
1207	Automated cell lineage tracing in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2707-2712.	3.3	344
1208	Fluoxetine-Resistance Genes in Caenorhabditis elegans Function in the Intestine and May Act in Drug Transport. Genetics, 2006, 172, 885-892.	1.2	44
1209	Human Bcl-2 cannot directly inhibit the Caenorhabditis elegans Apaf-1 homologue CED-4, but can interact with EGL-1. Journal of Cell Science, 2006, 119, 2572-2582.	1.2	23
1210	Germ-line induction of the Caenorhabditis elegans vulva. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 620-625.	3.3	22
1211	UNC-83 Is a KASH Protein Required for Nuclear Migration and Is Recruited to the Outer Nuclear Membrane by a Physical Interaction with the SUN Protein UNC-84. Molecular Biology of the Cell, 2006, 17, 1790-1801.	0.9	124
1212	DIG-1, a novel giant protein, non-autonomously mediates maintenance of nervous system architecture. Development (Cambridge), 2006, 133, 3329-3340.	1.2	31
1213	C. elegans as a model system to study the function of the COG complex in animal development. Biological Chemistry, 2006, 387, 1031-1035.	1.2	8
1214	The Molecular Identities of the Caenorhabditis elegans Intraflagellar Transport Genes dyf-6, daf-10 and osm-1. Genetics, 2006, 173, 1275-1286.	1.2	57
1216	A Chemosensory Adaptation Module for the Physiology Laboratory from Student-Directed C. elegans Research. American Biology Teacher, 2006, 68, e72-e79.	0.1	3
1217	Degrade to create: developmental requirements for ubiquitin-mediated proteolysis during early C. elegans embryogenesis. Development (Cambridge), 2006, 133, 773-784.	1.2	64
1218	The puromycin-sensitive aminopeptidase PAM-1 is required for meiotic exit and anteroposterior polarity in the one-cell Caenorhabditis elegansembryo. Development (Cambridge), 2006, 133, 4281-4292.	1.2	29
1219	KASH-domain proteins in nuclear migration, anchorage and other processes. Journal of Cell Science, 2006, 119, 5021-5029.	1.2	129
1220	Cellular Analyses of the Mitotic Region in the Caenorhabditis elegans Adult Germ Line. Molecular Biology of the Cell, 2006, 17, 3051-3061.	0.9	251
1221	Characterization of a Novel Protein Kinase D. Journal of Biological Chemistry, 2006, 281, 17801-17814.	1.6	21
1222	Automation of Challenging Spatial-Temporal Biomedical Observations with the Adaptive Scanning Optical Microscope (ASOM). , 2006, , .		4

#	Article	IF	CITATIONS
1223	Phylogenetic fate mapping. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5448-5453.	3.3	90
1224	Defining the transcriptional redundancy of early bodywall muscle development in C. elegans: evidence for a unified theory of animal muscle development. Genes and Development, 2006, 20, 3395-3406.	2.7	98
1225	Genetics of Egg-Laying in Worms. Annual Review of Genetics, 2006, 40, 487-509.	3.2	98
1226	Pax2/5/8 proteins promote cell survival in C. elegans. Development (Cambridge), 2006, 133, 4193-4202.	1.2	37
1227	Restriction of vaccinia virus replication by a ced-3 and ced-4-dependent pathway in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 4174-4179.	3.3	34
1228	A Phylogenetic Approach to Mapping Cell Fate. Current Topics in Developmental Biology, 2007, 79, 157-184.	1.0	27
1229	Axon guidance genes identified in a large-scale RNAi screen using the RNAi-hypersensitiveCaenorhabditis elegansstrainnre-1(hd20) lin-15b(hd126). Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 834-839.	3.3	108
1230	PAR-6 is required for junction formation but not apicobasal polarization in C. elegans embryonic epithelial cells. Development (Cambridge), 2007, 134, 1259-1268.	1.2	90
1231	Binary cell fate specification during C. elegans embryogenesis driven by reiterated reciprocal asymmetry of TCF POP-1 and its coactivatorβ-catenin SYS-1. Development (Cambridge), 2007, 134, 2685-2695.	1.2	84
1232	Reciprocal asymmetry of SYS-1/beta-catenin and POP-1/TCF controls asymmetric divisions in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3231-3236.	3.3	114
1233	Controls of Germline Stem Cells, Entry into Meiosis, and the Sperm/Oocyte Decision inCaenorhabditis elegans. Annual Review of Cell and Developmental Biology, 2007, 23, 405-433.	4.0	348
1234	High-Throughput In Vivo Analysis of Gene Expression in Caenorhabditis elegans. PLoS Biology, 2007, 5, e237.	2.6	346
1235	Genetic Control of Fusion Pore Expansion in the Epidermis ofCaenorhabditis elegans. Molecular Biology of the Cell, 2007, 18, 1153-1166.	0.9	39
1236	The <i>C. elegans</i> protein CEH-30 protects male-specific neurons from apoptosis independently of the Bcl-2 homolog CED-9. Genes and Development, 2007, 21, 3181-3194.	2.7	71
1237	The embryonic cell lineage of the nematode Halicephalobus gingivalis (Nematoda: Cephalobina:) Tj ETQq0 0 0 rg	3T/Qverlo 0.2	ck 10 Tf 50 1
1238	Endostyle Cell Recruitment as a Frame of Reference for Development and Growth in the Urochordate <i>Oikopleura dioica</i> . Biological Bulletin, 2007, 213, 325-334.	0.7	12
1239	Developmental Biology and Databases. Organogenesis, 2007, 3, 70-73.	0.4	3
1240	Mechanosensitive Ion Channels in Caenorhabditis elegans. Current Topics in Membranes, 2007, 59, 49-79.	0.5	3

#	Article	IF	CITATIONS
1241	In vivo imaging of anatomical features of the nematode Caenorhabditis elegans using non-linear (TPEF-SHG-THG) microscopy. , 2007, , .		3
1242	The Size of the Nucleus Increases as Yeast Cells Grow. Molecular Biology of the Cell, 2007, 18, 3523-3532.	0.9	354
1243	Timing of the onset of a developmental cell death is controlled by transcriptional induction of the C. elegans ced-3 caspase-encoding gene. Development (Cambridge), 2007, 134, 1357-1368.	1.2	40
1244	Two Alternative Mechanisms That Regulate the Presentation of Apoptotic Cell Engulfment Signal in Caenorhabditis elegans. Molecular Biology of the Cell, 2007, 18, 3180-3192.	0.9	90
1245	<i>C. elegans</i> orthologs of components of the RB tumor suppressor complex have distinct pro-apoptotic functions. Development (Cambridge), 2007, 134, 3691-3701.	1.2	56
1246	Common aging pathways in worms, flies, mice and humans. Journal of Experimental Biology, 2007, 210, 1607-1612.	0.8	86
1247	Axons break in animals lacking β-spectrin. Journal of Cell Biology, 2007, 176, 269-275.	2.3	207
1248	Genetic Screens for <i>Caenorhabditis elegans</i> Mutants Defective in Left/Right Asymmetric Neuronal Fate Specification. Genetics, 2007, 176, 2109-2130.	1.2	60
1249	A Zn-finger/FH2-domain containing protein, FOZI-1, acts redundantly with CeMyoD to specify striated body wall muscle fates in the Caenorhabditis elegans postembryonic mesoderm. Development (Cambridge), 2007, 134, 19-29.	1.2	28
1250	Function of the Caenorhabditis elegans ABC Transporter PGP-2 in the Biogenesis of a Lysosome-related Fat Storage Organelle. Molecular Biology of the Cell, 2007, 18, 995-1008.	0.9	102
1251	Gray anatomy: phylogenetic patterns of somatic gonad structures and reproductive strategies across the Bilateria. Integrative and Comparative Biology, 2007, 47, 420-426.	0.9	5
1252	Animal Models of Spinal Muscular Atrophy. Journal of Child Neurology, 2007, 22, 1004-1012.	0.7	51
1253	Role of the Caenorhabditis elegans Multidrug Resistance Gene, mrp-4, in Gut Granule Differentiation. Genetics, 2007, 177, 1569-1582.	1.2	25
1254	Revisiting the Krogh Principle in the post-genome era: Caenorhabditis elegans as a model system for integrative physiology research. Journal of Experimental Biology, 2007, 210, 1622-1631.	0.8	29
1255	Ancestral roles of glia suggested by the nervous system of <i>Caenorhabditis elegans</i> . Neuron Glia Biology, 2007, 3, 55-61.	2.0	19
1256	Living organism imaging with the adaptive scanning optical microscope (ASOM). , 2007, , .		4
1257	Role of Oxidative Stress From Mitochondria on Aging and Cancer. Cornea, 2007, 26, S3-S9.	0.9	49
1258	Extending from PARs in Caenorhabditis elegans to homologues in Haemonchus contortus and other parasitic nematodes. Parasitology, 2007, 134, 461-482.	0.7	8

#	Article	IF	CITATIONS
1259	Evolution of the control of sexual identity in nematodes. Seminars in Cell and Developmental Biology, 2007, 18, 362-370.	2.3	48
1260	Role of T-box gene tbx-2 for anterior foregut muscle development in C. elegans. Developmental Biology, 2007, 302, 25-39.	0.9	36
1261	Maternal deployment of the embryonic SKN-1→MED-1,2 cell specification pathway in C. elegans. Developmental Biology, 2007, 301, 590-601.	0.9	57
1262	The Pax2/5/8 gene egl-38 coordinates organogenesis of the C. elegansegg-laying system. Developmental Biology, 2007, 301, 240-253.	0.9	19
1263	Gland-specific expression of C. elegans hlh-6 requires the combinatorial action of three distinct promoter elements. Developmental Biology, 2007, 302, 295-308.	0.9	19
1264	The ELT-2 GATA-factor and the global regulation of transcription in the C. elegans intestine. Developmental Biology, 2007, 302, 627-645.	0.9	165
1265	PHA-4/FoxA cooperates with TAM-1/TRIM to regulate cell fate restriction in the C. elegans foregut. Developmental Biology, 2007, 303, 611-624.	0.9	38
1266	Similar requirements for CDC-42 and the PAR-3/PAR-6/PKC-3 complex in diverse cell types. Developmental Biology, 2007, 305, 347-357.	0.9	61
1267	The tardigrade Hypsibius dujardini, a new model for studying the evolution of development. Developmental Biology, 2007, 312, 545-559.	0.9	119
1268	Control of sex-specific apoptosis in <i>C. elegans</i> by the BarH homeodomain protein CEH-30 and the transcriptional repressor UNC-37/Groucho. Genes and Development, 2007, 21, 3195-3207.	2.7	62
1269	DRE-1: An Evolutionarily Conserved F Box Protein that Regulates C. elegans Developmental Age. Developmental Cell, 2007, 12, 443-455.	3.1	61
1270	A CUL-2 Ubiquitin Ligase Containing Three FEM Proteins Degrades TRA-1 to Regulate C. elegans Sex Determination. Developmental Cell, 2007, 13, 127-139.	3.1	122
1271	Migration of neuronal cells along the anterior–posterior body axis of C. elegans: Wnts are in control. Current Opinion in Genetics and Development, 2007, 17, 320-325.	1.5	59
1272	Strategies to establish left/right asymmetry in vertebrates and invertebrates. Current Opinion in Genetics and Development, 2007, 17, 351-358.	1.5	91
1273	A Morphologically Conserved Nonapoptotic Program Promotes Linker Cell Death in Caenorhabditis elegans. Developmental Cell, 2007, 12, 73-86.	3.1	101
1274	Cell-cell fusion. FEBS Letters, 2007, 581, 2181-2193.	1.3	229
1275	Molecular Sensors for Cardiovascular Homeostasis. , 2007, , .		1
1276	Cell-specific microarray profiling experiments reveal a comprehensive picture of gene expression in the C. elegans nervous system. Genome Biology, 2007, 8, R135.	3.8	105

#	Article	IF	CITATIONS
1277	A Micropositioning System with Real-Time Feature Extraction Capability for Quantifying C. elegans Locomotive Behavior. , 2007, , .		3
1278	Mechanisms and Evolution of Environmental Responses in Caenorhabditis elegans. Current Topics in Developmental Biology, 2007, 80, 171-207.	1.0	36
1279	Progress in Artificial Life. Lecture Notes in Computer Science, 2007, , .	1.0	0
1280	Roles of single-minded in the left–right asymmetric development of the Drosophila embryonic gut. Mechanisms of Development, 2007, 124, 204-217.	1.7	23
1281	Building a dynamic fate map. BioTechniques, 2007, 43, S20-S24.	0.8	5
1282	Gliogenesis and Glial Pathology in Depression. CNS and Neurological Disorders - Drug Targets, 2007, 6, 219-233.	0.8	510
1283	Evolution of Optimal Accuracy and Stability in Biological Systems. Chemistry and Biodiversity, 2007, 4, 1972-1978.	1.0	1
1284	<i>Caenorhabditis elegans</i> germ line: A model for stem cell biology. Developmental Dynamics, 2007, 236, 3343-3357.	0.8	84
1285	Evolution of neuronal patterning in free-living rhabditid nematodes I: Sex-specific serotonin-containing neurons. Journal of Comparative Neurology, 2007, 502, 736-767.	0.9	15
1286	A system for measuring cell division patterns of early <i>Caenorhabditis elegans</i> embryos by using image processing and object tracking. Systems and Computers in Japan, 2007, 38, 12-24.	0.2	7
1287	Genome-scale analysis of in vivo spatiotemporal promoter activity in Caenorhabditis elegans. Nature Biotechnology, 2007, 25, 663-668.	9.4	286
1288	VAB-8, UNC-73 and MIG-2 regulate axon polarity and cell migration functions of UNC-40 in C. elegans. Nature Neuroscience, 2007, 10, 161-168.	7.1	77
1289	A protocol describing pharynx counts and a review of other assays of apoptotic cell death in the nematode worm Caenorhabditis elegans. Nature Protocols, 2007, 2, 705-714.	5.5	34
1290	Distinct IFT mechanisms contribute to the generation of ciliary structural diversity in C. elegans. EMBO Journal, 2007, 26, 2966-2980.	3.5	96
1291	Improved method for visualizing cells revealed dynamic morphological changes of ventral neuroblasts during ventral cleft closure of <i>Caenorhabditis elegans</i> . Development Growth and Differentiation, 2007, 49, 49-59.	0.6	3
1292	Development of an intestinal cell culture model to obtain smooth muscle cells and myenteric neurones. Journal of Anatomy, 2007, 211, 819-829.	0.9	14
1293	Timeâ€lapse imaging of Arabidopsis leaf development shows dynamic patterns of procambium formation. New Phytologist, 2007, 176, 560-571.	3.5	74
1294	Insight into transcription factor gene duplication from Caenorhabditis elegans Promoterome-driven expression patterns. BMC Genomics, 2007, 8, 27.	1.2	120

		CITATION RE	CITATION REPORT	
#	Article		IF	CITATIONS
1295	Nemo: a computational tool for analyzing nematode locomotion. BMC Neuroscience, 24)07, 8, 86.	0.8	63
1296	Molecular characterization of the Caenorhabditis elegans REF-1 family member, hlh-29/ł Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2007, 1769, 5-19.	ılh-28.	2.4	7
1297	Nematodes, Bacteria, and Flies: A Tripartite Model for Nematode Parasitism. Current Bic 898-904.	logy, 2007, 17,	1.8	109
1298	A Calcium Wave Mediated by Gap Junctions Coordinates a Rhythmic Behavior in C. eleg Biology, 2007, 17, 1601-1608.	ans. Current	1.8	61
1299	The Sensory Circuitry for Sexual Attraction in C. elegans Males. Current Biology, 2007, 2	7, 1847-1857.	1.8	156
1300	Mapping and sequencing information: the social context for the genomics revolution. E 2007, 31, 18-23.	ndeavour,	0.1	8
1301	Non-developmentally programmed cell death in Caenorhabditis elegans. Seminars in Ca 2007, 17, 122-133.	ncer Biology,	4.3	22
1302	Chromatin regulation and sex determination in Caenorhabditis elegans. Trends in Genet 314-317.	ics, 2007, 23,	2.9	6
1303	A Computational Model forC. elegansLocomotory Behavior: Application to Multiworm T Transactions on Biomedical Engineering, 2007, 54, 1786-1797.	racking. IEEE	2.5	53
1304	Stem cell niches. Biology Bulletin, 2007, 34, 211-220.		0.1	9
1305	The neuron classification problem. Brain Research Reviews, 2007, 56, 79-88.		9.1	99
1306	Biochemical and molecular biological analyses of space-flown nematodes in Japan, the finternational caenorhabditis elegans experiment (ICE-First). Microgravity Science and Te 2007, 19, 159-163.		0.7	13
1307	Touch sensitivity in Caenorhabditis elegans. Pflugers Archiv European Journal of Physiolo 454, 691-702.	ogy, 2007,	1.3	78
1308	Generation and modulation of chemosensory behaviors in C. elegans. Pflugers Archiv Eu Journal of Physiology, 2007, 454, 721-734.	ropean	1.3	30
1309	Diet-dependent depletion of queuosine in tRNAs in Caenorhabditis elegans does not lea developmental block. Journal of Biosciences, 2007, 32, 747-754.	d to a	0.5	13
1311	Strategies for automated analysis of C. elegans locomotion. Invertebrate Neuroscience,	2008, 8, 121-131.	1.8	37
1312	Cleavage pattern, gastrulation, and neurulation in the appendicularian, Oikopleura dioic Development Genes and Evolution, 2008, 218, 69-79.	a.	0.4	41
1313	Developmental genetics of the C. eleganspharyngeal neurons NSML and NSMR. BMC De Biology, 2008, 8, 38.	evelopmental	2.1	34

#	Article	IF	CITATIONS
1314	Behavioral and synaptic defects in <i>C. elegans</i> lacking the NKâ€2 homeobox gene <i>cehâ€28</i> . Developmental Neurobiology, 2008, 68, 421-433.	1.5	15
1315	Zygotic loss of ZENâ€4/MKLP1 results in disruption of epidermal morphogenesis in the <i>C. elegans</i> embryo. Developmental Dynamics, 2008, 237, 830-836.	0.8	15
1316	Fishing lines, timeâ€delayed guideposts, and other tricks used by developing pharyngeal neurons in <i>Caenorhabditis elegans</i> . Developmental Dynamics, 2008, 237, 2073-2080.	0.8	6
1317	Mass spectrometric proteome analysis suggests anaerobic shift in metabolism of Dauer larvae of Caenorhabditis elegans. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2008, 1784, 1763-1770.	1.1	43
1318	Multiple maternal proteins coordinate to restrict the translation of <i>C. elegans nanos-2</i> to primordial germ cells. Development (Cambridge), 2008, 135, 1803-1812.	1.2	66
1319	Spindle assembly checkpoint gene mdf-1 regulates germ cell proliferation in response to nutrition signals in C. elegans. EMBO Journal, 2008, 27, 1085-1096.	3.5	22
1320	Noncanonical cell death programs in the nematode Caenorhabditis elegans. Cell Death and Differentiation, 2008, 15, 1124-1131.	5.0	13
1321	Efficient production of monoclonal antibodies recognizing specific structures in <i> Caenorhabditis elegans</i> embryos using an antigen subtraction method. Genes To Cells, 2008, 13, 653-665.	0.5	11
1322	Caspases in apoptosis and beyond. Oncogene, 2008, 27, 6194-6206.	2.6	861
1323	egl-1: a key activator of apoptotic cell death in C. elegans. Oncogene, 2008, 27, S30-S40.	2.6	56
1324	The perfect storm of tiny RNAs. Nature Medicine, 2008, 14, 1041-1045.	15.2	97
1325	Automated analysis of embryonic gene expression with cellular resolution in C. elegans. Nature Methods, 2008, 5, 703-709.	9.0	173
1326	Imaging dynamic cell-cell junctional coupling in vivo using Trojan-LAMP. Nature Methods, 2008, 5, 835-841.	9.0	35
1327	Effects of Developmental Exposure to Ethanol on Caenorhabditis elegans. Alcoholism: Clinical and Experimental Research, 2008, 32, 853-867.	1.4	45
1328	Development of the appendicularian <i>Oikopleura dioica</i> : Culture, genome, and cell lineages. Development Growth and Differentiation, 2008, 50, S239-56.	0.6	64
1329	In vivo imaging of cellular structures in Caenorhabditis elegans by combined TPEF, SHG and THG microscopy. Journal of Microscopy, 2008, 229, 141-150.	0.8	39
1330	Electron microscopy of the early <i>Caenorhabditis elegans</i> embryo. Journal of Microscopy, 2008, 230, 297-307.	0.8	34
1331	Caenorhabditis elegans par2.1/mtssb-1 is essential for mitochondrial DNA replication and its defect causes comprehensive transcriptional alterations including a hypoxia response. Experimental Cell Research, 2008, 314, 103-114.	1.2	28

#	Article	IF	CITATIONS
1332	ced-4 and Proto-Oncogene tfg-1 Antagonistically Regulate Cell Size and Apoptosis in C. elegans. Current Biology, 2008, 18, 1025-1033.	1.8	30
1333	Phagosome maturation during the removal of apoptotic cells: receptors lead the way. Trends in Cell Biology, 2008, 18, 474-485.	3.6	61
1334	Symmetrically dividing cell specific division axes alteration observed in proteasome depleted C. elegans embryo. Mechanisms of Development, 2008, 125, 743-755.	1.7	7
1335	Modeling the Establishment of PAR Protein Polarity in the One-Cell C. elegans Embryo. Biophysical Journal, 2008, 95, 4512-4522.	0.2	39
1336	Reconstruction of Zebrafish Early Embryonic Development by Scanned Light Sheet Microscopy. Science, 2008, 322, 1065-1069.	6.0	1,397
1337	Determination of the Cleavage Plane in Early <i>C. elegans</i> Embryos. Annual Review of Genetics, 2008, 42, 389-411.	3.2	59
1338	Caenorhabditis elegans: An Emerging Model in Biomedical and Environmental Toxicology. Toxicological Sciences, 2008, 106, 5-28.	1.4	832
1339	Transcription Factors GATA/ELT-2 and Forkhead/HNF-3/PHA-4 Regulate the Tropomyosin Gene Expression in the Pharynx and Intestine of Caenorhabditis elegans. Journal of Molecular Biology, 2008, 379, 201-211.	2.0	12
1340	Genetic Dissection of Neural Circuits. Neuron, 2008, 57, 634-660.	3.8	714
1341	Comparative analysis of embryonic cell lineage between Caenorhabditis briggsae and Caenorhabditis elegans. Developmental Biology, 2008, 314, 93-99.	0.9	80
1342	Cellular pattern formation, establishment of polarity and segregation of colored cytoplasm in embryos of the nematode Romanomermis culicivorax. Developmental Biology, 2008, 315, 426-436.	0.9	20
1343	Control of cell cycle timing during C. elegans embryogenesis. Developmental Biology, 2008, 318, 65-72.	0.9	75
1344	The C. elegans glycosyltransferase BUS-8 has two distinct and essential roles in epidermal morphogenesis. Developmental Biology, 2008, 317, 549-559.	0.9	104
1345	Muscle cell migrations of C. elegans are mediated by the α-integrin INA-1, Eph receptor VAB-1, and a novel peptidase homologue MNP-1. Developmental Biology, 2008, 318, 215-223.	0.9	17
1346	Insulin-like signaling negatively regulates muscle arm extension through DAF-12 in Caenorhabditis elegans. Developmental Biology, 2008, 318, 153-161.	0.9	16
1347	UNC-85, a C. elegans homolog of the histone chaperone Asf1, functions in post-embryonic neuroblast replication. Developmental Biology, 2008, 319, 100-109.	0.9	13
1348	The CSL transcription factor LAG-1 directly represses hlh-6 expression in C. elegans. Developmental Biology, 2008, 322, 334-344.	0.9	17
1349	The MIG-15 NIK kinase acts cell-autonomously in neuroblast polarization and migration in C. elegans. Developmental Biology, 2008, 324, 245-257.	0.9	51

		CITATION REPORT		
#	Article		IF	CITATIONS
1350	Polarity complex proteins. Biochimica Et Biophysica Acta - Biomembranes, 2008, 1778	, 614-630.	1.4	373
1351	C. elegans AP-2 and Retromer Control Wnt Signaling by Regulating MIG-14/Wntless. D Cell, 2008, 14, 132-139.	evelopmental	3.1	189
1352	Sensory Signaling-Dependent Remodeling of Olfactory Cilia Architecture in C. elegans. Cell, 2008, 14, 762-774.	Developmental	3.1	121
1354	Determination of cell fate selection during phage lambda infection. Proceedings of the Academy of Sciences of the United States of America, 2008, 105, 20705-20710.	National	3.3	197
1355	Complex Network of Wnt Signaling Regulates Neuronal Migrations During <i>Caenorh elegans</i> Development. Genetics, 2008, 179, 1357-1371.	abditis	1.2	79
1356	Other Model Organisms for Sarcomeric Muscle Diseases. Advances in Experimental Me Biology, 2008, 642, 192-206.	edicine and	0.8	18
1357	Large-scale gene expression pattern analysis, in situ, in Caenorhabditis elegans. Briefin Genomics & Proteomics, 2008, 7, 175-183.	gs in Functional	3.8	18
1358	TheCaenorhabditis elegans ekl(Enhancer ofksr-1Lethality) Genes Include Putative Com Germline Small RNA Pathway. Genetics, 2008, 178, 1431-1443.	ponents of a	1.2	40
1359	Student Learning of Early Embryonic Development via the Utilization of Research Reso Nematode <i>Caenorhabditis elegans</i> . CBE Life Sciences Education, 2008, 7, 64-73	urces from the 3.	1.1	9
1360	The early embryonic development of the satellite organism Pristionchus pacificus: diffe similarities with Caenorhabditis elegans. Nematology, 2008, 10, 301-312.	rences and	0.2	13
1361	Multi-worm tracking using superposition of merit functions. Proceedings of SPIE, 2008	3, , .	0.8	0
1362	Fecundity and lifespan manipulations in Caenorhabditis elegans using exogenous pept Nematology, 2008, 10, 103-112.	ides.	0.2	9
1363	PAR proteins direct asymmetry of the cell cycle regulators Polo-like kinase and Cdc25. Biology, 2008, 180, 877-885.	Journal of Cell	2.3	84
1364	The <i>C. elegans</i> L1CAM homologue LAD-2 functions as a coreceptor in MAB-20/S axon guidance. Journal of Cell Biology, 2008, 180, 233-246.	Sema2–mediated	2.3	61
1365	Phylogenetic Fate Mapping: Theoretical and Experimental Studies Applied to the Devel Fibroblasts. Genetics, 2008, 178, 967-977.	opment of Mouse	1.2	26
1366	Estimating Cell Depth from Somatic Mutations. PLoS Computational Biology, 2008, 4,	e1000058.	1.5	35
1367	RAB-11 Permissively Regulates Spindle Alignment by Modulating Metaphase Microtub in <i>Caenorhabditis elegans</i> Early Embryos. Molecular Biology of the Cell, 2008, 19		0.9	35
1368	Apoptosis Maintains Oocyte Quality in Aging Caenorhabditis elegans Females. PLoS G e1000295.	enetics, 2008, 4,	1.5	119

#	ARTICLE <i>Caenorhabditis elegans</i> Genes Required for the Engulfment of Apoptotic Corpses Function in	IF	CITATIONS
1369	the Cytotoxic Cell Deaths Induced by Mutations in <i>lin-24</i> and <i>lin-33</i> . Genetics, 2008, 179, 403-417.	1.2	19
1370	Autophagy and Cell Death in Caenorhabditis elegans. Current Pharmaceutical Design, 2008, 14, 97-115.	0.9	20
1371	Control of Apoptosis by Asymmetric Cell Division. PLoS Biology, 2008, 6, e84.	2.6	74
1372	Phagocytic Receptor CED-1 Initiates a Signaling Pathway for Degrading Engulfed Apoptotic Cells. PLoS Biology, 2008, 6, e61.	2.6	107
1373	Alternative Splicing Regulation During C. elegans Development: Splicing Factors as Regulated Targets. PLoS Genetics, 2008, 4, e1000001.	1.5	57
1374	The HLH-6 Transcription Factor Regulates C. elegans Pharyngeal Gland Development and Function. PLoS Genetics, 2008, 4, e1000222.	1.5	38
1375	<i>mls-2</i> and <i>vab-3</i> control glia development, <i>hlh-17</i> /Olig expression and glia-dependent neurite extension in <i>C. elegans</i> . Development (Cambridge), 2008, 135, 2263-2275.	1.2	84
1376	Chapter 1 Somatic Sexual Differentiation in Caenorhabditis elegans. Current Topics in Developmental Biology, 2008, 83, 1-39.	1.0	35
1377	<i>glo-3</i> , a Novel <i>Caenorhabditis elegans</i> Gene, Is Required for Lysosome-Related Organelle Biogenesis. Genetics, 2008, 180, 857-871.	1.2	32
1378	The T-Box Gene <i>tbx-2,</i> the Homeobox Gene <i>egl-5</i> and the Asymmetric Cell Division Gene <i>ham-1</i> Specify Neural Fate in the HSN/PHB Lineage. Genetics, 2008, 179, 887-898.	1.2	11
1379	The small GTPase Rab2 functions in the removal of apoptotic cells in <i>Caenorhabditis elegans </i> . Journal of Cell Biology, 2008, 180, 357-373.	2.3	72
1380	A "FLP-Out―System for Controlled Gene Expression in <i>Caenorhabditis elegans</i> . Genetics, 2008, 180, 103-119.	1.2	72
1381	RNA target specificity of the embryonic cell fate determinant POS-1. Rna, 2008, 14, 2685-2697.	1.6	46
1382	A <i>Caenorhabditis elegans</i> model for epithelial–neuronal transdifferentiation. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3790-3795.	3.3	98
1383	LinMap: Visualizing Complexity Gradients in Evolutionary Landscapes. Artificial Life, 2008, 14, 277-297.	1.0	2
1384	Pine Wilt Disease. , 2008, , .		143
1385	Cell death specification inC. elegans. Cell Cycle, 2008, 7, 2479-2484.	1.3	10
1386	Speculation on the Evolution of Stem Cells. Breast Disease, 2008, 29, 3-13.	0.4	5

ARTICLE IF CITATIONS Integration of information and volume visualization for analysis of cell lineage and gene expression 1387 0.8 4 during embryogenesis. Proceedings of SPIE, 2008, , . Evolving diversity., 2008, , 215-216. Many roads lead to Rome: different ways to construct a nematode., 0, , 261-280. 1389 5 Pairing of competitive and topologically distinct regulatory modules enhances patterned gene 3.2 28 expression. Molecular System's Biology, 2008, 4, 163. Sensory roles of neuronal cilia: Cilia development, morphogenesis, and function in C. elegans. 1391 3.0 58 Frontiers in Bioscience - Landmark, 2008, Volume, 5959. The embryonic cell lineage of the nematode Rhabditophanes sp.. International Journal of 1392 0.3 Developmental Biology, 2008, 52, 963-967. The Temporal Control of Cell Cycle and Cell Fate in Caenorhabditis elegans. Novartis Foundation 1393 1.2 9 Symposium, 2008, 237, 203-220. Differences in embryonic pattern formation between Caenorhabditis elegans and its close parthenogenetic relative Diploscapter coronatus. International Journal of Developmental Biology, 1394 0.3 2009, 53, 507-515. The Roles and Acting Mechanism of Caenorhabditis elegans DNase II Genes in Apoptotic DNA 1395 1.1 14 Degradation and Development. PLoS ONE, 2009, 4, e7348. Worms With a Single Functional Sensory Cilium Generate Proper Neuron-Specific Behavioral Output. 1.2 Genetics, 2009, 183, 595-605. The NK-2 class homeodomain factor CEH-51 and the T-box factor TBX-35 have overlapping function 1398 1.2 54 in<i>C. elegans</i>mesoderm development. Development (Cambridge), 2009, 136, 2735-2746. METT-10, A Putative Methyltransferase, Inhibits Germ Cell Proliferative Fate in <i>Caenorhabditis 1.2 elegans </i>. Genetics, 2009, 183, 233-247. The Role of Protein Phosphatase 4 in Regulating Microtubule Severing in the<i>Caenorhabditis 1401 1.2 31 elegans</i>Embryo. Genetics, 2009, 181, 933-943. DNA-PK: Relaying the insulin signal to USF in lipogenesis. Cell Cycle, 2009, 8, 1973-1978. 1402 1.3 1403 Wnt asymmetry and the terminal division of neuronal progenitors. Cell Cycle, 2009, 8, 1973-1978. 10 1.3 MAP Kinase Signaling Antagonizes PAR-1 Function During Polarization of the Early <i>Caenorhabditis 1404 1.2 elegans</i> Embryo. Genetics, 2009, 183, 965-977. Modeling Molecular and Cellular Aspects of Human Disease Using the Nematode Caenorhabditis 1405 1.1 83 elegans. Pediatric Research, 2009, 65, 10-18. <i>C. elegans</i>mitotic cyclins have distinct as well as overlapping functions in chromosome 1406 1.3 segregation. Cell Cycle, 2009, 8, 4091-4102.

#	Article	IF	CITATIONS
1407	An Integrated Strategy to Study Muscle Development and Myofilament Structure in Caenorhabditis elegans. PLoS Genetics, 2009, 5, e1000537.	1.5	89
1408	Caenorhabditis elegans Myotubularin MTM-1 Negatively Regulates the Engulfment of Apoptotic Cells. PLoS Genetics, 2009, 5, e1000679.	1.5	51
1409	Functional Dissection of Caenorhabditis elegans CLK-2/TEL2 Cell Cycle Defects during Embryogenesis and Germline Development. PLoS Genetics, 2009, 5, e1000451.	1.5	43
1410	Abl Kinase Inhibits the Engulfment of Apopotic Cells in Caenorhabditis elegans. PLoS Biology, 2009, 7, e1000099.	2.6	43
1411	Coelomocytes: Biology and Possible Immune Functions in Invertebrates with Special Remarks on Nematodes. International Journal of Zoology, 2009, 2009, 1-13.	0.3	21
1412	MIG-32 and SPAT-3A are PRC1 homologs that control neuronal migration in <i>Caenorhabditis elegans</i> . Development (Cambridge), 2009, 136, 943-953.	1.2	24
1413	Cellular Symmetry Breaking during Caenorhabditis elegans Development. Cold Spring Harbor Perspectives in Biology, 2009, 1, a003400-a003400.	2.3	89
1414	The <i>C. elegans</i> Tailless/TLX transcription factor <i>nhr-67</i> controls neuronal identity and left/right asymmetric fate diversification. Development (Cambridge), 2009, 136, 2933-2944.	1.2	42
1415	Cis-regulatory mechanisms of left/right asymmetric neuron-subtype specification in <i>C. elegans</i> . Development (Cambridge), 2009, 136, 147-160.	1.2	62
1416	The cellular geometry of growth drives the amino acid economy of <i>Caenorhabditis elegans</i> . Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 2747-2754.	1.2	19
1417	<i>C. elegans</i> CARMIL negatively regulates UNC-73/Trio function during neuronal development. Development (Cambridge), 2009, 136, 1201-1210.	1.2	34
1418	The nuclear receptor NHR-25 cooperates with the Wnt/β-catenin asymmetry pathway to control differentiation of the T seam cell in <i>C. elegans</i> . Journal of Cell Science, 2009, 122, 3051-3060.	1.2	15
1419	Characterization of the effects of methylmercury on Caenorhabditis elegans. Toxicology and Applied Pharmacology, 2009, 240, 265-272.	1.3	66
1420	Coenzyme Q supports distinct developmental processes in Caenorhabditis elegans. Mechanisms of Ageing and Development, 2009, 130, 145-153.	2.2	22
1421	Development of primordial germ cells in the mouse*. Andrologia, 1992, 24, 243-247.	1.0	53
1422	Programmed cell death in the nervous system—a programmed cell fate?. Current Opinion in Neurobiology, 2009, 19, 127-133.	2.0	22
1423	Autophagy in Caenorhabditis elegans. Biochimica Et Biophysica Acta - Molecular Cell Research, 2009, 1793, 1444-1451.	1.9	16
1424	Deceptively simple but simply deceptive – <i>Caenorhabditis elegans</i> lifespan studies: Considerations for aging and antioxidant effects. FEBS Letters, 2009, 583, 3377-3387.	1.3	100

#	Article	IF	CITATIONS
1425	An expression screen for RhoGEF genes involved in C. elegans gonadogenesis. Gene Expression Patterns, 2009, 9, 397-403.	0.3	15
1426	Intermediate filaments in <i>Caenorhabditis elegans</i> . Cytoskeleton, 2009, 66, 852-864.	4.4	44
1427	Polarity and cell fate specification in the control of <i>Caenorhabditis elegans</i> gastrulation. Developmental Dynamics, 2009, 238, 789-796.	0.8	20
1428	High resolution cell lineage tracing reveals developmental variability in leech. Developmental Dynamics, 2009, 238, 3139-3151.	0.8	24
1429	<i>Urnaloricus gadi</i> nov. gen. et nov. sp. (Loricifera, Urnaloricidae nov. fam.), an aberrant Loricifera with a viviparous pedogenetic life cycle. Journal of Morphology, 2009, 270, 129-153.	0.6	61
1430	Retention time of attenuated response to diacetyl after preâ€exposure to diacetyl in <i>Caenorhabditis elegans</i> . Journal of Experimental Zoology, 2009, 311A, 483-495.	1.2	10
1431	Cleavage and gastrulation in Pycnogonum litorale (Arthropoda, Pycnogonida): morphological support for the Ecdysozoa?. Zoomorphology, 2009, 128, 263-274.	0.4	21
1432	A Mutation of cdc-25.1 Causes Defects in Germ Cells But Not in Somatic Tissues in C. elegans. Molecules and Cells, 2009, 28, 43-48.	1.0	17
1433	Biological Boundaries and Biological Age. Acta Biotheoretica, 2009, 57, 397-418.	0.7	32
1434	How ubiquitous is adaptation? A critique of the epiphenomenist program. Biology and Philosophy, 2009, 24, 267-280.	0.7	12
1435	Bacterial Attraction and Quorum Sensing Inhibition in Caenorhabditis elegans Exudates. Journal of Chemical Ecology, 2009, 35, 878-892.	0.9	33
1436	The Central Role of Neuroinformatics in the National Academy of Engineering's Grandest Challenge: Reverse Engineer the Brain. Neuroinformatics, 2009, 7, 1-5.	1.5	18
1437	SUN-domain and KASH-domain proteins during development, meiosis and disease. Cellular and Molecular Life Sciences, 2009, 66, 1518-1533.	2.4	87
1438	Life cycle and population growth rate of Caenorhabditis elegans studied by a new method. BMC Ecology, 2009, 9, 14.	3.0	81
1439	IgCAMs redundantly control axon navigation in Caenorhabditis elegans. Neural Development, 2009, 4, 13.	1.1	46
1440	A 3D digital atlas of C. elegans and its application to single-cell analyses. Nature Methods, 2009, 6, 667-672.	9.0	170
1441	Large-scale sorting of C. elegans embryos reveals the dynamics of small RNA expression. Nature Methods, 2009, 6, 745-751.	9.0	91
1442	Google 'EarthWorm'. Nature Methods, 2009, 6, 635-636.	9.0	0

# 1443	ARTICLE The 'rare biosphere': a reality check. Nature Methods, 2009, 6, 636-637.	IF 9.0	Citations 231
1444	Staging worms for next-generation analysis. Nature Methods, 2009, 6, 727-728.	9.0	3
1445	Quantitative Time-Lapse Fluorescence Microscopy in Single Cells. Annual Review of Cell and Developmental Biology, 2009, 25, 301-327.	4.0	152
1446	C. elegans. Advances in Genetics, 2009, 68, 1-22.	0.8	5
1447	Linking Asymmetric Cell Division to the Terminal Differentiation Program of Postmitotic Neurons in C. elegans. Developmental Cell, 2009, 16, 563-575.	3.1	85
1448	Latrophilin Signaling Links Anterior-Posterior Tissue Polarity and Oriented Cell Divisions in the C.Âelegans Embryo. Developmental Cell, 2009, 17, 494-504.	3.1	142
1449	DEX-1 and DYF-7 Establish Sensory Dendrite Length by Anchoring Dendritic Tips during Cell Migration. Cell, 2009, 137, 344-355.	13.5	156
1450	A C. elegans LSD1 Demethylase Contributes to Germline Immortality by Reprogramming Epigenetic Memory. Cell, 2009, 137, 308-320.	13.5	323
1451	Neurite Extension: Starting at the Finish Line. Cell, 2009, 137, 207-209.	13.5	1
1452	Analysis of Cell Fate from Single-Cell Gene Expression Profiles in C. elegans. Cell, 2009, 139, 623-633.	13.5	122
1453	Structure and evolution of the C. elegans embryonic endomesoderm network. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2009, 1789, 250-260.	0.9	41
1454	Cell biology and evolution: Molecular modules link it all?. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2009, 1789, 354-362.	0.9	Ο
1455	Knockdown of SKN-1 and the Wnt effector TCF/POP-1 reveals differences in endomesoderm specification in C. briggsae as compared with C. elegans. Developmental Biology, 2009, 325, 296-306.	0.9	45
1456	C. elegans pur alpha, an activator of end-1, synergizes with the Wnt pathway to specify endoderm. Developmental Biology, 2009, 327, 12-23.	0.9	19
1457	ELT-2 is the predominant transcription factor controlling differentiation and function of the C. elegans intestine, from embryo to adult. Developmental Biology, 2009, 327, 551-565.	0.9	129
1458	Trithorax, Hox, and TALE-class homeodomain proteins ensure cell survival through repression of the BH3-only gene egl-1. Developmental Biology, 2009, 329, 374-385.	0.9	43
1459	Lipocalin signaling controls unicellular tube development in the Caenorhabditis elegans excretory system. Developmental Biology, 2009, 329, 201-211.	0.9	56
1460	Evidence for crucial role of hindgut expansion in directing proper migration of primordial germ cells in mouse early embryogenesis. Developmental Biology, 2009, 330, 427-439.	0.9	74

#	Article	IF	CITATIONS
1461	A conserved Six–Eya cassette acts downstream of Wnt signaling to direct non-myogenic versus myogenic fates in the C. elegans postembryonic mesoderm. Developmental Biology, 2009, 331, 350-360.	0.9	30
1462	Embryogenesis of Romanomermis culicivorax: An alternative way to construct a nematode. Developmental Biology, 2009, 334, 10-21.	0.9	32
1463	Spatio-temporal reference model of Caenorhabditis elegans embryogenesis with cell contact maps. Developmental Biology, 2009, 333, 1-13.	0.9	34
1464	The conserved zinc finger protein VAB-23 is an essential regulator of epidermal morphogenesis in Caenorhabditis elegans. Developmental Biology, 2009, 336, 84-93.	0.9	4
1465	The retinoic acid machinery in invertebrates: Ancestral elements and vertebrate innovations. Molecular and Cellular Endocrinology, 2009, 313, 23-35.	1.6	63
1466	Genetic aspects of behavioral neurotoxicology. NeuroToxicology, 2009, 30, 741-753.	1.4	27
1467	Animal Systems Biology: Towards a Systems View of Development inC. Elegans. , 0, , 137-165.		0
1470	Genetic Control of Programmed Cell Death During Animal Development. Annual Review of Genetics, 2009, 43, 493-523.	3.2	136
1471	Life-Span Extension. , 2009, , .		2
1472	The Molecular Basis of Organ Formation: Insights From the <i>C. elegans</i> Foregut. Annual Review of Cell and Developmental Biology, 2009, 25, 597-628.	4.0	56
1473	Automation of Challenging Spatial-Temporal Biomedical Observations With the Adaptive Scanning Optical Microscope (ASOM). IEEE Transactions on Automation Science and Engineering, 2009, 6, 525-535.	3.4	11
1474	The Polycomb Complex Protein mes-2/E(z) Promotes the Transition from Developmental Plasticity to Differentiation in C. elegans Embryos. Developmental Cell, 2009, 16, 699-710.	3.1	90
1475	How Did Indirect Development With Planktotrophic Larvae Evolve?. Biological Bulletin, 2009, 216, 203-215.	0.7	33
1476	Protein kinase D1: A novel regulator of actin-driven directed cell migration. Cell Cycle, 2009, 8, 1973-1978.	1.3	25
1477	C. elegans Genetic Networks Predict Roles for O-GlcNAc Cycling in Key Signaling Pathways. Current Signal Transduction Therapy, 2010, 5, 60-73.	0.3	2
1478	Saturation of the Human Phenome. Current Genomics, 2010, 11, 482-499.	0.7	29
1479	Repetitive Transgenes in C. elegans Accumulate Heterochromatic Marks and Are Sequestered at the Nuclear Envelope in a Copy-Number- and Lamin-Dependent Manner. Cold Spring Harbor Symposia on Quantitative Biology, 2010, 75, 555-565.	2.0	53
1480	C. elegans models of neuromuscular diseases expedite translational research. Translational Neuroscience, 2010, 1, .	0.7	17

	CITATION RI	EPORT	
#	Article	IF	CITATIONS
1481	Modeling human diseases in <i>Caenorhabditis elegans</i> . Biotechnology Journal, 2010, 5, 1261-1276.	1.8	173
1482	Utility of Caenorhabditis elegans in high throughput neurotoxicological research. Neurotoxicology and Teratology, 2010, 32, 62-67.	1.2	52
1483	Medium- and high-throughput screening of neurotoxicants using C. elegans. Neurotoxicology and Teratology, 2010, 32, 68-73.	1.2	102
1484	Anticancer drug 5-fluorouracil induces reproductive and developmental defects in Caenorhabditis elegans. Reproductive Toxicology, 2010, 29, 415-420.	1.3	28
1485	A hybrid blob-slice model for accurate and efficient detection of fluorescence labeled nuclei in 3D. BMC Bioinformatics, 2010, 11, 580.	1.2	98
1486	Association of tissue lineage and gene expression: conservatively and differentially expressed genes define common and special functions of tissues. BMC Bioinformatics, 2010, 11, S1.	1.2	27
1487	The synapsin gene family in basal chordates: evolutionary perspectives in metazoans. BMC Evolutionary Biology, 2010, 10, 32.	3.2	25
1488	Binary fate decisions in differentiating neurons. Current Opinion in Neurobiology, 2010, 20, 6-13.	2.0	45
1489	Cell death and sexual differentiation of behavior: worms, flies, and mammals. Current Opinion in Neurobiology, 2010, 20, 776-783.	2.0	13
1490	Many Families of C. elegans MicroRNAs Are Not Essential for Development or Viability. Current Biology, 2010, 20, 367-373.	1.8	263
1491	Movers and shakers or anchored: <i>Caenorhabditis elegans</i> nuclei achieve it with KASH/SUN. Developmental Dynamics, 2010, 239, 1352-1364.	0.8	9
1492	Nonâ€apoptotic cell death in <i>Caenorhabditis elegans</i> . Developmental Dynamics, 2010, 239, 1337-1351.	0.8	21
1493	Cell fate specification in the <i>C. elegans</i> embryo. Developmental Dynamics, 2010, 239, 1315-1329.	0.8	42
1494	Understanding the role of asymmetric cell division in cancer using <i>C. elegans</i> . Developmental Dynamics, 2010, 239, 1378-1387.	0.8	8
1495	Recent advances in understanding the molecular mechanisms regulating <i>C. elegans</i> transcription. Developmental Dynamics, 2010, 239, 1388-1404.	0.8	11
1496	Cancer models in <i>Caenorhabditis elegans</i> . Developmental Dynamics, 2010, 239, 1413-1448.	0.8	63
1497	<i>Caenorhabditis elegans</i> as a model for stem cell biology. Developmental Dynamics, 2010, 239, 1539-1554.	0.8	79
1498	Spindle assembly checkpoint genes reveal distinct as well as overlapping expression that implicates MDF-2/Mad2 in postembryonic seam cell proliferation in Caenorhabditis elegans. BMC Cell Biology, 2010, 11, 71.	3.0	7

#	Article	IF	Citations
1499	The caenorhabditis elegans CDT-2 ubiquitin ligase is required for attenuation of EGFR signalling in vulva precursor cells. BMC Developmental Biology, 2010, 10, 109.	2.1	3
1500	Characterization of the octamer, a cis-regulatory element that modulates excretory cell gene-expression in Caenorhabditis elegans. BMC Molecular Biology, 2010, 11, 19.	3.0	4
1501	Modularity and anti-modularity in networks with arbitrary degree distribution. Biology Direct, 2010, 5, 32.	1.9	16
1502	Phylogenetic analysis of developmental and postnatal mouse cell lineages. Evolution & Development, 2010, 12, 84-94.	1.1	34
1503	Transcriptional upregulation of both egl-1 BH3-only and ced-3 caspase is required for the death of the male-specific CEM neurons. Cell Death and Differentiation, 2010, 17, 1266-1276.	5.0	20
1504	Caenorhabditis elegans transthyretin-like protein TTR-52 mediates recognition of apoptotic cells by the CED-1 phagocyte receptor. Nature Cell Biology, 2010, 12, 655-664.	4.6	114
1505	Annotating non-coding regions of the genome. Nature Reviews Genetics, 2010, 11, 559-571.	7.7	398
1506	Codonopsis pilosula Extract Reverse Glucose Tolerance Impairment-Induced Sperm Dysfunction Biology of Reproduction, 2010, 83, 518-518.	1.2	0
1507	A Negative Regulatory Loop between MicroRNA and Hox Gene Controls Posterior Identities in Caenorhabditis elegans. PLoS Genetics, 2010, 6, e1001089.	1.5	44
1508	Live-Cell Imaging in Caenorhabditis elegans Reveals the Distinct Roles of Dynamin Self-Assembly and Guanosine Triphosphate Hydrolysis in the Removal of Apoptotic Cells. Molecular Biology of the Cell, 2010, 21, 610-629.	0.9	26
1509	Six and Eya promote apoptosis through direct transcriptional activation of the proapoptotic BH3-only gene <i>egl-1</i> in <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15479-15484.	3.3	40
1510	New Tools for Investigating the Comparative Biology of <i>Caenorhabditis</i> Â <i>briggsae</i> and <i>C. elegans</i> . Genetics, 2010, 184, 853-863.	1.2	38
1511	Protein phosphatase 2A cooperates with the autophagy-related kinase UNC-51 to regulate axon guidance in <i>Caenorhabditis elegans</i> . Development (Cambridge), 2010, 137, 1657-1667.	1.2	35
1512	Fate Specification and Tissue-specific Cell Cycle Control of the Caenorhabditis elegans Intestine. Molecular Biology of the Cell, 2010, 21, 725-738.	0.9	12
1513	The Conserved miR-51 microRNA Family Is Redundantly Required for Embryonic Development and Pharynx Attachment in <i>Caenorhabditis elegans</i> . Genetics, 2010, 185, 897-905.	1.2	60
1514	<i>ccz-1</i> mediates the digestion of apoptotic corpses in <i>C. elegans</i> . Journal of Cell Science, 2010, 123, 2001-2007.	1.2	30
1515	Kinesin-1 and dynein at the nuclear envelope mediate the bidirectional migrations of nuclei. Journal of Cell Biology, 2010, 191, 115-128.	2.3	137
1516	Resolving phylogenetic incongruence to articulate homology and phenotypic evolution: a case study from Nematoda. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 1299-1307.	1.2	18

#	Article	IF	CITATIONS
1517	The HMX/NKX homeodomain protein MLS-2 specifies the identity of the AWC sensory neuron type via regulation of the <i>ceh-36</i> Otx gene in <i>C. elegans</i> . Development (Cambridge), 2010, 137, 963-974.	1.2	41
1518	Reliable Noise. Science, 2010, 327, 1088-1089.	6.0	7
1519	An elegant mind: Learning and memory in <i>Caenorhabditis elegans</i> . Learning and Memory, 2010, 17, 191-201.	0.5	217
1520	Image Tracking of Multiple <i>C. Elegans</i> Worms Using Adaptive Scanning Optical Microscope (ASOM). International Journal of Optomechatronics, 2010, 4, 1-21.	3.3	1
1521	Sources of funding for Nobel Prizeâ€winning work: public or private?. FASEB Journal, 2010, 24, 1335-1339.	0.2	31
1522	Systems Approaches to Developmental Patterning. , 2010, , 329-350.		1
1523	Repression of Wnt signaling by a Fer-type nonreceptor tyrosine kinase. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16154-16159.	3.3	19
1524	Dynamics of Delta/Notch signaling on endomesoderm segregation in the sea urchin embryo. Development (Cambridge), 2010, 137, 83-91.	1.2	87
1525	Involvement of Global Genome Repair, Transcription Coupled Repair, and Chromatin Remodeling in UV DNA Damage Response Changes during Development. PLoS Genetics, 2010, 6, e1000941.	1.5	111
1526	A Wnt-Frz/Ror-Dsh Pathway Regulates Neurite Outgrowth in Caenorhabditis elegans. PLoS Genetics, 2010, 6, e1001056.	1.5	65
1527	Automated tracking and analysis of centrosomes in early <i>Caenorhabditis elegans</i> embryos. Bioinformatics, 2010, 26, i13-i20.	1.8	25
1528	Imaging of Mitotic Spindle Dynamics in Caenorhabditis elegans Embryos. Methods in Cell Biology, 2010, 97, 359-372.	0.5	27
1529	Asymmetric Wolbachia Segregation during Early Brugia malayi Embryogenesis Determines Its Distribution in Adult Host Tissues. PLoS Neglected Tropical Diseases, 2010, 4, e758.	1.3	81
1530	Conserved Genes Act as Modifiers of Invertebrate SMN Loss of Function Defects. PLoS Genetics, 2010, 6, e1001172.	1.5	93
1531	Duplication ofcyb-3(cyclin B3) suppresses sterility in the absence ofmdf-1/MAD1spindle assembly checkpoint component inCaenorhabditis elegans. Cell Cycle, 2010, 9, 4858-4865.	1.3	7
1532	Revealing developmental networks by comparative transcriptomics. Transcription, 2010, 1, 154-158.	1.7	9
1533	The ANISEED database: Digital representation, formalization, and elucidation of a chordate developmental program. Genome Research, 2010, 20, 1459-1468.	2.4	105
1534	Otx-dependent expression of proneural bHLH genes establishes a neuronal bilateral asymmetry in <i>C. elegans</i> . Development (Cambridge), 2010, 137, 4017-4027.	1.2	21

#	Article	IF	CITATIONS
1535	Third-harmonic generation for the study of Caenorhabditis elegans embryogenesis. Journal of Biomedical Optics, 2010, 15, 1.	1.4	27
1536	Imaging Embryonic Development in Caenorhabditis elegans. Cold Spring Harbor Protocols, 2010, 2010, pdb.top71-pdb.top71.	0.2	3
1537	Integrative Analysis of the <i>Caenorhabditis elegans</i> Genome by the modENCODE Project. Science, 2010, 330, 1775-1787.	6.0	912
1538	MicroRNAs in C. elegans Development. Modecular Medicine and Medicinal, 2010, , 51-93.	0.4	0
1539	In Vivo Imaging and Toxicity Assessments of Fluorescent Nanodiamonds in <i>Caenorhabditis elegans</i> . Nano Letters, 2010, 10, 3692-3699.	4.5	514
1540	Caenorhabditis elegans, A Simple Worm: Bridging the Gap Between Traditional and Systems-Level Biology. , 2010, , 787-794.		0
1541	Lineage programming: navigating through transient regulatory states via binary decisions. Current Opinion in Genetics and Development, 2010, 20, 362-368.	1.5	37
1542	Development of the C. elegans digestive tract. Current Opinion in Genetics and Development, 2010, 20, 346-354.	1.5	21
1543	Chiral Forces Organize Left-Right Patterning in C. elegans by Uncoupling Midline and Anteroposterior Axis. Developmental Cell, 2010, 19, 402-412.	3.1	121
1544	The microRNAs of Caenorhabditis elegans. Seminars in Cell and Developmental Biology, 2010, 21, 728-737.	2.3	36
1545	Apical constriction: A cell shape change that can drive morphogenesis. Developmental Biology, 2010, 341, 5-19.	0.9	408
1546	Roles of the Wnt effector POP-1/TCF in the C. elegans endomesoderm specification gene network. Developmental Biology, 2010, 340, 209-221.	0.9	60
1547	Intestinal tube formation in Caenorhabditis elegans requires vang-1 and egl-15 signaling. Developmental Biology, 2010, 339, 268-279.	0.9	32
1548	UNC-83 coordinates kinesin-1 and dynein activities at the nuclear envelope during nuclear migration. Developmental Biology, 2010, 338, 237-250.	0.9	121
1549	Mesoderm and ectoderm lineages in the crustacean Parhyale hawaiensis display intra-germ layer compensation. Developmental Biology, 2010, 341, 256-266.	0.9	35
1550	The role of C. elegans Ena/VASP homolog UNC-34 in neuronal polarity and motility. Developmental Biology, 2010, 344, 94-106.	0.9	34
1551	SAX-7/L1CAM and HMR-1/cadherin function redundantly in blastomere compaction and non-muscle myosin accumulation during Caenorhabditis elegans gastrulation. Developmental Biology, 2010, 344, 731-744.	0.9	53
1552	Endoderm development in Caenorhabditis elegans: The synergistic action of ELT-2 and -7 mediates the specification→differentiation transition. Developmental Biology, 2010, 347, 154-166.	0.9	68

#	Article	IF	CITATIONS
1554	Epilogue: The Diseased Breast Lobe in the Context of X-Chromosome Inactivation and Differentiation Waves. , 2010, , 205-210.		3
1555	Fluorescent microscope system to track a particular region of C. elegans. , 2010, , .		14
1556	Enhancement of Chemotactic Response to Sodium Acetate in the NematodeCaenorhabditis elegans. Zoological Science, 2010, 27, 629-637.	0.3	9
1557	Fluorescent Nanodiamond – A Novel Nanomaterial for<i>In Vivo</i>Applications . Materials Research Society Symposia Proceedings, 2011, 1362, 1.	0.1	8
1558	A spatial and temporal map of <i>C. elegans</i> gene expression. Genome Research, 2011, 21, 325-341.	2.4	241
1559	Proteome of the <i>Caenorhabditis elegans</i> Oocyte. Journal of Proteome Research, 2011, 10, 2300-2305.	1.8	15
1561	Microfluidic Platform for the Study of Caenorhabditis elegans. Topics in Current Chemistry, 2011, 304, 323-338.	4.0	23
1562	Affinity Purification of Protein Complexes in C. elegans. Methods in Cell Biology, 2011, 106, 289-322.	0.5	40
1564	Transgenesis in C. elegans. Methods in Cell Biology, 2011, 106, 159-185.	0.5	16
1568	Imaging Embryonic Morphogenesis in C. elegans. Methods in Cell Biology, 2011, 106, 377-412.	0.5	15
1570	Eukaryotic Cell–Cell Fusion Families. Current Topics in Membranes, 2011, 68, 209-234.	0.5	27
1571	New Insights into the Mechanisms and Roles of Cell–Cell Fusion. International Review of Cell and Molecular Biology, 2011, 289, 149-209.	1.6	23
1572	Replication-Coupled Chromatin Assembly Generates a Neuronal Bilateral Asymmetry in C.Âelegans. Cell, 2011, 147, 1525-1536.	13.5	91
1573	Tracing Cells for Tracking Cell Lineage and Clonal Behavior. Developmental Cell, 2011, 21, 394-409.	3.1	125
1574	Nuclear positioning: Mechanisms and functions. International Journal of Biochemistry and Cell Biology, 2011, 43, 1698-1707.	1.2	82
1575	Autophagy machinery mediates macroendocytic processing and entotic cell death by targeting single membranes. Nature Cell Biology, 2011, 13, 1335-1343.	4.6	376
1576	Internalization of multiple cells during C. elegans gastrulation depends on common cytoskeletal mechanisms but different cell polarity and cell fate regulators. Developmental Biology, 2011, 350, 1-12.	0.9	48
1577	C. elegans MCM-4 is a general DNA replication and checkpoint component with an epidermis-specific requirement for growth and viability. Developmental Biology, 2011, 350, 358-369.	0.9	28

#	Article	IF	Citations
1578	Maximum parsimony analysis of gene expression profiles permits the reconstruction of developmental cell lineage trees. Developmental Biology, 2011, 353, 440-447.	0.9	4
1579	The C. elegans nck-1 gene encodes two isoforms and is required for neuronal guidance. Developmental Biology, 2011, 354, 55-66.	0.9	16
1580	Watching nuclei move. Bioarchitecture, 2011, 1, 9-13.	1.5	12
1581	Insights from Caenorhabditis elegans on the role of metals in neurodegenerative diseases. Metallomics, 2011, 3, 271.	1.0	38
1582	Ferulsinaic acid attenuation of advanced glycation end products extends the lifespan of <i>Caenorhabditis elegans</i> . Journal of Pharmacy and Pharmacology, 2011, 63, 423-428.	1.2	34
1583	Lineage specific trimethylation of H3 on lysine 4 during C. elegans early embryogenesis. Developmental Biology, 2011, 355, 227-238.	0.9	13
1585	Reduction in Biology and Medicine. , 2011, , 137-157.		4
1586	Regulation of DNA Synthesis and Replication Checkpoint Activation During C. elegans Development. , 0,		1
1587	Effects of ced-9 dsRNA on <i>Caenorhabditis elegans</i> and <i>Meloidogyne incognita</i> . American Journal of Agricultural and Biological Science, 2011, 6, 19-28.	0.9	2
1588	Revelations from the Nematode <i>Caenorhabditis elegans</i> on the Complex Interplay of Metal Toxicological Mechanisms. Journal of Toxicology, 2011, 2011, 1-10.	1.4	44
1589	Hybrid Modeling of Cell Signaling and Transcriptional Reprogramming and Its Application in C. elegans Development. Frontiers in Genetics, 2011, 2, 77.	1.1	8
1590	Caenorhabditis elegans as a model to assess reproductive and developmental toxicity. , 2011, , 193-205.		1
1591	A Genome-Wide RNAi Screen for Factors Involved in Neuronal Specification in Caenorhabditis elegans. PLoS Genetics, 2011, 7, e1002109.	1.5	43
1592	Isolation and Culture of Larval Cells from C. elegans. PLoS ONE, 2011, 6, e19505.	1.1	76
1593	Highly Asynchronous and Asymmetric Cleavage Divisions Accompany Early Transcriptional Activity in Pre-Blastula Medaka Embryos. PLoS ONE, 2011, 6, e21741.	1.1	23
1594	Imaging C. elegans Embryos using an Epifluorescent Microscope and Open Source Software. Journal of Visualized Experiments, 2011, , .	0.2	6
1595	Three sorting nexins drive the degradation of apoptotic cells in response to PtdIns(3)P signaling. Molecular Biology of the Cell, 2011, 22, 354-374.	0.9	53
1596	C. elegans: An All in One Model for Antimicrobial Drug Discovery. Current Drug Targets, 2011, 12, 967-977.	1.0	24

ARTICLE IF CITATIONS Role of cell death in the formation of sexual dimorphism in the Drosophila central nervous system. 1597 0.6 18 Development Growth and Differentiation, 2011, 53, 236-244. Loss of intestinal nuclei and intestinal integrity in aging <i>C.Âelegans</i>. Aging Cell, 2011, 10, 699-710. 1598 Reconstruction of the pharyngeal corpus of Aphelenchus avenae (Nematoda: Tylenchomorpha), with 1599 13 1.0 implications for phylogenetic congruence. Zoological Journal of the Linnean Society, 2011, 161, 1-30. Ferreting out stem cells from their niches. Nature Cell Biology, 2011, 13, 513-518. Loss of the RhoGAP SRGP-1 promotes the clearance of dead and injured cells in Caenorhabditis 1601 4.6 59 elegans. Nature Cell Biology, 2011, 13, 79-86. Cell lineage and cell death: Caenorhabditis elegans and cancer research. Nature Reviews Cancer, 2011, 12.8 24 11, 50-58 The early bird catches the worm: new technologies for the Caenorhabditis elegans toolkit. Nature 1603 7.7 44 Reviews Genetics, 2011, 12, 793-801. Bidirectional regulation of thermotaxis by glutamate transmissions in <i>Caenorhabditis elegans</i>. 1604 3.5 86 EMBO Journal, 2011, 30, 1376-1388. Big ideas for small brains: what can psychiatry learn from worms, flies, bees and fish?. Molecular 1605 4.1 59 Psychiatry, 2011, 16, 7-16. High sensitivity of C. elegans vulval precursor cells to the dose of posterior Wnts. Developmental 28 Biology, 2011, 357, 428-438. Transcriptional profiling of C. elegans DAF-19 uncovers a ciliary base-associated protein and a CDK/CCRK/LF2p-related kinase required for intraflagellar transport. Developmental Biology, 2011, 357, 1607 0.9 65 235-247. Membrane extensions are associated with proper anterior migration of muscle cells during 1608 0.9 Caenorhabditis elegans embryogenesis. Developmental Biology, 2011, 358, 189-200. Patterns of cell lineage, movement, and migration from germ layer specification to gastrulation in the 1609 0.9 31 amphipod crustacean Parhyale hawaiensis. Developmental Biology, 2011, 359, 110-123. Specific roles for the GATA transcription factors end-1 and end-3 during C. elegans E-lineage 46 development. Developmental Biology, 2011, 358, 345-355. The FGD homologue EXC-5 regulates apical trafficking in C. elegans tubules. Developmental Biology, 1611 0.9 35 2011, 359, 59-72. PAR-4/LKB1 Mobilizes Nonmuscle Myosin through Anillin to Regulate C.Âelegans Embryonic Polarization 1.8 38 and Cytokinesis. Current Biology, 2011, 21, 259-269. The Arf GAP CNT-2 Regulates the Apoptotic Fate in C.Âelegans Asymmetric Neuroblast Divisions. Current 1613 1.8 19 Biology, 2011, 21, 948-954. CHL-1 provides an essential function affecting cell proliferation and chromosome stability in 1614 1.3 Caenorhabditis elegans. DNA Repair, 2011, 10, 1174-1182.

#	Article	IF	Citations
1615	Albendazole induces apoptosis in adults and microfilariae of Setaria cervi. Experimental Parasitology, 2011, 128, 236-242.	0.5	32
1616	Small micromeres contribute to the germline in the sea urchin. Development (Cambridge), 2011, 138, 237-243.	1.2	78
1617	synMuv B proteins antagonize germline fate in the intestine and ensure <i>C. elegans</i> survival. Development (Cambridge), 2011, 138, 1069-1079.	1.2	85
1618	Comparative Genetics and Genomics of Nematodes: Genome Structure, Development, and Lifestyle. Annual Review of Genetics, 2011, 45, 1-20.	3.2	71
1619	New system for real time study of in vivo migration and differentiation of stem cells. Microsystem Technologies, 2011, 17, 47-58.	1.2	1
1620	DNA double-strand break repair in Caenorhabditis elegans. Chromosoma, 2011, 120, 1-21.	1.0	59
1621	Greater coverage of the phylum Nematoda in SSU rDNA studies. Biology and Fertility of Soils, 2011, 47, 333-339.	2.3	15
1622	Evolution of embryonic development in nematodes. EvoDevo, 2011, 2, 18.	1.3	81
1623	Molecular evolution of cyclin proteins in animals and fungi. BMC Evolutionary Biology, 2011, 11, 224.	3.2	30
1624	The Glia of <i>Caenorhabditis elegans</i> . Glia, 2011, 59, 1253-1263.	2.5	101
1625	Developmental motifs reveal complex structure in cell lineages. Complexity, 2011, 16, 48-57.	0.9	10
1626	Dynamic lineage analysis of embryonic morphogenesis using transgenic quail and 4D multispectral imaging. Genesis, 2011, 49, 619-643.	0.8	17
1628	Chemistry and the Worm: <i>Caenorhabditis elegans</i> as a Platform for Integrating Chemical and Biological Research. Angewandte Chemie - International Edition, 2011, 50, 4774-4807.	7.2	115
1629	Modelling cell lineage using a meta-Boolean tree model with a relation to gene regulatory networks. Journal of Theoretical Biology, 2011, 268, 62-76.	0.8	3
1630	Dynamic Behavior of Double-Membrane-Bounded Organelles in Plant Cells. International Review of Cell and Molecular Biology, 2011, 286, 181-222.	1.6	25
1631	<i>Caenorhabditis elegans</i> as a model system for studying the nuclear lamina and laminopathic diseases. Nucleus, 2011, 2, 350-357.	0.6	25
1632	Automated lineage tree reconstruction from Caenorhabditis elegans image data using particle filtering based cell tracking. , 2011, , .		7
1633	Visual servo microscope for locking on single neuron of a worm. , 2011, , .		4

		CITATION RE	IPORT	
#	Article		IF	CITATIONS
1634	Dissection of Genetic Pathways in C. elegans. Methods in Cell Biology, 2011, 106, 113-	157.	0.5	27
1635	The phosphoinositide phosphatase MTM-1 regulates apoptotic cell corpse clearance th CED-5–CED-12 in <i>C. elegans</i> . Development (Cambridge), 2011, 138, 2003-20	rough 14.	1.2	44
1636	A Perimotor Framework Reveals Functional Segmentation in the Motoneuronal Networ Locomotion in <i>Caenorhabditis elegans</i> . Journal of Neuroscience, 2011, 31, 1461	k Controlling 1-14623.	1.7	42
1637	Multiple mechanisms actively target the SUN protein UNC-84 to the inner nuclear mem Molecular Biology of the Cell, 2011, 22, 1739-1752.	ibrane.	0.9	39
1638	Inverted selective plane illumination microscopy (<i>i</i> SPIM) enables coupled cell ic lineaging and neurodevelopmental imaging in <i>Caenorhabditis elegans</i> . Proceedi National Academy of Sciences of the United States of America, 2011, 108, 17708-177	ngs of the	3.3	264
1639	MIG-15 and ERM-1 promote growth cone directional migration in parallel to UNC-116 a Development (Cambridge), 2011, 138, 4475-4485.	ind WVE-1.	1.2	20
1640	Neural integrity is maintained by dystrophin in <i>C. elegans</i> . Journal of Cell Biology 349-363.	, 2011, 192,	2.3	14
1641	Cell Identification and Cell Lineage Analysis. Methods in Cell Biology, 2011, 106, 323-3	41.	0.5	7
1642	Invertebrate Models of Alcoholism. Current Topics in Behavioral Neurosciences, 2011, ,	433-457.	0.8	20
1643	Neuroblast migration along the anteroposterior axis of <i>C. elegans</i> is controlled by gradients of Wnts and a secreted Frizzled-related protein. Development (Cambridge), 2 2915-2924.	opposing 2011, 138,	1.2	88
1644	MAB-10/NAB acts with LIN-29/EGR to regulate terminal differentiation and the transitio adult in <i>C. elegans</i> . Development (Cambridge), 2011, 138, 4051-4062.	n from larva to	1.2	36
1645	Notch and Ras promote sequential steps of excretory tube development in <i>C. elegan Development (Cambridge), 2011, 138, 3545-3555.</i>	s.	1.2	48
1646	The near demise and subsequent revival of classical genetics for investigating <i>Caeno elegans</i> embryogenesis: RNAi meets next-generation DNA sequencing. Molecular Bio 2011, 22, 3556-3558.	rhabditis ology of the Cell,	0.9	4
1647	Disruption of the ATP-binding Cassette B7 (ABTM-1/ABCB7) Induces Oxidative Stress a Death in Caenorhabditis elegans. Journal of Biological Chemistry, 2011, 286, 21304-21		1.6	26
1648	Caenorhabditis elegans Radiation Responses. , 2011, , 101-123.			3
1649	Left-right patterning in the C. elegans embryo. Communicative and Integrative Biology,	2011, 4, 34-40.	0.6	21
1650	Overcoming Redundancy: An RNAi Enhancer Screen for Morphogenesis Genes in <i>Cae elegans</i> . Genetics, 2011, 188, 549-564.	norhabditis	1.2	30
1651	Cell Architecture: Surrounding Muscle Cells Shape Gland Cell Morphology in the <i>Cae elegans</i> Pharynx. Genetics, 2011, 189, 885-897.	enorhabditis	1.2	14

#	Article	IF	CITATIONS
1652	Mounting <i>Caenorhabditis elegans</i> Embryos for Live Imaging of Embryogenesis: Figure 1 Cold Spring Harbor Protocols, 2011, 2011, pdb.prot065599.	0.2	47
1653	In-vivo third-harmonic generation microscopy at 1550nm three-dimensional long-term time-lapse studies in living C. elegans embryos. Proceedings of SPIE, 2011, , .	0.8	0
1654	Digital Scanned Laser Light-Sheet Fluorescence Microscopy (DSLM) of Zebrafish and <i>Drosophila</i> Embryonic Development. Cold Spring Harbor Protocols, 2011, 2011, pdb.prot065839.	0.2	48
1655	The myosin-binding UCS domain but not the Hsp90-binding TPR domain of the UNC-45 chaperone is essential for function in <i>Caenorhabditis elegans</i> . Journal of Cell Science, 2011, 124, 3164-3173.	1.2	36
1656	Action potentials drive body wall muscle contractions in <i>Caenorhabditis elegans</i> . Proceedings of the United States of America, 2011, 108, 2557-2562.	3.3	128
1657	SPK-1, an SR protein kinase, inhibits programmed cell death in <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1998-2003.	3.3	11
1658	Evidence for compensatory upregulation of expressed X-linked genes in mammals, Caenorhabditis elegans and Drosophila melanogaster. Nature Genetics, 2011, 43, 1179-1185.	9.4	260
1659	Deltr: Digital embryo lineage tree reconstructor. , 2011, , .		14
1660	Reconstruction of rat retinal progenitor cell lineages in vitro reveals a surprising degree of stochasticity in cell fate decisions. Development (Cambridge), 2011, 138, 227-235.	1.2	139
1661	Caenorhabditis elegans Cyclin D/CDK4 and Cyclin E/CDK2 Induce Distinct Cell Cycle Re-Entry Programs in Differentiated Muscle Cells. PLoS Genetics, 2011, 7, e1002362.	1.5	33
1662	Neural Development Features: Spatio-Temporal Development of the Caenorhabditis elegans Neuronal Network. PLoS Computational Biology, 2011, 7, e1001044.	1.5	70
1663	Elimination of paternal mitochondria through the lysosomal degradation pathway in C. elegans. Cell Research, 2011, 21, 1662-1669.	5.7	94
1664	Opposing Activities of LIT-1/NLK and DAF-6/Patched-Related Direct Sensory Compartment Morphogenesis in C. elegans. PLoS Biology, 2011, 9, e1001121.	2.6	47
1665	Nematodes: The Worm and Its Relatives. PLoS Biology, 2011, 9, e1001050.	2.6	110
1666	A neurodegenerative disease mutation that accelerates the clearance of apoptotic cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4441-4446.	3.3	109
1667	Laminin is required to orient epithelial polarity in the <i>C. elegans</i> pharynx. Development (Cambridge), 2012, 139, 2050-2060.	1.2	56
1668	Toward 959 nematode genomes. Worm, 2012, 1, 42-50.	1.0	51
1669	Methods in Cell Biology: Analysis of Cell Polarity in C. elegans Embryos. Methods in Cell Biology, 2012, 107, 207-238.	0.5	5

		CITATION RE	EPORT	
#	Article		IF	Citations
1670	Methods for Studying Programmed Cell Death in C. elegans. Methods in Cell Biology, 2	2012, 107, 295-320.	0.5	7
1671	Integrin α PAT-2/CDC-42 Signaling Is Required for Muscle-Mediated Clearance of Apop Caenorhabditis elegans. PLoS Genetics, 2012, 8, e1002663.	totic Cells in	1.5	29
1672	SLI-1 Cbl Inhibits the Engulfment of Apoptotic Cells in C. elegans through a Ligase-Inde Function. PLoS Genetics, 2012, 8, e1003115.	pendent	1.5	9
1673	C. elegans Germ Cells Show Temperature and Age-Dependent Expression of Cer1, a Gy Retrotransposon. PLoS Pathogens, 2012, 8, e1002591.	psy/Ty3-Related	2.1	69
1674	Somatic gonad sheath cells and Eph receptor signaling promote germ-cell death in C. e Death and Differentiation, 2012, 19, 1080-1089.	legans. Cell	5.0	22
1675	Extracellular leucine-rich repeat proteins are required to organize the apical extracellula and maintain epithelial junction integrity in C. elegans. Development (Cambridge), 201	ar matrix 2, 139, 979-990.	1.2	58
1676	Neural Maintenance Roles for the Matrix Receptor Dystroglycan and the Nuclear Ancho in Caenorhabditis elegans. Genetics, 2012, 190, 1365-1377.	orage Complex	1.2	18
1677	Neuropeptide GPCRs in C. elegans. Frontiers in Endocrinology, 2012, 3, 167.		1.5	128
1678	APL-1, the Alzheimer's Amyloid Precursor Protein in <i>Caenorhabditis elegans</i> , Metabolic Pathways Throughout Development. Genetics, 2012, 191, 493-507.	Modulates Multiple	1.2	28
1679	V-ATPase V1 Sector Is Required for Corpse Clearance and Neurotransmission in <i>Cae elegans</i> . Genetics, 2012, 191, 461-475.	norhabditis	1.2	17
1680	Laser Microsurgery in Caenorhabditis elegans. Methods in Cell Biology, 2012, 107, 177	<i>'-</i> 206.	0.5	105
1681	A Regulatory Module Controlling Pharyngeal Development and Function in <i>Caenorhelegans</i> . Genetics, 2012, 191, 827-843.	abditis	1.2	8
1682	Automated Lineage and Expression Profiling in Live <i>Caenorhabditis elegans</i> Emb Spring Harbor Protocols, 2012, 2012, pdb.prot070615.	oryos. Cold	0.2	11
1683	Z-line formins promote contractile lattice growth and maintenance in striated muscles elegans. Journal of Cell Biology, 2012, 198, 87-102.	of <i>C.</i>	2.3	49
1685	Proper Cyclin B3 Dosage Is Important for Precision of Metaphase-to-Anaphase Onset T in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2012, 2, 865-871.	iming	0.8	9
1686	Cell Excitability Necessary for Male Mating Behavior in <i>Caenorhabditis elegans</i> by Interactions Between Big Current and Ether-A-Go-Go Family K+ Channels. Genetics, 1025-1041.		1.2	22
1687	Biology, Computing, and the History of Molecular Sequencing. , 2012, , .			30
1688	High-Resolution Imaging of Cellular Processes in Caenorhabditis elegans. Methods in C 2012, 107, 1-34.	ell Biology,	0.5	17

#	Article	IF	CITATIONS
1689	Membrane Trafficking and Phagosome Maturation During the Clearance of Apoptotic Cells. International Review of Cell and Molecular Biology, 2012, 293, 269-309.	1.6	57
1690	Understanding conceptualizations of anatomy. , 2012, , .		0
1691	CDC-25.1 controls the rate of germline mitotic cell cycle by counteracting WEE-1.3 and by positively regulating CDK-1 in <i>Caenorhabditis elegans</i> . Cell Cycle, 2012, 11, 1354-1363.	1.3	18
1692	Imaging the Mitotic Spindle. Methods in Enzymology, 2012, 505, 81-103.	0.4	6
1693	Cell-type-specific nuclei purification from whole animals for genome-wide expression and chromatin profiling. Genome Research, 2012, 22, 766-777.	2.4	112
1694	The <i>Caenorhabiditis elegans</i> model as a reliable tool in neurotoxicology. Human and Experimental Toxicology, 2012, 31, 236-243.	1.1	59
1695	The novel intestinal filament organizer IFO-1 contributes to epithelial integrity in concert with ERM-1 and DLG-1. Development (Cambridge), 2012, 139, 1851-1862.	1.2	34
1696	Culture and Manipulation of Embryonic Cells. Methods in Cell Biology, 2012, 107, 151-175.	0.5	38
1697	Large-Scale Screening for Targeted Knockouts in the <i>Caenorhabditis elegans</i> Genome. G3: Genes, Genomes, Genetics, 2012, 2, 1415-1425.	0.8	310
1698	A Modular Library of Small Molecule Signals Regulates Social Behaviors in Caenorhabditis elegans. PLoS Biology, 2012, 10, e1001237.	2.6	208
1699	Ce-emerin and LEM-2: essential roles in <i>Caenorhabditis elegans</i> development, muscle function, and mitosis. Molecular Biology of the Cell, 2012, 23, 543-552.	0.9	40
1700	Multidimensional regulation of gene expression in the <i>C. elegans</i> embryo. Genome Research, 2012, 22, 1282-1294.	2.4	144
1701	Long-term, High-resolution Confocal Time Lapse Imaging of Arabidopsis Cotyledon Epidermis during Germination. Journal of Visualized Experiments, 2012, , .	0.2	20
1702	Genome-Wide RNAi Longevity Screens in Caenorhabditis elegans. Current Genomics, 2012, 13, 508-518.	0.7	49
1703	Both asymmetric mitotic segregation and cell-to-cell invasion are required for stable germline transmission of <i>Wolbachia</i> in filarial nematodes. Biology Open, 2012, 1, 536-547.	0.6	70
1704	Discovering Drug Targets for Cancer Therapy. , 2012, , 299-322.		0
1705	Encoding asymmetry within neural circuits. Nature Reviews Neuroscience, 2012, 13, 832-843.	4.9	125
1706	Sensation in a Single Neuron Pair Represses Male Behavior in Hermaphrodites. Neuron, 2012, 75, 593-600.	3.8	55

#	Article	IF	CITATIONS
1707	Live imaging of cellular dynamics during Caenorhabditis elegans postembryonic development. Nature Protocols, 2012, 7, 2090-2102.	5.5	64
1708	Quantitative Analysis of Embryogenesis: A Perspective for Light Sheet Microscopy. Developmental Cell, 2012, 23, 1111-1120.	3.1	49
1709	The Characterization of the <i>Caenorhabditis elegans</i> Mitochondrial Thioredoxin System Uncovers an Unexpected Protective Role of Thioredoxin Reductase 2 in β-Amyloid Peptide Toxicity. Antioxidants and Redox Signaling, 2012, 16, 1384-1400.	2.5	46
1710	In Vivo Models of Developmental Toxicology. Methods in Molecular Biology, 2012, 889, 7-13.	0.4	5
1711	Apoptotic regulators promote cytokinetic midbody degradation in C. elegans. Journal of Cell Biology, 2012, 199, 1047-1055.	2.3	42
1712	The Intersection of Aging, Longevity Pathways, and Learning and Memory in C. elegans. Frontiers in Genetics, 2012, 3, 259.	1.1	39
1713	Pathophysiology of manganese-associated neurotoxicity. NeuroToxicology, 2012, 33, 881-886.	1.4	115
1714	Cleaning up the mess: cell corpse clearance in Caenorhabditis elegans. Current Opinion in Cell Biology, 2012, 24, 881-888.	2.6	20
1715	Automated nuclei tracking in C. elegans based on spherical model fitting with multiple target tracking. , 2012, , .		4
1717	Expanding the Genetic Code of <i>Caenorhabditis elegans</i> Using Bacterial Aminoacyl-tRNA Synthetase/tRNA Pairs. ACS Chemical Biology, 2012, 7, 1292-1302.	1.6	80
1718	From the genetic to the computer program: the historicity of â€~data' and â€~computation' in the investigations on the nematode worm C. elegans (1963–1998). Studies in History and Philosophy of Science Part C:Studies in History and Philosophy of Biological and Biomedical Sciences, 2012, 43, 16-28.	0.8	15
1719	A proteomic approach to neuropeptide function elucidation. Peptides, 2012, 34, 3-9.	1.2	6
1720	Myogenic conversion and transcriptional profiling of embryonic blastomeres in Caenorhabditis elegans. Methods, 2012, 56, 50-54.	1.9	6
1721	Genetic analysis of IP3 and calcium signalling pathways in C. elegans. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 1253-1268.	1.1	13
1722	C.Âelegans Secreted Lipid-Binding Protein NRF-5 Mediates PS Appearance on Phagocytes for Cell Corpse Engulfment. Current Biology, 2012, 22, 1276-1284.	1.8	33
1723	Lineage Tracing. Cell, 2012, 148, 33-45.	13.5	608
1724	Quantitative semi-automated analysis of morphogenesis with single-cell resolution in complex embryos. Development (Cambridge), 2012, 139, 4271-4279.	1.2	68
1725	A regulatory network modeled from wild-type gene expression data guides functional predictions in Caenorhabditis elegans development. BMC Systems Biology, 2012, 6, 77.	3.0	13

	CHATON R	LPORT	
#	Article	IF	CITATIONS
1726	Plectus - a stepping stone in embryonic cell lineage evolution of nematodes. EvoDevo, 2012, 3, 13.	1.3	10
1727	Residual body removal during spermatogenesis in <i>C. elegans</i> requires genes that mediate cell corpse clearance. Development (Cambridge), 2012, 139, 4613-4622.	1.2	31
1728	7.12 Biophysics of Cell Developmental Processes: A Lasercutter's Perspective. , 2012, , 194-207.		2
1729	Evolution of Cellular Pattern Formation during Early Nematode Embryogenesis. , 2012, , 123-138.		0
1730	Cell lineage tracing techniques for the study of brain development and regeneration. International Journal of Developmental Neuroscience, 2012, 30, 560-569.	0.7	4
1731	Impact of phosphine exposure on development in Caenorhabditis elegans: Involvement of oxidative stress and the role of glutathione. Pesticide Biochemistry and Physiology, 2012, 104, 38-43.	1.6	10
1732	Fluorescent Protein Methods: Strategies and Applications. Methods in Cell Biology, 2012, 107, 67-92.	0.5	14
1733	Rho GTPases. Methods in Molecular Biology, 2012, , .	0.4	2
1734	Gene Regulatory Networks. Methods in Molecular Biology, 2012, , .	0.4	4
1735	C. elegans Cell Cycle Analysis. Methods in Cell Biology, 2012, 107, 265-294.	0.5	18
1736	Programmed elimination of cells by caspase-independent cell extrusion in C. elegans. Nature, 2012, 488, 226-230.	13.7	60
1737	Adherens Junctions: from Molecular Mechanisms to Tissue Development and Disease. Sub-Cellular Biochemistry, 2012, , .	1.0	6
1738	Actomyosin-based Self-organization of cell internalization during C. elegans gastrulation. BMC Biology, 2012, 10, 94.	1.7	46
1739	Immunofluorescence Microscopy. Methods in Cell Biology, 2012, 107, 35-66.	0.5	53
1740	Two PI 3-Kinases and One PI 3-Phosphatase Together Establish the Cyclic Waves of Phagosomal PtdIns(3)P Critical for the Degradation of Apoptotic Cells. PLoS Biology, 2012, 10, e1001245.	2.6	65
1741	Cell-to-Cell Heterogeneity in Cortical Tension Specifies Curvature of Contact Surfaces in Caenorhabditis elegans Embryos. PLoS ONE, 2012, 7, e30224.	1.1	13
1742	C. elegans EIF-3.K Promotes Programmed Cell Death through CED-3 Caspase. PLoS ONE, 2012, 7, e36584.	1.1	7
1743	Depletion of the C. elegans NAC Engages the Unfolded Protein Response, Resulting in Increased Chaperone Expression and Apoptosis. PLoS ONE, 2012, 7, e44038.	1.1	33

# 1744	ARTICLE Handedness of a Motor Program in C. elegans Is Independent of Left-Right Body Asymmetry. PLoS ONE, 2012, 7, e52138.	IF 1.1	CITATIONS 8
1745	In Vivo and In Vitro Models to Study Amyotrophic Lateral Sclerosis. , 2012, , .		3
1746	Human Embryogenesis. , 0, , .		1
1747	Neural induction. , 2012, , 1-22.		0
1748	Determination and differentiation. , 2012, , 77-104.		1
1749	Somatic muscle specification during embryonic and postâ€embryonic development in the nematode <i>C. elegans</i> . Wiley Interdisciplinary Reviews: Developmental Biology, 2012, 1, 203-214.	5.9	11
1750	Nematode model systems in evolution and development. Wiley Interdisciplinary Reviews: Developmental Biology, 2012, 1, 389-400.	5.9	20
1751	Direct cellular reprogramming in <i>Caenorhabditis elegans</i> : facts, models, and promises for regenerative medicine. Wiley Interdisciplinary Reviews: Developmental Biology, 2012, 1, 138-152.	5.9	7
1752	The <i>Caenorhabditis elegans</i> epidermis as a model skin. I: development, patterning, and growth. Wiley Interdisciplinary Reviews: Developmental Biology, 2012, 1, 861-878.	5.9	83
1753	Developmental Milestones Punctuate Gene Expression in the Caenorhabditis Embryo. Developmental Cell, 2012, 22, 1101-1108.	3.1	207
1754	An E-cadherin-mediated hitchhiking mechanism for <i>C. elegans</i> germ cell internalization during gastrulation. Development (Cambridge), 2012, 139, 2547-2556.	1.2	46
1755	Developmental decisions. Cell Cycle, 2012, 11, 1666-1671.	1.3	5
1756	Rewritable digital data storage in live cells via engineered control of recombination directionality. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8884-8889.	3.3	316
1757	Transcription factor redundancy and tissue-specific regulation: Evidence from functional and physical network connectivity. Genome Research, 2012, 22, 1907-1919.	2.4	16
1758	How to make a protostome. Invertebrate Systematics, 2012, 26, 25.	0.5	26
1759	Role of the ubiquitin–proteasome system in nervous system function and disease: using C. elegans as a dissecting tool. Cellular and Molecular Life Sciences, 2012, 69, 2691-2715.	2.4	22
1760	Culture conditions for bovine embryonic stem cell-like cells isolated from blastocysts after external fertilization. Cytotechnology, 2012, 64, 379-389.	0.7	17
1761	Mass spectrometric comparison of N-glycan profiles from Caenorhabditis elegans mutant embryos. Glycoconjugate Journal, 2012, 29, 135-145.	1.4	7

#	Article	IF	CITATIONS
1762	Caenorhabditis elegans as a model organism to study APP function. Experimental Brain Research, 2012, 217, 397-411.	0.7	28
1763	Semaphorin and Eph Receptor Signaling Guide a Series of Cell Movements for Ventral Enclosure in C.Âelegans. Current Biology, 2012, 22, 1-11.	1.8	352
1764	Programmed cell death in C. elegans, mammals and plants. European Journal of Cell Biology, 2012, 91, 603-613.	1.6	86
1765	Investigating the ecology and evolution of cryptic marine nematode species through quantitative realâ€time PCR of the ribosomal ITS region. Molecular Ecology Resources, 2012, 12, 607-619.	2.2	21
1766	The Nkx5/HMX homeodomain protein MLS-2 is required for proper tube cell shape in the C. elegans excretory system. Developmental Biology, 2012, 366, 298-307.	0.9	13
1767	Evolutional principles of homology in regulatory genes of myogenesis. Biology Bulletin, 2012, 39, 316-322.	0.1	4
1768	Distinct <i>Caenorhabditis elegans</i> HLHâ€8/twistâ€containing dimers function in the mesoderm. Developmental Dynamics, 2012, 241, 481-492.	0.8	10
1769	Cell plasticity in <i>Caenorhabditis elegans</i> : From induced to natural cell reprogramming. Genesis, 2012, 50, 1-17.	0.8	16
1770	Transgenic nematodes as biosensors for metal stress in soil pore water samples. Ecotoxicology, 2012, 21, 439-455.	1.1	47
1771	A C. elegans model to study human metabolic regulation. Nutrition and Metabolism, 2013, 10, 31.	1.3	35
1772	Tissue-specific direct targets of Caenorhabditis elegans Rb/E2F dictate distinct somatic and germline programs. Genome Biology, 2013, 14, R5.	13.9	43
1773	Synapse Location during Growth Depends on Glia Location. Cell, 2013, 154, 337-350.	13.5	68
1774	Cell Senescence. Methods in Molecular Biology, 2013, , .	0.4	4
1775	An Sp1 transcription factor coordinates caspase-dependent and -independent apoptotic pathways. Nature, 2013, 500, 354-358.	13.7	54
1776	Unravelling stem cell dynamics by lineage tracing. Nature Reviews Molecular Cell Biology, 2013, 14, 489-502.	16.1	231
1777	Deconvolution of gene expression from cell populations across the C. eleganslineage. BMC Bioinformatics, 2013, 14, 204.	1.2	2
1778	Use of somatic mutations to quantify random contributions to mouse development. BMC Genomics, 2013, 14, 39.	1.2	13
1779	Sensory Neuron Fates Are Distinguished by a Transcriptional Switch that Regulates Dendrite Branch Stabilization. Neuron, 2013, 79, 266-280.	3.8	104

ARTICLE IF CITATIONS Single-cell sequencing-based technologies will revolutionize whole-organism science. Nature 1780 7.7 1,012 Reviews Genetics, 2013, 14, 618-630. The multiple faces of calcineurin signaling in Caenorhabditis elegans: Development, behaviour and 1782 aging. Journal of Biosciences, 2013, 38, 417-431. 1783 Multiple functions of the noncanonical Wnt pathway. Trends in Genetics, 2013, 29, 545-553. 2.9 132 A molecular basis for developmental plasticity in early mammalian embryos. Development (Cambridge), 1784 1.2 2013, 140, 3499-3510. <i>Caenorhabditis elegans</i>as a model for intracellular pathogen infection. Cellular Microbiology, 1785 1.1 87 2013, 15, 1313-1322. Evo-Devo of the Germline and Somatic Gonad in Nematodes. Sexual Development, 2013, 7, 163-170. 1.1 Nonautonomous Regulation of Neuronal Migration by Insulin Signaling, DAF-16/FOXO, and PAK-1. Cell 1787 2.9 31 Reports, 2013, 4, 996-1009. Generating different genetic expression patterns in the early embryo: insights from the mouse model. 1788 1.1 14 Reproductive BioMedicine Online, 2013, 27, 586-592. The NF-Y complex negatively regulates Caenorhabditis elegans tbx-2 expression. Developmental 1789 0.9 13 Biology, 2013, 382, 38-47. The <i>Caenorhabditis elegans</i> intestine. Wiley Interdisciplinary Reviews: Developmental Biology, 1790 48 2013, 2, 347-367. Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy. Nature 1791 290 9.4 Biotechnology, 2013, 31, 1032-1038. 1792 Alternative Models of Prion Diseases., 2013, , 183-199. Studying Membrane Trafficking in the Worm C. elegans by RNA Interference. Methods in Cell Biology, 1793 0.5 1 2013, 118, 51-68. Transdifferentiation and remodeling of post-embryonic C. elegans cells by a single transcription factor. Development (Cambridge), 2013, 140, 4844-4849. 1794 1.2 Developmental transition to bilaterally symmetric cell divisions is regulated by Pax-mediated 1795 0.9 13 transcription in embryos of the leech Helobdella austinensis. Developmental Biology, 2013, 382, 149-159. The genome of Romanomermis culicivorax: revealing fundamental changes in the core developmental 1796 1.2 43 genetic toolkit in Nematoda. BMC Genomics, 2013, 14, 923. Systematic quantification of developmental phenotypes at single-cell resolution during 1797 1.2 55 embryogenesis. Development (Cambridge), 2013, 140, 3266-3274. Abelson interactor-1 (ABI-1) interacts with MRL adaptor protein MIG-10 and is required in guided cell 1798 migrations and process outgrowth in C. elegans. Developmental Biology, 2013, 373, 1-13.

#	Article	IF	CITATIONS
1799	Hypothalamic control of energy balance: insights into the role of synaptic plasticity. Trends in Neurosciences, 2013, 36, 65-73.	4.2	190
1800	Characterization of RSF-1, the Caenorhabditis elegans homolog of the Ras-association domain family protein 1. Experimental Cell Research, 2013, 319, 1-11.	1.2	14
1801	Interaxonal Interaction Defines Tiled Presynaptic Innervation in C.Âelegans. Neuron, 2013, 77, 655-666.	3.8	61
1802	Molecular mechanism for trimetric G protein-coupled thermosensation and synaptic regulation in the temperature response circuit of Caenorhabditis elegans. Neuroscience Research, 2013, 76, 119-124.	1.0	15
1803	Advance in research of microRNA in <i>Caenorhabditis elegans</i> . Journal of Cellular Biochemistry, 2013, 114, 994-1000.	1.2	2
1804	Caenorhabditis elegans anillin (ani-1) regulates neuroblast cytokinesis and epidermal morphogenesis during embryonic development. Developmental Biology, 2013, 383, 61-74.	0.9	28
1805	TORC2 signaling antagonizes SKN-1 to induce C. elegans mesendodermal embryonic development. Developmental Biology, 2013, 384, 214-227.	0.9	22
1806	Parental and larval exposure to nicotine modulate spontaneous activity as well as cholinergic and GABA receptor expression in adult C. elegans. Neurotoxicology and Teratology, 2013, 39, 122-127.	1.2	8
1807	The union of somatic gonad precursors and primordial germ cells during Caenorhabditis elegans embryogenesis. Developmental Biology, 2013, 379, 139-151.	0.9	13
1808	Being Squeezed into the Right Place within the Egg Shell. Biophysical Journal, 2013, 105, 1735-1736.	0.2	0
1809	A quantitative model of normal Caenorhabditis elegans embryogenesis and its disruption after stress. Developmental Biology, 2013, 374, 12-23.	0.9	60
1810	The LIM homeobox gene ceh-14 is required for phasmid function and neurite outgrowth. Developmental Biology, 2013, 380, 314-323.	0.9	19
1811	Systems Biology of Caenorhabditis elegans. , 2013, , 367-390.		0
1812	Dynamic and Persistent Effects of Ethanol Exposure on Development: An In Vivo Analysis During and After Embryonic Ethanol Exposure in <i><scp>C</scp>aenorhabditis elegans</i> . Alcoholism: Clinical and Experimental Research, 2013, 37, E190-8.	1.4	11
1814	The Rich Club of the <i>C. elegans</i> Neuronal Connectome. Journal of Neuroscience, 2013, 33, 6380-6387.	1.7	265
1815	Methods for detection and analysis of apoptosis signaling in the C. elegans germline. Methods, 2013, 61, 174-182.	1.9	29
1816	Monitoring the Clearance of Apoptotic and Necrotic Cells in the Nematode Caenorhabditis elegans. Methods in Molecular Biology, 2013, 1004, 183-202.	0.4	16
1818	Assessing Aging and Senescent Decline in Caenorhabditis elegans: Cohort Survival Analysis. Methods in Molecular Biology, 2013, 965, 473-484.	0.4	21

#	Article	IF	CITATIONS
1819	Use of transgenic GFP reporter strains of the nematode Caenorhabditis elegans to investigate the patterns of stress responses induced by pesticides and by organic extracts from agricultural soils. Ecotoxicology, 2013, 22, 72-85.	1.1	43
1821	If you don't want them shed them. Cell Research, 2013, 23, 171-172.	5.7	0
1822	Sudhausia aristotokia n. gen., n. sp. and S. crassa n. gen., n. sp. (Nematoda: Diplogastridae): viviparous new species with precocious gonad development. Nematology, 2013, 15, 1001-1020.	0.2	8
1823	A Shift to Organismal Stress Resistance in Programmed Cell Death Mutants. PLoS Genetics, 2013, 9, e1003714.	1.5	38
1824	EGL-13/SoxD Specifies Distinct O2 and CO2 Sensory Neuron Fates in Caenorhabditis elegans. PLoS Genetics, 2013, 9, e1003511.	1.5	25
1825	Comparing Algorithms That Reconstruct Cell Lineage Trees Utilizing Information on Microsatellite Mutations. PLoS Computational Biology, 2013, 9, e1003297.	1.5	16
1826	Caspase-mediated activation of Caenorhabditis elegans CED-8 promotes apoptosis and phosphatidylserine externalization. Nature Communications, 2013, 4, 2726.	5.8	68
1827	Both the Caspase CSP-1 and a Caspase-Independent Pathway Promote Programmed Cell Death in Parallel to the Canonical Pathway for Apoptosis in Caenorhabditis elegans. PLoS Genetics, 2013, 9, e1003341.	1.5	43
1828	Mechanisms of plasticity in a Caenorhabditis elegans mechanosensory circuit. Frontiers in Physiology, 2013, 4, 88.	1.3	48
1829	Efficient Single-Cell Transgene Induction in Caenorhabditis elegans Using a Pulsed Infrared Laser. G3: Genes, Genomes, Genetics, 2013, 3, 1827-1832.	0.8	21
1830	2. Reproduction and development in Nematodes. , 2013, , 61-108.		4
1831	Neurons Refine the Caenorhabditis elegans Body Plan by Directing Axial Patterning by Wnts. PLoS Biology, 2013, 11, e1001465.	2.6	16
1832	Cell Interactions and Patterned Intercalations Shape and Link Epithelial Tubes in C. elegans. PLoS Genetics, 2013, 9, e1003772.	1.5	25
1833	The Secretory Pathway Calcium ATPase PMR-1/SPCA1 Has Essential Roles in Cell Migration during Caenorhabditis elegans Embryonic Development. PLoS Genetics, 2013, 9, e1003506.	1.5	18
1834	Coordination of Cell Proliferation and Cell Fate Determination by CES-1 Snail. PLoS Genetics, 2013, 9, e1003884.	1.5	16
1835	Mechanisms of Ephrin Receptor Protein Kinase-Independent Signaling in Amphid Axon Guidance in <i>Caenorhabditis elegans</i> . Genetics, 2013, 195, 899-913.	1.2	16
1836	Structural uniformity of neocortex, revisited. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1488-1493.	3.3	103
1837	Extension of the <i>Caenorhabditis elegans</i> Pharyngeal M1 Neuron Axon Is Regulated by Multiple Mechanisms. G3: Genes, Genomes, Genetics, 2013, 3, 2015-2029.	0.8	8

		CITATION REPORT		
#	Article		IF	CITATIONS
1838	The role of the formin genefhod-1inC. elegansembryonic morphogenesis. Worm, 2013, 2	2, e25040.	1.0	17
1839	Related F-box proteins control cell death in <i>Caenorhabditis elegans</i> and human ly Proceedings of the National Academy of Sciences of the United States of America, 2013	mphoma. , 110, 3943-3948.	3.3	57
1840	Gene transcription is coordinated with, but not dependent on, cell divisions during <i>C. embryonic fate specification. Development (Cambridge), 2013, 140, 3385-3394.</i>	elegans	1.2	31
1841	A High-Fidelity Cell Lineage Tracing Method for Obtaining Systematic Spatiotemporal Ge Patterns in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2013, 3, 851-		0.8	21
1842	Kinesin-1 Acts with Netrin and DCC to Maintain Sensory Neuron Position in <i>Caenorhaelegans</i> . Genetics, 2013, 194, 175-187.	bditis	1.2	5
1843	Collaborative Regulation of Development but Independent Control of Metabolism by Tw Epidermis-specific Transcription Factors in Caenorhabditis elegans. Journal of Biological (2013, 288, 33411-33426.		1.6	29
1844	The nematode <i><scp>P</scp>ristionchus pacificus</i> as a model system for integrati evolutionary biology. Molecular Ecology, 2013, 22, 2380-2393.	ve studies in	2.0	77
1845	Phagocytic receptor signaling regulates clathrin and epsin-mediated cytoskeletal remode apoptotic cell engulfment in <i>C. elegans</i> . Development (Cambridge), 2013, 140, 3		1.2	39
1846	Phosphorylation of RNA polymerase II is independent of P-TEFb in the <i>C. elegans</i> ¿ Development (Cambridge), 2013, 140, 3703-3713.	germline.	1.2	38
1847	Cell Proliferation Patterns in Early Zebrafish Development. Anatomical Record, 2013, 296	5, 759-773.	0.8	28
1848	The C aenorhabditis elegans homeobox gene cehâ€19 is required for MC motorneuron f 2013, 51, 163-178.	unction. Genesis,	0.8	7
1849	The Role of Oxygen Intermediates in the Retention Time of Diacetyl Adaptation in the Ne <i>Caenorhabditis elegans</i> . Journal of Experimental Zoology, 2013, 319, 431-439.	matode	1.2	2
1850	Smallâ€Molecule Mechanism of Action Studies in <i>Caenorhabditis elegans</i> . ChemE 2338-2344.	lioChem, 2013, 14,	1.3	2
1851	Neuronal cell fate decisions. Worm, 2013, 2, e27284.		1.0	3
1852	Cell-nonautonomous inhibition of radiation-induced apoptosis by dynein light chain 1 in Caenorhabditis elegans. Cell Death and Disease, 2013, 4, e799-e799.		2.7	8
1853	The Draft Genome and Transcriptome of <i>Panagrellus redivivus</i> Are Shaped by the of a Free-Living Lifestyle. Genetics, 2013, 193, 1279-1295.	Harsh Demands	1.2	57
1854	1. Morphology of Nematoda. , 2013, , 1-60.			10
1855	Meta-Boolean models of asymmetric division patterns in theC. elegansintestinal lineage. e23701.	Worm, 2013, 2,	1.0	2

#	Article	IF	CITATIONS
1856	Invertebrate Models of Dystonia. Current Neuropharmacology, 2013, 11, 16-29.	1.4	3
1857	Thermosensory Learning in Caenorhabditis elegans. Handbook of Behavioral Neuroscience, 2013, , 124-139.	0.7	2
1858	Long-Term Imaging of Caenorhabditis elegans Using Nanoparticle-Mediated Immobilization. PLoS ONE, 2013, 8, e53419.	1.1	200
1859	Japanese studies on neural circuits and behavior of Caenorhabditis elegans. Frontiers in Neural Circuits, 2013, 7, 187.	1.4	2
1860	Apoptosis in C. elegans: lessons for cancer and immunity. Frontiers in Cellular and Infection Microbiology, 2013, 3, 67.	1.8	22
1861	Invertebrate Models of Dystonia. Current Neuropharmacology, 2013, 11, 16-29.	1.4	5
1862	Pulsed Irradiation Improves Target Selectivity of Infrared Laser-Evoked Gene Operator for Single-Cell Gene Induction in the Nematode C. elegans. PLoS ONE, 2014, 9, e85783.	1.1	7
1863	Effect of Temperature Pre-Exposure on the Locomotion and Chemotaxis of C. elegans. PLoS ONE, 2014, 9, e111342.	1.1	12
1864	Visualizing Neuroblast Cytokinesis During C. elegans Embryogenesis. Journal of Visualized Experiments, 2014, , .	0.2	2
1865	Polarized Cells, Polarized Views: Asymmetric Cell Division in Hematopoietic Cells. Frontiers in Immunology, 2014, 5, 26.	2.2	36
1866	Mitosis. Methods in Molecular Biology, 2014, , .	0.4	0
1867	Automatic cell identification in the unique system of invariant embryogenesis in Caenorhabditis elegans. Biomedical Engineering Letters, 2014, 4, 328-337.	2.1	11
1868	Caenorhabditis Elegans Segmentation Using Texture-Based Models for Motility Phenotyping. IEEE Transactions on Biomedical Engineering, 2014, 61, 2278-2289.	2.5	6
1869	Distinct DNA Binding Sites Contribute to the TCF Transcriptional Switch in C. elegans and Drosophila. PLoS Genetics, 2014, 10, e1004133.	1.5	32
1870	Differential Expression of Conserved Germ Line Markers and Delayed Segregation of Male and Female Primordial Germ Cells in a Hermaphrodite, the Leech Helobdella. Molecular Biology and Evolution, 2014, 31, 341-354.	3.5	31
1871	<i>C. elegans</i> whole-genome sequencing reveals mutational signatures related to carcinogens and DNA repair deficiency. Genome Research, 2014, 24, 1624-1636.	2.4	164
1872	Toward Understanding the Functional Role of Ss-riok-1, a RIO Protein Kinase-Encoding Gene of Strongyloides stercoralis. PLoS Neglected Tropical Diseases, 2014, 8, e3062.	1.3	13
1873	LIN-3/EGF Promotes the Programmed Cell Death of Specific Cells in Caenorhabditis elegans by Transcriptional Activation of the Pro-apoptotic Gene egl-1. PLoS Genetics, 2014, 10, e1004513.	1.5	18

#	Article	IF	CITATIONS
1874	The Translational Regulators GCN-1 and ABCF-3 Act Together to Promote Apoptosis in C. elegans. PLoS Genetics, 2014, 10, e1004512.	1.5	22
1875	Determinative Developmental Cell Lineages Are Robust to Cell Deaths. PLoS Genetics, 2014, 10, e1004501.	1.5	9
1876	Tissue-specific and ubiquitous gene knockouts by TALEN electroporation provide new approaches to investigating gene function in <i>Ciona</i> . Development (Cambridge), 2014, 141, 481-487.	1.2	70
1877	Pervasive Divergence of Transcriptional Gene Regulation in Caenorhabditis Nematodes. PLoS Genetics, 2014, 10, e1004435.	1.5	25
1878	lt's All in Your Mind: Determining Germ Cell Fate by Neuronal IRE-1 in C. elegans. PLoS Genetics, 2014, 10, e1004747.	1.5	30
1879	Dynamically-expressed prion-like proteins form a cuticle in the pharynx of <i>Caenorhabditis elegans</i> . Biology Open, 2014, 3, 1139-1149.	0.6	36
1880	Neuronal Migration Is Regulated by Endogenous RNAi and Chromatin-Binding Factor ZFP-1/AF10 in Caenorhabditis elegans. Genetics, 2014, 197, 207-220.	1.2	8
1882	Cyclin B3 and dynein heavy chain cooperate to increase fitness in the absence ofmdf-1/MAD1inCaenorhabditis elegans. Cell Cycle, 2014, 13, 3089-3199.	1.3	2
1883	Augmented and Virtual Reality. Lecture Notes in Computer Science, 2014, , .	1.0	2
1884	Developmental genetics of the <i>Caenorhabditis elegans</i> pharynx. Wiley Interdisciplinary Reviews: Developmental Biology, 2014, 3, 263-280.	5.9	10
1885	A C. elegans homolog of the Cockayne syndrome complementation group A gene. DNA Repair, 2014, 24, 57-62.	1.3	28
1886	Noncanonical Cell Death in the Nematode Caenorhabditis elegans. Methods in Enzymology, 2014, 545, 157-180.	0.4	6
1887	<i>Caenorhabditis elegans</i> as a platform to study the mechanism of action of synthetic antitumor lipids. Cell Cycle, 2014, 13, 3375-3389.	1.3	9
1888	LIN-35/Rb Causes Starvation-Induced Germ Cell Apoptosis via CED-9/Bcl2 Downregulation in <i>Caenorhabditis elegans</i> . Molecular and Cellular Biology, 2014, 34, 2499-2516.	1.1	21
1889	<i>Caenorhabditis elegans</i> SWI/SNF Subunits Control Sequential Developmental Stages in the Somatic Gonad. G3: Genes, Genomes, Genetics, 2014, 4, 471-483.	0.8	20
1890	<i>Caenorhabditis elegans</i> as a model system for studying non-cell-autonomous mechanisms in protein-misfolding diseases. DMM Disease Models and Mechanisms, 2014, 7, 31-39.	1.2	52
1891	The C. elegans dosage compensation complex mediates interphase X chromosome compaction. Epigenetics and Chromatin, 2014, 7, 31.	1.8	46
1892	Modern Tools to Study Nuclear Pore Complexes and Nucleocytoplasmic Transport in Caenorhabditis elegans. Methods in Cell Biology, 2014, 122, 277-310.	0.5	10

#	Article	IF	CITATIONS
1893	A future of the model organism model. Molecular Biology of the Cell, 2014, 25, 549-553.	0.9	23
1894	The LIM and POU homeobox genes <i>ttx-3</i> and <i>unc-86</i> act as terminal selectors in distinct cholinergic and serotonergic neuron types. Development (Cambridge), 2014, 141, 422-435.	1.2	93
1895	Ciliopathy proteins establish a bipartite signaling compartment in a C. elegans thermosensory neuron. Journal of Cell Science, 2014, 127, 5317-30.	1.2	37
1896	You are what you eat: multifaceted functions of autophagy during C. elegans development. Cell Research, 2014, 24, 80-91.	5.7	33
1897	Widespread Genomic Incompatibilities in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2014, 4, 1813-1823.	0.8	57
1899	Robust tracking and quantification of <i>C. elegans</i> body shape and locomotion through coiling, entanglement, and omega bends. Worm, 2014, 3, e982437.	1.0	35
1900	A Complex Regulatory Network Coordinating Cell Cycles During <i>C. elegans</i> Development Is Revealed by a Genome-Wide RNAi Screen. G3: Genes, Genomes, Genetics, 2014, 4, 795-804.	0.8	12
1901	Molecular conservation of metazoan gut formation: evidence from expression of endomesoderm genes in Capitella teleta (Annelida). EvoDevo, 2014, 5, 39.	1.3	53
1902	The <i>Caenorhabditis elegans</i> SUN protein UNC-84 interacts with lamin to transfer forces from the cytoplasm to the nucleoskeleton during nuclear migration. Molecular Biology of the Cell, 2014, 25, 2853-2865.	0.9	60
1903	Distinct chromatin organization in the germ line founder cell of the <i><scp>C</scp>aenorhabditis elegans</i> embryo. Development Growth and Differentiation, 2014, 56, 605-614.	0.6	2
1904	Organelle Size: A Cilium Length Signal Regulates IFT Cargo Loading. Current Biology, 2014, 24, R75-R78.	1.8	9
1905	Development: The Maternal–Zygotic Transition Revisited. Current Biology, 2014, 24, R72-R75.	1.8	3
1906	Wnt Signaling through the Ror Receptor in the Nervous System. Molecular Neurobiology, 2014, 49, 303-315.	1.9	19
1907	Towards 3D in silico modeling of the sea urchin embryonic development. Journal of Chemical Biology, 2014, 7, 17-28.	2.2	7
1909	Advances in whole-embryo imaging: a quantitative transition is underway. Nature Reviews Molecular Cell Biology, 2014, 15, 327-339.	16.1	102
1910	Analysis of Apoptosis in <i>Caenorhabditis elegans</i> . Cold Spring Harbor Protocols, 2014, 2014, pdb.top070458.	0.2	9
1911	Cell intercalation from top to bottom. Nature Reviews Molecular Cell Biology, 2014, 15, 34-48.	16.1	161
1912	De Novo Inference of Systems-Level Mechanistic Models of Development from Live-Imaging-Based Phenotype Analysis. Cell, 2014, 156, 359-372.	13.5	89

	CITATION	N REPORT	
#	Article	IF	CITATIONS
1913	Necrotic Cell Death in Caenorhabditis elegans. Methods in Enzymology, 2014, 545, 127-155.	0.4	18
1914	Quantitative Single-Cell Approaches to Stem Cell Research. Cell Stem Cell, 2014, 15, 546-558.	5.2	112
1915	Repurposing an endogenous degradation system for rapid and targeted depletion of <i>C. elegans</i> proteins. Development (Cambridge), 2014, 141, 4640-4647.	1.2	122
1916	Development of left/right asymmetry in the Caenorhabditis elegans nervous system: From zygote to postmitotic neuron. Genesis, 2014, 52, 528-543.	0.8	64
1917	Model organisms in evo-devo: promises and pitfalls of the comparative approach. History and Philosophy of the Life Sciences, 2014, 36, 42-59.	0.6	20
1918	Gutsy moves in mice: cellular and molecular dynamics of endoderm morphogenesis. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130547.	1.8	25
1919	A non-cell-autonomous role for Ras signaling in <i>C. elegans</i> neuroblast delamination. Development (Cambridge), 2014, 141, 4279-4284.	1.2	12
1920	Regulatory analysis of the C. elegans genome with spatiotemporal resolution. Nature, 2014, 512, 400-405.	13.7	115
1921	The Genetics of Alcohol Responses of Invertebrate Model Systems. , 2014, , 467-495.		5
1922	Senescence and apoptosis: dueling or complementary cell fates?. EMBO Reports, 2014, 15, 1139-1153.	2.0	643
1923	Dendritic tree extraction from noisy maximum intensity projection images in C. elegans. BioMedical Engineering OnLine, 2014, 13, 74.	1.3	9
1924	Beyond genome sequencing: Lineage tracking with barcodes to study the dynamics of evolution, infection, and cancer. Genomics, 2014, 104, 417-430.	1.3	81
1926	The PAF1 complex is involved in embryonic epidermal morphogenesis in Caenorhabditis elegans. Developmental Biology, 2014, 391, 43-53.	0.9	11
1927	The UNC-53-mediated Interactome. SpringerBriefs in Neuroscience, 2014, , .	0.1	3
1928	Scale invariance of biosystems: From embryo to community. Russian Journal of Developmental Biology, 2014, 45, 168-176.	0.1	4
1929	High-throughput capturing and characterization of mutations in essential genes of Caenorhabditis elegans. BMC Genomics, 2014, 15, 361.	1.2	15
1930	Virus and Cell Fusion Mechanisms. Annual Review of Cell and Developmental Biology, 2014, 30, 111-139.	4.0	174
1931	How to Analyze Mitochondrial Morphology in Healthy Cells and Apoptotic Cells in Caenorhabditis elegans. Methods in Enzymology, 2014, 544, 75-98.	0.4	7

#	Article	IF	CITATIONS
1932	Identification of genes driving lineage divergence from single-cell gene expression data in C. elegans. Developmental Biology, 2014, 393, 236-244.	0.9	0
1933	<i>C. elegans</i> Anillin proteins regulate intercellular bridge stability and germline syncytial organization. Journal of Cell Biology, 2014, 206, 129-143.	2.3	66
1934	Zygotic Genome Activation During the Maternal-to-Zygotic Transition. Annual Review of Cell and Developmental Biology, 2014, 30, 581-613.	4.0	469
1935	The onset of C. elegans dosage compensation is linked to the loss of developmental plasticity. Developmental Biology, 2014, 385, 279-290.	0.9	12
1936	LET-418/Mi2 and SPR-5/LSD1 Cooperatively Prevent Somatic Reprogramming of C.Âelegans Germline Stem Cells. Stem Cell Reports, 2014, 2, 547-559.	2.3	41
1937	Conservation of mRNA and Protein Expression during Development of C.Âelegans. Cell Reports, 2014, 6, 565-577.	2.9	98
1938	Nematode Tango Milonguero – The C. elegans male's search for the hermaphrodite vulva. Seminars in Cell and Developmental Biology, 2014, 33, 34-41.	2.3	14
1939	Ethyl methanesulfonate induces mutations in Caenorhabditis elegans embryos at a high frequency. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2014, 766-767, 44-48.	0.4	5
1940	The Anaphase-Promoting Complex (APC) ubiquitin ligase regulates GABA transmission at the C. elegans neuromuscular junction. Molecular and Cellular Neurosciences, 2014, 58, 62-75.	1.0	27
1942	Setting Up a Simple Light Sheet Microscope for In Toto Imaging of C. elegans Development. Journal of Visualized Experiments, 2014, , .	0.2	13
1944	Analysis of PHA-1 Reveals a Limited Role in Pharyngeal Development and Novel Functions in Other Tissues. Genetics, 2014, 198, 259-268.	1.2	11
1945	The embryonic cell lineage of <i>Caenorhabditis elegans</i> : A modern hieroglyph. BioEssays, 2015, 37, 237-239.	1.2	1
1946	Developmental robustness in the <i>Caenorhabditis elegans</i> embryo. Molecular Reproduction and Development, 2015, 82, 918-931.	1.0	20
1947	Bayesian detection of embryonic gene expression onset in C. elegans. Annals of Applied Statistics, 2015, 9, .	0.5	5
1948	Systemsâ€level quantification of division timing reveals a common genetic architecture controlling asynchrony and fate asymmetry. Molecular Systems Biology, 2015, 11, 814.	3.2	27
1949	Tracking and Quantifying Developmental Processes in C. elegans Using Open-source Tools. Journal of Visualized Experiments, 2015, , e53469.	0.2	21
1950	Comparative genomics of Steinernema reveals deeply conserved gene regulatory networks. Genome Biology, 2015, 16, 200.	3.8	77
1951	Theory and Practice of Lineage Tracing. Stem Cells, 2015, 33, 3197-3204.	1.4	54

#	Article	IF	CITATIONS
1952	Non-centrosomal epidermal microtubules act in parallel to LET-502/ROCK to promote C. elegans elongation. Development (Cambridge), 2015, 143, 160-73.	1.2	38
1953	The many glia of a tiny nematode: studying glial diversity using <i>Caenorhabditis elegans</i> . Wiley Interdisciplinary Reviews: Developmental Biology, 2015, 4, 151-160.	5.9	13
1954	Gametic selection, developmental trajectories, and extrinsic heterogeneity in Haldane's rule. Evolution; International Journal of Organic Evolution, 2015, 69, 2005-2017.	1.1	32
1955	Robust Distal Tip Cell Pathfinding in the Face of Temperature Stress Is Ensured by Two Conserved microRNAS in <i>Caenorhabditis elegans</i> . Genetics, 2015, 200, 1201-1218.	1.2	30
1956	Regulated cell death in diagnostic histopathology. International Journal of Developmental Biology, 2015, 59, 149-158.	0.3	3
1957	Concise Review: Asymmetric Cell Divisions in Stem Cell Biology. Symmetry, 2015, 7, 2025-2037.	1.1	15
1958	Suppression of transcriptional drift extends C. elegans lifespan by postponing the onset of mortality. ELife, 2015, 4, e08833.	2.8	76
1959	Cell Fate Decision Making through Oriented Cell Division. Journal of Developmental Biology, 2015, 3, 129-157.	0.9	34
1960	MicroRNAs: Not "Fine-Tuners―but Key Regulators of Neuronal Development and Function. Frontiers in Neurology, 2015, 6, 245.	1.1	62
1961	The Role of Autophagy and Apoptosis During Embryo Development. , 2015, , .		12
1961 1962	The Role of Autophagy and Apoptosis During Embryo Development. , 2015, , . Adult stem cell lineage tracing and deep tissue imaging. BMB Reports, 2015, 48, 655-667.	1.1	12 15
		1.1	
1962	Adult stem cell lineage tracing and deep tissue imaging. BMB Reports, 2015, 48, 655-667. The Homeobox Genes of Caenorhabditis elegans and Insights into Their Spatio-Temporal Expression		15
1962 1963	Adult stem cell lineage tracing and deep tissue imaging. BMB Reports, 2015, 48, 655-667. The Homeobox Genes of Caenorhabditis elegans and Insights into Their Spatio-Temporal Expression Dynamics during Embryogenesis. PLoS ONE, 2015, 10, e0126947. Necrotic Cells Actively Attract Phagocytes through the Collaborative Action of Two Distinct	1.1	15 31
1962 1963 1964	Adult stem cell lineage tracing and deep tissue imaging. BMB Reports, 2015, 48, 655-667. The Homeobox Genes of Caenorhabditis elegans and Insights into Their Spatio-Temporal Expression Dynamics during Embryogenesis. PLoS ONE, 2015, 10, e0126947. Necrotic Cells Actively Attract Phagocytes through the Collaborative Action of Two Distinct PS-Exposure Mechanisms. PLoS Genetics, 2015, 11, e1005285. The Evolutionarily Conserved LIM Homeodomain Protein LIM-4/LHX6 Specifies the Terminal Identity of a Cholinergic and Peptidergic C. elegans Sensory/Inter/Motor Neuron-Type. PLoS Genetics, 2015, 11,	1.1 1.5	15 31 37
1962 1963 1964 1965	Adult stem cell lineage tracing and deep tissue imaging. BMB Reports, 2015, 48, 655-667. The Homeobox Genes of Caenorhabditis elegans and Insights into Their Spatio-Temporal Expression Dynamics during Embryogenesis. PLoS ONE, 2015, 10, e0126947. Necrotic Cells Actively Attract Phagocytes through the Collaborative Action of Two Distinct PS-Exposure Mechanisms. PLoS Genetics, 2015, 11, e1005285. The Evolutionarily Conserved LIM Homeodomain Protein LIM-4/LHX6 Specifies the Terminal Identity of a Cholinergic and Peptidergic C. elegans Sensory/Inter/Motor Neuron-Type. PLoS Genetics, 2015, 11, e1005480. Cell-Autonomous GÎ ² Signaling Defines Neuron-Specific Steady State Serotonin Synthesis in	1.1 1.5 1.5	15 31 37 18
1962 1963 1964 1965 1966	Adult stem cell lineage tracing and deep tissue imaging. BMB Reports, 2015, 48, 655-667. The Homeobox Genes of Caenorhabditis elegans and Insights into Their Spatio-Temporal Expression Dynamics during Embryogenesis. PLoS ONE, 2015, 10, e0126947. Necrotic Cells Actively Attract Phagocytes through the Collaborative Action of Two Distinct PS-Exposure Mechanisms. PLoS Genetics, 2015, 11, e1005285. The Evolutionarily Conserved LIM Homeodomain Protein LIM-4/LHX6 Specifies the Terminal Identity of a Cholinergic and Peptidergic C. elegans Sensory/Inter/Motor Neuron-Type. PLoS Genetics, 2015, 11, e1005480. Cell-Autonomous GÎ ² Signaling Defines Neuron-Specific Steady State Serotonin Synthesis in Caenorhabditis elegans. PLoS Genetics, 2015, 11, e1005540. Oriented Cell Division in the C. elegans Embryo Is Coordinated by G-Protein Signaling Dependent on	1.1 1.5 1.5 1.5	15 31 37 18 6

		CITATION REPORT		
#	Article		IF	CITATIONS
1970	Basement Membranes in the Worm. Current Topics in Membranes, 2015, 76, 337-371.		0.5	27
1971	Biology of Plant-Parasitic Nematodes. Agronomy, 2015, , 21-35.		0.2	4
1972	Tissue specific response to DNA damage: C. elegans as role model. DNA Repair, 2015, 3	2, 141-148.	1.3	47
1973	Genomic Strategies for Embryonic Development. , 2015, , 79-132.			1
1974	Taking the Middle Road. , 2015, , 203-236.			2
1975	The study of Priapulus caudatus reveals conserved molecular patterning underlying diffe morphogenesis in the Ecdysozoa. BMC Biology, 2015, 13, 29.	erent gut	1.7	39
1976	An imaging and analysis toolset for the study of <i>Caenorhabditiselegans</i> neurodevelopment. Proceedings of SPIE, 2015, ,		0.8	2
1977	Non-coding stem-bulge RNAs are required for cell proliferation and embryonic developm elegans. Journal of Cell Science, 2015, 128, 2118-2129.	ent in C.	1.2	16
1978	Homeotic Transformations of Neuronal Cell Identities. Trends in Neurosciences, 2015, 3	8, 751-762.	4.2	40
1979	Big Data in <i>Caenorhabditis elegans</i> : <i>quo vadis</i> ?. Molecular Biology of the Co 3909-3914.	ell, 2015, 26,	0.9	8
1980	How targets select activation or repression in response to Wnt. Worm, 2015, 4, e10868	369.	1.0	4
1981	The Function and Regulation of the GATA Factor ELT-2 in the <i>C. elegans</i> Endodern (Cambridge), 2015, 143, 483-91.	ı. Development	1.2	43
1982	Engulfment pathways promote programmed cell death by enhancing the unequal segre apoptotic potential. Nature Communications, 2015, 6, 10126.	gation of	5.8	34
1983	Sexual Dimorphism: Mystery Neurons Control Sex-Specific Behavioral Plasticity. Current 2015, 25, R1170-R1172.	Biology,	1.8	3
1984	Gene regulatory effects inference for cell fate determination based on single-cell resolut 2015, , .	ion data. ,		1
1985	Ultra-structural time-course study in the <i>C. elegans</i> model for Duchenne muscular highlights a crucial role for sarcomere-anchoring structures and sarcolemma integrity in earliest steps of the muscle degeneration process. Human Molecular Genetics, 2015, 24	the	1.4	31
1986	Caenorhabditis elegans: What We Can and Cannot Learn from Aging Worms. Antioxida Signaling, 2015, 23, 256-279.	nts and Redox	2.5	40
1987	Temperature Dependence of Cell Division Timing Accounts for a Shift in the Thermal Lin C.Âelegans and C.Âbriggsae. Cell Reports, 2015, 10, 647-653.	hits of	2.9	85

#	Article	IF	CITATIONS
1988	E3 ubiquitin ligases promote progression of differentiation during C. elegans embryogenesis. Developmental Biology, 2015, 398, 267-279.	0.9	25
1989	A splice acceptor mutation in C. elegans daf-19/Rfx disrupts functional specialization of male-specific ciliated neurons but does not affect ciliogenesis. Gene, 2015, 559, 196-202.	1.0	4
1990	Comprehensive single cell-resolution analysis of the role of chromatin regulators in early C. elegans embryogenesis. Developmental Biology, 2015, 398, 153-162.	0.9	24
1991	Developmental alterations of the C. elegans male anal depressor morphology and function require sex-specific cell autonomous and cell non-autonomous interactions. Developmental Biology, 2015, 398, 24-43.	0.9	5
1992	A critical assessment of the methodologies to investigate the role of inhibition of apoptosis in rodent hepatocarcinogenesis. Toxicology Mechanisms and Methods, 2015, 25, 192-200.	1.3	1
1993	C. elegans as a model to study PTEN's regulation and function. Methods, 2015, 77-78, 180-190.	1.9	15
1994	Cell death in development: Signaling pathways and core mechanisms. Seminars in Cell and Developmental Biology, 2015, 39, 12-19.	2.3	69
1995	SUN proteins and nuclear envelope spacing. Nucleus, 2015, 6, 2-7.	0.6	39
1996	C. elegans NIMA-related kinases NEKL-2 and NEKL-3 are required for the completion of molting. Developmental Biology, 2015, 398, 255-266.	0.9	30
1997	Glial Development and Function in the Nervous System of <i>Caenorhabditis elegans </i> . Cold Spring Harbor Perspectives in Biology, 2015, 7, a020578.	2.3	54
1998	RNA Interference in <i>Caenorhabditis elegans</i> . Current Protocols in Molecular Biology, 2015, 109, 26.3.1-26.3.30.	2.9	94
1999	Stochasticity and stereotypy in the Ciona notochord. Developmental Biology, 2015, 397, 248-256.	0.9	14
2000	Targeted Genome Editing Using Site-Specific Nucleases. , 2015, , .		7
2001	Global Linking of Cell Tracks Using the Viterbi Algorithm. IEEE Transactions on Medical Imaging, 2015, 34, 911-929.	5.4	153
2002	Larval nervous systems: true larval and precocious adult. Journal of Experimental Biology, 2015, 218, 629-636.	0.8	34
2003	Comparative RNA-Seq analysis reveals pervasive tissue-specific alternative polyadenylation in Caenorhabditis elegans intestine and muscles. BMC Biology, 2015, 13, 4.	1.7	70
2004	The Evolution of Early Neurogenesis. Developmental Cell, 2015, 32, 390-407.	3.1	112
2005	A Novel Nondevelopmental Role of the SAX-7/L1CAM Cell Adhesion Molecule in Synaptic Regulation in <i>Caenorhabditis elegans</i> . Genetics, 2015, 199, 497-509.	1.2	10

#	Article	IF	CITATIONS
2006	Atypical Transcriptional Activation by TCF via a Zic Transcription Factor in C.Âelegans Neuronal Precursors. Developmental Cell, 2015, 33, 737-745.	3.1	42
2007	Power law relationship between cell cycle duration and cell volume in the early embryonic development of Caenorhabditis elegans. Frontiers in Physiology, 2014, 5, 529.	1.3	39
2008	Cell cycle timing regulation during asynchronous divisions of the early C. elegans embryo. Experimental Cell Research, 2015, 337, 243-248.	1.2	10
2009	Coupling between cytoplasmic concentration gradients through local control of protein mobility in theCaenorhabditis eleganszygote. Molecular Biology of the Cell, 2015, 26, 2963-2970.	0.9	24
2010	A genetic interactome of the let-7 microRNA in C. elegans. Developmental Biology, 2015, 401, 276-286.	0.9	15
2011	MED GATA factors promote robust development of the C. elegans endoderm. Developmental Biology, 2015, 404, 66-79.	0.9	35
2013	Asymmetric Transcript Discovery by RNA-seq in C. elegans Blastomeres Identifies neg-1, a Gene Important for Anterior Morphogenesis. PLoS Genetics, 2015, 11, e1005117.	1.5	20
2014	Ultrastructural analysis of Caenorhabditis elegans cilia. Methods in Cell Biology, 2015, 129, 341-367.	0.5	14
2015	Caenorhabditis elegans TBX-2 Directly Regulates Its Own Expression in a Negative Autoregulatory Loop. G3: Genes, Genomes, Genetics, 2015, 5, 1177-1186.	0.8	6
2016	The Bicoid Class Homeodomain Factors ceh-36/OTX and unc-30/PITX Cooperate in C. elegans Embryonic Progenitor Cells to Regulate Robust Development. PLoS Genetics, 2015, 11, e1005003.	1.5	29
2018	An integrated platform enabling optogenetic illumination ofCaenorhabditis elegansneurons and muscular force measurement in microstructured environments. Biomicrofluidics, 2015, 9, 014123.	1.2	17
2019	Inferring Cell Differentiation Processes Based on Phylogenetic Analysis of Genome-Wide Epigenetic Information: Hematopoiesis as a Model Case. Genome Biology and Evolution, 2015, 7, 699-705.	1.1	8
2020	G1/S Inhibitors and the SWI/SNF Complex Control Cell-Cycle Exit during Muscle Differentiation. Cell, 2015, 162, 300-313.	13.5	93
2021	The ciliary transition zone functions in cell adhesion but is dispensable for axoneme assembly in <i>C. elegans</i> . Journal of Cell Biology, 2015, 210, 35-44.	2.3	66
2022	SPD-2/CEP192 and CDK Are Limiting for Microtubule-Organizing Center Function at the Centrosome. Current Biology, 2015, 25, 1924-1931.	1.8	52
2023	Evolution of germline segregation processes in animal development. Development Growth and Differentiation, 2015, 57, 324-332.	0.6	10
2024	Analysis of splice variants for the C. elegans orthologue of human neuroligin reveals a developmentally regulated transcript. Gene Expression Patterns, 2015, 17, 69-78.	0.3	10
2025	Cdk1 phosphorylates SPAT-1/Bora to trigger PLK-1 activation and drive mitotic entry in <i>C. elegans</i> embryos. Journal of Cell Biology, 2015, 208, 661-669.	2.3	50

#	Article	IF	CITATIONS
2026	PAR-6, but not E-cadherin and Î ² -integrin, is necessary for epithelial polarization in C. elegans. Developmental Biology, 2015, 403, 5-14.	0.9	20
2027	Abstracting the principles of development using imaging and modeling. Integrative Biology (United) Tj ETQq1 1 C	0.784314 r	gBT /Overloo
2028	Moving epithelia: Tracking the fate of mammalian limbal epithelial stem cells. Progress in Retinal and Eye Research, 2015, 48, 203-225.	7.3	65
2029	The C. elegans COE transcription factor UNC-3 activates lineage-specific apoptosis and affects neurite growth in the RID lineage. Development (Cambridge), 2015, 142, 1447-57.	1.2	12
2030	The beginning of connectomics: a commentary on White <i>et al.</i> (1986) â€~The structure of the nervous system of the nematode <i>Caenorhabditis elegans</i> '. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140309.	1.8	37
2031	Cytoplasmic localization and asymmetric division in the early embryo of <i>Caenorhabditis elegans</i> . Wiley Interdisciplinary Reviews: Developmental Biology, 2015, 4, 267-282.	5.9	24
2032	Autonomous and nonautonomous regulation of Wnt-mediated neuronal polarity by the C. elegans Ror kinase CAM-1. Developmental Biology, 2015, 404, 55-65.	0.9	13
2033	Metabolome and proteome changes with aging in Caenorhabditis elegans. Experimental Gerontology, 2015, 72, 67-84.	1.2	60
2034	ULP-2 SUMO Protease Regulates E-Cadherin Recruitment to Adherens Junctions. Developmental Cell, 2015, 35, 63-77.	3.1	23
2035	Polarized Rac-dependent protrusions drive epithelial intercalation in the embryonic epidermis of <i>C. elegans</i> . Development (Cambridge), 2015, 142, 3549-60.	1.2	36
2036	A novel germ cell determinant reveals parallel pathways for germ line development in <i>Caenorhabditis elegans</i> . Development (Cambridge), 2015, 142, 3571-82.	1.2	22
2037	Illuminating neural circuits and behaviour in <i>Caenorhabditis elegans</i> with optogenetics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140212.	1.8	42
2038	Glia-derived neurons are required for sex-specific learning in C. elegans. Nature, 2015, 526, 385-390.	13.7	110
2039	A Transparent Window into Biology: A Primer on <i>Caenorhabditis elegans</i> . Genetics, 2015, 200, 387-407.	1.2	385
2040	A size threshold governs Caenorhabditis elegans developmental progression. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151283.	1.2	47
2041	Gonad establishment during asexual reproduction in the annelid Pristina leidyi. Developmental Biology, 2015, 405, 123-136.	0.9	41
2042	Towards understanding the roles of position and geometry on cell fate decisions during preimplantation development. Seminars in Cell and Developmental Biology, 2015, 47-48, 74-79.	2.3	20
2043	Conservation of Planar Polarity Pathway Function Across the Animal Kingdom. Annual Review of Genetics, 2015, 49, 529-551.	3.2	55

щ		IF	CITATIONS
#	ARTICLE	IF	CITATIONS
2044	Balancing up and downregulation of the C. elegans X chromosomes. Current Opinion in Genetics and Development, 2015, 31, 50-56.	1.5	26
2045	The Rho guanine exchange factor RHGF-2 acts through the Rho-binding kinase LET-502 to mediate embryonic elongation in C. elegans. Developmental Biology, 2015, 405, 250-259.	0.9	12
2046	Hox Genes Promote Neuronal Subtype Diversification through Posterior Induction in Caenorhabditis elegans. Neuron, 2015, 88, 514-527.	3.8	37
2047	The C-terminal binding protein (CTBP-1) regulates dorsal SMD axonal morphology in Caenorhabditis elegans. Neuroscience, 2015, 311, 216-230.	1.1	11
2048	Aging Mechanisms. , 2015, , .		4
2049	Variation in transcriptome size: are we getting the message?. Chromosoma, 2015, 124, 27-43.	1.0	62
2050	Spatiotemporal transcriptomics reveals the evolutionary history of the endoderm germ layer. Nature, 2015, 519, 219-222.	13.7	160
2051	Ethanol-induced differential gene expression and acetyl-CoA metabolism in a longevity model of the nematode Caenorhabditis elegans. Experimental Gerontology, 2015, 61, 20-30.	1.2	21
2052	The RNA binding protein MEX-3 retains asymmetric activity in the early Caenorhabditis elegans embryo in the absence of asymmetric protein localization. Gene, 2015, 554, 160-173.	1.0	7
2053	Live imaging reveals spatial separation of parental chromatin until the four-cell stage in Caenorhabditis elegans embryos. International Journal of Developmental Biology, 2016, 60, 5-12.	0.3	9
2054	Autophagy in Model Organisms: Insights into Cancer. , 0, , .		1
2055	Using Methylation Patterns for Reconstructing Cell Division Dynamics. , 2016, , 3-15.		0
2056	Mechanical Probing of the Intermediate Filament-Rich Caenorhabditis Elegans Intestine. Methods in Enzymology, 2016, 568, 681-706.	0.4	12
2057	Live Imaging of Adult Neural Stem Cells in Rodents. Frontiers in Neuroscience, 2016, 10, 78.	1.4	17
2058	Quantifying Mosaic Development: Towards an Evo-Devo Postmodern Synthesis of the Evolution of Development via Differentiation Trees of Embryos. Biology, 2016, 5, 33.	1.3	8
2059	Genome Editing in C. elegans and Other Nematode Species. International Journal of Molecular Sciences, 2016, 17, 295.	1.8	16
2060	Whole-Organism Developmental Expression Profiling Identifies RAB-28 as a Novel Ciliary GTPase Associated with the BBSome and Intraflagellar Transport. PLoS Genetics, 2016, 12, e1006469.	1.5	56
2061	The EFF-1A Cytoplasmic Domain Influences Hypodermal Cell Fusions in C. elegans But Is Not Dependent on 14-3-3 Proteins. PLoS ONE, 2016, 11, e0146874.	1.1	8

#	Article	IF	CITATIONS
2062	A High-Throughput Small Molecule Screen for C. elegans Linker Cell Death Inhibitors. PLoS ONE, 2016, 11, e0164595.	1.1	11
2063	Germ Cell Determinant Transmission, Segregation, and Function in the Zebrafish Embryo. , 2016, , .		8
2064	Prospects and challenges of CRISPR/Cas genome editing for the study and control of neglected vectorâ€borne nematode diseases. FEBS Journal, 2016, 283, 3204-3221.	2.2	48
2065	The nematode stoma: Homology of cell architecture with improved understanding by confocal microscopy of labeled cell boundaries. Journal of Morphology, 2016, 277, 1168-1186.	0.6	10
2066	A <i>Caenorhabditis elegans</i> Homologue of <scp>LYST</scp> Functions in Endosome and Lysosomeâ€Related Organelle Biogenesis. Traffic, 2016, 17, 515-535.	1.3	8
2067	Probing and rearranging the transcription factor network controlling theC. elegansendoderm. Worm, 2016, 5, e1198869.	1.0	4
2068	Apoptotic cell recognition receptors and scavenger receptors. Immunological Reviews, 2016, 269, 44-59.	2.8	157
2069	The nematode Caenorhabditis elegans as a tool to predict chemical activity on mammalian development and identify mechanisms influencing toxicological outcome. Scientific Reports, 2016, 6, 22965.	1.6	53
2070	Revisiting Neuronal Cell Type Classification in Caenorhabditis elegans. Current Biology, 2016, 26, R1197-R1203.	1.8	86
2071	Remodelling germ cells by intercellular cannibalism. Nature Cell Biology, 2016, 18, 1267-1268.	4.6	0
2072	Germ Cells Get by with a Little Cannibalistic Help from Their Friends. Developmental Cell, 2016, 39, 631-633.	3.1	0
2073	Identifying Adult Stem Cells Using Creâ€Mediated Lineage Tracing. Current Protocols in Stem Cell Biology, 2016, 36, 5A.2.1-5A.2.18.	3.0	5
2074	Phylogenomics of Nematoda. , 0, , 62-83.		1
2075	A Genome-Scale Database and Reconstruction of Caenorhabditis elegans Metabolism. Cell Systems, 2016, 2, 312-322.	2.9	46
2076	Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science, 2016, 353, aaf7907.	6.0	570
2077	Identification and Characterization of Mitochondrial Subtypes in <i>Caenorhabditis elegans</i> via Analysis of Individual Mitochondria by Flow Cytometry. Analytical Chemistry, 2016, 88, 6309-6316.	3.2	23
2078	Advanced Glycation End-Products and Their Receptors: Related Pathologies, Recent Therapeutic Strategies, and a Potential Model for Future Neurodegeneration Studies. Chemical Research in Toxicology, 2016, 29, 707-714.	1.7	34
2079	Programmed cell death and clearance of cell corpses in Caenorhabditis elegans. Cellular and Molecular Life Sciences, 2016, 73, 2221-2236.	2.4	42

#	Article	IF	CITATIONS
2080	A twist of fate: How a meiotic protein is providing new perspectives on germ cell development. Worm, 2016, 5, e1175259.	1.0	0
2081	Sex-specific pruning of neuronal synapses in Caenorhabditis elegans. Nature, 2016, 533, 206-211.	13.7	109
2082	The <i>Caenorhabditis elegans</i> Excretory System: A Model for Tubulogenesis, Cell Fate Specification, and Plasticity. Genetics, 2016, 203, 35-63.	1.2	64
2083	Compensatory embryonic response to allele-specific inactivation of the murine X-linked gene Hcfc1. Developmental Biology, 2016, 412, 1-17.	0.9	12
2084	Apoptosis: its origin, history, maintenance and the medical implications for cancer and aging. Physical Biology, 2016, 13, 031001.	0.8	177
2085	Description and developmental biology of the predatory diplogastrid Acrostichus nudicapitatus (Steiner, 1914) Massey, 1962 (Nematoda: Rhabditida). Helminthologia, 2016, 53, 142-154.	0.3	2
2086	C. elegans Embryonic Morphogenesis. Current Topics in Developmental Biology, 2016, 116, 597-616.	1.0	42
2087	Regulation of UNC-130/FOXD-mediated mesodermal patterning in C. elegans. Developmental Biology, 2016, 416, 300-311.	0.9	6
2088	Natural and induced direct reprogramming: mechanisms, concepts and general principles — from the worm to vertebrates. Current Opinion in Genetics and Development, 2016, 40, 154-163.	1.5	7
2089	Compensatory Cell Movements Confer Robustness to Mechanical Deformation during Embryonic Development. Cell Systems, 2016, 3, 160-171.	2.9	33
2090	Genome Stability in Caenorhabditis elegans. , 2016, , 163-186.		1
2091	Clial Cells in Health and Disease of the CNS. Advances in Experimental Medicine and Biology, 2016, , .	0.8	9
2092	Pharmacological Tools to Study the Role of Astrocytes in Neural Network Functions. Advances in Experimental Medicine and Biology, 2016, 949, 47-66.	0.8	10
2093	Transorganogenesis and transdifferentiation in C. elegans are dependent on differentiated cell identity. Developmental Biology, 2016, 420, 136-147.	0.9	19
2094	Engineered non-Mendelian inheritance of entire parental genomes in C. elegans. Nature Biotechnology, 2016, 34, 982-986.	9.4	19
2095	Facilitation of Endosomal Recycling by an IRG Protein Homolog Maintains Apical Tubule Structure in <i>Caenorhabditis elegans</i> . Genetics, 2016, 203, 1789-1806.	1.2	11
2096	Enabling the Triplet of Tetraphenylethene to Sensitize the Excited State of Europium(III) for Protein Detection and Timeâ€Resolved Luminescence Imaging. Advanced Science, 2016, 3, 1600146.	5.6	31
2097	Programmed Cell Death During <i>Caenorhabditis elegans</i> Development. Genetics, 2016, 203, 1533-1562.	1.2	88

#	Article	IF	CITATIONS
2098	Combinatorial decoding of the invariant <i>C. elegans</i> embryonic lineage in space and time. Genesis, 2016, 54, 182-197.	0.8	18
2099	βâ€cateninâ€driven binary cell fate decisions in animal development. Wiley Interdisciplinary Reviews: Developmental Biology, 2016, 5, 377-388.	5.9	13
2100	A map of terminal regulators of neuronal identity in <i>Caenorhabditis elegans</i> . Wiley Interdisciplinary Reviews: Developmental Biology, 2016, 5, 474-498.	5.9	88
2101	Advances in Understanding the Generation and Specification of Unique Neuronal Sub-types from Drosophila Neuropeptidergic Neurons. , 2016, , 57-93.		0
2102	A Transcriptional Lineage of the Early C.Âelegans Embryo. Developmental Cell, 2016, 38, 430-444.	3.1	119
2103	Durotaxis in Nematode Caenorhabditis elegans. Biophysical Journal, 2016, 111, 666-674.	0.2	7
2104	A Conserved Role for Girdin in Basal Body Positioning and Ciliogenesis. Developmental Cell, 2016, 38, 493-506.	3.1	44
2105	Analysis of <i>C. elegans</i> muscle transcriptome using trans-splicing-based RNA tagging (SRT). Nucleic Acids Research, 2016, 44, gkw734.	6.5	19
2106	Tissue homogeneity requires inhibition of unequal gene silencing during development. Journal of Cell Biology, 2016, 214, 319-331.	2.3	7
2107	Food Search Strategy Changes in <i>Caenorhabditis elegans</i> under Chronic Starvation Conditions. Journal of Experimental Zoology, 2016, 325, 409-414.	1.2	2
2108	When Family History Matters. Current Topics in Developmental Biology, 2016, 117, 93-112.	1.0	6
2109	Antagonistic Behaviors of NMY-1 and NMY-2 Maintain Ring Channels in the C.Âelegans Gonad. Biophysical Journal, 2016, 111, 2202-2213.	0.2	12
2110	Mitotic entry: The interplay between Cdk1, Plk1 and Bora. Cell Cycle, 2016, 15, 3177-3182.	1.3	29
2111	Adhesion GPCRs Govern Polarity of Epithelia and Cell Migration. Handbook of Experimental Pharmacology, 2016, 234, 249-274.	0.9	9
2112	Heterotaxy in Caenorhabditis : widespread natural variation in left–right arrangement of the major organs. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150404.	1.8	7
2113	Adhesion G Protein-coupled Receptors. Handbook of Experimental Pharmacology, 2016, , .	0.9	7
2114	Developmentally programmed germ cell remodelling by endodermal cell cannibalism. Nature Cell Biology, 2016, 18, 1302-1310.	4.6	56
2115	Long-term time-lapse microscopy of C. elegans post-embryonic development. Nature Communications, 2016, 7, 12500.	5.8	69

	CITATIO	CITATION REPORT	
#	Article	IF	CITATIONS
2116	The Influence of Wiring Economy on Nervous SystemÂEvolution. Current Biology, 2016, 26, R1101-R1108	. 1.8	33
2117	The origin and evolution of cell types. Nature Reviews Genetics, 2016, 17, 744-757.	7.7	572
2118	Somatically expressed germ-granule components, PGL-1 and PGL-3, repress programmed cell death in C. elegans. Scientific Reports, 2016, 6, 33884.	1.6	6
2119	<i>Caenorhabditis elegans</i> homologue of Prox1/Prospero is expressed in the glia and is required for sensory behavior and cold tolerance. Genes To Cells, 2016, 21, 936-948.	0.5	19
2120	Using Stage- and Slit-Scanning to Improve Contrast and Optical Sectioning in Dual-View Inverted Light Sheet Microscopy (diSPIM). Biological Bulletin, 2016, 231, 26-39.	0.7	24
2121	Embryonic Methamphetamine Exposure Inhibits Methamphetamine Cue Conditioning and Reduces Dopamine Concentrations in Adult N2 <i>Caenorhabditis elegans</i> . Developmental Neuroscience, 2016, 38, 139-149.	1.0	13
2122	SSBD: a database of quantitative data of spatiotemporal dynamics of biological phenomena. Bioinformatics, 2016, 32, 3471-3479.	1.8	39
2123	Regulation of the MEI-1/MEI-2 Microtubule-Severing Katanin Complex in Early <i>Caenorhabditis elegans</i> Development. G3: Genes, Genomes, Genetics, 2016, 6, 3257-3268.	0.8	11
2124	Developmental Anatomy of the Axolotl. , 2016, , 75-170.		0
2125	The Cell State Splitter and Differentiation Waves. , 2016, , 441-499.		0
2126	Inferring average generation via division-linked labeling. Journal of Mathematical Biology, 2016, 73, 491-523.	0.8	7
2127	Gonadal Maturation Changes Chemotaxis Behavior and Neural Processing in the Olfactory Circuit of Caenorhabditis elegans. Current Biology, 2016, 26, 1522-1531.	1.8	27
2128	Neuron-specific knock-down of SMN1 causes neuron degeneration and death through an apoptotic mechanism. Human Molecular Genetics, 2016, 25, ddw119.	1.4	21
2129	Function of the C. elegans T-box factor TBX-2 depends on interaction with the UNC-37/Groucho corepressor. Developmental Biology, 2016, 416, 266-276.	0.9	1
2130	CDC-25.2, a <i>C. elegans</i> ortholog of <i>cdc25</i> , is essential for the progression of intestinal divisions. Cell Cycle, 2016, 15, 654-666.	1.3	21
2131	Early development of the root-knot nematode Meloidogyne incognita. BMC Developmental Biology, 2016, 16, 10.	2.1	19
2132	Caenorhabditis elegans. , 2016, , 341-354.		3
2133	Another morphogenetic movement on the map: Charting dorsal intercalation inC. elegans. Worm, 2016, 5, e1176664.	1.0	3

#	Article	IF	CITATIONS
2134	Timing of Tissue-specific Cell Division Requires a Differential Onset of Zygotic Transcription during Metazoan Embryogenesis. Journal of Biological Chemistry, 2016, 291, 12501-12513.	1.6	11
2135	Conservation of anatomically restricted glycosaminoglycan structures in divergent nematode species. Glycobiology, 2016, 26, 862-870.	1.3	13
2136	Overlapping cell population expression profiling and regulatory inference in C. elegans. BMC Genomics, 2016, 17, 159.	1.2	6
2137	The H3K4me3/2 histone demethylase RBR-2 controls axon guidance by repressing the actin-remodeling gene wsp-1. Development (Cambridge), 2016, 143, 851-63.	1.2	24
2138	Fate Mapping Mammalian Corneal Epithelia. Ocular Surface, 2016, 14, 82-99.	2.2	18
2141	Caenorhabditis elegans, a Biological Model for Research in Toxicology. Reviews of Environmental Contamination and Toxicology, 2016, 237, 1-35.	0.7	52
2142	Identifying Regulators of Morphogenesis Common to Vertebrate Neural Tube Closure and <i>Caenorhabditis elegans</i> Gastrulation. Genetics, 2016, 202, 123-139.	1.2	22
2143	A joint graph inference case study: the <i>C. elegans</i> chemical and electrical connectomes. Worm, 2016, 5, e1142041.	1.0	12
2144	Digital development: a database of cell lineage differentiation in <i>C. elegans</i> with lineage phenotypes, cell-specific gene functions and a multiscale model. Nucleic Acids Research, 2016, 44, D781-D785.	6.5	16
2145	Genetic control of nucleolar size: An evolutionary perspective. Nucleus, 2016, 7, 112-120.	0.6	24
2146	The Role of Maternal-Effect Genes in Mammalian Development: Are Mammalian Embryos Really an Exception?. Stem Cell Reviews and Reports, 2016, 12, 276-284.	5.6	31
2147	Contrasting responses within a single neuron class enable sex-specific attraction in <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1392-401.	3.3	53
2149	Neural circuit rewiring: insights from DD synapse remodeling. Worm, 2016, 5, e1129486.	1.0	26
2150	Mechanical forces drive neuroblast morphogenesis and are required for epidermal closure. Developmental Biology, 2016, 412, 261-277.	0.9	23
2151	Connectomics, the Final Frontier. Current Topics in Developmental Biology, 2016, 116, 315-330.	1.0	13
2152	Infertility and recurrent miscarriage with complex II deficiency-dependent mitochondrial oxidative stress in animal models. Mechanisms of Ageing and Development, 2016, 155, 22-35.	2.2	13
2153	Great migration: epigenetic reprogramming and germ cell-oocyte metamorphosis determine individual ovarian reserve. Hormone Molecular Biology and Clinical Investigation, 2016, 25, 45-63.	0.3	2
2154	Functional Interplay of Two Paralogs Encoding SWI/SNF Chromatin-Remodeling Accessory Subunits During <i>Caenorhabditis elegans</i> Development. Genetics, 2016, 202, 961-975.	1.2	17

#	Article	IF	CITATIONS
2155	Pan-neuronal imaging in roaming <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1082-8.	3.3	188
2156	Infrared laser-induced gene expression for tracking development and function of single C. elegans embryonic neurons. Nature Communications, 2017, 8, 14100.	5.8	38
2157	Building a lineage from single cells: genetic techniques for cell lineage tracking. Nature Reviews Genetics, 2017, 18, 230-244.	7.7	204
2158	Gut development in C. elegans. Seminars in Cell and Developmental Biology, 2017, 66, 3-11.	2.3	44
2159	Precise observation of <i>C. elegans</i> dynamic behaviours under controlled thermal stimulus using a mobile phone–based microscope. Journal of Microscopy, 2017, 266, 28-34.	0.8	4
2160	Micro-connectomics: probing the organization of neuronal networks at the cellular scale. Nature Reviews Neuroscience, 2017, 18, 131-146.	4.9	103
2161	Feeding recombinant E. coli with GST-mBmKTX fusion protein increases the fecundity and lifespan of Caenorhabditis elegans. Peptides, 2017, 89, 1-8.	1.2	8
2162	Methods to Study Nervous System Laterality in the Caenorhabditis elegans Model System. Neuromethods, 2017, , 591-608.	0.2	0
2163	Conserved Ankyrin Repeat Proteins and Their NIMA Kinase Partners Regulate Extracellular Matrix Remodeling and Intracellular Trafficking in <i>Caenorhabditis elegans</i> . Genetics, 2017, 205, 273-293.	1.2	25
2164	Quantitative Analysis of Synthetic Cell Lineage Tracing Using Nuclease Barcoding. ACS Synthetic Biology, 2017, 6, 936-942.	1.9	88
2165	The CDK8 Complex and Proneural Proteins Together Drive Neurogenesis from a Mesodermal Lineage. Current Biology, 2017, 27, 661-672.	1.8	18
2166	Signaling-Mediated Control of Cell Division. Results and Problems in Cell Differentiation, 2017, , .	0.2	1
2167	C. elegans and its bacterial diet as a model for systems-level understanding of host–microbiota interactions. Current Opinion in Biotechnology, 2017, 46, 74-80.	3.3	82
2168	miRNAs cooperate in apoptosis regulation during <i>C. elegans</i> development. Genes and Development, 2017, 31, 209-222.	2.7	40
2169	Phenotype Analysis Method for Identification of Gene Functions Involved in Asymmetric Division of <i>Caenorhabditis elegans</i> . Journal of Computational Biology, 2017, 24, 436-446.	0.8	2
2170	PCP and SAX-3/Robo Pathways Cooperate to Regulate Convergent Extension-Based Nerve Cord Assembly in C.Âelegans. Developmental Cell, 2017, 41, 195-203.e3.	3.1	36
2171	Sequential Rosettes Drive C.Âelegans Ventral Nerve Cord Assembly. Developmental Cell, 2017, 41, 121-122.	3.1	3
2172	Alternative Polyadenylation Directs Tissue-Specific miRNA Targeting in <i>Caenorhabditis elegans</i> Somatic Tissues. Genetics, 2017, 206, 757-774.	1.2	67

#	Article	IF	CITATIONS
2173	Centrioles initiate cilia assembly but are dispensable for maturation and maintenance in <i>C. elegans</i> . Journal of Cell Biology, 2017, 216, 1659-1671.	2.3	53
2174	The antiparasitic activity of avenacosides against intestinal nematodes. Veterinary Parasitology, 2017, 241, 5-13.	0.7	11
2175	Visualizing Calcium Flux in Freely Moving Nematode Embryos. Biophysical Journal, 2017, 112, 1975-1983.	0.2	31
2176	An Elegan(t) Screen for Drug-Microbe Interactions. Cell Host and Microbe, 2017, 21, 555-556.	5.1	2
2177	Food responsiveness regulates episodic behavioral states in <i>Caenorhabditis elegans</i> . Journal of Neurophysiology, 2017, 117, 1911-1934.	0.9	48
2178	Rapidly evolving homing CRISPR barcodes. Nature Methods, 2017, 14, 195-200.	9.0	179
2180	Genome Editing of C. elegans. Methods in Molecular Biology, 2017, 1630, 247-254.	0.4	1
2181	Sleeping Beauty? Developmental Timing, Sleep, and the Circadian Clock in Caenorhabditis elegans. Advances in Genetics, 2017, 97, 43-80.	0.8	7
2182	Partially compromised specification causes stochastic effects on gut development in C. elegans. Developmental Biology, 2017, 427, 49-60.	0.9	21
2183	Temporal regulation of epithelium formation mediated by FoxA, MKLP1, MgcRacGAP, and PAR-6. Molecular Biology of the Cell, 2017, 28, 2042-2065.	0.9	16
2184	Phenotypic plasticity and remodeling in the stressâ€induced <i>Caenorhabditis elegans</i> dauer. Wiley Interdisciplinary Reviews: Developmental Biology, 2017, 6, e278.	5.9	25
2185	Caenorhabditis elegans Genes Affecting Interindividual Variation in Life-span Biomarker Gene Expression. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, 1305-1310.	1.7	21
2186	Modeling and analysis of modular structure in diverse biological networks. Journal of Theoretical Biology, 2017, 422, 18-30.	0.8	6
2187	The Caenorhabditis elegans matrix non-peptidase MNP-1 is required for neuronal cell migration and interacts with the Ror receptor tyrosine kinase CAM-1. Developmental Biology, 2017, 424, 18-27.	0.9	3
2188	Programmed cell clearance: From nematodes to humans. Biochemical and Biophysical Research Communications, 2017, 482, 491-497.	1.0	16
2189	Reciprocal signaling by Wnt and Notch specifies a muscle precursor in the <i>C. elegans</i> embryo. Development (Cambridge), 2017, 144, 419-429.	1.2	2
2190	Cell Biology of the <i>Caenorhabditis elegans</i> Nucleus. Genetics, 2017, 205, 25-59.	1.2	46
2192	Effects of Ageing on the Basic Biology and Anatomy of C. elegans. Healthy Ageing and Longevity, 2017, , 9-39.	0.2	15

#	Article	IF	CITATIONS
2193	Molecular memoirs of a cellular family. Nature, 2017, 541, 38-39.	13.7	2
2194	Mechanisms of Vertebrate Germ Cell Determination. Advances in Experimental Medicine and Biology, 2017, 953, 383-440.	0.8	13
2195	(Machine-)Learning to analyze in vivo microscopy: Support vector machines. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2017, 1865, 1719-1727.	1.1	9
2196	Comparative Transcriptomics of Steinernema and Caenorhabditis Single Embryos Reveals Orthologous Gene Expression Convergence during Late Embryogenesis. Genome Biology and Evolution, 2017, 9, 2681-2696.	1.1	21
2197	Physical determinants of asymmetric cell divisions in the early development of Caenorhabditis elegans. Scientific Reports, 2017, 7, 9369.	1.6	24
2198	A species-specific nematocide that results in terminal embryogenesis. Journal of Experimental Biology, 2017, 220, 3238-3247.	0.8	6
2199	Lower vertebrate and invertebrate models of Alzheimer's disease – A review. European Journal of Pharmacology, 2017, 815, 312-323.	1.7	21
2200	Genetic and Pharmacological Discovery for Alzheimer's Disease Using <i>Caenorhabditis elegans</i> . ACS Chemical Neuroscience, 2017, 8, 2596-2606.	1.7	53
2201	A simple culture system for long-term imaging of individual C. elegans. Lab on A Chip, 2017, 17, 3909-3920.	3.1	26
2202	Glia initiate brain assembly through noncanonical Chimaerin–Furin axon guidance in C. elegans. Nature Neuroscience, 2017, 20, 1350-1360.	7.1	52
2203	Microfluidic immobilization and subcellular imaging of developing Caenorhabditis elegans. Microfluidics and Nanofluidics, 2017, 21, 1.	1.0	6
2204	Neurodegeneration Induced by Metals in Caenorhabditis elegans. Advances in Neurobiology, 2017, 18, 355-383.	1.3	16
2205	Cnidarians layer up. Nature Ecology and Evolution, 2017, 1, 1429-1430.	3.4	3
2206	Mitigating Motor Neuronal Loss in C. elegans Model of ALS8. Scientific Reports, 2017, 7, 11582.	1.6	7
2207	A framework for understanding the roles of miRNAs in animal development. Development (Cambridge), 2017, 144, 2548-2559.	1.2	115
2208	Conserved gene regulatory module specifies lateral neural borders across bilaterians. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6352-E6360.	3.3	24
2209	How to Make a Worm Twitch. Biophysical Journal, 2017, 112, 1737-1738.	0.2	0
2210	Centriole translocation and degeneration during ciliogenesis in <i>Caenorhabditis elegans</i> neurons. EMBO Journal, 2017, 36, 2553-2566.	3.5	38

#	Article	IF	CITATIONS
2211	Neuronal cell-type classification: challenges, opportunities and the path forward. Nature Reviews Neuroscience, 2017, 18, 530-546.	4.9	664
2212	Spatiotemporal expression profiling of long intervening noncoding RNAs in Caenorhabditis elegans. Scientific Reports, 2017, 7, 5195.	1.6	9
2213	The <i>Caenorhabditis elegans</i> Female-Like State: Decoupling the Transcriptomic Effects of Aging and Sperm Status. G3: Genes, Genomes, Genetics, 2017, 7, 2969-2977.	0.8	28
2214	Presumptive TRP channel CED-11 promotes cell volume decrease and facilitates degradation of apoptotic cells in <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8806-8811.	3.3	10
2215	LIN-32/Atonal Controls Oxygen Sensing Neuron Development in Caenorhabditis elegans. Scientific Reports, 2017, 7, 7294.	1.6	7
2216	Comprehensive single-cell transcriptional profiling of a multicellular organism. Science, 2017, 357, 661-667.	6.0	1,067
2217	ç>®çš"ç~èfžã®å±€åœ¨ãëåå«é−¢ä;,ã,'åŒæ™,ã«è;½è·jåēèf½ããå^†å• Nature Digest, 2017, 14, 33-35.	0.0	0
2218	Application of Evolving Computational and Biological Platforms for Chemical Safety Assessment. , 2017, , 843-873.		2
2219	The Inherent Asymmetry of DNA Replication. Annual Review of Cell and Developmental Biology, 2017, 33, 291-318.	4.0	20
2220	"High-Throughput Characterization of Region-Specific Mitochondrial Function and Morphology― Scientific Reports, 2017, 7, 6749.	1.6	16
2221	Dosage compensation and its roles in evolution of sex chromosomes and phenotypic dimorphism: lessons from Drosophila, C.elegans and mammals. Nucleus (India), 2017, 60, 315-333.	0.9	2
2222	Non-neuronal cell outgrowth inC. elegans. Worm, 2017, 6, e1405212.	1.0	4
2223	Methods for lineage tracing on the organism-wide level. Current Opinion in Cell Biology, 2017, 49, 16-21.	2.6	31
2224	An In Toto Approach to Dissecting Cellular Interactions in Complex Tissues. Developmental Cell, 2017, 43, 530-540.e4.	3.1	20
2225	Chromatin accessibility dynamics reveal novel functional enhancers in <i>C. elegans</i> . Genome Research, 2017, 27, 2096-2107.	2.4	142
2226	Precision Medicine, CRISPR, and Genome Engineering. Advances in Experimental Medicine and Biology, 2017, , .	0.8	2
2227	From Reductionism to Holism: Toward a More Complete View of Development Through Genome Engineering. Advances in Experimental Medicine and Biology, 2017, 1016, 45-74.	0.8	7
2228	The <i>C. elegans</i> VAPB homolog VPR-1 is a permissive signal for gonad development. Development (Cambridge), 2017, 144, 2187-2199.	1.2	8

#	Article	IF	CITATIONS
2229	Application of Caenorhabditis elegans (nematode) and Danio rerio embryo (zebrafish) as model systems to screen for developmental and reproductive toxicity of Piperazine compounds. Toxicology in Vitro, 2017, 44, 11-16.	1.1	21
2230	A Neurotransmitter Atlas of the <i>Caenorhabditis elegans</i> Male Nervous System Reveals Sexually Dimorphic Neurotransmitter Usage. Genetics, 2017, 206, 1251-1269.	1.2	51
2231	Comparative genetic, proteomic and phosphoproteomic analysis of C. elegans embryos with a focus on ham-1/STOX and pig-1/MELK in dopaminergic neuron development. Scientific Reports, 2017, 7, 4314.	1.6	11
2232	Embryogenesis in the parasitic nematode Heterodera glycines is independent of host-derived hatching stimulation. BMC Developmental Biology, 2017, 17, 2.	2.1	17
2233	<i>Caenorhabditis elegans</i> CES-1 Snail Represses <i>pig-1</i> MELK Expression To Control Asymmetric Cell Division. Genetics, 2017, 206, 2069-2084.	1.2	13
2234	Variations on a theme. Methods in Cell Biology, 2017, 137, 267-281.	0.5	0
2235	CeNDR, the <i>Caenorhabditis elegans</i> natural diversity resource. Nucleic Acids Research, 2017, 45, D650-D657.	6.5	287
2236	Sexual modulation of sexâ€shared neurons and circuits in <i>Caenorhabditis elegans</i> . Journal of Neuroscience Research, 2017, 95, 527-538.	1.3	32
2237	Actomyosin contractility regulators stabilize the cytoplasmic bridge between the two primordial germ cells during Caenorhabditis elegans embryogenesis. Molecular Biology of the Cell, 2017, 28, 3789-3800.	0.9	14
2238	An asymmetric attraction model for the diversity and robustness of cell arrangement in nematodes. Development (Cambridge), 2017, 144, 4437-4449.	1.2	42
2239	Models of global gene expression define major domains of cell type and tissue identity. Nucleic Acids Research, 2017, 45, 2354-2367.	6.5	50
2240	Discovering Capacity in Novel Targets: C. Elegans as a Model Life Form in Toxicological Research. Journal of Clinical & Experimental Dermatology Research, 2017, 07, .	0.1	0
2241	Comprehensive functional genomics using <i>Caenorhabditis elegans</i> as a model organism. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2017, 93, 561-577.	1.6	9
2242	Simple In Vivo Models of Alzheimer's Disease. , 2017, , 211-233.		0
2243	Nanomaterials in the Environment: Perspectives on in Vivo Terrestrial Toxicity Testing. Frontiers in Environmental Science, 2017, 5, .	1.5	8
2244	Caenorhabditis elegans as a Model to Assess Reproductive and Developmental Toxicity. , 2017, , 303-314.		4
2245	Centriolar remodeling underlies basal body maturation during ciliogenesis in Caenorhabditis elegans. ELife, 2017, 6, .	2.8	50
2246	The Remarkably Diverse Family of T-Box Factors in Caenorhabditis elegans. Current Topics in Developmental Biology, 2017, 122, 27-54.	1.0	4

# 2247	ARTICLE Comparative genomics of the tardigrades Hypsibius dujardini and Ramazzottius varieornatus. PLoS Biology, 2017, 15, e2002266.	IF 2.6	CITATIONS
2248	The combinatorial control of alternative splicing in C. elegans. PLoS Genetics, 2017, 13, e1007033.	1.5	10
2249	The rise and fall of basal bodies in the nematode Caenorhabditis elegans. Cilia, 2017, 6, 9.	1.8	7
2250	Sexual Dimorphisms in the Nervous System of the Nematode Caenorhabditis elegans. , 2017, , 149-159.		1
2251	Nonmammalian Animal Models of Spinal Muscular Atrophy. , 2017, , 221-239.		11
2252	The trickiest family tree in biology. Nature, 2017, 547, 20-22.	13.7	9
2253	Robo and Ror function in a common receptor complex to regulate Wnt-mediated neurite outgrowth in <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2254-E2263.	3.3	14
2254	Zic Genes in Nematodes: A Role in Nervous System Development and Wnt Signaling. Advances in Experimental Medicine and Biology, 2018, 1046, 59-68.	0.8	2
2255	Sexual Dimorphism and Sex Differences in <i>Caenorhabditis elegans</i> Neuronal Development and Behavior. Genetics, 2018, 208, 909-935.	1.2	66
2257	Trans-/multi-generational effects of deoxynivalenol on Caenorhabditis elegans. Chemosphere, 2018, 201, 41-49.	4.2	17
2258	Establishment of Signaling Interactions with Cellular Resolution for Every Cell Cycle of Embryogenesis. Genetics, 2018, 209, 37-49.	1.2	19
2259	ZYG-1 promotes limited centriole amplification in the C. elegans seam lineage. Developmental Biology, 2018, 434, 221-230.	0.9	5
2260	Long-term <i>C. elegans</i> immobilization enables high resolution developmental studies <i>in vivo</i> . Lab on A Chip, 2018, 18, 1359-1368.	3.1	30
2261	Quantitating transcription factor redundancy: The relative roles of the ELT-2 and ELT-7 GATA factors in the C. elegans endoderm. Developmental Biology, 2018, 435, 150-161.	0.9	23
2262	Systems biology of embryonic development: Prospects for a complete understanding of the <scp><i>Caenorhabditis elegans</i></scp> embryo. Wiley Interdisciplinary Reviews: Developmental Biology, 2018, 7, e314.	5.9	7
2263	A Tree of Trees: Using Campus Tree Diversity to Integrate Molecular, Organismal, and Evolutionary Biology. American Biology Teacher, 2018, 80, 144-151.	0.1	0
2264	Disease Gene Identification. Methods in Molecular Biology, 2018, , .	0.4	2
2265	What Can We Learn About Human Disease from the Nematode C. elegans?. Methods in Molecular Biology, 2018, 1706, 53-75.	0.4	66

#	Article	IF	CITATIONS
2266	Chromosomes and Chromatin in the Nematode Nucleus. , 2018, , 533-556.		0
2267	An Expanded Role for the RFX Transcription Factor DAF-19, with Dual Functions in Ciliated and Nonciliated Neurons. Genetics, 2018, 208, 1083-1097.	1.2	11
2268	AceTree: a major update and case study in the long term maintenance of open-source scientific software. BMC Bioinformatics, 2018, 19, 121.	1.2	23
2269	Chromosomal barcoding as a tool for multiplexed phenotypic characterization of laboratory evolved lineages. Scientific Reports, 2018, 8, 6961.	1.6	18
2270	Tissue-Specific Functions of <i>fem-2</i> /PP2c Phosphatase and <i>fhod-1</i> /formin During <i>Caenorhabditis elegans</i> Embryonic Morphogenesis. G3: Genes, Genomes, Genetics, 2018, 8, 2277-2290.	0.8	5
2271	Integrated Microfluidic Device for Drug Studies of Early <i>C. Elegans</i> Embryogenesis. Advanced Science, 2018, 5, 1700751.	5.6	12
2272	Deep reinforcement learning of cell movement in the early stage of <i>C.elegans</i> embryogenesis. Bioinformatics, 2018, 34, 3169-3177.	1.8	22
2273	A <i>Caenorhabditis elegans</i> Zinc Finger Transcription Factor, <i>ztf-6</i> , Required for the Specification of a Dopamine Neuron-Producing Lineage. G3: Genes, Genomes, Genetics, 2018, 8, 17-26.	0.8	7
2274	Morphology and Physiology of the Ascidian Nervous Systems and the Effectors. Advances in Experimental Medicine and Biology, 2018, 1029, 179-196.	0.8	14
2276	Building stereotypic connectivity: mechanistic insights into structural plasticity from C. elegans. Current Opinion in Neurobiology, 2018, 48, 97-105.	2.0	12
2277	Neural lineage tracing in the mammalian brain. Current Opinion in Neurobiology, 2018, 50, 7-16.	2.0	33
2278	Beyond the response—High throughput behavioral analyses to link genome to phenome in <scp><i>Caenorhabditis elegans</i></scp> . Genes, Brain and Behavior, 2018, 17, e12437.	1.1	21
2279	Maternal effects of microRNAs in early embryogenesis. RNA Biology, 2018, 15, 165-169.	1.5	15
2280	Decoding Sex Differences in the Brain, One Worm at a Time. , 2018, 2, 76-80.	0.8	1
2281	Automated Tracking System for Time Lapse Observation of C. elegans. , 2018, , .		4
2282	Neuroglia inC. elegans. Colloquium Series on Neuroglia in Biology and Medicine From Physiology To Disease, 2018, 5, i-56.	0.5	0
2283	A Pipeline for Volume Electron Microscopy of the Caenorhabditis elegans Nervous System. Frontiers in Neural Circuits, 2018, 12, 94.	1.4	33
2284	The folic acid metabolism gene mel-32/Shmt is required for normal cell cycle lengths in Caenorhabditis elegans. International Journal of Developmental Biology, 2018, 62, 641-645.	0.3	2

#	Article	IF	CITATIONS
2285	Buffering and Amplifying Transcriptional Noise During Cell Fate Specification. Frontiers in Genetics, 2018, 9, 591.	1.1	68
2286	C. elegans and its bacterial diet: An interspecies model to explore the effects of microbiota on drug response. Drug Discovery Today: Disease Models, 2018, 28, 21-26.	1.2	5
2289	G Proteins and GPCRs in C. elegans Development: A Story of Mutual Infidelity. Journal of Developmental Biology, 2018, 6, 28.	0.9	3
2290	The nematode Caenorhabditis elegans as a model for aging research. Drug Discovery Today: Disease Models, 2018, 27, 3-13.	1.2	38
2291	The Bermuda Triangle: The Pragmatics, Policies, and Principles for Data Sharing in the History of the Human Genome Project. Journal of the History of Biology, 2018, 51, 693-805.	0.2	42
2293	Distinct functional roles of Vps41-mediated neuroprotection in Alzheimer's and Parkinson's disease models of neurodegeneration. Human Molecular Genetics, 2018, 27, 4176-4193.	1.4	16
2294	The emergent connectome in Caenorhabditis elegans embryogenesis. BioSystems, 2018, 173, 247-255.	0.9	13
2295	Dynein links engulfment and execution of apoptosis via CED-4/Apaf1 in C. elegans. Cell Death and Disease, 2018, 9, 1012.	2.7	10
2297	Cell differentiation processes as spatial networks: Identifying four-dimensional structure in embryogenesis. BioSystems, 2018, 173, 235-246.	0.9	8
2298	From "the Worm―to "the Worms―and Back Again: The Evolutionary Developmental Biology of Nematodes. Genetics, 2018, 210, 397-433.	1.2	44
2299	Cell Polarity and Asymmetric Cell Division by the Wnt Morphogen. , 2018, , 61-102.		4
2300	The Caenorhabditis elegans gene ham-1 regulates daughter cell size asymmetry primarily in divisions that produce a small anterior daughter cell. PLoS ONE, 2018, 13, e0195855.	1.1	5
2301	CRISPR-Cas9 human gene replacement and phenomic characterization in <i>Caenorhabditis elegans</i> to understand the functional conservation of human genes and decipher variants of uncertain significance. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	38
2302	I Spy in the Developing Fly a Multitude of Ways to Die. Journal of Developmental Biology, 2018, 6, 26.	0.9	12
2303	Embryo timelapses can be compiled and quantified to understand canonical histone dynamics across multiple cell cycles. Cytoskeleton, 2018, 75, 522-530.	1.0	0
2304	Illumination of neural development by inÂvivo clonal analysis. Cell Regeneration, 2018, 7, 33-39.	1.1	4
2305	An Apoptotic and Endosymbiotic Explanation of the Warburg and the Inverse Warburg Hypotheses. International Journal of Molecular Sciences, 2018, 19, 3100.	1.8	7
2306	FPGA Implementation for the Linking of Cell Tracks Using New Structure Algorithm. , 2018, , .		0

#	Article	IF	CITATIONS
2308	<i>Caenorhabditis elegans ced-3</i> Caspase Is Required for Asymmetric Divisions That Generate Cells Programmed To Die. Genetics, 2018, 210, 983-998.	1.2	19
2309	Wound healing, cellular regeneration and plasticity: the elegans way. International Journal of Developmental Biology, 2018, 62, 491-505.	0.3	11
2310	Emerging applications for DNA writers and molecular recorders. Science, 2018, 361, 870-875.	6.0	80
2311	C.Âelegans Blastomeres Clear the Corpse of the Second Polar Body by LC3-Associated Phagocytosis. Cell Reports, 2018, 23, 2070-2082.	2.9	33
2312	Regulation of chromatin states and gene expression during HSN neuronal maturation is mediated by EOR-1/PLZF, MAU-2/cohesin loader, and SWI/SNF complex. Scientific Reports, 2018, 8, 7942.	1.6	5
2313	Microtubule Dynamics Scale with Cell Size to Set Spindle Length and Assembly Timing. Developmental Cell, 2018, 45, 496-511.e6.	3.1	76
2314	Regeneration of the germline in the annelid Capitella teleta. Developmental Biology, 2018, 440, 74-87.	0.9	16
2315	Multi-view light-sheet imaging and tracking with the MaMuT software reveals the cell lineage of a direct developing arthropod limb. ELife, 2018, 7, .	2.8	134
2317	Notch signaling in the division of germ layers in bilaterian embryos. Mechanisms of Development, 2018, 154, 122-144.	1.7	15
2318	Spindle assembly checkpoint strength is linked to cell fate in the <i>Caenorhabditis elegans</i> embryo. Molecular Biology of the Cell, 2018, 29, 1435-1448.	0.9	21
2319	Targeted Genome Editing Techniques in C. elegans and Other Nematode Species. , 0, , 3-21.		0
2320	The Making of Hematopoiesis: Developmental Ancestry and Environmental Nurture. International Journal of Molecular Sciences, 2018, 19, 2122.	1.8	9
2321	Tissue-specific degradation of essential centrosome components reveals distinct microtubule populations at microtubule organizing centers. PLoS Biology, 2018, 16, e2005189.	2.6	63
2322	Dramatic evolution of body length due to postembryonic changes in cell size in a newly discovered close relative of <i>Caenorhabditis elegans</i> . Evolution Letters, 2018, 2, 427-441.	1.6	13
2323	Combinatorial Contact Cues Specify Cell Division Orientation by Directing Cortical Myosin Flows. Developmental Cell, 2018, 46, 257-270.e5.	3.1	71
2324	The Use of Caenorhabditis elegans to Study Progranulin in the Regulation of Programmed Cell Death and Stress Response. Methods in Molecular Biology, 2018, 1806, 193-206.	0.4	0
2325	Unconventional function of an Achaete-Scute homolog as a terminal selector of nociceptive neuron identity. PLoS Biology, 2018, 16, e2004979.	2.6	29
2326	A transcription factor collective defines the HSN serotonergic neuron regulatory landscape. ELife, 2018, 7, .	2.8	46

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
2327	The Microbial Zoo in the C. elegans Intestine: Bacteria, Fungi and Viruses. Viruses, 201	8, 10, 85.	1.5	34
2328	C. elegans—An Emerging Model to Study Metal-Induced RAGE-Related Pathologies. Ir Journal of Environmental Research and Public Health, 2018, 15, 1407.	nternational	1.2	6
2329	Binucleate germ cells in Caenorhabditis elegans are removed by physiological apoptosi Genetics, 2018, 14, e1007417.	s. PLoS	1.5	45
2330	Efficient proximity labeling in living cells and organisms with TurboID. Nature Biotechn 36, 880-887.	ology, 2018,	9.4	1,103
2331	"Programmed Cell Death: A Process of Death for Survival―– How Far Terminolo Death in Unicellular Organisms. Journal of Cell Death, 2018, 11, 117906601879025.	gy Pertinent for Cell	0.8	15
2332	<i>Caenorhabditis elegans</i> as an emerging model system in environmental epigene Environmental and Molecular Mutagenesis, 2018, 59, 560-575.	tics.	0.9	39
2333	The LINC Complex. Methods in Molecular Biology, 2018, , .		0.4	0
2334	Genetic Analysis of Nuclear Migration and Anchorage to Study LINC Complexes During Caenorhabditis elegans. Methods in Molecular Biology, 2018, 1840, 163-180.	Development of	0.4	18
2335	The small GTPase RAB-35 defines a third pathway that is required for the recognition a of apoptotic cells. PLoS Genetics, 2018, 14, e1007558.	nd degradation	1.5	22
2336	Role of tyramine in calcium dynamics of GABAergic neurons and escape behavior in Ca elegans. Zoological Letters, 2018, 4, 19.	enorhabditis	0.7	14
2337	The CeNGEN Project: The Complete Gene Expression Map of an Entire Nervous System 430-433.	. Neuron, 2018, 99,	3.8	85
2338	Developmental barcoding of whole mouse via homing CRISPR. Science, 2018, 361, .		6.0	263
2339	Evolution of the bilaterian mouth and anus. Nature Ecology and Evolution, 2018, 2, 13	58-1376.	3.4	37
2340	Teratology Study Guidelines: An Overview. Methods in Molecular Biology, 2018, 1797,	33-59.	0.4	2
2341	Biological Concerns on the Selection of Animal Models for Teratogenic Testing. Metho Molecular Biology, 2018, 1797, 61-93.	ds in	0.4	2
2342	Nutritional Control of the Germline Development in Caenorhabditis elegans. Diversity a Commonality in Animals, 2018, , 69-101.	and	0.7	2
2343	Glutamatergic nervous system degeneration in a C. elegans TauA152T tauopathy mod pathways of excitotoxicity and Ca2+ dysregulation. Neurobiology of Disease, 2018, 11		2.1	17
2344	Hub connectivity, neuronal diversity, and gene expression in the Caenorhabditis elegar PLoS Computational Biology, 2018, 14, e1005989.	is connectome.	1.5	56

#	Article	IF	CITATIONS
2345	Teratogenicity Testing. Methods in Molecular Biology, 2018, , .	0.4	1
2346	A C. elegans Model for the Study of RAGE-Related Neurodegeneration. Neurotoxicity Research, 2019, 35, 19-28.	1.3	3
2347	Analysis of Cell Fate Commitment in <i>Xenopus</i> Embryos. Cold Spring Harbor Protocols, 2019, 2019, pdb.top097246.	0.2	3
2348	Development of the Nervous System of Invertebrates. , 0, , 71-122.		3
2349	Genetics of Behavior in <i>C. elegans</i> . , 0, , 151-170.		6
2350	Isolation of Specific Neuron Populations from Roundworm Caenorhabditis elegans . Journal of Visualized Experiments, 2019, , .	0.2	2
2351	Molecular evolution across developmental time reveals rapid divergence in early embryogenesis. Evolution Letters, 2019, 3, 359-373.	1.6	16
2352	The differentiation code. BioSystems, 2019, 184, 104013.	0.9	14
2353	A cell-size threshold limits cell polarity and asymmetric division potential. Nature Physics, 2019, 15, 1078-1085.	6.5	41
2354	Somatic Mutation and Evolution in Plants. Annual Review of Ecology, Evolution, and Systematics, 2019, 50, 49-73.	3.8	71
2355	Somatic Niche Cells Regulate the CEP-1/p53-Mediated DNA Damage Response in Primordial Germ Cells. Developmental Cell, 2019, 50, 167-183.e8.	3.1	33
2356	Repressive Gene Regulation Synchronizes Development with Cellular Metabolism. Cell, 2019, 178, 980-992.e17.	13.5	24
2357	The evolving concept of cell identity in the single cell era. Development (Cambridge), 2019, 146, .	1.2	115
2358	Recording development with single cell dynamic lineage tracing. Development (Cambridge), 2019, 146, .	1.2	115
2359	A periodic table of cell types. Development (Cambridge), 2019, 146, .	1.2	54
2360	The nucleoside diphosphate kinase NDKâ€1/NME1 promotes phagocytosis in concert with DYNâ€1/Dynamin. FASEB Journal, 2019, 33, 11606-11614.	0.2	8
2361	Cell polarity–dependent centrosome separation in the C. elegans embryo. Journal of Cell Biology, 2019, 218, 4112-4126.	2.3	6
2362	Developmental Plasticity and Cellular Reprogramming in <i>CaenorhabditisÂelegans</i> . Genetics, 2019, 213, 723-757.	1.2	26

# 2363	ARTICLE Building a worm: Complete development one cell at a time. Developmental Biology, 2019, 455, 113-361.	IF 0.9	CITATIONS
2364	Unravelling cellular relationships during development and regeneration using genetic lineage tracing. Nature Reviews Molecular Cell Biology, 2019, 20, 753-765.	16.1	124
2365	Repression of an activity-dependent autocrine insulin signal is required for sensory neuron development in <i>C. elegans</i> . Development (Cambridge), 2019, 146, .	1.2	12
2366	Gene Cascade Finder: A tool for identification of gene cascades and its application in Caenorhabditis elegans. PLoS ONE, 2019, 14, e0215187.	1.1	5
2367	From spiral cleavage to bilateral symmetry: the developmental cell lineage of the annelid brain. BMC Biology, 2019, 17, 81.	1.7	14
2368	Identification of Specific Genes and Pathways by a Comparative Transcriptomic Study of Hypodermal and Body Muscle Development. Russian Journal of Developmental Biology, 2019, 50, 154-163.	0.1	0
2369	Metabolic regulation of lifespan from a C. elegans perspective. Genes and Nutrition, 2019, 14, 25.	1.2	41
2370	A lineage-resolved molecular atlas of <i>C. elegans</i> embryogenesis at single-cell resolution. Science, 2019, 365, .	6.0	354
2371	Gene silencing by double-stranded RNA from C. elegans neurons reveals functional mosaicism of RNA interference. Nucleic Acids Research, 2019, 47, 10059-10071.	6.5	4
2372	Biomarkers of Human Aging. Healthy Ageing and Longevity, 2019, , .	0.2	11
2373	Partially overlapping guidance pathways focus the activity of UNC-40/DCC along the anteroposterior axis of polarizing neuroblasts. Development (Cambridge), 2019, 146, .	1.2	11
2374	CED-4 CARD domain residues can modulate non-apoptotic neuronal regeneration functions independently from apoptosis. Scientific Reports, 2019, 9, 13315.	1.6	6
2375	A network of nuclear envelope proteins and cytoskeletal force generators mediates movements of and within nuclei throughout <i>Caenorhabditis elegans</i> development. Experimental Biology and Medicine, 2019, 244, 1323-1332.	1.1	19
2376	Worming into the Uncharacterized Human Proteome. Journal of Proteome Research, 2019, 18, 4143-4153.	1.8	7
2377	Bx-daf-22 Contributes to Mate Attraction in the Gonochoristic Nematode Bursaphelenchus xylophilus. International Journal of Molecular Sciences, 2019, 20, 4316.	1.8	3
2378	Distinct functions and temporal regulation of methylated histone H3 during early embryogenesis. Development (Cambridge), 2019, 146, .	1.2	13
2379	Morphogenesis of neurons and glia within an epithelium. Development (Cambridge), 2019, 146, .	1.2	40
2380	Cell typeâ€specific structural plasticity of the ciliary transition zone in <i>C. elegans</i> . Biology of the Cell, 2019, 111, 95-107.	0.7	21

#	Article	IF	CITATIONS
2381	The <i>C. elegans</i> embryonic transcriptome with tissue, time, and alternative splicing resolution. Genome Research, 2019, 29, 1036-1045.	2.4	22
2382	DNA barcodes evolve for high-resolution cell lineage tracing. Current Opinion in Chemical Biology, 2019, 52, 63-71.	2.8	20
2383	Digging deeper: methodologies for high-content phenotyping in Caenorhabditis elegans. Lab Animal, 2019, 48, 207-216.	0.2	1
2384	Novel <i>exc</i> Genes Involved in Formation of the Tubular Excretory Canals of <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2019, 9, 1339-1353.	0.8	6
2385	The amino acid transporter SLC-36.1 cooperates with PtdIns3P 5-kinase to control phagocytic lysosome reformation. Journal of Cell Biology, 2019, 218, 2619-2637.	2.3	18
2386	Isotropic Light-Sheet Microscopy and Automated Cell Lineage Analyses to Catalogue Caenorhabditis elegans Embryogenesis with Subcellular Resolution. Journal of Visualized Experiments, 2019, , .	0.2	17
2387	Developmental Timing: Honey, I Reprogrammed the Kids. Current Biology, 2019, 29, R420-R422.	1.8	1
2388	mRNA profiling reveals significant transcriptional differences between a multipotent progenitor and its differentiated sister. BMC Genomics, 2019, 20, 427.	1.2	10
2389	Heterogeneity of primordial germ cells. Current Topics in Developmental Biology, 2019, 135, 155-201.	1.0	13
2390	Sample path properties of the average generation of a Bellman–Harris process. Journal of Mathematical Biology, 2019, 79, 673-704.	0.8	3
2391	Active chromatin marks drive spatial sequestration of heterochromatin in C. elegans nuclei. Nature, 2019, 569, 734-739.	13.7	97
2392	The C. elegans intestine: organogenesis, digestion, and physiology. Cell and Tissue Research, 2019, 377, 383-396.	1.5	41
2393	Molecular recording of mammalian embryogenesis. Nature, 2019, 570, 77-82.	13.7	257
2394	Asymmetric division events promote variability in cell cycle duration in animal cells and Escherichia coli. Nature Communications, 2019, 10, 1901.	5.8	6
2395	Novel Technological Advances in Functional Connectomics in C. elegans. Journal of Developmental Biology, 2019, 7, 8.	0.9	16
2396	Lineage context switches the function of a C. elegans Pax6 homolog in determining a neuronal fate. Development (Cambridge), 2019, 146, .	1.2	13
2397	Cell Non-autonomous Function of daf-18/PTEN in the Somatic Gonad Coordinates Somatic Gonad and Germline Development in C.Âelegans Dauer Larvae. Current Biology, 2019, 29, 1064-1072.e8.	1.8	21
2398	The glutathione system and the related thiol network in Caenorhabditis elegans. Redox Biology, 2019, 24, 101171.	3.9	62

ARTICLE IF CITATIONS # Glia-Neuron Interactions in <i>Caenorhabditis elegans</i>. Annual Review of Neuroscience, 2019, 42, 2399 5.0 55 149-168. A high-content imaging approach to profile <i>C. elegans</i> embryonic development. Development 2400 1.2 9 (Cambridge), 2019, 146, 1 Disruption of mitochondrial dynamics affects behaviour and lifespan in Caenorhabditis elegans. 2401 2.4 70 Cellular and Molecular Life Sciences, 2019, 76, 1967-1985. Multiple Pathways Act Together To Establish Asymmetry of the Ventral Nerve Cord in Caenorhabditis 2402 1.2 elegans. Genetics, 2019, 211, 1331-1343. The Stem Cell Niche. , 2019, , 43-65. 2403 0 The Kinetochore-Microtubule Coupling Machinery Is Repurposed in Sensory Nervous System Morphogenesis. Developmental Cell, 2019, 48, 864-872.e7. 2404 3.1 Mechanisms of Spindle Positioning: Lessons from Worms and Mammalian Cells. Biomolecules, 2019, 9, 2405 1.8 39 80 Developmental Control of the Cell Cycle: Insights from <i>Caenorhabditis elegans</i>. Genetics, 2019, 2406 1.2 211, 797-829. Transcriptional regulation of metabolic flux: A Caenorhabditis elegans perspective. Current Opinion 2407 1.3 9 in Systems Biology, 2019, 15, 12-18. 3DMMS: robust 3D Membrane Morphological Segmentation of C. elegans embryo. BMC Bioinformatics, 2408 1.2 2019, 20, 176. How cells fuse. Journal of Cell Biology, 2019, 218, 1436-1451. 2409 133 2.3 The Role of Photon Statistics in Visual Perception. Springer Series in Optical Sciences, 2019, , 207-237. 2410 0.5 Maternal Ribosomes Are Sufficient for Tissue Diversification during Embryonic Development in 2411 3.1 32 C.Âelegans. Developmental Cell, 2019, 48, 811-826.e6. Assessment and Maintenance of Unigametic Germline Inheritance for C.Âelegans. Developmental Cell, 2412 3.1 2019, 48, 827-839.e9. Sensory neuron lineage mapping and manipulation in the Drosophila olfactory system. Nature 2413 30 5.8Communications, 2019, 10, 643. <i>ATML1</i> activity is restricted to the outermost cells of the embryo through post-transcriptional 2414 1.2 24 repressions. Development (Cambridge), 2019, 146, . Maps of variability in cell lineage trees. PLoS Computational Biology, 2019, 15, e1006745. 2415 1.59 Tiny Models to Answer Big Questions: The Worm and the Yeast as Tools in Human Genetics Research., 2416 2019, , 49-68.

IF

ARTICLE

2417 Neural Induction. , 2019, , 1-26.

CITATIONS

2417	Neural Induction. , 2019, , 1-26.		0
2418	Generation of Neural Diversity. , 2019, , 85-117.		0
2419	Cells nibble one another via the under-appreciated process of trogocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17608-17610.	3.3	48
2420	A Semi-high-throughput Imaging Method and Data Visualization Toolkit to Analyze C. elegans Embryonic Development. Journal of Visualized Experiments, 2019, , .	0.2	0
2421	Exploratory analysis of transposable elements expression in the C. elegans early embryo. BMC Bioinformatics, 2019, 20, 484.	1.2	17
2422	Aurora B functions at the apical surface after specialized cytokinesis during morphogenesis in <i>C. elegans</i> . Development (Cambridge), 2020, 147, .	1.2	18
2423	Biology of the <i>Caenorhabditis elegans</i> Germline Stem Cell System. Genetics, 2019, 213, 1145-1188.	1.2	94
2424	Autophagy mediates phosphatidylserine exposure and phagosome degradation during apoptosis through specific functions of GABARAP/LGG-1 and LC3/LGG-2. Autophagy, 2019, 15, 228-241.	4.3	16
2425	Lateral neural borders as precursors of peripheral nervous systems: A comparative view across bilaterians. Development Growth and Differentiation, 2019, 61, 58-72.	0.6	11
2426	Twenty million years of evolution: The embryogenesis of four Caenorhabditis species are indistinguishable despite extensive genome divergence. Developmental Biology, 2019, 447, 182-199.	0.9	20
2427	Was the ancestral panarthropod mouth ventral or terminal?. Arthropod Structure and Development, 2019, 49, 152-154.	0.8	2
2428	Systems Properties and Spatiotemporal Regulation of Cell Position Variability during Embryogenesis. Cell Reports, 2019, 26, 313-321.e7.	2.9	23
2429	Nonassociative Learning in Invertebrates. , 0, , 513-536.		1
2430	Using Microinjection to Generate Genetically Modified Caenorhabditis elegans by CRISPR/Cas9 Editing. Methods in Molecular Biology, 2019, 1874, 431-457.	0.4	10
2431	Highâ€Throughput Analysis of Behavior Under the Control of Optogenetics in <i>Caenorhabditis elegans</i> . Current Protocols in Neuroscience, 2019, 86, e57.	2.6	7
2432	Disassembly of dying cells in diverse organisms. Cellular and Molecular Life Sciences, 2019, 76, 245-257.	2.4	7
2433	Light-microscopy methods in C. elegans research. Current Opinion in Systems Biology, 2019, 13, 82-92.	1.3	16
2434	New Breeding Techniques: Detection and Identification of the Techniques andÂDerived Products. , 2019,		3

#	Article	IF	CITATIONS
2435	Formation of longitudinal axon pathways in Caenorhabditis elegans. Seminars in Cell and Developmental Biology, 2019, 85, 60-70.	2.3	6
2436	Electrophysiological Measures of Aging Pharynx Function in C. elegans Reveal Enhanced Organ Functionality in Older, Long-lived Mutants. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 1173-1179.	1.7	11
2437	Why and how the nematode's early embryogenesis can be precise and robust: a mechanical perspective. Physical Biology, 2020, 17, 026001.	0.8	9
2438	Zinc transporters maintain longevity by influencing insulin/IGFâ€1 activity in <i>CaenorhabditisÂelegans</i> . FEBS Letters, 2020, 594, 1424-1432.	1.3	7
2439	Meta-analysis of <i>Caenorhabditis elegans</i> single-cell developmental data reveals multi-frequency oscillation in gene activation. Bioinformatics, 2020, 36, 4047-4057.	1.8	6
2440	H3K27me3 suppresses sister-lineage somatic gene expression in late embryonic germline cells of the ascidian, Halocynthia roretzi. Developmental Biology, 2020, 460, 200-214.	0.9	0
2441	The contribution of multicellular model organisms to neuronal ceroid lipofuscinosis research. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165614.	1.8	22
2442	Zebrafish as a Model for Revealing the Neuronal Basis of Behavior. , 2020, , 593-617.		7
2443	Genetic Tools to Study Cardiovascular Biology. Frontiers in Physiology, 2020, 11, 1084.	1.3	6
2444	How to build a larval body with less than a hundred cells? Insights from the early development of a stalked jellyfish (Staurozoa, Cnidaria). Organisms Diversity and Evolution, 2020, 20, 681-699.	0.7	2
2445	Alignment of Cell Lineage Trees Elucidates Genetic Programs for the Development and Evolution of Cell Types. IScience, 2020, 23, 101273.	1.9	23
2446	Combinatorial Action of Temporally Segregated Transcription Factors. Developmental Cell, 2020, 55, 483-499.e7.	3.1	36
2447	Regulatory systems that mediate the effects of temperature on the lifespan of <i>Caenorhabditis elegans</i> . Journal of Neurogenetics, 2020, 34, 518-526.	0.6	13
2448	Stochasticity and determinism in cell fate decisions. Development (Cambridge), 2020, 147, .	1.2	32
2449	Evolution of Developmental GATA Factors in Nematodes. Journal of Developmental Biology, 2020, 8, 27.	0.9	8
2450	NLR-1/CASPR Anchors F-Actin to Promote Gap Junction Formation. Developmental Cell, 2020, 55, 574-587.e3.	3.1	10
2451	RhoGAP RGA-8 supports morphogenesis in <i>C. elegans</i> by polarizing epithelia. Biology Open, 2020, 9, .	0.6	2
2452	Symbiotic Origin of Apoptosis. Results and Problems in Cell Differentiation, 2020, 69, 253-280.	0.2	1

#	Article	IF	CITATIONS
2453	Emerging Roles for Chromo Domain Proteins in Genome Organization and Cell Fate in C. elegans. Frontiers in Cell and Developmental Biology, 2020, 8, 590195.	1.8	7
2454	Caenorhabditis elegans as a model organism for protein homeostasis diseases. , 2020, , 41-69.		Ο
2455	The contribution of <i>C. elegans</i> neurogenetics to understanding neurodegenerative diseases. Journal of Neurogenetics, 2020, 34, 527-548.	0.6	21
2456	Regulation of Gliogenesis by <i>lin-32</i> /Atoh1 in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2020, 10, 3271-3278.	0.8	13
2457	Following the fate of cells in vivo. Lab Animal, 2020, 49, 214-217.	0.2	0
2458	RIOK-2 protein is essential for egg hatching in a common parasitic nematode. International Journal for Parasitology, 2020, 50, 595-602.	1.3	4
2459	Phenotypic Screening in C. elegans as a Tool for the Discovery of New Geroprotective Drugs. Pharmaceuticals, 2020, 13, 164.	1.7	18
2460	Cell death in animal development. Development (Cambridge), 2020, 147, .	1.2	23
2461	Single-cell RNA profiling links ncRNAs to spatiotemporal gene expression during C. elegans embryogenesis. Scientific Reports, 2020, 10, 18863.	1.6	2
2462	Sydney Brenner. 13 January 1927—5 April 2019. Biographical Memoirs of Fellows of the Royal Society, 2020, 69, 79-108.	0.1	2
2463	Why isn't sex optional? Stem-cell competition, loss of regenerative capacity, and cancer in metazoan evolution. Communicative and Integrative Biology, 2020, 13, 170-183.	0.6	8
2464	Diversity of activator of G-protein signaling (AGS)-family proteins and their impact on asymmetric cell division across taxa. Developmental Biology, 2020, 465, 89-99.	0.9	6
2465	Light-sheet fluorescence imaging charts the gastrula origin of vascular endothelial cells in early zebrafish embryos. Cell Discovery, 2020, 6, 74.	3.1	16
2466	PhenoMIP: High-Throughput Phenotyping of Diverse <i>Caenorhabditis elegans</i> Populations via Molecular Inversion Probes. G3: Genes, Genomes, Genetics, 2020, 10, 3977-3990.	0.8	5
2467	Raising the Connectome: The Emergence of Neuronal Activity and Behavior in Caenorhabditis elegans. Frontiers in Cellular Neuroscience, 2020, 14, 524791.	1.8	9
2468	Cell intercalation in a simple epithelium. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190552.	1.8	19
2469	Fusogen-mediated neuronâ^'neuron fusion disrupts neural circuit connectivity and alters animal behavior. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 23054-23065.	3.3	11
2470	C. elegans Models to Study the Propagation of Prions and Prion-Like Proteins. Biomolecules, 2020, 10, 1188.	1.8	7

#	Article	IF	CITATIONS
2471	PIG-1 MELK-dependent phosphorylation of nonmuscle myosin II promotes apoptosis through CES-1 Snail partitioning. PLoS Genetics, 2020, 16, e1008912.	1.5	10
2472	A Series of Tubes: The C. elegans Excretory Canal Cell as a Model for Tubule Development. Journal of Developmental Biology, 2020, 8, 17.	0.9	7
2473	<i>cnd-1</i> /NeuroD1 Functions with the Homeobox Gene <i>ceh-5</i> /Vax2 and Hox Gene <i>ceh-13</i> /labial To Specify Aspects of RME and DD Neuron Fate in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2020, 10, 3071-3085.	0.8	6
2474	Identification of Novel Potential Genes Involved in Cancer by Integrated Comparative Analyses. International Journal of Molecular Sciences, 2020, 21, 9560.	1.8	2
2475	Establishment of a morphological atlas of the Caenorhabditis elegans embryo using deep-learning-based 4D segmentation. Nature Communications, 2020, 11, 6254.	5.8	45
2476	Reconstructing the multicellular structure of a developing metazoan embryo with repulsion-attraction model and cell-cell connection atlas in vivo. Journal of Physics: Conference Series, 2020, 1592, 012020.	0.3	2
2477	Amyotrophic Lateral Sclerosis: Proteins, Proteostasis, Prions, and Promises. Frontiers in Cellular Neuroscience, 2020, 14, 581907.	1.8	25
2478	A single-cell analysis of the molecular lineage of chordate embryogenesis. Science Advances, 2020, 6, .	4.7	18
2479	Opposing effects of an F-box protein and the HSP90 chaperone network on microtubule stability and neurite growth in <i>Caenorhabditis elegans</i> . Development (Cambridge), 2020, 147, .	1.2	11
2480	Endogenous CRISPR/Cas9 arrays for scalable whole-organism lineage tracing. Development (Cambridge), 2020, 147, .	1.2	12
2481	Tools and Concepts for Interrogating and Defining Cellular Identity. Cell Stem Cell, 2020, 26, 632-656.	5.2	24
2482	Biting Off What Can Be Chewed: Trogocytosis in Health, Infection, and Disease. Infection and Immunity, 2020, 88, .	1.0	51
2483	Studies of an insecticidal inhibitor of acetyl-CoA carboxylase in the nematode C. elegans. Pesticide Biochemistry and Physiology, 2020, 169, 104604.	1.6	6
2484	Single-cell lineage tracing by integrating CRISPR-Cas9 mutations with transcriptomic data. Nature Communications, 2020, 11, 3055.	5.8	41
2485	Multilevel regulation of muscle-specific transcription factor hlh-1 during Caenorhabditis elegans embryogenesis. Development Genes and Evolution, 2020, 230, 265-278.	0.4	3
2486	Game of Tissues: How the Epidermis Thrones C. elegans Shape. Journal of Developmental Biology, 2020, 8, 7.	0.9	11
2487	Inferring Causal Gene Regulatory Networks from Coupled Single-Cell Expression Dynamics Using Scribe. Cell Systems, 2020, 10, 265-274.e11.	2.9	110
2488	Neuron ID dataset facilitates neuronal annotation for whole-brain activity imaging of C. elegans. BMC Biology, 2020, 18, 30.	1.7	23

#	Article	IF	CITATIONS
2489	Lineage tracing meets single-cell omics: opportunities and challenges. Nature Reviews Genetics, 2020, 21, 410-427.	7.7	354
2490	Wnt ligands regulate the asymmetric divisions of neuronal progenitors in <i>C. elegans</i> embryos. Development (Cambridge), 2020, 147, .	1.2	12
2491	How affinity of the ELT-2 GATA factor binding to <i>cis-</i> acting regulatory sites controls <i>C. elegans</i> intestinal gene transcription. Development (Cambridge), 2020, 147, .	1.2	4
2492	Neuronal specification in <i>C. elegans</i> : combining lineage inheritance with intercellular signaling. Journal of Neurogenetics, 2020, 34, 273-281.	0.6	8
2493	Human organoids: model systems for human biology and medicine. Nature Reviews Molecular Cell Biology, 2020, 21, 571-584.	16.1	1,082
2494	Contact area–dependent cell communication and the morphological invariance of ascidian embryogenesis. Science, 2020, 369, .	6.0	89
2495	Size-Regulated Symmetry Breaking in Reaction-Diffusion Models of Developmental Transitions. Cells, 2020, 9, 1646.	1.8	4
2496	What about the males? the <i>C. elegans</i> sexually dimorphic nervous system and a CRISPR-based tool to study males in a hermaphroditic species. Journal of Neurogenetics, 2020, 34, 323-334.	0.6	7
2497	Defining endogenous barcoding sites for CRISPR/Cas9-based cell lineage tracing in zebrafish. Journal of Genetics and Genomics, 2020, 47, 85-91.	1.7	8
2498	The full-length transcriptome of <i>C. elegans</i> using direct RNA sequencing. Genome Research, 2020, 30, 299-312.	2.4	77
2499	Phylum Nematoda. , 2020, , 422-470.		1
2500	<i>Caenorhabditis elegans</i> Gastrulation: A Model for Understanding How Cells Polarize, Change Shape, and Journey Toward the Center of an Embryo. Genetics, 2020, 214, 265-277.	1.2	23
2501	Variability in β-catenin pulse dynamics in a stochastic cell fate decision in C.Âelegans. Developmental Biology, 2020, 461, 110-123.	0.9	7
2502	Single-cell transcriptional diversity is a hallmark of developmental potential. Science, 2020, 367, 405-411.	6.0	557
2503	Arsenic transformation mediated by gut microbiota affects the fecundity of Caenorhabditis elegans. Environmental Pollution, 2020, 260, 113991.	3.7	8
2504	Caenorhabditis elegans as a model system for human diseases. Current Opinion in Biotechnology, 2020, 63, 118-125.	3.3	63
2505	Biophysical principles of choanoflagellate self-organization. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1303-1311.	3.3	31
2506	Caudal-dependent cell positioning directs morphogenesis of the C.Âelegans ventral epidermis. Developmental Biology, 2020, 461, 31-42.	0.9	5

#	Article	IF	CITATIONS
2507	Evolutionary Dynamics of the SKN-1 → MED → END-1,3 Regulatory Gene Cascade in <i>Caenorhabditis</i> Endoderm Specification. G3: Genes, Genomes, Genetics, 2020, 10, 333-356.	0.8	14
2508	Inference of single-cell phylogenies from lineage tracing data using Cassiopeia. Genome Biology, 2020, 21, 92.	3.8	61
2509	<i>ngn-1</i> /neurogenin Activates Transcription of Multiple Terminal Selector Transcription Factors in the <i>Caenorhabditis elegans</i> Nervous System. G3: Genes, Genomes, Genetics, 2020, 10, 1949-1962.	0.8	9
2510	Evolution and Developmental System Drift in the Endoderm Gene Regulatory Network of Caenorhabditis and Other Nematodes. Frontiers in Cell and Developmental Biology, 2020, 8, 170.	1.8	15
2511	The role of cell lineage in the development of neuronal circuitry and function. Developmental Biology, 2021, 475, 165-180.	0.9	8
2512	Deciphering neural heterogeneity through cell lineage tracing. Cellular and Molecular Life Sciences, 2021, 78, 1971-1982.	2.4	9
2513	Zinc homeostasis and signaling in the roundworm C. elegans. Biochimica Et Biophysica Acta - Molecular Cell Research, 2021, 1868, 118882.	1.9	10
2514	The art of lineage tracing: From worm to human. Progress in Neurobiology, 2021, 199, 101966.	2.8	9
2515	Nutritional control of postembryonic development progression and arrest in Caenorhabditis elegans. Advances in Genetics, 2021, 107, 33-87.	0.8	5
2516	Stressful development: integrating endoderm development, stress, and longevity. Developmental Biology, 2021, 471, 34-48.	0.9	9
2517	Determining the effector response to cell death. Nature Reviews Immunology, 2021, 21, 292-304.	10.6	40
2518	Clonal tracking of haematopoietic cells: insights and clinical implications. British Journal of Haematology, 2021, 192, 819-831.	1.2	10
2519	Next-Generation Lineage Tracing and Fate Mapping to Interrogate Development. Developmental Cell, 2021, 56, 7-21.	3.1	69
2520	The developmental and physiological roles of phagocytosis in Caenorhabditis elegans. Current Topics in Developmental Biology, 2021, 144, 409-432.	1.0	7
2521	In vivo cell tracking with viral vector mediated genetic labeling. Journal of Neuroscience Methods, 2021, 350, 109021.	1.3	2
2522	Multi-tissue patterning drives anterior morphogenesis of the C.Âelegans embryo. Developmental Biology, 2021, 471, 49-64.	0.9	2
2523	All Creatures Great and Small: New Approaches for Understanding Down Syndrome Genetics. Trends in Genetics, 2021, 37, 444-459.	2.9	23
2524	A serpin is required for ectomesoderm, a hallmark of spiralian development. Developmental Biology, 2021, 469, 172-181.	0.9	1

#	Article	IF	CITATIONS
2525	A developmental perspective on the evolution of the nervous system. Developmental Biology, 2021, 475, 181-192.	0.9	25
2526	The small GTPase RAB-35 facilitates the initiation of phagosome maturation and acts as a robustness factor for apoptotic cell clearance. Small GTPases, 2021, 12, 188-201.	0.7	2
2527	Test of robustness of pharyngeal neural networks in Caenorhabditis elegans. NeuroReport, 2021, 32, 169-176.	0.6	2
2528	Single-cell omics analyses with single molecular detection: challenges and perspectives. Journal of Biomedical Research, 2021, 35, 264.	0.7	3
2529	The <i>C. elegans</i> Regulatory Factor X (RFX) DAF-19M Module: A Shift From General Ciliogenesis to Ciliary and Behavioral Specialization. SSRN Electronic Journal, 0, , .	0.4	0
2530	Detection of Caenorhabditis elegans Germ Following Exposure to Environmental Contaminant Mixtures: A Crude Oil-Dispersant Mixture Example. Methods in Molecular Biology, 2021, 2326, 3-18.	0.4	0
2531	Preface to the Book Series. , 2021, , xv-xvii.		0
2533	Epithelial morphogenesis, tubulogenesis and forces in organogenesis. Current Topics in Developmental Biology, 2021, 144, 161-214.	1.0	8
2534	Data-Theoretical Synthesis of the Early Developmental Process. Neuroinformatics, 2022, 20, 7-23.	1.5	4
2535	Phylodynamics for cell biologists. Science, 2021, 371, .	6.0	51
2535 2536	Phylodynamics for cell biologists. Science, 2021, 371, . On the origins and conceptual frameworks of natural plasticity—Lessons from single-cell models in C. elegans. Current Topics in Developmental Biology, 2021, 144, 111-159.	6.0 1.0	51 9
	On the origins and conceptual frameworks of natural plasticity—Lessons from single-cell models in		
2536	On the origins and conceptual frameworks of natural plasticity—Lessons from single-cell models in C. elegans. Current Topics in Developmental Biology, 2021, 144, 111-159.	1.0	9
2536 2537	 On the origins and conceptual frameworks of natural plasticityâ€"Lessons from single-cell models in C. elegans. Current Topics in Developmental Biology, 2021, 144, 111-159. C. elegans as a Potential Model for Acute Seizure-Like Activity. Neuromethods, 2021, , 233-248. Statistical image processing quantifies the changes in cytoplasmic texture associated with aging in 	1.0 0.2	9
2536 2537 2538	 On the origins and conceptual frameworks of natural plasticity—Lessons from single-cell models in C. elegans. Current Topics in Developmental Biology, 2021, 144, 111-159. C. elegans as a Potential Model for Acute Seizure-Like Activity. Neuromethods, 2021, , 233-248. Statistical image processing quantifies the changes in cytoplasmic texture associated with aging in Caenorhabditis elegans oocytes. BMC Bioinformatics, 2021, 22, 73. A multi-scale brain map derived from whole-brain volumetric reconstructions. Nature, 2021, 591, 	1.0 0.2 1.2	9 0 9
2536 2537 2538 2539	On the origins and conceptual frameworks of natural plasticityâ€"Lessons from single-cell models in C. elegans. Current Topics in Developmental Biology, 2021, 144, 111-159. C. elegans as a Potential Model for Acute Seizure-Like Activity. Neuromethods, 2021, , 233-248. Statistical image processing quantifies the changes in cytoplasmic texture associated with aging in Caenorhabditis elegans oocytes. BMC Bioinformatics, 2021, 22, 73. A multi-scale brain map derived from whole-brain volumetric reconstructions. Nature, 2021, 591, 105-110. Drug discovery: Insights from the invertebrate <i>Caenorhabditis elegans</i>	1.0 0.2 1.2 13.7	9 0 9 58
2536 2537 2538 2539 2540	On the origins and conceptual frameworks of natural plasticityâ€"Lessons from single-cell models in C. elegans. Current Topics in Developmental Biology, 2021, 144, 111-159. C. elegans as a Potential Model for Acute Seizure-Like Activity. Neuromethods, 2021, , 233-248. Statistical image processing quantifies the changes in cytoplasmic texture associated with aging in Caenorhabditis elegans oocytes. BMC Bioinformatics, 2021, 22, 73. A multi-scale brain map derived from whole-brain volumetric reconstructions. Nature, 2021, 591, 105-110. Drug discovery: Insights from the invertebrate <i>Caenorhabditis elegans Orug discovery: Insights from the invertebrate <i>Caenorhabditis elegans</i></i>	1.0 0.2 1.2 13.7 1.1	9 0 9 58 47

#	Article	IF	CITATIONS
2546	A Living Organism in your CRISPR Toolbox: <i>Caenorhabditis elegans</i> Is a Rapid and Efficient Model for Developing CRISPR-Cas Technologies. CRISPR Journal, 2021, 4, 32-42.	1.4	9
2548	Worms, Fat, and Death: Caenorhabditis elegans Lipid Metabolites Regulate Cell Death. Metabolites, 2021, 11, 125.	1.3	6
2549	Single-cell lineages reveal the rates, routes, and drivers of metastasis in cancer xenografts. Science, 2021, 371, .	6.0	166
2550	Behaviorally consequential astrocytic regulation of neural circuits. Neuron, 2021, 109, 576-596.	3.8	150
2551	<i>C. elegans</i> as a model to study glial development. FEBS Journal, 2022, 289, 1476-1485.	2.2	3
2552	<i>Caenorhabditis elegans</i> establishes germline versus soma by balancing inherited histone methylation. Development (Cambridge), 2021, 148, .	1.2	13
2553	Physically asymmetric division of the C. elegans zygote ensures invariably successful embryogenesis. ELife, 2021, 10, .	2.8	19
2554	A single-nucleotide change underlies the genetic assimilation of a plastic trait. Science Advances, 2021, 7, .	4.7	22
2555	Overlapping and non-overlapping roles of the class-I histone deacetylase-1 corepressors LET-418, SIN-3, and SPR-1 in Caenorhabditis elegans embryonic development. Genes and Genomics, 2021, 43, 553-565.	0.5	3
2558	Glia actively sculpt sensory neurons by controlled phagocytosis to tune animal behavior. ELife, 2021, 10, .	2.8	16
2560	A genetic screen for temperature-sensitive morphogenesis-defective <i>Caenorhabditis elegans</i> mutants. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	0
2561	Temporally regulated cell migration is sensitive to variation in body size. Development (Cambridge), 2021, 148, .	1.2	3
2562	Lineage barcoding in mice with homing CRISPR. Nature Protocols, 2021, 16, 2088-2108.	5.5	15
2563	Single-cell genomics to study developmental cell fate decisions in zebrafish. Briefings in Functional Genomics, 2021, , .	1.3	1
2564	Accessible chromatin reveals regulatory mechanisms underlying cell fate decisions during early embryogenesis. Scientific Reports, 2021, 11, 7896.	1.6	3
2565	Evolution, systematics, and the unnatural history of mitochondrial DNA. Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2021, 32, 126-151.	0.7	5
2566	Effector and regulator: Diverse functions of C. elegans C-type lectin-like domain proteins. PLoS Pathogens, 2021, 17, e1009454.	2.1	22
2567	The development of sex differences in the nervous system and behavior of flies, worms, and rodents. Developmental Biology, 2021, 472, 75-84.	0.9	6

#	Article	IF	CITATIONS
2568	GRDN-1/Girdin regulates dendrite morphogenesis and cilium position in two specialized sensory neuron types in C.Âelegans. Developmental Biology, 2021, 472, 38-51.	0.9	2
2570	Singleâ€cell dynamics of chromatin activity during cell lineage differentiation in <i>Caenorhabditis elegans</i> embryos. Molecular Systems Biology, 2021, 17, e10075.	3.2	5
2571	A role for the fusogen eff-1 in epidermal stem cell number robustness in Caenorhabditis elegans. Scientific Reports, 2021, 11, 9787.	1.6	0
2572	Tissue-specific regulation of epidermal contraction during Caenorhabditis elegans embryonic morphogenesis. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	1
2573	Extracellular Matrix Muscle Arm Development Defective Protein Cooperates with the One Immunoglobulin Domain Protein To Suppress Precocious Synaptic Remodeling. ACS Chemical Neuroscience, 2021, 12, 2045-2056.	1.7	2
2574	Investigating Spatio-Temporal Cellular Interactions in Embryonic Morphogenesis by 4D Nucleus Tracking and Systematic Comparative Analysis — Taking Nematodes C. Elegans and C. Briggsae as Examples. , 2021, , .		2
2575	FGF signaling acts on different levels of mesoderm development within Spiralia. Development (Cambridge), 2021, 148, .	1.2	12
2577	Deep neural net tracking of human pluripotent stem cells reveals intrinsic behaviors directing morphogenesis. Stem Cell Reports, 2021, 16, 1317-1330.	2.3	16
2579	Transparent Touch: Insights From Model Systems on Epidermal Control of Somatosensory Innervation. Frontiers in Cellular Neuroscience, 2021, 15, 680345.	1.8	7
2580	Replication stress promotes cell elimination by extrusion. Nature, 2021, 593, 591-596.	13.7	20
2582	Imaging developmental cell cycles. Biophysical Journal, 2021, 120, 4149-4161.	0.2	3
2583	CeLaVi: an interactive cell lineage visualization tool. Nucleic Acids Research, 2021, 49, W80-W85.	6.5	9
2584	BBLN-1 is essential for intermediate filament organization and apical membrane morphology. Current Biology, 2021, 31, 2334-2346.e9.	1.8	13
2585	Force-mediated cellular anisotropy and plasticity dictate the elongation dynamics of embryos. Science Advances, 2021, 7, .	4.7	11
2586	Piecemeal regulation of convergent neuronal lineages by bHLH transcription factors in <i>Caenorhabditis elegans</i> . Development (Cambridge), 2021, 148, .	1.2	11
2588	Single-cell image analysis to explore cell-to-cell heterogeneity in isogenic populations. Cell Systems, 2021, 12, 608-621.	2.9	15
2589	Methods for analyzing neuronal structure and activity in <i>Caenorhabditis elegans</i> . Genetics, 2021, 218, .	1.2	9
2590	An acentriolar centrosome at the C.Âelegans ciliary base. Current Biology, 2021, 31, 2418-2428.e8.	1.8	25

ARTICLE IF CITATIONS Evaluating DNA damage response through immunofluorescence staining of primordial germ cells in 2592 0.5 2 Caenorhabditis elegans L1 larva. STAR Protocols, 2021, 2, 100441. Cell cycle control during early embryogenesis. Development (Cambridge), 2021, 148, . 2593 1.2 The Prop1-like homeobox gene unc-42 specifies the identity of synaptically connected neurons. ELife, 2594 2.8 27 2021, 10, . Gaining an understanding of behavioral genetics through studies of foraging in <i>Drosophila</i> 2595 and learning in <i>C. elegans</i>. Journal of Neurogenetics, 2021, 35, 119-131. Cell Tracking for Organoids: Lessons From Developmental Biology. Frontiers in Cell and 2596 1.8 9 Developmental Biology, 2021, 9, 675013. Endothelial ontogeny and the establishment of vascular heterogeneity. BioEssays, 2021, 43, e2100036. 1.2 A balance between antagonizing PAR proteins specifies the pattern of asymmetric and symmetric 2598 2.9 9 divisions in C.Âelegans embryogenesis. Cell Reports, 2021, 36, 109326. Probiotics Interactions and the Modulation of Major Signalling Pathways in Host Model Organism 2599 1.5 Caenorhabditis elegans. Indian Journal of Microbiology, 2021, 61, 404-416. The CATP-8/P5A-type ATPase functions in multiple pathways during neuronal patterning. PLoS Genetics, 2600 7 1.5 2021, 17, e1009475. Machine learning methods to model multicellular complexity and tissue specificity. Nature Reviews 23.3 Materials, 2021, 6, 717-729. A 4D single-cell protein atlas of transcription factors delineates spatiotemporal patterning during 2602 9.0 40 embryogenesis. Nature Methods, 2021, 18, 893-902. Inferring temporal organization of postembryonic development from high-content behavioral 0.9 tracking. Developmental Biology, 2021, 475, 54-64. Microfluidic-based imaging of complete <i>Caenorhabditis elegans</i> larval development. 2604 1.2 19 Development (Cambridge), 2021, 148, . Septins and a formin have distinct functions in anaphase chiral cortical rotation in the <i>Caenorhabditis elegans </i>zygote. Molecular Biology of the Cell, 2021, 32, 1283-1292. Retrospective cell lineage reconstruction in humans by using short tandem repeats. Cell Reports 2606 1.4 9 Methods, 2021, 1, 100054. Application of genetic cell-lineage tracing technology to study cardiovascular diseases. Journal of Molecular and Cellular Cardiology, 2021, 156, 57-68 spheresDT/Mpacts-PiCS: cell tracking and shape retrieval in membrane-labeled embryos. Bioinformatics, 2021, 37, 4851-4856. 2608 1.8 8 Functions of the extracellular matrix in development: Lessons from Caenorhabditis elegans. Cellular 1.7 Signalling, 2021, 84, 110006.

#	Article	IF	CITATIONS
2610	Molecular topography of an entire nervous system. Cell, 2021, 184, 4329-4347.e23.	13.5	328
2611	Dissecting Organismal Morphogenesis by Bridging Genetics and Biophysics. Annual Review of Genetics, 2021, 55, 209-233.	3.2	5
2612	Proximity labeling reveals non-centrosomal microtubule-organizing center components required for microtubule growth and localization. Current Biology, 2021, 31, 3586-3600.e11.	1.8	31
2613	Conserved and Distinct Elements of Phagocytosis in Human and C. elegans. International Journal of Molecular Sciences, 2021, 22, 8934.	1.8	10
2614	LineageOT is a unified framework for lineage tracing and trajectory inference. Nature Communications, 2021, 12, 4940.	5.8	29
2615	Emergence of Caenorhabditis elegans as a Model Organism for Dissecting the Gut–Brain Axis. MSystems, 2021, 6, e0075521.	1.7	7
2616	C. elegans-based chemosensation strategy for the early detection of cancer metabolites in urine samples. Scientific Reports, 2021, 11, 17133.	1.6	22
2618	Tetris in the Nervous System: What Principles of Neuronal Tiling Can Tell Us About How Glia Play the Game. Frontiers in Cellular Neuroscience, 2021, 15, 734938.	1.8	4
2619	Clonal dynamics in early human embryogenesis inferred from somatic mutation. Nature, 2021, 597, 393-397.	13.7	70
2620	Sustained expression of unc-4 homeobox gene and unc-37/Groucho in postmitotic neurons specifies the spatial organization of the cholinergic synapses in C. elegans. ELife, 2021, 10, .	2.8	6
2622	Imaging of Actin Cytoskeleton in the Nematode Caenorhabditis elegans. Methods in Molecular Biology, 2022, 2364, 149-158.	0.4	4
2623	Lineage-specific control of convergent differentiation by a Forkhead repressor. Development (Cambridge), 2021, 148, .	1.2	9
2624	BLMP-1 promotes developmental cell death in C. elegans by timely repression of ced-9/bcl-2 transcription. Development (Cambridge), 2021, 148, .	1.2	2
2627	Current approaches to fate mapping and lineage tracing using image data. Development (Cambridge), 2021, 148, .	1.2	13
2628	Wnt Signaling Induces Asymmetric Dynamics in the Actomyosin Cortex of the C. elegans Endomesodermal Precursor Cell. Frontiers in Cell and Developmental Biology, 2021, 9, 702741.	1.8	6
2629	Hormonal Regulation of Diapause and Development in Nematodes, Insects, and Fishes. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	18
2631	The Nereid on the rise: Platynereis as a model system. EvoDevo, 2021, 12, 10.	1.3	34
2632	Profiling of sphingolipids in Caenorhabditis elegans by two-dimensional multiple heart-cut liquid chromatography – mass spectrometry. Journal of Chromatography A, 2021, 1655, 462481.	1.8	7

#	Article	IF	Citations
2633	Protein Aggregation and Disaggregation in Cells and Development. Journal of Molecular Biology, 2021, 433, 167215.	2.0	17
2634	Correlation for tree-shaped datasets and its Bayesian estimation. Computational Statistics and Data Analysis, 2021, 164, 107307.	0.7	0
2635	Local tissue interactions govern pLL patterning in medaka. Developmental Biology, 2022, 481, 1-13.	0.9	4
2636	Caenorhabditis elegans: an elegant model organism for evaluating the neuroprotective and neurotherapeutic potential of nutraceuticals. , 2021, , 411-430.		1
2637	A nervous system-specific subnuclear organelle in <i>Caenorhabditis elegans</i> . Genetics, 2021, 217, 1-17.	1.2	6
2638	Genome stability in Caenorhabditis elegans. , 2021, , 177-200.		0
2639	Cryo-fluorescence microscopy of high-pressure frozen C. elegans enables correlative FIB-SEM imaging of targeted embryonic stages in the intact worm. Methods in Cell Biology, 2021, 162, 223-252.	0.5	3
2640	Sexual and asexual development: two distinct programs producing the same tunicate. Cell Reports, 2021, 34, 108681.	2.9	25
2642	Programmed cell fusion in development and homeostasis. Current Topics in Developmental Biology, 2021, 144, 215-244.	1.0	8
2643	Programmed and self-organized flow of information during morphogenesis. Nature Reviews Molecular Cell Biology, 2021, 22, 245-265.	16.1	157
2646	Establishment of Leftâ€Right Asymmetry in Vertebrates: Genetically Distinct Steps are Involved. Novartis Foundation Symposium, 1991, 162, 202-218.	1.2	11
2647	Handed Asymmetry, Handedness Reversal and Mechanisms of Cell Fate Determination in Nematode Embryos. Novartis Foundation Symposium, 1991, 162, 143-164.	1.2	13
2649	Cell Death in the Nervous System. , 2006, 557, 1-10.		6
2650	Mechanisms of Development. , 2006, , 47-95.		2
2651	Invertebrate Models of Alcoholism. Current Topics in Behavioral Neurosciences, 2011, 13, 433-457.	0.8	19
2652	The Role of DEG/ENaC Ion Channels in Sensory Mechanotransduction. , 2007, , 3-31.		2
2653	Latrophilin Signalling in Tissue Polarity and Morphogenesis. Advances in Experimental Medicine and Biology, 2010, 706, 37-48.	0.8	3
2654	Neuronal Cell Death in C. elegans. , 1999, , 123-144.		2

#	Article	IF	CITATIONS
2655	Regulations of Programmed Cell Death by Interleukin-1β-Converting Enzyme Family of Proteases. Advances in Experimental Medicine and Biology, 1996, 389, 165-172.	0.8	6
2656	The Actin Genes in Caenorhabditis elegans. , 1986, , 151-178.		4
2657	Germ Cell Specification. Advances in Experimental Medicine and Biology, 2013, 757, 17-39.	0.8	57
2658	Genetic Analysis of Neuronal Migration in the Nematode Caenorhabditis elegans. , 1995, , 105-110.		1
2659	Determination of Pattern and Fate in Early Embryos of Caenorhabditis elegans. , 1988, 5, 57-78.		15
2660	Cell Lineage and Cell Interactions in the Determination of Developmental Cell Fates. Stadler Genetics Symposia Series, 1986, , 211-233.	0.0	3
2661	Mechanisms of Asymmetrical Development of the Human CNS. , 1992, , 99-111.		1
2662	Cloning Nematode Myosin Genes. , 1985, 6, 185-237.		19
2663	The Development of Serotonin-containing Neurons in the Leech. , 1985, , 175-190.		3
2664	Cell Lineage Studies in Avian Neural Crest Ontogeny. Advances in Experimental Medicine and Biology, 1990, 265, 53-62.	0.8	12
2665	The Caenorhabditis Elegans Genome Project. , 1994, , 3-18.		2
2666	Chemoreception in Nematodes. , 1994, , 251-260.		3
2667	Genetic Control of Programmed Cell Death in the Nematode Caenorhabditis Elegans. , 1994, , 1-13.		98
2668	Genetic Basis for Heterochronic Variation. Topics in Geobiology, 1988, , 269-285.	0.6	12
2669	Differential Plant-Parasitic Nematode Sensitivity to Acetylcholinesterase Inhibitors. , 1998, , 523-529.		1
2670	Axonal Outgrowth and Process Placement of Sensory Lumbar Neurons in the Nematode Caenorhabditis Elegans. , 1989, , 241-265.		4
2671	Automated Segmentation of the First Mitotic Spindle in Differential Interference Contrast Microcopy Images of C. elegans Embryos. Methods in Molecular Biology, 2014, 1136, 41-45.	0.4	9
2672	Caspase Protocols in Caenorhabditis elegans. Methods in Molecular Biology, 2014, 1133, 101-108.	0.4	1

		CITATION REPORT		
#	Article		IF	CITATIONS
2673	C. elegans Methods to Study PTEN. Methods in Molecular Biology, 2016, 1388, 307-32	1.	0.4	5
2674	Link of Zygotic Genome Activation and Cell Cycle Control. Methods in Molecular Biolog 11-30.	y, 2017, 1605,	0.4	16
2675	Optical Imaging of Cell Fusion and Fusion Proteins in C aenorhabditis elegans. Methods Biology, 2008, 475, 223-244.	in Molecular	0.4	1
2676	Cell Fusion in Caenorhabditis elegans. Methods in Molecular Biology, 2008, 475, 53-74.		0.4	17
2677	Detecting Apoptotic Cells and Monitoring Their Clearance in the Nematode Caenorhabo Methods in Molecular Biology, 2009, 559, 357-370.	litis elegans.	0.4	34
2678	Asymmetric Behavior in Stem Cells. , 2009, , 13-26.			3
2679	Caenorhabditis elegans as a Model Organism for Dementia. Neuromethods, 2011, , 241	253.	0.2	1
2680	Lineage Tracing of Tissue-Specific Stem Cells In Vivo. , 2011, , 135-161.			1
2681	Expression Pattern Analysis of Regulatory Transcription Factors in Caenorhabditis elega in Molecular Biology, 2012, 786, 21-50.	ns. Methods	0.4	8
2682	Analysis of Rho GTPase Function in Axon Pathfinding Using Caenorhabditis elegans. Me Molecular Biology, 2012, 827, 339-358.	thods in	0.4	4
2683	Cell Biology of the Tardigrades: Current Knowledge and Perspectives. Results and Proble Differentiation, 2019, 68, 231-249.	ems in Cell	0.2	12
2684	Oikopleura dioica: An Emergent Chordate Model to Study the Impact of Gene Loss on t the Mechanisms of Development. Results and Problems in Cell Differentiation, 2019, 68	he Evolution of 3, 63-105.	0.2	10
2685	From genome to drug $\hat{a} \in \rakepsilon$ optimising the drug discovery process. , 1999, 53, 157-191.			5
2686	Repeating patterns of motoneurons in nematodes: The origin of segmentation?. Exs, 19	95, 72, 61-75.	1.4	26
2687	Cell Polarity in One-Cell C. elegans Embryos: Ensuring an Accurate and Precise Spatial A Development. , 2015, , 3-32.	xis During		1
2688	Establishment and Maintenance of Cell Polarity in the C. elegans Intestine. , 2015, , 33-	65.		3
2689	Translational Control of Germ Cell Decisions. Results and Problems in Cell Differentiatio 175-200.	n, 2017, 59,	0.2	13
2690	Genetic Control of Sex Determination in the Germ Line of C. elegans. Results and Proble Differentiation, 1987, 15, 117-128.	ems in Cell	0.2	1

#	Article	IF	CITATIONS
2691	Embryonic Development in Caenorhabditis elegans. Results and Problems in Cell Differentiation, 1992, 18, 49-90.	0.2	3
2692	Contributions of Cell Death to Aging in C. elegans. Results and Problems in Cell Differentiation, 2000, 29, 113-129.	0.2	3
2693	Nematoda. , 1984, , 212-233.		13
2695	Cell Fate Determination in Caenorhabditis elegans. , 1999, , 251-267.		1
2696	Cell Death. Handbook of Experimental Pharmacology, 1997, , 211-244.	0.9	12
2697	Laser Ablation In Arabidopsis Roots: A Tool To Study Cell-To-Cell Communication. , 1998, , 237-250.		1
2698	The Retina-Lamina Pathway in Insects, Particularly Diptera, Viewed from an Evolutionary Perspective. , 1989, , 186-212.		23
2699	Skeletal Muscle Differentiation. , 1992, , 459-478.		7
2700	Analysis of Root Development in Arabidopsis Thaliana. , 1994, , 41-50.		12
2701	Adherens Junctions in C. elegans Embryonic Morphogenesis. Sub-Cellular Biochemistry, 2012, 60, 279-299.	1.0	32
2702	Transgenic Nematodes as Biosensors of Environmental Stress. Focus on Biotechnology, 2002, , 221-236.	0.4	1
2703	Signal molecules involved in plant embryogenesis. , 1994, , 69-77.		1
2704	Antisymmetry, directional asymmetry, and dynamic morphogenesis. Contemporary Issues in Genetics and Evolution, 1994, , 123-139.	0.9	49
2705	Lessons to learn from the cell death and heat shock genes of Caenorhabditis elegans. Acta Biologica Hungarica, 1997, 48, 303-318.	0.7	3
2706	Caenorhabditis elegans Offers the Potential for Molecular Dissection of the Aging Processes. , 1990, , 45-59.		4
2707	Specification of Neuronal Identity in Caenorhabditis elegans. , 1992, , 1-43.		6
2708	Cell Choice and Patterning in the Drosophila Retina. , 1992, , 189-224.		13
2709	Nematode C. elegans: Genetic Dissection of Pathways Regulating Seizure and Epileptic-Like Behaviors. , 2017, , 327-344.		2

#	Article	IF	CITATIONS
2710	Elegantly. , 2020, , 3-29.		7
2711	3D RECONSTRUCTION OF SPATIO-TEMPORAL SERIES OF OPTICAL PICTURES. , 1986, , 255-265.		1
2712	Invertebrate Learning. , 1998, , 177-209.		19
2713	Maternal Control of Polarity and Patterning during Embryogenesis in the Nematode Caenorhabditis elegans. , 1999, , 97-117.		5
2714	Early Events in Frog Blastomere Fate Determination. , 1999, , 297-321.		12
2715	Cell Death in C. elegans Development. Current Topics in Developmental Biology, 2015, 114, 1-42.	1.0	26
2716	Yolk proteins from nematodes, chickens, and frogs bind strongly and preferentially to left-handed Z-DNA Journal of Biological Chemistry, 1988, 263, 19066-19070.	1.6	17
2717	Mutations that prevent associative learning in C. elegans. Behavioral Neuroscience, 1997, 111, 354-68.	0.6	45
2718	«ÂMourir ou ne pas mourir» telle est la question et comment un minuscule petit ver y répondit. Medecine/Sciences, 2002, 18, 1157-1159.	0.0	1
2719	Genome-wide analysis of developmental and sex-regulated gene expression profiles in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 218-23.	3.3	146
2720	Of worms and men. Journal of Neurogenetics, 2020, 34, 255-258.	0.6	2
2721	An interphase contractile ring reshapes primordial germ cells to allow bulk cytoplasmic remodeling. Journal of Cell Biology, 2020, 219, .	2.3	11
2722	Different lineage contexts direct common pro-neural factors to specify distinct retinal cell subtypes. Journal of Cell Biology, 2020, 219, .	2.3	16
2723	Heterogeneity and â€~memory' in stem cell populations. Physical Biology, 2020, 17, 065013.	0.8	4
2724	Genomic, phylogenetic, and cell biological insights into metazoan origins. , 2009, , 24-32.		16
2725	The mouth, the anus, and the blastoporeâ \in "open questions about questionable openings. , 2009, , 33-40.		21
2726	Origins of metazoan body plans: the larval revolution. , 2009, , 43-51.		3
2727	Assembling the spiralian tree of life. , 2009, , 52-64.		32

ARTICLE IF CITATIONS The origins and evolution of the Ecdysozoa., 2009, , 71-79. 2 2728 Deciphering deuterostome phylogeny: molecular, morphological, and palaeontological perspectives., 2729 2009, , 80-92. Invertebrate Problematica: kinds, causes, and solutions., 2009, , 107-126. 2 2730 Improvement of molecular phylogenetic inference and the phylogeny of Bilateria., 2009, , 127-138. Beyond linear sequence comparisons: the use of genome-level characters for phylogenetic 2732 1 reconstruction., 2009, , 139-147. The animal in the genome: comparative genomics and evolution., 2009, , 148-156. MicroRNAs and metazoan phylogeny: big trees from little genes., 2009,, 157-170. 2734 29 Reassembling animal evolution: a four-dimensional puzzle., 2009, , 191-196. 2735 EGG-LAYING DEFECTIVE MUTANTS OF THE NEMATODE <i>CAENORHABDITIS ELEGANS</i>. Genetics, 1983, 104, 2736 1.2 722 619-647. ANALYSIS OF GENETIC MOSAICS OF THE NEMATODE <i>CAENORHABDITIS ELEGANS</i>. Genetics, 1984, 108, 1.2 165-180. IDENTIFICATION AND CHARACTERIZATION OF 22 GENES THAT AFFECT THE VULVAL CELL LINEAGES OF THE 2738 1.2 562 NEMATODE <i>CAENORHABDITIS ELEGANS</i>. Genetics, 1985, 110, 17-72. <i>C. ELEGANS unc-105</i> MUTATIONS AFFECT MUSCLE AND ARE SUPPRESSED BY OTHER MUTATIONS THAT 2739 1.2 AFFECT MUSCLE. Genetics, 1986, 113, 853-867. Mosaic Analysis of Two Genes That Affect Nervous System Structure in Caenorhabditis elegans. 2740 1.2 49 Genetics, 1987, 116, 377-388. Assessment of <i>X</i> Chromosome Dosage Compensation in <i> Caenorhabditis elegans</i> by Phenotypic Analysis of <i>lin-14</i>. Genetics, 1987, 117, 657-670. 2741 1.2 A novel dominant transformer allele of the sex-determining gene her-1 of Caenorhabditis elegans.. 2742 1.2 65 Genetics, 1988, 120, 145-157. Caenorhabditis elegans mutants defective in the functioning of the motor neurons responsible for 2743 1.2 egg laying.. Genetics, 1989, 121, 703-721. The multivulva phenotype of certain Caenorhabditis elegans mutants results from defects in two 2744 1.2 255 functionally redundant pathways.. Genetics, 1989, 123, 109-121. A genetic mosaic screen of essential zygotic genes in Caenorhabditis elegans.. Genetics, 1991, 128, 1.2 281-292.

#	Article	IF	CITATIONS
2746	Genes required for the engulfment of cell corpses during programmed cell death in Caenorhabditis elegans Genetics, 1991, 129, 79-94.	1.2	406
2747	Genetic analysis of a major segment [LGV(left)] of the genome of Caenorhabditis elegans Genetics, 1991, 129, 735-752.	1.2	82
2748	Genetic studies of mei-1 gene activity during the transition from meiosis to mitosis in Caenorhabditis elegans Genetics, 1993, 134, 199-210.	1.2	45
2749	Suppressors of glp-1, a gene required for cell communication during development in Caenorhabditis elegans, define a set of interacting genes Genetics, 1993, 135, 1011-1022.	1.2	34
2750	A screen for genetic loci required for body-wall muscle development during embryogenesis in Caenorhabditis elegans Genetics, 1994, 137, 483-498.	1.2	50
2751	Effects of chromosomal deficiencies on early cleavage patterning and terminal phenotype in Caenorhabditis elegans embryos Genetics, 1994, 137, 499-508.	1.2	22
2752	Selective lineage specification by mab-19 during Caenorhabditis elegans male peripheral sense organ development Genetics, 1994, 138, 675-688.	1.2	11
2753	Mutations affecting the chemosensory neurons of Caenorhabditis elegans Genetics, 1995, 139, 171-188.	1.2	242
2754	Control of cleavage spindle orientation in Caenorhabditis elegans: the role of the genes par-2 and par-3 Genetics, 1995, 139, 549-559.	1.2	124
2755	The fog-3 gene and regulation of cell fate in the germ line of Caenorhabditis elegans Genetics, 1995, 139, 561-577.	1.2	120
2756	The ornithine decarboxylase gene of Caenorhabditis elegans: cloning, mapping and mutagenesis Genetics, 1995, 140, 517-525.	1.2	21
2757	Spatial and temporal patterns of lin-12 expression during C. elegans hermaphrodite development Genetics, 1995, 141, 513-526.	1.2	45
2758	Analysis of dominant mutations affecting muscle excitation in Caenorhabditis elegans Genetics, 1995, 141, 961-976.	1.2	53
2759	The ncl-1 gene and genetic mosaics of Caenorhabditis elegans Genetics, 1995, 141, 989-1006.	1.2	113
2760	Viable maternal-effect mutations that affect the development of the nematode Caenorhabditis elegans Genetics, 1995, 141, 1351-1364.	1.2	67
2761	Mosaic Analysis Using a <i>ncl-1</i> (+) Extrachromosomal Array Reveals That <i>lin-31</i> Acts in the Pn.p Cells During <i>Caenorhabditis elegans</i> Vulval Development. Genetics, 1996, 143, 1181-1191.	1.2	37
2762	The <i>mup-4</i> Locus in <i>Caenorhabditis elegans</i> Is Essential for Hypodermal Integrity, Organismal Morphogenesis and Embryonic Body Wall Muscle Position. Genetics, 1997, 146, 165-183.	1.2	20
2763	A Screen for Genetic Loci Required for Hypodermal Cell and Glial-Like Cell Development During Caenorhabditis elegans Embryogenesis. Genetics, 1997, 146, 207-226.	1.2	35

#	Article	IF	CITATIONS
2764	Distinct Requirements for Somatic and Germline Expression of a Generally Expressed <i>Caernorhabditis elegans</i> Gene. Genetics, 1997, 146, 227-238.	1.2	444
2765	Clusters of Identical New Mutations Can Account for the "Overdispersed―Molecular Clock. Genetics, 1997, 147, 339-348.	1.2	22
2766	<i>gon-2</i> , a Gene Required for Gonadogenesis in <i>Caenorhabditis elegans</i> . Genetics, 1997, 147, 1077-1089.	1.2	63
2767	A Limited Number of Caenorhabditis elegans Genes Are Readily Mutable to Dominant, Temperature-Sensitive Maternal-Effect Embryonic Lethality. Genetics, 1997, 147, 1665-1674.	1.2	7
2768	Identification of Caenorhabditis elegans Genes Required for Neuronal Differentiation and Migration. Genetics, 1998, 148, 151-165.	1.2	94
2769	The Phenotype of mes-2, mes-3, mes-4 and mes-6, Maternal-Effect Genes Required for Survival of the Germline in Caenorhabditis elegans, Is Sensitive to Chromosome Dosage. Genetics, 1998, 148, 167-185.	1.2	78
2770	Analysis of osm-6, a Gene That Affects Sensory Cilium Structure and Sensory Neuron Function in Caenorhabditis elegans. Genetics, 1998, 148, 187-200.	1.2	221
2771	A New Marker for Mosaic Analysis in Caenorhabditis elegans Indicates a Fusion Between hyp6 and hyp7, Two Major Components of the Hypodermis. Genetics, 1998, 149, 1323-1334.	1.2	201
2772	The Primary Sex Determination Signal of Caenorhabditis elegans. Genetics, 1999, 152, 999-1015.	1.2	24
2773	Characterization of Seven Genes Affecting Caenorhabditis elegans Hindgut Development. Genetics, 1999, 153, 731-742.	1.2	35
2774	EAT-20, a Novel Transmembrane Protein With EGF Motifs, Is Required for Efficient Feeding in Caenorhabditis elegans. Genetics, 2000, 154, 635-646.	1.2	45
2775	Effect of a Neuropeptide Gene on Behavioral States in Caenorhabditis elegans Egg-Laying. Genetics, 2000, 154, 1181-1192.	1.2	89
2776	Calcium/Calmodulin-Dependent Protein Kinase II Regulates <i>Caenorhabditis elegans</i> Locomotion in Concert With a Go/Gq Signaling Network. Genetics, 2000, 156, 1069-1082.	1.2	70
2777	Caenorhabditis elegans lin-25: A Study of Its Role in Multiple Cell Fate Specification Events Involving Ras and the Identification and Characterization of Evolutionarily Conserved Domains. Genetics, 2000, 156, 1083-1096.	1.2	14
2778	A Role for RIC-8 (Synembryn) and GOA-1 (Goα) in Regulating a Subset of Centrosome Movements During Early Embryogenesis in <i>Caenorhabditis elegans</i> . Genetics, 2000, 156, 1649-1660.	1.2	117
2779	Genes Regulating Touch Cell Development in <i>Caenorhabditis elegans</i> . Genetics, 2001, 158, 197-207.	1.2	36
2780	Genetic Analysis of Tissue Aging in <i>Caenorhabditis elegans</i> : A Role for Heat-Shock Factor and Bacterial Proliferation. Genetics, 2002, 161, 1101-1112.	1.2	718
2781	Identification of Genes That Regulate a Left-Right Asymmetric Neuronal Migration in <i>Caenorhabditis elegans</i> . Genetics, 2003, 164, 1355-1367.	1.2	64

#	Article	IF	CITATIONS
2782	Quantitative Classification and Natural Clustering of <i>Caenorhabditis elegans</i> Behavioral Phenotypes. Genetics, 2003, 165, 1117-1126.	1.2	62
2783	<i>Caenorhabditis elegans</i> Gαq Regulates Egg-Laying Behavior via a PLCβ-Independent and Serotonin-Dependent Signaling Pathway and Likely Functions Both in the Nervous System and in Muscle. Genetics, 2003, 165, 1805-1822.	1.2	87
2784	Modeling human brain tumors in flies, worms, and zebrafish: From proof of principle to novel therapeutic targets. Neuro-Oncology, 2021, 23, 718-731.	0.6	5
2785	The Evolution of the Neural Basic Helix-Loop-Helix Proteins. Scientific World Journal, The, 2001, 1, 396-426.	0.8	18
2833	Wnt pathway components orient a mitotic spindle in the early Caenorhabditis elegans embryo without requiring gene transcription in the responding cell. Genes and Development, 1999, 13, 2028-2038.	2.7	215
2834	The Caenorhabditis elegans gene ham-2 links Hox patterning to migration of the HSN motor neuron. Genes and Development, 1999, 13, 472-483.	2.7	40
2835	NUC-1, a <i>Caenorhabditis elegans</i> DNase II homolog, functions in an intermediate step of DNA degradation during apoptosis. Genes and Development, 2000, 14, 536-548.	2.7	146
2836	The <i>Caenorhabditis elegans</i> fate-determining gene <i>mab-9</i> encodes a T-box protein required to pattern the posterior hindgut. Genes and Development, 2000, 14, 596-603.	2.7	48
2837	Gene Expression Profiling of Cells, Tissues, and Developmental Stages of the Nematode C. elegans. Cold Spring Harbor Symposia on Quantitative Biology, 2003, 68, 159-170.	2.0	273
2839	Self-Renewal of Primitive Hematopoietic Cells: A Focus on Asymmetric Cell Division. , 2010, , 51-75.		1
2841	Insertion of enhanced green fluorescent protein into the lysozyme gene creates mice with green fluorescent granulocytes and macrophages. Blood, 2000, 96, 719-726.	0.6	101
2842	Selection of Surrogate Animal Species for Comparative Toxicogenomics. , 2006, , 33-75.		5
2843	A single cell approach to problems of cell lineage and commitment during embryogenesis of <i>Drosophila melanogaster</i> . Development (Cambridge), 1987, 100, 1-12.	1.2	63
2844	Genetics of cell and axon migrations in <i>Caenorhabditis elegans</i> . Development (Cambridge), 1987, 100, 365-382.	1.2	283
2845	Segmental pattern of development of the hindbrain and spinal cord of the zebrafish embryo. Development (Cambridge), 1988, 103, 49-58.	1.2	168
2846	Detection of spatially- and stage-specific proteins in extracts from single embryos of the domesticated carrot. Development (Cambridge), 1988, 103, 665-674.	1.2	14
2847	Clonal analysis of the crustacean segment: the discordance between genealogical and segmental borders. Development (Cambridge), 1988, 104, 147-160.	1.2	78
2848	Targeted ablation of <i>α</i> -crystallin-synthesizing cells produces lens-deficient eyes in transgenic mice. Development (Cambridge), 1989, 105, 613-619.	1.2	44

#	Article	IF	CITATIONS
2849	Stem cells: the generation and maintenance of cellular diversity. Development (Cambridge), 1989, 106, 619-633.	1.2	437
2850	Genetics of intercellular signalling in <i>C. elegans</i> . Development (Cambridge), 1989, 107, 53-57.	1.2	5
2851	Early determination in the <i>C. elegans</i> embryo: a gene, <i>cib-1</i> , required to specify a set of stem-cell-like blastomeres. Development (Cambridge), 1990, 108, 107-119.	1.2	27
2852	Brief cytochalasin-induced disruption of microfilaments during a critical interval in 1-cell C. <i>elegans</i> embryos alters the partitioning of developmental instructions to the 2-cell embryo. Development (Cambridge), 1990, 108, 159-172.	1.2	94
2853	How embryos work: a comparative view of diverse modes of cell fate specification. Development (Cambridge), 1990, 108, 365-389.	1.2	241
2854	The development of handedness in left/right asymmetry. Development (Cambridge), 1990, 109, 1-9.	1.2	354
2855	Positioning and maintenance of embryonic body wall muscle attachments in <i>C. elegans</i> requires the <i>mup-1</i> gene. Development (Cambridge), 1991, 111, 667-681.	1.2	35
2856	Control of cell fate in the tail region of <i>C. elegans</i> by the gene <i>egl-5</i> . Development (Cambridge), 1991, 111, 921-932.	1.2	117
2857	Two homologous regulatory genes, <i>lin-12</i> and <i>glp-1</i> , have overlapping functions. Development (Cambridge), 1991, 112, 231-240.	1.2	232
2858	Two <i>C. elegans</i> genes control the programmed deaths of specific cells in the pharynx. Development (Cambridge), 1991, 112, 591-603.	1.2	147
2859	Spatial mechanisms of gene regulation in metazoan embryos. Development (Cambridge), 1991, 113, 1-26.	1.2	198
2860	â€~Promoter trapping' in <i>Caenorhabditis elegans</i> . Development (Cambridge), 1991, 113, 399-408.	1.2	74
2861	Fate maps of the first quartet micromeres in the gastropod <i>llyanassa obsoleta</i> . Development (Cambridge), 1991, 113, 495-501.	1.2	44
2862	A normally attractive cell interaction is repulsive in two <i>C. elegans</i> mesodermal cell migration mutants. Development (Cambridge), 1991, 113, 797-803.	1.2	52
2863	Microinjection of fluorescent tracers to study neural cell lineages. Development (Cambridge), 1991, 113, 1-8.	1.2	12
2864	Transfer and tissue-specific accumulation of cytoplasmic components in embryos of <i>Caenorhabditis elegans</i> and <i>Rhabditis dolichura:</i> in vivo analysis with a low-cost signal enhancement device. Development (Cambridge), 1992, 114, 317-330.	1.2	20
2865	The <i>Caenorhabditis elegans</i> cell death gene <i>ced-4</i> encodes a novel protein and is expressed during the period of extensive programmed cell death. Development (Cambridge), 1992, 116, 309-320.	1.2	352
2866	Expression of the homeotic gene mab-5 during Caenorhabditis elegans embryogenesis. Development (Cambridge), 1992, 116, 481-490.	1.2	37

#	Article	IF	CITATIONS
2867	Cell interactions involved in development of the bilaterally symmetrical intestinal valve cells during embryogenesis in <i>Caenorhabditis elegans</i> . Development (Cambridge), 1992, 116, 1113-1122.	1.2	55
2868	Molecular markers for identified neuroblasts and ganglion mother cells in the <i>Drosophila</i> central nervous system. Development (Cambridge), 1992, 116, 855-863.	1.2	362
2869	Cell interactions control the direction of outgrowth, branching and fasciculation of the HSN axons of <i>Caenorhabditis elegans</i> . Development (Cambridge), 1993, 117, 1071-1087.	1.2	102
2870	Multiple cell interactions are required for fate specification during male spicule development in <i>Caenorhabditis elegans</i> . Development (Cambridge), 1993, 118, 297-324.	1.2	40
2871	Establishment of gut fate in the E lineage of <i>C. elegans</i> : the roles of lineage-dependent mechanisms and cell interactions. Development (Cambridge), 1993, 118, 1267-1277.	1.2	95
2872	Cellular organisation of the <i>Arabidopsis thaliana</i> root. Development (Cambridge), 1993, 119, 71-84.	1.2	1,238
2873	The zebrafish midblastula transition. Development (Cambridge), 1993, 119, 447-456.	1.2	607
2874	Combinatorial control of touch receptor neuron expression in <i>Caenorhabditis elegans</i> . Development (Cambridge), 1993, 119, 773-783.	1.2	128
2875	Cell polarity in early <i>C. elegans</i> development. Development (Cambridge), 1993, 119, 279-287.	1.2	18
2876	Cell fate patterning during C. elegans vulval development. Development (Cambridge), 1993, 119, 9-18.	1.2	11
2877	Soma-germline asymmetry in the distributions of embryonic RNAs in <i>Caenorhabditis elegans</i> . Development (Cambridge), 1994, 120, 2823-2834.	1.2	305
2878	Genesis of an organ: molecular analysis of the <i>pha-1</i> gene. Development (Cambridge), 1994, 120, 3005-3017.	1.2	50
2879	The <i>pha-4</i> gene is required to generate the pharyngeal primordium of <i>Caenorhabditis elegans</i> . Development (Cambridge), 1994, 120, 3019-3031.	1.2	168
2880	Combinatorial specification of blastomere identity by <i>glp-1-</i> dependent cellular interactions in the nematode <i>Caenorhabditis elegans</i> . Development (Cambridge), 1994, 120, 3325-3338.	1.2	72
2881	Early transcription in <i>Caenorhabditis elegans</i> embryos. Development (Cambridge), 1994, 120, 443-451.	1.2	123
2882	PES-1 is expressed during early embryogenesis in Caenorhabditis elegans and has homology to the fork head family of transcription factors. Development (Cambridge), 1994, 120, 505-514.	1.2	29
2883	The <i>Caenorhabditis elegans</i> gene <i>lin-44</i> controls the polarity of asymmetric cell divisions. Development (Cambridge), 1994, 120, 1035-1047.	1.2	113
2884	The <i>Caenorhabditis elegans</i> MYOD homologue HLH-1 is essential for proper muscle function and complete morphogenesis. Development (Cambridge), 1994, 120, 1631-1641.	1.2	95

#	Article	IF	CITATIONS
2885	Bacterial symbionts induce host organ morphogenesis during early postembryonic development of the squid <i>Euprymna scolopes</i> . Development (Cambridge), 1994, 120, 1719-1729.	1.2	148
2886	<i>glp-1</i> and inductions establishing embryonic axes in <i>C. elegans</i> . Development (Cambridge), 1994, 120, 2051-2064.	1.2	127
2887	The <i>Caenorhabditis elegans</i> NK-2 class homeoprotein CEH-22 is involved in combinatorial activation of gene expression in pharyngeal muscle. Development (Cambridge), 1994, 120, 2175-2186.	1.2	196
2888	Two maternal genes, <i>apx-1</i> and <i>pie-1</i> , are required to distinguish the fates of equivalent blastomeres in the early <i>Caenorhabditis elegans</i> embryo. Development (Cambridge), 1994, 120, 2305-2315.	1.2	101
2889	Transient localized accumulation of actin in <i>Caenorhabditis elegans</i> blastomeres with oriented asymmetric divisions. Development (Cambridge), 1994, 120, 2317-2328.	1.2	115
2890	The Caenorhabditis elegans gene lin-26 is required to specify the fates of hypodermal cells and encodes a presumptive zinc-finger transcription factor. Development (Cambridge), 1994, 120, 2359-2368.	1.2	71
2891	DPY-30, a nuclear protein essential early in embryogenesis for <i>Caenorhabditis elegans</i> dosage compensation. Development (Cambridge), 1995, 121, 3323-3334.	1.2	71
2892	Establishment of left-right asymmetry in the <i>Caenorhabditis elegans</i> embryo: a multistep process involving a series of inductive events. Development (Cambridge), 1995, 121, 3417-3424.	1.2	67
2893	The C. elegans neuronally expressed homeobox gene ceh-10 is closely related to genes expressed in the vertebrate eye. Development (Cambridge), 1995, 121, 1253-1262.	1.2	58
2894	Specification of anterior-posterior differences within the AB lineage in the C. elegans embryo: a polarising induction. Development (Cambridge), 1995, 121, 1559-1568.	1.2	42
2895	Duels without obvious sense: counteracting inductions involved in body wall muscle development in the Caenorhabditis elegans embryo. Development (Cambridge), 1995, 121, 2219-2232.	1.2	23
2896	Mosaic analysis of the <i>let-23</i> gene function in vulval induction of <i>Caenorhabditis elegans</i> . Development (Cambridge), 1995, 121, 2655-2666.	1.2	81
2897	Expression of the <i>unc-4</i> homeoprotein in <i>Caenorhabditis elegans</i> motor neurons specifies presynaptic input. Development (Cambridge), 1995, 121, 2877-2886.	1.2	102
2898	Transformation of the germ line into muscle in <i>mes-1</i> mutant embryos of <i>C. elegans</i> . Development (Cambridge), 1995, 121, 2961-2972.	1.2	57
2899	The <i>C. elegans</i> vulval induction gene <i>lin-2</i> encodes a member of the MAGUK family of cell junction proteins. Development (Cambridge), 1996, 122, 97-111.	1.2	185
2900	PAR-2 is asymmetrically distributed and promotes association of P granules and PAR-1 with the cortex in <i>C. elegans</i> embryos. Development (Cambridge), 1996, 122, 3075-3084.	1.2	237
2901	<i>par-6</i> , a gene involved in the establishment of asymmetry in early <i>C. elegans</i> embryos, mediates the asymmetric localization of PAR-3. Development (Cambridge), 1996, 122, 3133-3140.	1.2	239
2902	Asymmetric distribution of the <i>C. elegans</i> HAM-1 protein in neuroblasts enables daughter cells to adopt distinct fates. Development (Cambridge), 1996, 122, 3509-3518.	1.2	57

			_
#	Article	IF	CITATIONS
2903	Morphogenesis of the <i>C. elegans</i> hermaphrodite uterus. Development (Cambridge), 1996, 122, 3617-3626.	1.2	126
2904	<i>lin-12</i> and <i>glp-1</i> are required zygotically for early embryonic cellular interactions and are regulated by maternal GLP-1 signaling in <i>Caenorhabditis elegans</i> . Development (Cambridge), 1996, 122, 4105-4117.	1.2	60
2905	<i>cdh-3</i> , a gene encoding a member of the cadherin superfamily, functions in epithelial cell morphogenesis in <i>Caenorhabditis elegans</i> . Development (Cambridge), 1996, 122, 4149-4157.	1.2	95
2906	The <i>C. elegans</i> gene <i>vab-8</i> guides posteriorly directed axon outgrowth and cell migration. Development (Cambridge), 1996, 122, 671-682.	1.2	58
2907	Segregation of germ granules in living <i>Caenorhabditis elegans</i> embryos: cell-type-specific mechanisms for cytoplasmic localisation. Development (Cambridge), 1996, 122, 1303-1312.	1.2	145
2908	An inductive interaction in 4-cell stage <i>C. elegans</i> embryos involves APX-1 expression in the signalling cell. Development (Cambridge), 1996, 122, 1791-1798.	1.2	57
2909	Time-dependent responses to <i>glp-1-</i> mediated inductions in early <i>C. elegans</i> embryos. Development (Cambridge), 1996, 122, 2043-2050.	1.2	95
2910	Symmetry breakage in the development of one-armed gonads in nematodes. Development (Cambridge), 1996, 122, 2129-2142.	1.2	54
2911	The <i>Caenorhabditis elegans</i> LIN-26 protein is required to specify and/or maintain all non-neuronal ectodermal cell fates. Development (Cambridge), 1996, 122, 2579-2588.	1.2	95
2912	The <i>C. elegans</i> gene <i>pag-3</i> is homologous to the zinc finger proto-oncogene gfi <i>-1</i> . Development (Cambridge), 1997, 124, 2063-2073.	1.2	25
2913	A <i>C. elegans</i> E/Daughterless bHLH protein marks neuronal but not striated muscle development. Development (Cambridge), 1997, 124, 2179-2189.	1.2	96
2914	Transcriptionally repressed germ cells lack a subpopulation of phosphorylated RNA polymerase II in early embryos of <i>Caenorhabditis elegans</i> and <i>Drosophila melanogaster</i> . Development (Cambridge), 1997, 124, 2191-2201.	1.2	287
2915	Genes that guide growth cones along the <i>C. elegans</i> ventral nerve cord. Development (Cambridge), 1997, 124, 2571-2580.	1.2	63
2916	An actin-mediated two-step mechanism is required for ventral enclosure of the <i>C. elegans</i> hypodermis. Development (Cambridge), 1997, 124, 2889-2901.	1.2	165
2917	The maternal <i>par</i> genes and the segregation of cell fate specification activities in early <i>Caenorhabditis elegans</i> embryos. Development (Cambridge), 1997, 124, 3815-3826.	1.2	58
2918	Maternal control of a zygotic patterning gene in <i>Caenorhabditis elegans</i> . Development (Cambridge), 1997, 124, 3865-3869.	1.2	15
2919	The <i>PAX</i> gene <i>egl-38</i> mediates developmental patterning in <i>Caenorhabditis elegans</i> . Development (Cambridge), 1997, 124, 3919-3928.	1.2	60
2920	The expression of the <i>C. elegans labial</i> -like <i>Hox</i> gene <i>ceh-13</i> during early embryogenesis relies on cell fate and on anteroposterior cell polarity. Development (Cambridge), 1997, 124, 4193-4200.	1.2	39

#	Article	IF	CITATIONS
2921	The <i>C. elegans</i> MEX-1 protein is present in germline blastomeres and is a P granule component. Development (Cambridge), 1997, 124, 731-739.	1.2	118
2922	Genes necessary for C. elegans cell and growth cone migrations. Development (Cambridge), 1997, 124, 1831-1843.	1.2	110
2923	Cell lineage in marine nematode <i>Enoplus brevis</i> . Development (Cambridge), 1998, 125, 143-150.	1.2	60
2924	<i>sma-1</i> encodes a βH-spectrin homolog required for <i>Caenorhabditis elegans</i> morphogenesis. Development (Cambridge), 1998, 125, 2087-2098.	1.2	128
2925	<i>pha-4</i> is <i>Ce-fkh-1</i> , a <i>fork head</i> /HNF-3α,β,γ homolog that functions in organogenesis of the <i>C. elegans</i> pharynx. Development (Cambridge), 1998, 125, 2171-2180.	1.2	159
2926	Interactions of EGF, Wnt and HOM-C genes specify the P12 neuroectoblast fate in <i>C. elegans</i> . Development (Cambridge), 1998, 125, 2337-2347.	1.2	87
2927	Chromatin silencing and the maintenance of a functional germline in <i>Caenorhabditis elegans</i> . Development (Cambridge), 1998, 125, 2451-2456.	1.2	227
2928	MyoD and the specification of muscle and non-muscle fates during postembryonic development of the <i>C. elegans</i> mesoderm. Development (Cambridge), 1998, 125, 2479-2488.	1.2	77
2929	Intrinsic programs of patterned cell lineages in isolated vertebrate CNS ventricular zone cells. Development (Cambridge), 1998, 125, 3143-3152.	1.2	215
2930	A tissue-specific knock-out strategy reveals that <i>lin-26</i> is required for the formation of the somatic gonad epithelium in <i>Caenorhabditis elegans</i> . Development (Cambridge), 1998, 125, 3213-3224.	1.2	22
2931	The β-catenin homolog BAR-1 and LET-60 Ras coordinately regulate the Hox gene <i>lin-39</i> during <i>Caenorhabditis elegans</i> vulval development. Development (Cambridge), 1998, 125, 3667-3680.	1.2	223
2932	A cyclic nucleotide-gated channel inhibits sensory axon outgrowth in larval and adult <i>Caenorhabditis elegans:</i> a distinct pathway for maintenance of sensory axon structure. Development (Cambridge), 1998, 125, 249-258.	1.2	93
2933	Regulation of touch receptor differentiation by the <i>Caenorhabditis elegans mec-3</i> and <i>unc-86</i> genes. Development (Cambridge), 1998, 125, 4107-4119.	1.2	126
2934	<i>daf-12</i> regulates developmental age and the dauer alternative in <i>Caenorhabditis elegans</i> . Development (Cambridge), 1998, 125, 1191-1205.	1.2	213
2935	The <i>let-99</i> gene is required for proper spindle orientation during cleavage of the <i>C. elegans</i> embryo. Development (Cambridge), 1998, 125, 1337-1346.	1.2	64
2936	<i>unc-3</i> , a gene required for axonal guidance in <i>Caenorhabditis elegans</i> , encodes a member of the O/E family of transcription factors. Development (Cambridge), 1998, 125, 1561-1568.	1.2	139
2937	CHR3: a <i>Caenorhabditis elegans</i> orphan nuclear hormone receptor required for proper epidermal development and molting. Development (Cambridge), 1998, 125, 1617-1626.	1.2	99
2938	<i>pos-1</i> encodes a cytoplasmic zinc-finger protein essential for germline specification in <i>C. elegans</i> . Development (Cambridge), 1999, 126, 1-11.	1.2	193

#	Article	IF	CITATIONS
2939	PAR-6 is a conserved PDZ domain-containing protein that colocalizes with PAR-3 in <i>Caenorhabditis elegans</i> embryos. Development (Cambridge), 1999, 126, 127-135.	1.2	256
2940	COC-2, a Sox domain protein necessary for establishing a functional vulval- uterine connection in <i>Caenorhabditis elegans</i> . Development (Cambridge), 1999, 126, 169-179.	1.2	66
2941	The <i>Caenorhabditis elegans</i> gene <i>ncc-1</i> encodes a <i>cdc2</i> -related kinase required for M phase in meiotic and mitotic cell divisions, but not for S phase. Development (Cambridge), 1999, 126, 2227-2239.	1.2	132
2942	The <i>C. elegans</i> homeodomain gene <i>unc-42</i> regulates chemosensory and glutamate receptor expression. Development (Cambridge), 1999, 126, 2241-2251.	1.2	47
2943	The <i>Caenorhabditis elegans</i> genes <i>egl-27</i> and <i>egr-1</i> are similar to MTA1, a member of a chromatin regulatory complex, and are redundantly required for embryonic patterning. Development (Cambridge), 1999, 126, 2483-2494.	1.2	104
2944	The genetics of cell migration in <i>Drosophila melanogaster</i> and <i>Caenorhabditis elegans</i> development. Development (Cambridge), 1999, 126, 3035-3046.	1.2	107
2945	UNC-84 localizes to the nuclear envelope and is required for nuclear migration and anchoring during <i>C. elegans</i> development. Development (Cambridge), 1999, 126, 3171-3181.	1.2	256
2946	Launching the germline in <i>Caenorhabditis elegans</i> : regulation of gene expression in early germ cells. Development (Cambridge), 1999, 126, 3275-3283.	1.2	115
2947	The <i>C. elegans</i> gene <i>lin-36</i> acts cell autonomously in the <i>lin-35 Rb</i> pathway. Development (Cambridge), 1999, 126, 3449-3459.	1.2	51
2948	Genes required for axon pathfinding and extension in the <i>C. elegans</i> nerve ring. Development (Cambridge), 1999, 126, 3679-3692.	1.2	134
2949	Growth cones stall and collapse during axon outgrowth in <i>Caenorhabditis elegans</i> . Development (Cambridge), 1999, 126, 4489-4498.	1.2	77
2950	A novel WD40 protein, CHE-2, acts cell-autonomously in the formation of <i>C</i> . elegans sensory cilia. Development (Cambridge), 1999, 126, 4839-4848.	1.2	90
2951	Regulation of postembryonic G1 cell cycle progression in <i>Caenorhabditis elegans</i> by a cyclin D/CDK-like complex. Development (Cambridge), 1999, 126, 4849-4860.	1.2	79
2952	<i>nos-1</i> and <i>nos-2</i> , two genes related to <i>Drosophila nanos</i> , regulate primordial germ cell development and survival in <i>Caenorhabditis elegans</i> . Development (Cambridge), 1999, 126, 4861-4871.	1.2	294
2953	Control of DAF-7 TGF-β expression and neuronal process development by a receptor tyrosine kinase KIN-8 in <i>Caenorhabditis elegans</i> . Development (Cambridge), 1999, 126, 5387-5398.	1.2	46
2954	A gp330/megalin-related protein is required in the major epidermis of <i>Caenorhabditis elegans</i> for completion of molting. Development (Cambridge), 1999, 126, 597-606.	1.2	137
2955	Genetic control of programmed cell death in the <i>Caenorhabditis</i> elegans hermaphrodite germline. Development (Cambridge), 1999, 126, 1011-1022.	1.2	530
2956	Anterior organization of the <i>Caenorhabditis elegans</i> embryo by the <i>labial</i> -like <i>Hox</i> gene <i>ceh-13</i> . Development (Cambridge), 1999, 126, 1537-1546.	1.2	57

#	Article	IF	CITATIONS
2957	Sensory activity affects sensory axon development in <i>C. elegans</i> . Development (Cambridge), 1999, 126, 1891-1902.	1.2	85
2958	<i>C. elegans</i> MAC-1, an essential member of the AAA family of ATPases, can bind CED-4 and prevent cell death. Development (Cambridge), 1999, 126, 2021-2031.	1.2	44
2959	<i>Caenorhabditis elegans</i> Twist plays an essential role in non-striated muscle development. Development (Cambridge), 2000, 127, 2041-2051.	1.2	55
2960	<i>aph-2</i> encodes a novel extracellular protein required for GLP-1-mediated signaling. Development (Cambridge), 2000, 127, 2481-2492.	1.2	100
2961	The homeodomain protein CePHOX2/CEH-17 controls antero-posterior axonal growth in <i>C. elegans</i> . Development (Cambridge), 2000, 127, 3361-3371.	1.2	61
2962	Left-right asymmetry in <i>C. elegans</i> intestine organogenesis involves a LIN-12/Notch signaling pathway. Development (Cambridge), 2000, 127, 3429-3440.	1.2	71
2963	The <i>C. elegans</i> NeuroD homolog <i>cnd-1</i> functions in multiple aspects of motor neuron fate specification. Development (Cambridge), 2000, 127, 4239-4252.	1.2	90
2964	Expression of the vertebrate Gli proteins in <i>Drosophila</i> reveals a distribution of activator and repressor activities. Development (Cambridge), 2000, 127, 4293-4301.	1.2	180
2965	Anucleate <i>Caenorhabditis elegans</i> sperm can crawl, fertilize oocytes and direct anterior-posterior polarization of the 1-cell embryo. Development (Cambridge), 2000, 127, 355-366.	1.2	88
2966	MES-1, a protein required for unequal divisions of the germline in early <i>C. elegans</i> embryos, resembles receptor tyrosine kinases and is localized to the boundary between the germline and gut cells. Development (Cambridge), 2000, 127, 4419-4431.	1.2	40
2967	The <i>C. elegans</i> F-box/WD-repeat protein LIN-23 functions to limit cell division during development. Development (Cambridge), 2000, 127, 5071-5082.	1.2	58
2968	Overlapping roles of two Hox genes and the <i>exd</i> ortholog <i>ceh-20</i> in diversification of the <i>C. elegans</i> postembryonic mesoderm. Development (Cambridge), 2000, 127, 5179-5190.	1.2	61
2969	The basic helix-loop-helix transcription factors LIN-32 and HLH-2 function together in multiple steps of a <i>C. elegans</i> neuronal sublineage. Development (Cambridge), 2000, 127, 5415-5426.	1.2	73
2970	The fax-1 nuclear hormone receptor regulates axon pathfinding and neurotransmitter expression. Development (Cambridge), 2000, 127, 703-712.	1.2	62
2971	<i>mab-20</i> encodes Semaphorin-2a and is required to prevent ectopic cell contacts during epidermal morphogenesis in <i>Caenorhabditis elegans</i> . Development (Cambridge), 2000, 127, 755-767.	1.2	76
2972	The Arabidopsis embryonic shoot fate map. Development (Cambridge), 2000, 127, 813-820.	1.2	24
2973	The <i>C. elegans par-4</i> gene encodes a putative serine-threonine kinase required for establishing embryonic asymmetry. Development (Cambridge), 2000, 127, 1467-1475.	1.2	198
2974	A regulatory cascade of three homeobox genes, <i>ceh-10</i> , <i>ttx-3</i> and <i>ceh-23</i> , controls cell fate specification of a defined interneuron class in <i>C. elegans</i> . Development (Cambridge), 2001, 128, 1951-1969.	1.2	261

#	Article	IF	CITATIONS
2975	EGL-38 Pax regulates the <i>ovo</i> -related gene <i>lin-48</i> during <i>Caenorhabditis elegans</i> organ development. Development (Cambridge), 2001, 128, 2857-2865.	1.2	64
2976	ELT-5 and ELT-6 are required continuously to regulate epidermal seam cell differentiation and cell fusion in <i>C. elegans</i> . Development (Cambridge), 2001, 128, 2867-2880.	1.2	140
2977	The <i>lin-11</i> LIM homeobox gene specifies olfactory and chemosensory neuron fates in <i>C. elegans</i> . Development (Cambridge), 2001, 128, 3269-3281.	1.2	76
2978	UNC-119 suppresses axon branching in <i>C. elegans</i> . Development (Cambridge), 2001, 128, 4079-4092.	1.2	51
2979	The maternal genespn-4encodes a predicted RRM protein required for mitotic spindle orientation and cell fate patterning in earlyC. elegansembryos. Development (Cambridge), 2001, 128, 4301-4314.	1.2	44
2980	<i>lin-35</i> Rb and <i>cki-1</i> Cip/Kip cooperate in developmental regulation of G1 progression in <i>C. elegans</i> . Development (Cambridge), 2001, 128, 4349-4359.	1.2	99
2981	Three <i>C. elegans</i> Rac proteins and several alternative Rac regulators control axon guidance, cell migration and apoptotic cell phagocytosis. Development (Cambridge), 2001, 128, 4475-4488.	1.2	197
2982	<i>unc-83</i> encodes a novel component of the nuclear envelope and is essential for proper nuclear migration. Development (Cambridge), 2001, 128, 5039-5050.	1.2	143
2983	Regulation of ectodermal and excretory function by the <i>C. elegans</i> POU homeobox gene <i>ceh-6</i> . Development (Cambridge), 2001, 128, 779-790.	1.2	44
2984	The stem-loop binding protein CDL-1 is required for chromosome condensation, progression of cell death and morphogenesis in <i>Caenorhabditis elegans</i> . Development (Cambridge), 2002, 129, 187-196.	1.2	43
2985	The <i>C. elegans</i> POU-domain transcription factor UNC-86 regulates the <i>tph-1</i> tryptophan hydroxylase gene and neurite outgrowth in specific serotonergic neurons. Development (Cambridge), 2002, 129, 3901-3911.	1.2	74
2986	Cell polarity and gastrulation in <i>C. elegans</i> . Development (Cambridge), 2002, 129, 387-397.	1.2	110
2987	The <i>Drosophila melanogaster</i> gene <i>brain tumor</i> negatively regulates cell growth and ribosomal RNA synthesis. Development (Cambridge), 2002, 129, 399-407.	1.2	79
2988	Binary cell death decision regulated by unequal partitioning of Numb at mitosis. Development (Cambridge), 2002, 129, 4677-4684.	1.2	39
2989	Asymmetric Numb distribution is critical for asymmetric cell division of mouse cerebral cortical stem cells and neuroblasts. Development (Cambridge), 2002, 129, 4843-4853.	1.2	310
2990	MEC-8 regulates alternative splicing of <i>unc-52</i> transcripts in <i>C. elegans</i> hypodermal cells. Development (Cambridge), 2002, 129, 4999-5008.	1.2	48
2991	The <i>C. elegans even-skipped</i> homologue, <i>vab-7</i> , specifies DB motoneurone identity and axon trajectory. Development (Cambridge), 2002, 129, 853-862.	1.2	45
2992	PAG-3, a Zn-finger transcription factor, determines neuroblast fate in <i>C. elegans</i> . Development (Cambridge), 2002, 129, 1763-1774.	1.2	34

#	Article	IF	Citations
2993	<i>Xcl1</i> causes delayed oblique periclinal cell divisions in developing maize leaves, leading to cellular differentiation by lineage instead of position. Development (Cambridge), 2002, 129, 1859-1869.	1.2	42
2994	Semaphorin 1a and semaphorin 1b are required for correct epidermal cell positioning and adhesion during morphogenesis in <i>C. elegans</i> . Development (Cambridge), 2002, 129, 2065-2078.	1.2	46
2995	Organ-specific cell division abnormalities caused by mutation in a general cell cycle regulator in <i>C. elegans</i> . Development (Cambridge), 2002, 129, 2155-2165.	1.2	50
2996	The evolution of cell lineage in nematodes. Development (Cambridge), 1994, 1994, 85-95.	1.2	21
2997	Fate map for the 32-cell stage of <i>Xenopus laevis</i> . Development (Cambridge), 1987, 99, 527-551.	1.2	465
2998	Chromatin diminution is strictly correlated to somatic cell behavior in early development of the nematode <i>Parascaris univalens</i> . Journal of Cell Science, 1995, 108, 2393-2404.	1.2	16
2999	<i>cyk-1</i> : a <i>C. elegans</i> FH gene required for a late step in embryonic cytokinesis. Journal of Cell Science, 1998, 111, 2017-2027.	1.2	124
3000	Centrosome dynamics in early embryos of <i>Caenorhabditis elegans</i> . Journal of Cell Science, 1998, 111, 3027-3033.	1.2	40
3001	Transcription, biochemistry and localization of nematode annexins. Journal of Cell Science, 1999, 112, 1901-1913.	1.2	18
3002	The <i>C. elegans</i> septin genes, <i>unc-59</i> and <i>unc-61</i> , are required for normal postembryonic cytokineses and morphogenesis but have no essential function in embryogenesis. Journal of Cell Science, 2000, 113, 3825-3837.	1.2	111
3003	Assembly of <i>C. elegans</i> apical junctions involves positioning and compaction by LET-413 and protein aggregation by the MAGUK protein DLG-1. Journal of Cell Science, 2001, 114, 2265-2277.	1.2	154
3004	Asymmetric cell division: microtubule dynamics and spindle asymmetry. Journal of Cell Science, 2002, 115, 2257-2264.	1.2	54
3005	Conditional absence of mitosis-specific antigens in a temperature-sensitive embryonic-arrest mutant of <i>Caenorhabditis elegans</i> . Journal of Cell Science, 1987, 87, 305-314.	1.2	23
3006	High-resolution 3D refractive index microscopy of multiple-scattering samples from intensity images. Optica, 2019, 6, 1211.	4.8	132
3007	Developmental trajectory of Caenorhabditis elegans nervous system governs its structural organization. PLoS Computational Biology, 2020, 16, e1007602.	1.5	12
3008	Quantitative Differences in Nuclear β-catenin and TCF Pattern Embryonic Cells in C. elegans. PLoS Genetics, 2015, 11, e1005585.	1.5	35
3009	Morphogenesis of the C. elegans Intestine Involves Axon Guidance Genes. PLoS Genetics, 2016, 12, e1005950.	1.5	34
3010	Multisite Phosphorylation of NuMA-Related LIN-5 Controls Mitotic Spindle Positioning in C. elegans. PLoS Genetics, 2016, 12, e1006291.	1.5	16

#	Article	IF	CITATIONS
3011	A Differentiation Transcription Factor Establishes Muscle-Specific Proteostasis in Caenorhabditis elegans. PLoS Genetics, 2016, 12, e1006531.	1.5	35
3012	Reconstruction of Cell Lineage Trees in Mice. PLoS ONE, 2008, 3, e1939.	1.1	43
3013	In Caenorhabditis elegans Nanoparticle-Bio-Interactions Become Transparent: Silica-Nanoparticles Induce Reproductive Senescence. PLoS ONE, 2009, 4, e6622.	1.1	135
3014	Multi-Environment Model Estimation for Motility Analysis of Caenorhabditis elegans. PLoS ONE, 2010, 5, e11631.	1.1	33
3015	Multiple doublesex-Related Genes Specify Critical Cell Fates in a C. elegans Male Neural Circuit. PLoS ONE, 2011, 6, e26811.	1.1	27
3016	NDK-1, the Homolog of NM23-H1/H2 Regulates Cell Migration and Apoptotic Engulfment in C. elegans. PLoS ONE, 2014, 9, e92687.	1.1	23
3017	Balanced Trade-Offs between Alternative Strategies Shape the Response of C. elegans Reproduction to Chronic Heat Stress. PLoS ONE, 2014, 9, e105513.	1.1	31
3018	Uncoupling Different Characteristics of the C. elegans E Lineage from Differentiation of Intestinal Markers. PLoS ONE, 2014, 9, e106309.	1.1	14
3019	lsolation of Specific Neurons from C. elegans Larvae for Gene Expression Profiling. PLoS ONE, 2014, 9, e112102.	1.1	85
3020	A Synthetic Lethal Screen Identifies a Role for Lin-44/Wnt in C. elegans Embryogenesis. PLoS ONE, 2015, 10, e0121397.	1.1	7
3021	Single Cell Quantification of Reporter Gene Expression in Live Adult Caenorhabditis elegans Reveals Reproducible Cell-Specific Expression Patterns and Underlying Biological Variation. PLoS ONE, 2015, 10, e0124289.	1.1	29
3022	Loss of Acetylcholine Signaling Reduces Cell Clearance Deficiencies in Caenorhabditis elegans. PLoS ONE, 2016, 11, e0149274.	1.1	1
3023	Automated C. elegans embryo alignments reveal brain neuropil position invariance despite lax cell body placement. PLoS ONE, 2018, 13, e0194861.	1.1	6
3024	LIN-23, an E3 Ubiquitin Ligase Component, Is Required for the Repression of CDC-25.2 Activity during Intestinal Development in Caenorhabditis elegans. Molecules and Cells, 2016, 39, 834-840.	1.0	5
3025	Lineage Tracing: Computational Reconstruction Goes Beyond the Limit of Imaging. Molecules and Cells, 2019, 42, 104-112.	1.0	33
3026	Altered Sensory Code Drives Juvenile-to-Adult Behavioral Maturation in <i>Caenorhabditis elegans</i> . ENeuro, 2016, 3, ENEURO.0175-16.2016.	0.9	11
3027	Anti-tubulin monoclonal antibodies that bind to specific neurons in Caenorhabditis elegans. Journal of Neuroscience, 1989, 9, 2963-2972.	1.7	54
3028	Developmental function and state transitions of a gene expression oscillator in <i>Caenorhabditis elegans</i> . Molecular Systems Biology, 2020, 16, e9498.	3.2	53

#	Article	IF	CITATIONS
3029	Modeling tissueâ€relevant <i>Caenorhabditis elegans</i> metabolism at network, pathway, reaction, and metabolite levels. Molecular Systems Biology, 2020, 16, e9649.	3.2	32
3030	<i>Mutator</i> Foci Are Regulated by Developmental Stage, RNA, and the Germline Cell Cycle in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2020, 10, 3719-3728.	0.8	19
3031	C. elegans network biology: a beginning. WormBook, 2006, , 1-20.	5.3	12
3032	Specification of the nervous system. WormBook, 2005, , 1-19.	5.3	63
3033	Neurogenesis in the nematode Caenorhabditis elegans. WormBook, 2010, , 1-24.	5.3	89
3034	The C. elegans pharynx: a model for organogenesis. WormBook, 2007, , 1-26.	5.3	98
3035	Germline proliferation and its control. WormBook, 2005, , 1-14.	5.3	148
3036	The C. elegans intestine. WormBook, 2007, , 1-36.	5.3	242
3037	A Transparent window into biology: A primer on Caenorhabditis elegans. WormBook, 2015, , 1-31.	5.3	113
3038	Gastrulation in C. elegans. WormBook, 2005, , 1-13.	5.3	33
3039	Cell-cycle regulation. WormBook, 2005, , 1-16.	5.3	84
3040	Polarity establishment, asymmetric division and segregation of fate determinants in early C. elegans embryos. WormBook, 2014, , 1-43.	5.3	152
3041	Programmed cell death. WormBook, 2005, , 1-13.	5.3	77
3042	Hermaphrodite cell-fate specification. WormBook, 2006, , 1-16.	5.3	17
3043	Notch signaling in the C. elegans embryo. WormBook, 2005, , 1-16.	5.3	114
3044	Canonical RTK-Ras-ERK signaling and related alternative pathways. WormBook, 2013, , 1-38.	5.3	77
3045	Sarcomere assembly in C. elegans muscle. WormBook, 2006, , 1-16.	5.3	109
3046	A Dynamic Body Model of the Nematode <i>C. elegans</i> with Neural Oscillators. Journal of Robotics and Mechatronics, 2005, 17, 318-326.	0.5	24

#	Article	IF	CITATIONS
3047	MALDI Mass Spectrometric Imaging of the Nematode <i>Caenorhabditis elegans</i> . Current Metabolomics, 2015, 3, 130-137.	0.5	5
3048	Key players in chromosome segregation in Caenorhabditis elegans. Frontiers in Bioscience - Landmark, 2009, Volume, 1529.	3.0	17
3049	Life Span and Oxidative Stress in Nematode. Journal of Clinical Biochemistry and Nutrition, 2004, 34, 61-68.	0.6	1
3050	A model of developmental time applied to planktonic embryos. Marine Ecology - Progress Series, 2006, 318, 75-80.	0.9	4
3051	Integrating developmental clocking and growth in a life-history model for the planktonic chordate Oikopleura dioica. Marine Ecology - Progress Series, 2006, 318, 81-88.	0.9	5
3052	Advances on Biomedical Research in <i>Caenorhabditis elegans</i> Based on Microfluidic Device*. Progress in Biochemistry and Biophysics, 2011, 38, 877-883.	0.3	5
3053	C. elegans germline stem cells and their niche. Stembook, 2014, , .	0.3	20
3054	Reproductive isolation in the Elegans-Group of Caenorhabditis. Natural Science, 2013, 05, 18-25.	0.2	6
3055	Development and Cell Polarity of the C. elegans Intestine. , 0, , .		2
3056	Network Inference of pal-1 Lineage-Specific Regulation in the C. elegans Embryo by Structural Equation Modeling. Bioinformation, 2012, 8, 652-657.	0.2	10
3057	A high-resolution morphological and ultrastructural map of anterior sensory cilia and glia in Caenorhabditis elegans. ELife, 2014, 3, e01948.	2.8	155
3058	FBN-1, a fibrillin-related protein, is required for resistance of the epidermis to mechanical deformation during C. elegans embryogenesis. ELife, 2015, 4, .	2.8	52
3059	Untwisting the Caenorhabditis elegans embryo. ELife, 2015, 4, .	2.8	33
3060	Co-expression of Foxa.a, Foxd and Fgf9/16/20 defines a transient mesendoderm regulatory state in ascidian embryos. ELife, 2016, 5, .	2.8	39
3061	Neuroendocrine modulation sustains the C. elegans forward motor state. ELife, 2016, 5, .	2.8	48
3062	Discovering sparse transcription factor codes for cell states and state transitions during development. ELife, 2017, 6, .	2.8	26
3063	Spatiotemporal coupling and decoupling of gene transcription with DNA replication origins during embryogenesis in C. elegans. ELife, 2016, 5, .	2.8	55
3064	The interplay of stiffness and force anisotropies drives embryo elongation. ELife, 2017, 6, .	2.8	56

	CHAIR	JN REPORT	
#	Article	IF	CITATIONS
3065	Ordered arrangement of dendrites within a C. elegans sensory nerve bundle. ELife, 2018, 7, .	2.8	18
3066	Cell-intrinsic and -extrinsic mechanisms promote cell-type-specific cytokinetic diversity. ELife, 2018, 7, .	2.8	27
3067	Direct visualization of a native Wnt in vivo reveals that a long-range Wnt gradient forms by extracellular dispersal. ELife, 2018, 7, .	2.8	71
3068	Timing mechanism of sexually dimorphic nervous system differentiation. ELife, 2019, 8, .	2.8	40
3069	The Makorin lep-2 and the lncRNA lep-5 regulate lin-28 to schedule sexual maturation of the C. elegans nervous system. ELife, 2019, 8, .	2.8	30
3070	A Myt1 family transcription factor defines neuronal fate by repressing non-neuronal genes. ELife, 2019, 8, .	2.8	21
3071	Extensive intraspecies cryptic variation in an ancient embryonic gene regulatory network. ELife, 2019, 8, .	2.8	19
3072	Direct glia-to-neuron transdifferentiation gives rise to a pair of male-specific neurons that ensure nimble male mating. ELife, 2020, 9, .	2.8	23
3073	Deep sampling of Hawaiian Caenorhabditis elegans reveals high genetic diversity and admixture with global populations. ELife, 2019, 8, .	2.8	88
3074	Cell lineage-dependent chiral actomyosin flows drive cellular rearrangements in early Caenorhabditis elegans development. ELife, 2020, 9, .	2.8	30
3075	Gap junctions deliver malonyl-CoA from soma to germline to support embryogenesis in Caenorhabditis elegans. ELife, 2020, 9, .	2.8	13
3076	Ubiquitin-dependent regulation of a conserved DMRT protein controls sexually dimorphic synaptic connectivity and behavior. ELife, 2020, 9, .	2.8	21
3077	Beneficial effects of Paeonia ostii stamen tea in extending the lifespan and inducing stress resistance on Caenorhabditis elegans. Food Science and Technology, 0, , .	0.8	2
3079	Description of a new and two known species of the insect–associated genus Oigolaimella Paramonov, 1952 (Nematoda: Diplogastridae) with a note on the biology, biogeography and relationship with congeners. Zoologischer Anzeiger, 2021, 295, 163-190.	0.4	4
3080	Single cell biology—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021, 1506, 74-97.	1.8	3
3081	Goal-directed graph construction using reinforcement learning. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, .	1.0	3
3083	Developmental mechanisms of sex differences: from cells to organisms. Development (Cambridge), 2021, 148, .	1.2	21
3084	Single-cell genomics in plants: current state, future directions, and hurdles to overcome. Plant Physiology, 2022, 188, 749-755.	2.3	24

#	Article	IF	Citations
3085	miR-1 sustains muscle physiology by controlling V-ATPase complex assembly. Science Advances, 2021, 7, eabh1434.	4.7	12
3086	Study on the reproductive toxicity and mechanism of tri-n-butyl phosphate (TnBP) in Caenorhabditis elegans. Ecotoxicology and Environmental Safety, 2021, 227, 112896.	2.9	15
3087	Programmed Cell Death and Its Regulation and Initiation in C. elegans. , 2000, , 35-55.		0
3088	Genetics and Anesthetic Mechanism. Handbooks of Pharmacology and Toxicology, 2000, , 95-121.	0.1	1
3089	Functional Analysis of the Bcl2 Gene Family in Transgenic Mice. , 2001, , 115-145.		0
3091	Caenorhabditis elegans as a Model for Human Biology and Disease. Lung Biology in Health and Disease, 2001, , 21-33.	0.1	0
3092	Many Genomic Regions Are Required for Normal Embryonic Programmed Cell Death in Caenorhabditis elegans. Genetics, 2001, 158, 237-252.	1.2	10
3096	Stem Cell Culture. , 2002, , 421-428.		0
3098	Programmed Cell Death in C. elegans. , 2003, , 135-144.		0
3099	Novel Transcriptional Regulatory Pathways of IL-3-Dependent Survival Responses. , 2003, , 113-122.		0
3100	bHLH-PAS Proteins in C. Elegans. , 2003, , 51-68.		2
3101	Molecular genetic and developmental studies on Malocostracan crustacea. Atoll Research Bulletin, 2004, 522, 1-21.	0.2	0
3103	Control of Caenorhabditis Elegans Behaviour and Development by G Proteins Big and Small. , 2004, , 195-242.		0
3104	In Vitro Methods for the Study of Mechanisms of Developmental Toxicology. , 2005, , 647-695.		1
3105	Genetic and Molecular Characterization of Ca2+ and IP3 Signaling in the Nematode Caenorhabditis elegans. , 2005, , 161-186.		0
3107	Live Imaging of Caenorhabditis elegans: Observation of Nematodes and Data Collection. Cold Spring Harbor Protocols, 2006, 2006, pdb.ip18-pdb.ip18.	0.2	0
3110	Fundamentals of Cancer Cell Biology and Molecular Targeting. , 2008, , 1933-1945.		0
3111	Ultrastructural Imaging of Cell Fusion in Caenorhabditis elegans. Methods in Molecular Biology, 2008, 475, 245-262.	0.4	0

ARTICLE IF CITATIONS Programmed Cell Death in C. elegans., 2009, , 355-373. 3112 1 3 Conserved Mechanisms of Life-Span Regulation and Extension in Caenorhabditis elegans., 2009,, <u>33-56.</u> Functional Analysis of Adult Stem Cells Using Creâ€Mediated Lineage Tracing. Current Protocols in 3114 3.0 0 Stem Cell Biology, 2009, 9, Unit 5A.2. Conserved developmental processes and the evolution of novel traits: wounds, embryos, veins, and butterfly eyespots. , 2009, , 183-190. The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil 3116 0 records., 2009, , 15-23. The evolution of nervous system centralization., 2009, , 65-70. The evolution of developmental gene networks: lessons from comparative studies on 3118 0 holometabolous insects., 2009, , 171-182. The earliest fossil record of the animals and its significance., 2009, , 3-14. 3119 Molecular genetic insights into deuterostome evolution from the direct-developing 3120 0 hemichordate<i>Saccoglossus kowalevskii</i>, 2009, 93-104. Caspase-Independent Cell Death Mechanisms in Simple Animal Models., 2010, , 9-33. Systemic RNAi in C. elegans from the Viewpoint of RNA as Extracellular Signals. Nucleic Acids and 3122 0.2 0 Molecular Biology, 2010, , 69-92. Exploration on Possibility of Caenorhabditis elegans-based Inquiry Activity for Scientific Creativity. 3124 0.0 Biology Education, 2010, 38, 353-362. Caenorhabditis elegans as a Predictive Model for Methylmercury-Induced Neurotoxicity., 2012, 3126 0 319-333. Mechanosensory Learning and Memory in Caenorhabditis elegans. Handbook of Behavioral Neuroscience, 2013, , 91-111. 3128 Mechanisms of Development., 2014, , 53-104. 2 Guidance Molecules Required for Growth Cone Migration of Cells and Axons. SpringerBriefs in 3129 0.1 Neuroscience, 2014, , 9-30. A Method of Three-Dimensional Visualization of Molecular Processes of Apoptosis. Lecture Notes in 3130 1.0 2 Computer Science, 2014, , 103-112. Autonomy and nonautonomy of sex determination in triploid intersex mosaics of <i>C. elegans</i>. 1.2 Development (Cambridge), 1991, 112, 863-879.

#	Article	IF	CITATIONS
3132	CELL DIFFERENTIATION, CELL TRANSFORMATION, AND CELL AGING. , 1985, , 288-469.		0
3133	Structural Gene Mutations Affecting Acetylcholinesterase and Choline Acetyltransferase Perturb Behavior and Development in a Simple Invertebrate. Advances in Behavioral Biology, 1986, , 799-816.	0.2	Ο
3134	BILATERAL SYMMETRY IN INSECTS: COULD IT DERIVE FROM CIRCULAR ASYMMETRIES DURING EARLY EMBRYOGENESIS?. , 1986, , 413-418.		0
3137	Concepts of territory and organization in normal tissue and their relation to neoplasia. Cancer Biology and Medicine, 1987, , 83-107.	0.1	0
3138	The Telson Flexor Neuromuscular System of the Crayfish: III. The Role of Feedforward Inhibition in Shaping a Stereotyped Behaviour Pattern. Journal of Experimental Biology, 1987, 127, 295-311.	0.8	8
3139	The Telson Flexor Neuromuscular System of the Crayfish: II. Segment-Specific Differences in Connectivity Between Premotor Neurones and the Motor Giants. Journal of Experimental Biology, 1987, 127, 279-294.	0.8	11
3140	Cell Lineage and Segmentation in Development. Springer Series in Synergetics, 1988, , 225-234.	0.2	0
3141	Introduction Early Development and Cell Commitment. , 1989, 6, 1-12.		0
3142	Genealogy, Geometry and Genes: Experimental Embryology of Caenorhabditis Elegans. , 1990, , 163-176.		0
3143	Paradoxes between genetics and development. Journal of Cell Science, 1990, 97, 395-398.	1.2	5
3144	Boundary Operator and Distance Measure for the Cell Lineage of Caenorhabditis Elegans and for the Pattern in Fusarium Solani. NATO ASI Series Series B: Physics, 1991, , 183-192.	0.2	0
3145	Dominant gain-of-function mutations that lead to misregulation of the <i>C. elegans</i> heterochronic gene <i>lin-14</i> , and the evolutionary implications of dominant mutations in pattern-formation genes. Development (Cambridge), 1991, 113, 47-54.	1.2	11
3146	Rapid Evolution of Early Development: Reorganization of Early Morphogenetic Processes in a Direct-Developing Sea Urchin. , 1991, , 251-280.		1
3147	Development of Motoneuronal Identity in the Zebrafish. , 1992, , 469-496.		1
3149	Embryogenesis in Caenorhabditis elegans. , 1992, , 273-294.		2
3150	Generation of Cell Diversity in the Mammalian Visual Cortex. , 1992, , 111-130.		2
3151	Cell Recognition of Apoptotic Cells. Blood Cell Biochemistry, 1993, , 393-421.	0.3	3
3152	Two Novel Transmembrane Protein Tyrosine Kinases Expressed during Caenorhabditis elegans Hypodermal Development. Molecular and Cellular Biology, 1993, 13, 7133-7143.	1.1	10

		CITATION R	EPORT	
#	Article		IF	Citations
3153	Genetic Analysis in Caenorhabditis Elegans. , 1994, , 19-33.			0
3154	The ins and outs of programmed cell death during C. elegans development. , 1995, , 7-	10.		0
3155	The Genes That Regulate Programmed Cell Death: From Worm to Mammal**This work part by grants from Bristol/Myer-Squibb, from National Institute of Aging and from Amy Lateral Sclerosis Association. I thank Hannes C. A. Drexler, Masayuki Miura, and Rocco J reading of the manuscript, 1995, , 199-218.	yotrophic		0
3156	Mechanisms of developmental cell death. , 1996, , 89-122.			0
3157	Cellular and axonal migrations are misguided along both body axes in the maternal-effe <i>mau-2</i> mutants of <i>Caenorhabditis elegans</i> . Development (Cambridge), 19		1.2	13
3158	Apoptosis in Drosophila. , 1998, , 205-241.			Ο
3159	Control of Cell Proliferation During Development and Animal Evolution. , 1998, , 1-27.			0
3160	Death signalling in C. elegans and activation mechanisms of caspases. , 1998, , 167-20	3.		1
3161	Autonomous Cell Labeling Using a laacZ Reporter Transgene to Produce Genetic Mosai Development. , 1998, , 439-458.	ics During		2
3162	A Computer System that Links Gene Expression to Spatial Organization of Caenorhabd 1998, , 243-252.	litis Elegans. ,		2
3163	The Regulation of Cell and Growth Cone Migrations During the Development of Caenor elegans. , 1999, , 299-310.	rhabditis		0
3164	Morphogenesis and Organogenesis in Caenorhabditis elegans. , 1999, , 269-297.			1
3165	Caenorhabditis elegans: Embryonic Axis Formation; Signalling in Early Development. , 1	.999, , 233-250.		0
3166	Sex and Death in the Caenorhabditis elegans Germ Line. , 1999, , 119-138.			1
3167	Complexity of Developmental Control: Analysis of Embryonic Cell Lineage Specification Caenorhabditis elegans Using pes-1 as an Early Marker. Genetics, 1999, 151, 131-141.	ıin	1.2	11
3168	A Semi-Dominant Mutation in the General Splicing Factor SF3a66 Causes Anterior-Post Reversal in One-Cell Stage C. elegans Embryos. PLoS ONE, 2014, 9, e106484.	erior Axis	1.1	3
3170	Aging-Related Neurodegenerative Diseases in Caenorhabditis elegans. , 2015, , 171-18	0.		0
3171	Oxidative Stress and C. elegans Models. , 2015, , 111-122.			0

#	Article	IF	CITATIONS
3182	Caspases: Regulatory Mechanisms and Their Implications in Pathogenesis and Therapeutics. , 2017, , 423-488.		0
3188	Automatic Segmentation of Cellular/Nuclear Boundaries Based on the Shape Index of Image Intensity Surfaces. Smart Innovation, Systems and Technologies, 2018, , 67-77.	0.5	0
3194	A Protein Disulfide Isomerase Controls Neuronal Migration Through Regulation of Wnt Secretion. SSRN Electronic Journal, 0, , .	0.4	0
3195	An Observation Data Driven Simulation and Analysis Framework for Early Stage <i>C. elegans</i> Embryogenesis. Journal of Biomedical Science and Engineering, 2018, 11, 225-234.	0.2	1
3218	Molecular Signature of Aging Driven by Wnt Signaling Pathway: Lessons from Nematodes. Healthy Ageing and Longevity, 2019, , 373-398.	0.2	0
3227	Silencing the alternative. ELife, 2019, 8, .	2.8	0
3237	PhOTO zebrafish and primed conversion: advancing the mechanistic view of development and disease. , 2020, , 309-322.		0
3251	Application of infrared laser to living cells for manipulation of gene expression, and in vivo temperature measurement method. , 2021, , .		0
3252	The Molecular Mechanism of Antioxidation of Huolisu Oral Liquid Based on Serum Analysis and Network Analysis. Frontiers in Pharmacology, 2021, 12, 710976.	1.6	14
3253	Chemical Ecology of Nematodes. , 2020, , 3-30.		0
3254	Caenorhabditis elegans: A Tool for Antimicrobial Drug Discovery. , 2020, , 559-596.		0
3255	Caenorhabditis elegans: A Model Organism to Decipher Biological Activities of Nanoparticles. , 2020, , 139-175.		0
3260	Identification of the critical replication targets of CDK reveals direct regulation of replication initiation factors by the embryo polarity machinery in C. elegans. PLoS Genetics, 2020, 16, e1008948.	1.5	5
3266	Healthy Worms. Healthy Ageing and Longevity, 2020, , 347-370.	0.2	0
3267	Analysis of Cell and Nucleus Genome byÂNext-Generation Sequencing. , 2020, , 35-65.		0
3268	Caenorhabditis elegans: Evaluation of Nanoparticle Toxicity. , 2020, , 333-369.		1
3270	Regulation of Caenorhabditis Elegans model in Alzheimer's Disease. E3S Web of Conferences, 2020, 185, 03043.	0.2	1
3271	Announcement of WormAtlas partnership with the Journal of Nematology. Journal of Nematology, 2021, 53, 1-2.	0.4	1

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
3275	Regeneration in the Segmented Annelid Capitella teleta. Genes, 2021, 12, 1769.		1.0	5
3276	Transcriptional and chromatin-based partitioning mechanisms uncouple protein scaling size. Molecular Cell, 2021, 81, 4861-4875.e7.	g from cell	4.5	42
3282	Cell-Cell Fusion. , 2006, , 298-316.			0
3283	Developmental Biology and Cytogenetics of Bursaphelenchus xylophilus. , 2008, , 91-1	00.		0
3285	Directed Evolution of an Artificial Cell Lineage. , 2007, , 144-155.			0
3287	Cadherin preserves cohesion across involuting tissues during C. elegans neurulation. E	Life, 2020, 9, .	2.8	7
3294	Isolation and Characterization of a Sperm-Specific Gene Family in the Nematode <i>Ca elegans</i> . Molecular and Cellular Biology, 1984, 4, 529-537.	enorhabditis	1.1	18
3295	Extrachromosomal DNA Transformation of <i>Caenorhabditis elegans</i> . Molecular a Biology, 1985, 5, 3484-3496.	nd Cellular	1.1	226
3296	John Sulston (1942–2018): a personal perspective. Journal of Neurogenetics, 2020,	34, 238-246.	0.6	0
3297	My life with Sydney, 1961–1971. Journal of Neurogenetics, 2020, 34, 225-237.		0.6	0
3298	A perspective on <i>C. elegans</i> neurodevelopment: from early visionaries to a boor neuroscience research. Journal of Neurogenetics, 2020, 34, 259-272.	ning	0.6	16
3299	The caenorhabditis elegans fate-determining gene mab-9 encodes a T-box protein requ the posterior hindgut. Genes and Development, 2000, 14, 596-603.	ired to pattern	2.7	47
3300	NUC-1, a caenorhabditis elegans DNase II homolog, functions in an intermediate step o degradation during apoptosis. Genes and Development, 2000, 14, 536-48.	of DNA	2.7	132
3301	The Caenorhabditis elegans APC-related gene apr-1 is required for epithelial cell migrat gene expression. Genes and Development, 2000, 14, 874-86.	ion and Hox	2.7	39
3302	dad-1, an endogenous programmed cell death suppressor in Caenorhabditis elegans a EMBO Journal, 1995, 14, 4434-41.	nd vertebrates.	3.5	32
3303	Baculovirus p35 prevents developmentally programmed cell death and rescues a ced-9 nematode Caenorhabditis elegans. EMBO Journal, 1994, 13, 2023-8.	mutant in the	3.5	64
3304	Embryonic tissue differentiation in Caenorhabditis elegans requires dif-1, a gene homo mitochondrial solute carriers. EMBO Journal, 1995, 14, 2307-16.	logous to	3.5	16
3305	Proper expression of myosin genes in transgenic nematodes. EMBO Journal, 1989, 8, 3	419-28.	3.5	57

#	Article	IF	CITATIONS
3306	The minor myosin heavy chain, mhcA, of Caenorhabditis elegans is necessary for the initiation of thick filament assembly. EMBO Journal, 1989, 8, 3429-36.	3.5	79
3307	The expression of two P-glycoprotein (pgp) genes in transgenic Caenorhabditis elegans is confined to intestinal cells. EMBO Journal, 1993, 12, 1615-20.	3.5	21
3308	hch-1, a gene required for normal hatching and normal migration of a neuroblast in C. elegans, encodes a protein related to TOLLOID and BMP-1. EMBO Journal, 1996, 15, 4111-22.	3.5	22
3309	EGF homologous sequences encoded in the genome of Drosophila melanogaster, and their relation to neurogenic genes. EMBO Journal, 1987, 6, 761-6.	3.5	35
3342	Model organisms illuminate human genetics and disease. Molecular Medicine, 1997, 3, 231-7.	1.9	1
3343	MES-1, a protein required for unequal divisions of the germline in early C. elegans embryos, resembles receptor tyrosine kinases and is localized to the boundary between the germline and gut cells. Development (Cambridge), 2000, 127, 4419-31.	1.2	22
3347	Left-right patterning in the C. elegans embryo: Unique mechanisms and common principles. Communicative and Integrative Biology, 2011, 4, 34-40.	0.6	10
3350	Early Embryogenesis and Anterior-Posterior Axis Formation in the White-Tip Nematode Aphelenchoides besseyi (Nematoda: Aphelenchoididae). Journal of Nematology, 2009, 41, 17-22.	0.4	10
3354	Eph receptor signaling in C. elegans. WormBook, 2012, , 1-17.	5.3	1
3355	Chromatin silencing and the maintenance of a functional germline in Caenorhabditis elegans. Development (Cambridge), 1998, 125, 2451-6.	1.2	114
3358	Funerals and Feasts: The Immunological Rites of Cell Death. Yale Journal of Biology and Medicine, 2019, 92, 663-674.	0.2	5
3359	and Neurodegeneration. Advances in Medicine and Biology, 2012, 44, 1-46.	0.2	0
3360	Tracking of centriole inheritance in. MicroPublication Biology, 2020, 2020, .	0.1	0
3361	The bHLH-PAS gene is expressed in the AVH, not AVJ interneurons. MicroPublication Biology, 2021, 2021, .	0.1	2
3362	The <i>Caenorhabditis elegans</i> APC-related gene <i>apr-1</i> is required for epithelial cell migration and <i>Hox</i> gene expression. Genes and Development, 2000, 14, 874-886.	2.7	95
3363	Translation-dependent mRNA localization to <i>Caenorhabditis elegans</i> adherens junctions. Development (Cambridge), 2021, 148, .	1.2	4
3365	T-Cell Factors as Transcriptional Inhibitors: Activities and Regulations in Vertebrate Head Development. Frontiers in Cell and Developmental Biology, 2021, 9, 784998.	1.8	2
3366	Over Fifty Years of Life, Death, and Cannibalism: A Historical Recollection of Apoptosis and Autophagy. International Journal of Molecular Sciences, 2021, 22, 12466.	1.8	17

#	Article	IF	CITATIONS
3367	A conserved expression signature predicts growth rate and reveals cell & lineage-specific differences. PLoS Computational Biology, 2021, 17, e1009582.	1.5	4
3368	Volume segregation programming in a nematode's early embryogenesis. Physical Review E, 2021, 104, 054409.	0.8	4
3369	Multiview confocal super-resolution microscopy. Nature, 2021, 600, 279-284.	13.7	55
3371	A class I histone deacetylase HDA-2 is essential for embryonic development and size regulation of fertilized eggs in Caenorhabditis elegans. Genes and Genomics, 2021, , 1.	0.5	1
3372	Transcriptional regulation of neuronal identity. European Journal of Neuroscience, 2022, 55, 645-660.	1.2	6
3374	Induced Neurons From Germ Cells in Caenorhabditis elegans. Frontiers in Neuroscience, 2021, 15, 771687.	1.4	6
3375	<i>PhyloVision</i> : Interactive Software for Integrated Analysis of Single-Cell Transcriptomic and Phylogenetic Data. SSRN Electronic Journal, 0, , .	0.4	0
3376	Beyond Genome Editing: CRISPR Approaches. , 2022, , 187-218.		2
3377	Hierarchical deep reinforcement learning reveals a modular mechanism of cell movement. Nature Machine Intelligence, 2022, 4, 73-83.	8.3	7
3378	Genome-wide annotation of protein-coding genes in pig. BMC Biology, 2022, 20, 25.	1.7	14
3379	Modeling Alzheimer's Disease in Caenorhabditis elegans. Biomedicines, 2022, 10, 288.	1.4	18
3380	From Cell States to Cell Fates: How Cell Proliferation and Neuronal Differentiation Are Coordinated During Embryonic Development. Frontiers in Neuroscience, 2021, 15, 781160.	1.4	15
3382	Computable early Caenorhabditis elegans embryo with a phase field model. PLoS Computational Biology, 2022, 18, e1009755.	1.5	10
3383	Sexually Dimorphic Neurotransmitter Release at the Neuromuscular Junction in Adult Caenorhabditis elegans. Frontiers in Molecular Neuroscience, 2021, 14, 780396.	1.4	4
3384	Imaging Epidermal Cell Rearrangement in the C. elegans Embryo. Methods in Molecular Biology, 2022, 2438, 345-376.	0.4	1
3385	Non-canonical necrosis in two different cell types in a C. elegans NAD+ salvage pathway mutant. G3: Genes, Genomes, Genetics, 2022, , .	0.8	0
3386	Translational relevance of forward genetic screens in animal models for the study of psychiatric disease. Neuroscience and Biobehavioral Reviews, 2022, 135, 104559.	2.9	7
3387	DNA repair, recombination, and damage signaling. Genetics, 2022, 220, .	1.2	26

ARTICLE IF CITATIONS Functional Interactions Between the Apoptosis Pathway and Cell Size Are Coordinated by the 3388 0 0.4 <i>ced-3</i> Caspase â€" <i>ect-2</i> RhoGEF Axis. SSRN Electronic Journal, 0, , . Caenorhabditis elegans as a model to assess reproductive and developmental toxicity., 2022, 253-264. 3389 Nematode-Applied Technology for Human Tumor Microenvironment Research and Development. 3392 1.0 2 Current Issues in Molecular Biology, 2022, 44, 988-997. Repurposing the Killing Machine: Non-canonical Roles of the Cell Death Apparatus in Caenorhabditis 1.8 elegans Neurons. Frontiers in Cell and Developmental Biology, 2022, 10, 825124. Systematic reconstruction of cellular trajectories across mouse embryogenesis. Nature Genetics, 3394 73 9.4 2022, 54, 328-341. Snakes combine vertical and lateral bending to traverse uneven terrain. Bioinspiration and 1.5 Biomimetics, 2022, 17, 036009. The enteric nervous system of the C. elegans pharynx is specified by the Sine oculis-like homeobox gene 3396 2.8 18 ceh-34. ELife, 2022, 11, . Small RNAs couple embryonic developmental programs to gut microbes. Science Advances, 2022, 8, 4.7 eabl7663. Glutathione catabolism by <i>Enterobacteriaceae</i> species to hydrogen sulphide adversely affects 3398 1.2 3 the viability of host systems in the presence of 5′fluorodeoxyuridine. Molecular Microbiology, 2022, , . Comparative reconstruction of the predatory feeding structures of the polyphenic 3399 1.1 nematode<i>Pristionchus pacificus</i>. Evolution & Development, 2022, 24, 16-36. Open Frontiers in Neural Cell Type Investigations; Lessons From Caenorhabditis elegans and Beyond, 3401 2 1.4 Toward a Multimodal Integration. Frontiers in Neuroscience, 2021, 15, 787753. Stearoyl-CoA desaturases sustain cholinergic excitation and copulatory robustness in metabolically 3403 aging Ć.Âelegansmales. IScience, 2022, 25, 104082. The great small organisms of developmental genetics: Caenorhabditis elegans and Drosophila 3404 0.9 12 melanogaster. Developmental Biology, 2022, 485, 93-122. Invited review: Unearthing the mechanisms of age-related neurodegenerative disease using Caenorhabditis elegans. Comparative Biochemistry and Physiology Part A, Molecular & Amp; Integrative Physiology, 2022, 267, 111166. 3405 0.8 From primordial germ cells to spermatids in Caenorhabditis elegans. Seminars in Cell and 3406 2.32 Developmental Biology, 2021, , . Modulation of sensory perception by hydrogen peroxide enables Caenorhabditis elegans to find a 3407 niche that provides both food and protection from hydrogen peroxide. PLoS Pathogens, 2021, 17, e1010112. Recent Advances in Microfluidic-Based Microphysiological Systems. Biochip Journal, 2022, 16, 13-26. 3408 2.520 3410 The role of caspases as executioners of apoptosis. Biochemical Society Transactions, 2022, 50, 33-45. 1.6

#	Article	IF	CITATIONS
3411	Multiple neural bHLHs ensure the precision of a neuronal specification event in <i>Caenorhabditis elegans</i> . Biology Open, 2021, 10, .	0.6	3
3412	<i>Oscheius shamimi</i> Tahseen and Nisa 2006 revisited with supplementary molecular data, SEM observations and the report of its association with a ground beetle, <i>Scarites indus</i> Olivier 1795. Archives of Phytopathology and Plant Protection, 2022, 55, 355-372.	0.6	1
3414	Intervertebral disc repair and regeneration: Insights from the notochord. Seminars in Cell and Developmental Biology, 2022, 127, 3-9.	2.3	12
3415	Mapping single-cell-resolution cell phylogeny reveals cell population dynamics during organ development. Nature Methods, 2021, 18, 1506-1514.	9.0	20
3416	Mathematical and bioinformatic tools for cellÂtracking. , 2022, , 341-361.		0
3417	Imaging Fluorescent Nuclear Pore Complex Proteins in C. elegans. Methods in Molecular Biology, 2022, 2502, 373-393.	0.4	0
3418	Analysis of Nuclear Pore Complexes in Caenorhabditis elegans by Live Imaging and Functional Genomics. Methods in Molecular Biology, 2022, 2502, 161-182.	0.4	6
3419	The C. elegans regulatory factor X (RFX) DAF-19M module: A shift from general ciliogenesis to cell-specific ciliary and behavioral specialization. Cell Reports, 2022, 39, 110661.	2.9	4
3420	Connecting past and present: single-cell lineage tracing. Protein and Cell, 2022, 13, 790-807.	4.8	30
3425	Evolution of developmental mechanisms in nematodes. The Journal of Experimental Zoology, 1999, 285, 3-18.	1.4	17
3426	Simultaneous brain cell type and lineage determined by scRNA-seq reveals stereotyped cortical development. Cell Systems, 2022, 13, 438-453.e5.	2.9	2
3429	Analysis of expression pattern in embryonic AWC neurons MicroPublication Biology, 2022, 2022, .	0.1	0
3431	Critical contribution of 3′ non-seed base pairing to the inÂvivo function of the evolutionarily conserved let-7a microRNA. Cell Reports, 2022, 39, 110745.	2.9	15
3432	Interactive, integrated analysis of single-cell transcriptomic and phylogenetic data with PhyloVision. Cell Reports Methods, 2022, 2, 100200.	1.4	5
3433	A New Generation of Lineage Tracing Dynamically Records Cell Fate Choices. International Journal of Molecular Sciences, 2022, 23, 5021.	1.8	7
3434	The anterior Hox gene ceh-13 and elt-1/GATA activate the posterior Hox genes nob-1 and php-3 to specify posterior lineages in the C. elegans embryo. PLoS Genetics, 2022, 18, e1010187.	1.5	7
3437	Zinc transporters ZIPT-2.4 and ZIPT-15 are required for normal C. elegans fecundity. Journal of Assisted Reproduction and Genetics, 2022, 39, 1261-1276.	1.2	1
3440	Spatially and Temporally Distributed Complexity—A Refreshed Framework for the Study of GRN Evolution. Cells, 2022, 11, 1790.	1.8	2

#	Article	IF	CITATIONS
3441	Deep conservation and co-option of programmed cell death facilitates evolution of alternative phenotypes at multiple biological levels. Seminars in Cell and Developmental Biology, 2023, 145, 28-41.	2.3	4
3442	Recent advances in understanding cell types during human gastrulation. Seminars in Cell and Developmental Biology, 2022, 131, 35-43.	2.3	7
3443	pop-1/TCF, ref-2/ZIC and T-box factors regulate the development of anterior cells in the C.Âelegans embryo. Developmental Biology, 2022, 489, 34-46.	0.9	1
3444	Learning and Memory in the Nematode <i>Caenorhabditis elegans</i> ., 2022, , 15-32.		ο
3445	EpisomiR, a New Family of miRNAs, and Its Possible Roles in Human Diseases. Biomedicines, 2022, 10, 1280.	1.4	5
3449	PRC1 chromatin factors strengthen the consistency of neuronal cell fate specification and maintenance in C. elegans. PLoS Genetics, 2022, 18, e1010209.	1.5	4
3451	Morphogenesis of the head and face: discussion report. Development (Cambridge), 1988, 103, 61-62.	1.2	0
3453	Switch genes and sex determination in the nematode <i>C. elegans</i> . Development (Cambridge), 1984, 83, 103-117.	1.2	4
3454	Dynamics of the control of body pattern in the development of <i>Xenopus laevis</i> : I. Timing and pattern in the development of dorsoanterior and posterior blastomere pairs, isolated at the 4-cell stage. Development (Cambridge), 1985, 88, 85-112.	1.2	0
3455	Asymmetric movements of cytoplasmic components in <i>Caenorhabditis elegans</i> zygotes. Development (Cambridge), 1986, 97, 15-29.	1.2	7
3456	Developmental strategies during early embryogenesis of <i>Caenorhabditis elegans</i> . Development (Cambridge), 1986, 97, 31-44.	1.2	1
3457	The nature of developmental restrictions in <i>Xenopus laevis</i> embryos. Development (Cambridge), 1986, 97, 65-73.	1.2	1
3459	Cross-modality synthesis of EM time series and live fluorescence imaging. ELife, 0, 11, .	2.8	3
3460	Computational modeling and analysis of the morphogenetic domain signaling networks regulating C. elegans embryogenesis. Computational and Structural Biotechnology Journal, 2022, 20, 3653-3666.	1.9	0
3461	Method for simultaneous tracking of thousands of unlabeled cells within a transparent 3D matrix. PLoS ONE, 2022, 17, e0270456.	1.1	0
3462	Chromosome organization in 4D: insights from C. elegans development. Current Opinion in Genetics and Development, 2022, 75, 101939.	1.5	2
3463	Visualizing and quantifying molecular and cellular processes in <i>Caenorhabditis elegans</i> using light microscopy. Genetics, 0, , .	1.2	1
3464	Feedforward regulatory logic controls the specification-to-differentiation transition and terminal cell fate during <i>Caenorhabditis elegans</i> endoderm development. Development (Cambridge), 2022, 149, .	1.2	5

#	Article	IF	CITATIONS
3465	A time-resolved, multi-symbol molecular recorder via sequential genome editing. Nature, 2022, 608, 98-107.	13.7	59
3468	Biallelic variants in <i>WARS1</i> cause a highly variable neurodevelopmental syndrome and implicate a critical exon for normal auditory function. Human Mutation, 2022, 43, 1472-1489.	1.1	6
3469	Developmental genetics with model organisms. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	26
3471	What is a cell type and how to define it?. Cell, 2022, 185, 2739-2755.	13.5	144
3472	Multicellularity in animals: The potential for within-organism conflict. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	11
3473	Defect-buffering cellular plasticity increases robustness of metazoan embryogenesis. Cell Systems, 2022, 13, 615-630.e9.	2.9	11
3478	Nematodes as Models for Symbiosis. , 2022, , 58-81.		0
3479	Delineating the mechanisms and design principles of Caenorhabditis elegans embryogenesis using in toto high-resolution imaging data and computational modeling. Computational and Structural Biotechnology Journal, 2022, 20, 5500-5515.	1.9	1
3480	Discovery of nonautonomous modulators of activated Ras. G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	1
3482	Synaptic branch stability is mediated by non-enzymatic functions of MEC-17/αTAT1 and ATAT-2. Scientific Reports, 2022, 12, .	1.6	3
3484	Mutations in the Spliceosome Component <i>prp-6</i> and Overexpression of <i>cdh-5</i> Suppress Axon Guidance Defects of <i>cdh-4</i> Mutants in <i>Caenorhabditis elegans</i> . Neuroscience Insights, 2022, 17, 263310552211233.	0.9	0
3485	Multiscale fluorescence imaging of living samples. Histochemistry and Cell Biology, 2022, 158, 301-323.	0.8	7
3486	Bacterial diet modulates tamoxifen-induced death via host fatty acid metabolism. Nature Communications, 2022, 13, .	5.8	6
3487	Reciprocating intestinal flows enhance glucose uptake in C. elegans. Scientific Reports, 2022, 12, .	1.6	6
3488	Widespread employment of conserved C. elegans homeobox genes in neuronal identity specification. PLoS Genetics, 2022, 18, e1010372.	1.5	14
3489	A developmental pathway for epithelial-to-motoneuron transformation in C.Âelegans. Cell Reports, 2022, 40, 111414.	2.9	1
3490	Transcription factors regulating the fate and developmental potential of a multipotent progenitor in <i>Caenorhabditis elegans</i> . G3: Genes, Genomes, Genetics, 2022, 12, .	0.8	1
3491	A natural transdifferentiation event involving mitosis is empowered by integrating signaling inputs with conserved plasticity factors. Cell Reports, 2022, 40, 111365.	2.9	6

ARTICLE IF CITATIONS A caspaseâ€"RhoGEF axis contributes to the cell size threshold for apoptotic death in developing 3492 2.6 2 Caenorhabditis elegans. PLoS Biology, 2022, 20, e3001786. The CATA factor ELT-3 specifies endoderm in <i>Caenorhabditis angaria</i> in an ancestral gene 3493 1.2 network. Development (Cambridge), 2022, 149, . Independent regulation of mitochondrial DNA quantity and quality in Caenorhabditis elegans 3494 2.8 8 primordial germ cells. ELife, 0, 11, . Post-embryonic remodeling of the C.Âelegans motor circuit. Current Biology, 2022, 32, 4645-4659.e3. 3495 1.8 Comparison between phase-field model and coarse-grained model for characterizing cell-resolved 3497 morphological and mechanical properties in a multicellular system. Communications in Nonlinear 1.7 2 Science and Numerical Simulation, 2023, 117, 106966. Initial characterization of gap phase introduction in every cell cycle of C. elegans embryogenesis. 3498 1.8 Frontiers in Cell and Developmental Biology, 0, 10, . Cellular barcoding to decipher clonal dynamics in disease. Science, 2022, 378, . 3499 6.0 20 Uncoupling cell division and cytokinesis during germline development in metazoans. Frontiers in Cell 3501 1.8 and Developmental Biology, Ó, 10, . Interaction between DLC-1 and SAO-1 facilitates CED-4 translocation during apoptosis in the 3502 2.0 0 Caenorhabditis elegans germline. Cell Death Discovery, 2022, 8, . Neurodevelopment: Maintaining function during circuit reconfiguration. Current Biology, 2022, 32, 1.8 R1226-R1228. Autophagy in Germline Stem Cells. Pancreatic Islet Biology, 2023, , 85-106. 3507 0.1 0 Monitoring the Recruitment and Fusion of Autophagosomes to Phagosomes During the Clearance of 3510 0.2 Apoptotic Cells in the Nematode Caenorhabditis elegans. Bio-protocol, 2022, 12, . An Exact Hypergraph Matching algorithm for posture identification in embryonic C. elegans. PLoS 3511 1.1 0 ONE, 2022, 17, e0277343. Quantitative fate mapping: A general framework for analyzing progenitor state dynamics via retrospective lineage barcoding. Cell, 2022, 185, 4604-4620.e32. 13.5 Hox gene functions in the C. elegans nervous system: From early patterning to maintenance of 3514 2.33 neuronal identity. Seminars in Cell and Developmental Biology, 2024, 152-153, 58-69. Glial regulators of ions and solutes required for specific chemosensory functions in Caenorhabditis 1.9 elegans. IScience, 2022, 25, 105684. Novel Ground-Up 3D Multicellular Simulators for Synthetic Biology CAD Integrating Stochastic 3519 1.0 2 Gillespie Simulations Benchmarked with Topologically Variable SBML Models. Genes, 2023, 14, 154. Grave-to-cradle: human embryonic lineage tracing from the postmortem body. Experimental and 3.2 Molecular Medicine, 0, , .

#	Article	IF	CITATIONS
3523	Exogenous Adenosine Modulates Behaviors and Stress Response in Caenorhabditis elegans. Neurochemical Research, 2023, 48, 117-130.	1.6	1
3525	An endonuclease fromCaenorhabditis elegans: Partial purification and characterization. Biochemical Genetics, 1988, 26, 447-461.	0.8	2
3526	Postgraduate perspectives on mentoring undergraduate researchers for talent development. Annals of the New York Academy of Sciences, 0, , .	1.8	0
3527	The CCAAT-box transcription factor, NF-Y complex, mediates the specification of the IL1 neurons in <i>C. elegans</i> . BMB Reports, 2023, 56, 153-159.	1.1	3
3529	Genome Editing of C. elegans. Methods in Molecular Biology, 2023, , 389-396.	0.4	0
3530	Male-specific roles of lincRNA in C. elegans fertility. Frontiers in Cell and Developmental Biology, 0, 11,	1.8	1
3531	D-chiro-inositol increases antioxidant capacity and longevity of Caenorhabditis elegans via activating Nrf-2/SKN-1 and FOXO/DAF-16. Experimental Gerontology, 2023, 175, 112145.	1.2	3
3533	Increasing Complexity of the N-Glycome During Caenorhabditis Development. Molecular and Cellular Proteomics, 2023, 22, 100505.	2.5	5
3538	Apoptosis and beyond: A new era for programmed cell death in Caenorhabditis elegans. Seminars in Cell and Developmental Biology, 2024, 154, 14-22.	2.3	3
3539	Evolution of homology: From archetype towards a holistic concept of cell type. Journal of Morphology, 2023, 284, .	0.6	2
3540	MorphoSim: an efficient and scalable phase-field framework for accurately simulating multicellular morphologies. Npj Systems Biology and Applications, 2023, 9, .	1.4	3
3541	A spiral microfluidic device for rapid sorting, trapping, and long-term live imaging of Caenorhabditis elegans embryos. Microsystems and Nanoengineering, 2023, 9, .	3.4	3
3542	Clonal selection parallels between normal and cancer tissues. Trends in Genetics, 2023, 39, 358-380.	2.9	1
3543	SRCP-1/srGAP and AFD-1/afadin stabilize HMP-1/âº-catenin at rosettes to seal internalization sites following gastrulation in C. elegans. PLoS Genetics, 2023, 19, e1010507.	1.5	2
3544	Caenorhabditis elegans as a Model System to Study Human Neurodegenerative Disorders. Biomolecules, 2023, 13, 478.	1.8	6
3545	Immersive and interactive visualization of 3D spatio-temporal data using a space time hypercube: Application to cell division and morphogenesis analysis. Frontiers in Bioinformatics, 0, 3, .	1.0	3
3548	A reference cell tree will serve science better than a reference cell atlas. Cell, 2023, 186, 1103-1114.	13.5	27
3549	New technologies to study helminth development and host-parasite interactions. International Journal for Parasitology, 2023, 53, 393-403.	1.3	6

#	Article	IF	CITATIONS
3551	Systematic analysis of cell morphodynamics in C. elegans early embryogenesis. Frontiers in Bioinformatics, 0, 3, .	1.0	0
3552	The DREAM complex functions as conserved master regulator of somatic DNA-repair capacities. Nature Structural and Molecular Biology, 2023, 30, 475-488.	3.6	18
3554	Zyxin contributes to coupling between cell junctions and contractile actomyosin networks during apical constriction. PLoS Genetics, 2023, 19, e1010319.	1.5	3
3555	A compound PCP scheme underlies sequential rosettes-based cell intercalation. Development (Cambridge), 2023, 150, .	1.2	0
3556	Single-cell protein-DNA interactomics and multiomics tools for deciphering genome regulation. , 2023, , 20220057.		0
3558	Context matters: Lessons in epithelial polarity from the Caenorhabditis elegans intestine and other tissues. Current Topics in Developmental Biology, 2023, , 37-71.	1.0	0
3560	Developmentally programmed histone H3 expression regulates cellular plasticity at the parental-to-early embryo transition. Science Advances, 2023, 9, .	4.7	4
3561	A Compilation of the Diverse miRNA Functions in Caenorhabditis elegans and Drosophila melanogaster Development. International Journal of Molecular Sciences, 2023, 24, 6963.	1.8	2
3562	The origins and functional effects of postzygotic mutations throughout the human life span. Science, 2023, 380, .	6.0	6
3563	Yolk-deprived <i>Caenorhabditis elegans</i> secure brood size at the expense of competitive fitness. Life Science Alliance, 2023, 6, e202201675.	1.3	0
3587	Visualizing Phagocytic Cargo In Vivo from Engulfment to Resolution in Caenorhabditis elegans. Methods in Molecular Biology, 2023, , 337-360.	0.4	0
3616	Mechanisms of Development. , 2023, , 77-169.		0
3659	Development Features on the Selection of Animal Models for Teratogenic Testing. Methods in Molecular Biology, 2024, , 67-104.	0.4	0
3660	Guidelines on Developmental Toxicity Tests: Brief Insights. Methods in Molecular Biology, 2024, , 39-65.	0.4	0
3671	Application of Evolving New Approach Methodologies for Chemical Safety Assessment. , 2024, , 977-1015.		0