Chemistry of singlet oxygen. 45. Mechanism of the phot

Journal of the American Chemical Society 105, 4717-4721

DOI: 10.1021/ja00352a033

Citation Report

#	Article	IF	CITATIONS
1	Chapter 6 Elements of group 6. Coordination Chemistry Reviews, 1983, 49, 383-443.	9.5	3
2	The Titanium Dioxide Sensitised Photo-Oxidation of Sulphides. Tetrahedron Letters, 1983, 24, 5903-5906.	0.7	57
4	\hat{l}_{\pm} -hydroperoxy sulfide in sulfide photooxidation. Formation and isolation in the photooxidation of thiazolidine derivatives in aprotic media. Tetrahedron Letters, 1984, 25, 4767-4770.	0.7	39
5	Importance of single electron-transfer in singlet oxygen reaction in aqueous solution. Tetrahedron, 1985, 41, 2177-2181.	1.0	33
6	Photosensitized oxygenation of cyclic sulfides. Selective C-S bond cleavage. Tetrahedron Letters, 1985, 26, 4609-4612.	0.7	31
7	Reaction of singlet oxygen with sulfide: A similarity of singlet oxygenation and coupling reaction of cation radical and superoxide ion. Tetrahedron Letters, 1985, 26, 5049-5052.	0.7	14
8	Ab initio Cl and experimental studies of contact charge-transfer absorption band for R2Sî—,O2 systems. Chemical Physics, 1985, 94, 385-395.	0.9	3
10	SPECTROSCOPIC STUDIES OF CUTANEOUS PHOTOSENSITIZING AGENTS–VIII. A SPINâ€TRAPPING STUDY OF LIGHT INDUCED FREE RADICALS FROM CHLORPROMAZINE and PROMAZINE. Photochemistry and Photobiology, 1985, 42, 9-15.	1.3	91
11	Synthesis of sulfoxides by oxidation of thioethers. Tetrahedron, 1986, 42, 5459-5495.	1.0	301
12	Reaction of singlet oxygen with thiirane: Implication for a spirodioxathiirane intermediate. Tetrahedron Letters, 1986, 27, 4473-4476.	0.7	17
13	Oxidative desulphurisation and deselenation at pentacovalent phosphorous by photogenerated peroxidic species. Tetrahedron, 1987, 43, 4473-4479.	1.0	10
14	Chemiluminescence of 1,2-dioxetanes, the photosensitized oxidation products of triallate. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1987, 36, 1868-1870.	0.0	O
15	Formation of 1,2-dioxolane in the singlet oxygenation of a silicon-silicon $\dagger f$ -bond: peroxonium ion intermediate. Tetrahedron Letters, 1989, 30, 6705-6708.	0.7	26
16	Photosensitized electron transfer oxidation of 2-substituted 1,3-dithiolane to 1,3-dithiolane-1-oxide. Tetrahedron Letters, 1989, 30, 4007-4008.	0.7	15
17	Photocatalytic decontamination of sulfur-containing alkyl halides on irradiated semiconductor suspensions. Catalysis Letters, 1990, 5, 369-376.	1.4	52
19	Nucleophilic oxygen transfer from a perepoxide to phosphites. Tetrahedron Letters, 1991, 32, 863-866.	0.7	19
20	The origin of the sulfone in photooxidations involving sulfurane intermediates. Heteroatom Chemistry, 1993, 4, 197-201.	0.4	3
21	The remarkable effect of methanol on sulfide photooxidations. Evidence for its dual reactivity Tetrahedron Letters, 1993, 34, 1697-1700.	0.7	17

#	Article	IF	CITATIONS
22	Reaction of Hydroxysulfuranyl Radical with Molecular Oxygen: Electron Transfer vs. Addition. The Journal of Physical Chemistry, 1994, 98, 12613-12620.	2.9	29
23	A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 3270-3274.	3.3	1,060
24	Properties and Reactions of Singlet Dioxygen. , 1995, , 105-140.		99
25	The Role of Nickel in Hydrogenases: Implications for a Heterodinuclear Active Site. Comments on Inorganic Chemistry, 1995, 17, 347-375.	3.0	14
26	Photooxidation of Diimine Dithiolate Platinium(II) Complexes Induced by Charge Transfer to Diimine Excitation. Inorganic Chemistry, 1996, 35, 7102-7110.	1.9	81
27	Ring Strain Effects on the Interconversion of Intermediates in the Reaction of Organic Sulfides with Singlet Oxygen. Journal of Organic Chemistry, 1996, 61, 4107-4110.	1.7	17
28	Mechanism of Sulfone Formation in the Reaction of Sulfides and Singlet Oxygen:Â Intermediacy of S-Hydroperoxysulfonium Ylide. Journal of the American Chemical Society, 1996, 118, 7265-7271.	6.6	45
29	Insights into the Role of Nickel in Hydrogenase. Advances in Chemistry Series, 1996, , 21-60.	0.6	7
30	Steric and electronic effects on the partitioning of a persulfinyl intermediate along the physical quenching and chemical reaction channels. Tetrahedron Letters, 1996, 37, 6093-6096.	0.7	5
31	On the mechanism of the inhibition of glutamine synthetase and creatine phosphokinase by methionine sulfoxide. Journal of Neuroscience Research, 1996, 43, 107-111.	1.3	8
32	New potent trapping agents for the peroxidic intermediates formed in the reactions of singlet oxygen. Tetrahedron Letters, 1996, 37, 2911-2914.	0.7	15
33	The Reactions of Sulfides and Sulfenic Acid Derivatives with Singlet Oxygen. Sulfur Reports, 1996, 19, 171-214.	0.7	26
34	Photooxidation of Platinum(II) Diimine Dithiolates. Journal of the American Chemical Society, 1997, 119, 11620-11627.	6.6	177
35	Preparative Oxidation of Organic Compounds in Microemulsions with Singlet Oxygen Generated Chemically by the Sodium Molybdate/Hydrogen Peroxide System1. Journal of the American Chemical Society, 1997, 119, 5286-5294.	6.6	103
36	Photoinduced electron transfer reactions of benzyl phenyl sulfides promoted by 9,10-dicyanoanthracene. Tetrahedron, 1997, 53, 4469-4478.	1.0	67
37	Hydrogen peroxide, water oxide and catalysis. Journal of Molecular Catalysis A, 1997, 127, 1-23.	4.8	47
38	Photosensitized Oxidation of Oxopurines by Rose Bengal. Photochemistry and Photobiology, 1998, 68, 467-473.	1.3	6
39	Characterization of intermediates on the 1O2 + R2S potential energy surface. A high-level ab initio study. Computational and Theoretical Chemistry, 1998, 422, 123-132.	1.5	12

#	Article	IF	Citations
40	Trapping of peroxidic intermediates with sulfur and phosphorus centered electrophiles. Heteroatom Chemistry, 1998, 9, 51-56.	0.4	10
41	First experimental evidence for the formation of a silicate anion by intramolecular addition of a persulfoxide to a trimethylsiloxy group. Tetrahedron Letters, 1998, 39, 6827-6830.	0.7	5
42	TiO2-photocatalytic oxidation of selected heterocyclic sulfur compounds. Journal of Photochemistry and Photobiology A: Chemistry, 1998, 114, 213-218.	2.0	49
43	Primary and Secondary Isotope Effects in the Photooxidation of 2,5-Dimethyl-2,4-hexadiene. Elucidation of the Reaction Energy Profile. Journal of Organic Chemistry, 1998, 63, 6390-6393.	1.7	10
44	Oxygen Capture by Sulfur in Nickel Thiolates. Accounts of Chemical Research, 1998, 31, 451-459.	7.6	321
45	A Theoretical Study of Unimolecular Reactions of Dimethyl Persulfoxide. Journal of the American Chemical Society, 1998, 120, 3963-3969.	6.6	37
46	Comparing Methylene Blue-Photosensitized Oxidation of Methyl-Conjugated Linoleate and Methyl Linoleate. Journal of Agricultural and Food Chemistry, 1998, 46, 923-927.	2.4	8
47	Photosensitized Oxygenation of Benzyl Ethyl Sulfide. Journal of Organic Chemistry, 1998, 63, 9946-9955.	1.7	44
48	Sulfur Radical Cations. Topics in Current Chemistry, 1999, , 1-87.	4.0	66
49	Organic sulfides photooxidation using sensitizers covalently grafted on silica: towards a more efficient and selective solar photochemistry. Journal of Photochemistry and Photobiology A: Chemistry, 1999, 124, 1-8.	2.0	42
50	The Photooxygenation of Benzyl, Heteroarylmethyl, and Allyl Sulfides. European Journal of Organic Chemistry, 1999, 1999, 1723-1728.	1.2	20
51	Identification of Desulfurization Products in the Photochemical Desulfurization Process for Benzothiophenes and Dibenzothiophenes from Light Oil Using an Organic Two-Phase Extraction System. Industrial & Engineering Chemistry Research, 1999, 38, 3300-3309.	1.8	39
52	Structure and Reactivity of Amphoteric Oxygen Species. Bulletin of the Chemical Society of Japan, 2000, 73, 535-552.	2.0	33
53	Reaction of Singlet Oxygen withtrans-4-Propenylanisole. Formation of [2 + 2] Products with Added Acid. Journal of Organic Chemistry, 2000, 65, 6876-6878.	1.7	32
54	Effect of Protic Cosolvents on the Photooxygenation of Diethyl Sulfide. Journal of Organic Chemistry, 2000, 65, 4532-4536.	1.7	48
55	Structures and Stabilities of Three-Membered Rings Containing a Hypervalent Atom. Journal of Physical Chemistry A, 2001, 105, 10711-10718.	1.1	45
56	Persulfoxide:Â Key Intermediate in Reactions of Singlet Oxygen with Sulfides. Accounts of Chemical Research, 2001, 34, 875-884.	7.6	189
57	Reaction of Arylphosphines with Singlet Oxygen:  Intra- vs Intermolecular Oxidation. Organic Letters, 2001, 3, 3719-3722.	2.4	44

#	ARTICLE	IF	CITATIONS
58	Reactions of 1,3-Cyclohexadiene with Singlet Oxygen. A Theoretical Study. Journal of the American Chemical Society, 2001, 123, 4591-4600.	6.6	70
59	Advances in the Reactions of Active Oxygen Species. Oleoscience, 2001, 1, 471-478,468.	0.0	1
60	Reactions in clay media: photooxidation of sulfides by clay-bound methylene blue. Tetrahedron, 2001, 57, 8391-8394.	1.0	31
61	Low-Temperature Photosensitized Oxidation of a Guanosine Derivative and Formation of an Imidazole Ring-Opened Product. Journal of the American Chemical Society, 2002, 124, 3905-3913.	6.6	70
62	Oxidation of sulfides and disulfides under electron transfer or singlet oxygen photosensitization using soluble or grafted sensitizers. Photochemical and Photobiological Sciences, 2002, 1, 347-354.	1.6	49
63	Oxidation of thioanisole by peroxomolybdate ions: direct oxygen transfer from tetraperoxomolybdate ion. Journal of Physical Organic Chemistry, 2002, 15, 29-35.	0.9	48
64	Physical Mechanisms of Generation and Deactivation of Singlet Oxygen. Chemical Reviews, 2003, 103, 1685-1758.	23.0	1,788
65	Oxidation of thioanisole by hydrogen peroxide: activation by nitriles. Journal of Physical Organic Chemistry, 2003, 16, 603-607.	0.9	9
66	Isotope Effects as Mechanistic Probes in Solution and in Intrazeolite Photooxygenations. The Formation of a Hydroperoxysulfonium Ylide. Journal of Organic Chemistry, 2003, 68, 5174-5179.	1.7	8
67	Electron Transfer and Singlet Oxygen Mechanisms in the Photooxygenation of Dibutyl Sulfide and Thioanisole in MeCN Sensitized byN-Methylquinolinium Tetrafluoborate and 9,10-Dicyanoanthracene. The Probable Involvement of a Thiadioxirane Intermediate in Electron Transfer Photooxygenations. Journal of the American Chemical Society, 2003, 125, 16444-16454.	6.6	156
68	Phosphadioxirane: A Peroxide from an Ortho-Substituted Arylphosphine and Singlet Dioxygen. Science, 2003, 302, 259-262.	6.0	67
69	Liquid-phase oxidation of sulfides by an aluminum (and titanium) tert-butoxide?tert-butyl hydroperoxide system. Russian Chemical Bulletin, 2004, 53, 1729-1734.	0.4	6
70	Photosensitized oxidation of phenyl and tert-butyl sulfides. Photochemical and Photobiological Sciences, 2004, 3, 489.	1.6	31
71	Hammett Correlations in the Photosensitized Oxidation of 4-Substituted Thioanisoles. Journal of Organic Chemistry, 2004, 69, 928-935.	1.7	51
72	Degradation of poly(1,4-phenylene sulfide) on exposure to chlorinated water. Polymer Degradation and Stability, 2005, 90, 67-77.	2.7	12
73	Soft Liquid-Phase Oxidation Sulfides with the Systems on the Base of the Element-Containing Alkoxides and Tert-Butylhydroperoxide. Phosphorus, Sulfur and Silicon and the Related Elements, 2005, 180, 1521-1522.	0.8	2
74	Photosensitized Oxygenation of Sulfides within an Amphiphilic Dendrimer Containing a Benzophenone Core. Journal of Physical Chemistry B, 2005, 109, 8580-8586.	1.2	27
75	Conformationally Induced Electrostatic Stabilization of Persulfoxides:Â A New Suggestion for Inhibition of Physical Quenching of Singlet Oxygen by Remote Functional Groups. Journal of the American Chemical Society, 2005, 127, 11819-11826.	6.6	34

#	Article	IF	CITATIONS
76	Photo-oxidation of di-n-butylsulfide by various electron transfer sensitizers in oxygenated acetonitrile. Photochemical and Photobiological Sciences, 2005, 4, 221.	1.6	42
77	Use of the Antioxidant BHT in Asymmetric Membrane Tablet Coatings to Stabilize the Core to the Acid Catalyzed Peroxide Oxidation of a Thioether Drug. Pharmaceutical Development and Technology, 2005, 10, 115-125.	1.1	17
78	Reaction of singlet oxygen with some benzylic sulfides. Tetrahedron, 2006, 62, 10716-10723.	1.0	32
79	The hydroperoxysulfonium ylide. An aberration or a ubiquitous intermediate?. Tetrahedron, 2006, 62, 10724-10728.	1.0	12
80	Chemistry of singlet oxygen with arylphosphines. Tetrahedron, 2006, 62, 10729-10733.	1.0	32
81	Christopher Foote's Discovery of the Role of Singlet Oxygen [102(1Î"g)] in Photosensitized Oxidation Reactions. Accounts of Chemical Research, 2006, 39, 797-804.	7.6	231
82	Photosensitized Oxidation of Sulfides: Discriminating between the Singlet-Oxygen Mechanism and Electron Transfer Involving Superoxide Anion or Molecular Oxygen. Chemistry - A European Journal, 2006, 12, 4844-4857.	1.7	139
83	The Autoxidation of Triaryl Trithioarsenites, (ArS)3As: Evidence for Binding and Activation of Triplet Dioxygen by Arsenic(III). Phosphorus, Sulfur and Silicon and the Related Elements, 2006, 181, 363-376.	0.8	19
84	The Bimolecular Reactivity of Singlet Molecular Oxygen. Advances in Photochemistry, 2007, , 217-274.	0.4	27
85	New Insight into the Reaction of Singlet Oxygen with Sulfur-Containing Cyclic Alkenes:  Dye-Sensitized Photooxygenation of 5,6-Dihydro-1,4-dithiins. Journal of Organic Chemistry, 2007, 72, 10075-10080.	1.7	10
86	Singlet Oxygen Promoted Carbonâ^'Heteroatom Bond Cleavage in Dibenzyl Sulfides and Tertiary Dibenzylamines. Structural Effects and the Role of Exciplexes. Journal of Organic Chemistry, 2007, 72, 9582-9589.	1.7	35
87	Rather Exotic Types of Cyclic Peroxides:  Heteroatom Dioxiranes. Chemical Reviews, 2007, 107, 3247-3285.	23.0	71
88	Conformationally induced electrostatic stabilization (CIES) of persulfoxides. A comparison to homologous sulfoxides. Heteroatom Chemistry, 2007, 18, 591-599.	0.4	4
89	Synthesis of 1,4-thiazino- and benzo-1,4-thiazinomorphinans: their acid-catalyzed rearrangement and study of the formation ofÂunexpected oxidation products. Tetrahedron, 2008, 64, 1023-1028.	1.0	8
90	Photooxidation of metal-bound thiolates: reactivity of sulfur containing peroxidic intermediates. Journal of Sulfur Chemistry, 2008, 29, 377-388.	1.0	12
91	Aerobic Photooxidation of Phosphite Esters Using Diorganotelluride Catalysts. Organic Letters, 2009, 11, 1879-1881.	2.4	43
92	Reaction of Singlet Oxygen with Thioanisole in Ionic Liquids: a Solvent Induced Mechanistic Dichotomy. Organic Letters, 2009, 11, 1413-1416.	2.4	32
93	Fiberâ€optic Singlet Oxygen [¹ O ₂ (¹ Î" _g)] Generator Device Serving as a Point Selective Sterilizer. Photochemistry and Photobiology, 2010, 86, 890-894.	1.3	16

#	Article	IF	CITATIONS
94	Reaction of Singlet Oxygen with Thioanisole in Ionic Liquidâ 'Acetonitrile Binary Mixtures. Organic Letters, 2010, 12, 5116-5119.	2.4	14
95	Formation of Diaryl Telluroxides and Tellurones by Photosensitized Oxygenation of Diaryl Tellurides. Inorganic Chemistry, 2010, 49, 10680-10686.	1.9	54
96	Doping Metal–Organic Frameworks for Water Oxidation, Carbon Dioxide Reduction, and Organic Photocatalysis. Journal of the American Chemical Society, 2011, 133, 13445-13454.	6.6	1,363
97	Oxygen Atom Transfer from Peroxide Intermediates to Fullerenes. Chemistry Letters, 2011, 40, 1431-1433.	0.7	10
98	BODIPY photocatalyzed oxidation of thioanisole under visible light. Catalysis Communications, 2011, 16, 94-97.	1.6	73
99	Photocatalytic Desulfurization of Waste Tire Pyrolysis Oil. Energies, 2011, 4, 1880-1896.	1.6	31
100	Photooxygenations of Sulfur Compounds. , 2012, , 789-808.		0
101	Accelerating effect of imidazolium ionic liquids on the singlet oxygen promoted oxidation of thioethers: A theoretical study. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 240, 59-65.	2.0	6
102	Alterations in Lipid Levels of Mitochondrial Membranes Induced by Amyloid-ß: A Protective Role of Melatonin. International Journal of Alzheimer's Disease, 2012, 2012, 1-14.	1.1	23
103	Accumulation of Exogenous Amyloid- <i>Beta</i> Peptide in Hippocampal Mitochondria Causes Their Dysfunction: A Protective Role for Melatonin. Oxidative Medicine and Cellular Longevity, 2012, 2012, 1-15.	1.9	59
104	A simple metal-free catalytic sulfoxidation under visible light and air. Green Chemistry, 2013, 15, 357.	4.6	145
106	Synthesis and Photochemical Properties of pH Responsive Tris-Cyclometalated Iridium(III) Complexes That Contain a Pyridine Ring on the 2-Phenylpyridine Ligand. Inorganic Chemistry, 2014, 53, 409-422.	1.9	77
107	Generation of Singlet Oxygen by Photoexcited Au ₂₅ (SR) ₁₈ Clusters. Chemistry of Materials, 2014, 26, 2777-2788.	3.2	248
110	Selective Photooxidation of a Mustardâ€Gas Simulant Catalyzed by a Porphyrinic Metal–Organic Framework. Angewandte Chemie - International Edition, 2015, 54, 9001-9005.	7.2	244
112	Selective arylthiolane deprotection by singlet oxygen: a promising tool for sensors and prodrugs. Chemical Communications, 2015, 51, 3196-3199.	2.2	31
113	Synthesis and Photocatalytic Reactivity of Vinylsulfonium Ylides. Journal of Organic Chemistry, 2016, 81, 7201-7210.	1.7	19
114	Solar–Chemical Energy Conversion by Photocatalysis. Green Chemistry and Sustainable Technology, 2016, , 249-282.	0.4	1
115	Heterogeneous Photocatalysis. Green Chemistry and Sustainable Technology, 2016, , .	0.4	51

#	Article	IF	Citations
116	Mechanistic and Kinetic Study of Singlet O ₂ Oxidation of Methionine by On-Line Electrospray Ionization Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2016, 27, 59-72.	1.2	16
117	Visible-light-induced selective synthesis of sulfoxides from alkenes and thiols using air as the oxidant. Green Chemistry, 2017, 19, 3520-3524.	4.6	116
118	Robust triplet–triplet annihilation photon upconversion by efficient oxygen scavenging. Photochemical and Photobiological Sciences, 2017, 16, 1327-1334.	1.6	50
119	Heterogeneous Organophosphate Ethanolysis: Degradation of Phosphonothioate Neurotoxin by a Supported Molybdenum Peroxo Polymer. Inorganic Chemistry, 2017, 56, 10013-10020.	1.9	5
120	Direct Irradiaton of Aryl Sulfides: Homolytic Fragmentation and Sensitized S-Oxidation. Journal of Organic Chemistry, 2017, 82, 9054-9065.	1.7	20
121	Separations in the Sample Preparation for Sulfur Compound Analysis. Springer Handbooks, 2017, , 199-219.	0.3	6
122	Simple low cost porphyrinic photosensitizers for large scale chemoselective oxidation of sulfides to sulfoxides under green conditions: targeted protonation of porphyrins. Catalysis Science and Technology, 2018, 8, 768-781.	2.1	28
123	Selective photooxidation of sulfides mediated by singlet oxygen using visible-light-responsive coordination polymers. Chemical Communications, 2018, 54, 13002-13005.	2.2	54
124	Selective Photooxidation of Sulfides Catalyzed by Bisâ€cyclometalated Ir ^{III} Photosensitizers Bearing 2,2′â€Dipyridylamineâ€Based Ligands. Chemistry - A European Journal, 2018, 24, 10662-10671.	1.7	23
125	Photochemical Co-Oxidation of Sulfides and Phosphines with Tris(<i>>p</i> >bromophenyl)amine. A Mechanistic Study. Journal of Organic Chemistry, 2018, 83, 8104-8113.	1.7	13
126	Photocatalytic Oxidation of Sulfur Mustard and Its Simulant on BODIPY-Incorporated Polymer Coatings and Fabrics. ACS Applied Materials & Simulant on BODIPY-Incorporated Polymer Coatings and Fabrics. ACS Applied Materials & Simulant on BODIPY-Incorporated Polymer Coatings and Fabrics.	4.0	50
127	Influence of the heteroatom on the structure, bonding and ring strain of a series of three-membered rings containing a second, third, fourth and fifth row elements: a theoretical investigation. Structural Chemistry, 2018, 29, 1623-1636.	1.0	9
128	Visible-light photocatalytic aerobic oxidation of sulfides to sulfoxides with a perylene diimide photocatalyst. Organic and Biomolecular Chemistry, 2019, 17, 7144-7149.	1.5	43
129	Singlet Molecular Oxygen Reactions with Nucleic Acids, Lipids, and Proteins. Chemical Reviews, 2019, 119, 2043-2086.	23.0	404
130	Molecular Mechanisms and Genetics of Oxidative Stress in Alzheimer's Disease. Journal of Alzheimer's Disease, 2019, 72, 981-1017.	1.2	115
131	Temperature Effects on the Lifetime of O2(a1î"g). Springer Theses, 2019, , 79-105.	0.0	0
132	Doubly Nâ€Confused Calix[6]phyrin Bisâ€Organopalladium Complexes: Photostable Triplet Sensitizers for Singlet Oxygen Generation. Chemistry - an Asian Journal, 2019, 14, 1729-1736.	1.7	14
134	Photodegradation of polychlorinated diphenyl sulfides mediated by reactive oxygen species on silica gel. Chemical Engineering Journal, 2019, 359, 1056-1064.	6.6	27

#	Article	IF	CITATIONS
135	Photosensitization and controlled photosensitization with BODIPY dyes. Coordination Chemistry Reviews, 2019, 379, 47-64.	9.5	292
136	Molecular Composition of Photooxidation Products Derived from Sulfur-Containing Compounds Isolated from Petroleum Samples. Energy & Samp; Fuels, 2020, 34, 14493-14504.	2.5	10
137	Light-Driven Metal-Free Direct Deoxygenation of Alcohols under Mild Conditions. IScience, 2020, 23, 101419.	1.9	20
138	Understanding the Synergistic Effects Observed When Using Tethered Dual Catalysts for Heat and Light Activated Catalysis. ChemCatChem, 2020, 12, 5091-5097.	1.8	4
139	Supramolecular Porous Organic Nanocomposites for Heterogeneous Photocatalysis of a Sulfur Mustard Simulant. Advanced Materials, 2020, 32, e2001592.	11.1	23
140	Fullerene soot and a fullerene nanodispersion as recyclable heterogeneous off-the-shelf photocatalysts. RSC Advances, 2021, 11, 4104-4111.	1.7	4
141	Photochemistry of Tris(2,4â€dibromophenyl)amine and its Application to Coâ€oxidation on Sulfides and Phosphines ^{â€} . Photochemistry and Photobiology, 2021, 97, 1278-1288.	1.3	8
142	Iron sites on defective BiOBr nanosheets: Tailoring the molecular oxygen activation for enhanced photocatalytic organic synthesis. Nano Research, 2022, 15, 1509-1516.	5.8	31
143	Singlet Oxygen Generation, Quenching and Reactivity with Metal Thiolates ^{â€} . Photochemistry and Photobiology, 2021, 97, 1219-1240.	1.3	11
144	High-coordinated sulfur compounds. , 0, , 799-956.		6
145	Selective preparation of hydroperoxides in photosensitized oxygenation Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1986, 44, 974-985.	0.0	6
146	Formation of New Active Oxidizing Species in Photosensitized Oxygenation of Organosulfur Compounds Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 1993, 51, 212-222.	0.0	1
147	Photocatalytic Activity of Ruthenium(II) Complex with 1,10-Phenanthroline-3,8-dicarboxylic Acid in Aerobic Oxidation Reactions. Russian Journal of Organic Chemistry, 2021, 57, 1398-1404.	0.3	4
148	Structural Dependence of Photogenerated Transformation Products for Aromatic Hydrocarbons Isolated from Petroleum. Energy & Energ	2.5	2
149	Reactions of Compounds of the Nonmetallic Elements. , 1985, , 93-140.		1
150	Isomeric sp2-C-conjugated porous organic polymer-mediated photo- and sono-catalytic detoxification of sulfur mustard simulant under ambient conditions. Matter, 2021, 4, 3774-3785.	5.0	10
151	Aerobic Photocatalysis: Oxidation of Sulfides to Sulfoxides. ChemPlusChem, 2022, 87, e202200008.	1.3	34
152	Dehydromethionine is a common product of methionine oxidation by singlet molecular oxygen and hypohalous acids. Free Radical Biology and Medicine, 2022, 187, 17-28.	1.3	3

CITATION REPORT

#	Article	IF	CITATIONS
153	Hydrogen sulfide decreases photodynamic therapy outcome through the modulation of the cellular redox state. Nitric Oxide - Biology and Chemistry, 2022, 125-126, 57-68.	1.2	2
154	Direct Utilization of Near-Infrared Light for Photooxidation with a Metal-Free Photocatalyst. Molecules, 2022, 27, 4047.	1.7	4
155	Synthesis and Properties of Stable 20Ï€ Porphyrinoids. Chemical Record, 2022, 22, .	2.9	5
156	Singlet Oxygen's Potential Role as a <scp>Nonâ€Oxidative</scp> Facilitator of Disulfide S–S Bond Rotation. Photochemistry and Photobiology, 0, , .	1.3	2
157	Silyl Tether-Assisted Photooxygenation of Electron-Deficient Enaminoesters: Direct Access to Oxamate Formation. Journal of Organic Chemistry, 0 , , .	1.7	0
158	Effect of singlet oxygen on redox mediators in lithium–oxygen batteries. Journal of Materials Chemistry A, 2023, 11, 16003-16008.	5. 2	2