CITATION REPORT
List of articles citing

Source: https://exaly.com/paper-pdf/16270719citation-report.pdf
Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For
the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of

citations of the article.

CITATION REPORT

Paper IF Citations

Comprehension and recall of miniature programs. /nternational Journal of Man-Machine Studies,
1984, 21, 31-48

Beacons in computer program comprehension. /nternational Journal of Man-Machine Studies, 1986,
457 25, 697-709

Learning to program = learning to construct mechanisms and explanations. 1986, 29, 850-858

455 Cap: AKnowledge Extraction Methodology for Computer Programming. 1986, 30, 492-496 1

Eliciting knowledge for software development. 1987, 6, 427-440

453 Cognitive processes in program comprehension. 1987, 7, 325-339 99

Stimulus structures and mental representations in expert comprehension of computer programs.
1987, 19, 295-341

451 Unscrambling non-sequential programs. 1988, 18, 39-50

449 GraphTracellnderstanding object-oriented systems using concurrently animated views. 1988, 23, 191-205 5

Automation, skills and the content of work. 1988, 19, 1407-1418

Research on Computer Programming as a Cognitive Activity: implications for the study of
447 (lassroom teaching. 1989, 15, 177-189

Cognitive issues in the process of software development: review and reappraisal. /nternational
Journal of Man-Machine Studies, 1989, 30, 171-191

Toward a theory of computer program bugs: an empirical test. /nternational Journal of Man-Machine
445 Studies, 1989, 30, 23-46 33

The maintenance assistant: Work in progress. 1989, 9, 3-17

443 Experimental evaluation of software documentation formats. 1989, 9, 167-207 41

Hierarchical spiral model for information system and software development. Part 1: Theoretical

background. 1990, 32, 386-399

The impact of Pascal education on debugging skill. /nternational Journal of Man-Machine Studies,
4T 1990, 33, 81-95 7

Variability in program design: the interaction of process with knowledge. /nternational Journal of
Man-Machine Studies, 1990, 33, 305-322

An empirically-derived control structure for the process of program understanding. /nternational
439 Journal of Man-Machine Studies, 1990, 33, 323-342

Typographic style is more than cosmetic. 1990, 33, 506-520

437 .1990,7,39-45 18

The Role of Notation and Knowledge Representation in the Determination of Programming
Strategy: A Framework for Integrating Models of Programming Behavior. 1991, 15, 547-572

435

What do novices learn during program comprehension?. 1991, 3, 199-222

433 The System Design Process. 1991, 267-340

Instruction for software engineering expertise. 1991, 271-282

431 Approaches to program comprehension. 1991, 14, 79-84 24

The software maintenance of large software systems: Management, methods and tools. 1991, 32, 135-154

429 The initial stage of program comprehension. International Journal of Man-Machine Studies, 1991, 35, 517-540 23

Information relationships in PROLOG programs: how do programmers comprehend functionality?.
International Journal of Man-Machine Studies, 1991, 35, 313-328

Towards a model of programmers’ cognitive processes in software maintenance: A structural
427 learning theory approach for debugging. 1991, 3, 85-106 5

Knowledge Creation and Retrieval in Program Design: A Comparison of Novice and intermediate
Student Programmers. 1991, 6, 1-46

425 . 8

CITATION REPORT

423

421 Intelligent Fault localization in software. 1992,

Intelligent search and acquisition of business knowledge from programs. 1992, 4, 1-17

419 Aframework for software maintenance: A foundation for scientific inquiry. 1992, 4, 105-117 4

On the re-engineering of transaction systems. 1992, 4, 143-162

. VPCL: A visual language for teaching and learning programming. (A picture is worth a thousand
417 words). 1992, 3, 299-317

The role of program structure in software maintenance. /nternational Journal of Man-Machine
Studies, 1992, 36, 21-63

415 Understanding someone else’s code: Analysis of experiences. 1993, 23, 269-275 51

413

411 . 35

410 . 7

409 . 9

A blackboard architecture for intelligent assistance in software maintenance.

407 From code understanding needs to reverse engineering tool capabilities. 27

The psychology of computer languages for introductory programming courses. 1993, 11, 213-228

405 . 2

403 . 1

401 A memory-based approach to recognizing programming plans. 1994, 37, 84-93 61

399 . IEEE Transactions on Software Engineering, 1994, 20, 463-475 3.5 92

. IEEE Transactions on Software Engineering, 1994, 20, 445-462

397

395 - 19

Maintenance and Evolution of Software Products. 1994, 39, 1-49

393 Planning for Software Maintenance Education Within a Computee Science Framework. 1994, 5, 1-13 2

Helping programmers understand computer programs. 1995, 26, 25-46

391 .1995, 28, 44-55 258

Program Structure and Design. 1995, 19, 507-562

389 AKnowledge-Based Approach to Program Understanding. 1995, 2

379

375

373

D

CITATION REPORT

Program Understanding: Models and Experiments. 1995, 40, 1-38 18

Design of a generic reverse engineering assistant tool.

Detecting interleaving. 7

VIFOR 2: a tool for browsing and documentation. 1996,

A query algebra for program databases. /IEEE Transactions on Software Engineering, 1996, 22,202-217 3.5 30

Understanding Interleaved Code. 1996, 47-76

On the role of hypotheses during opportunistic understanding while porting large scale code. 11

A workbench for program comprehension during software maintenance.

Recursion vs. iteration: An empirical study of comprehension. 1996, 32, 73-82 11

A method for documenting code components. 1996, 34, 89-104

Cognitive processes in program comprehension: An empirical analysis in the Context of software

reengineering. 1996, 34, 177-189 i

Understanding interleaved code. 1996, 3, 47-76

Programming pedagogyB psychological overview. 1996, 28, 17-22 252

The GadfFly: an approach to architectural-level system comprehension.

Towards a framework for program understanding. 33

Greater understanding through maintainer driven traceability.

Softwarewartung und Reengineering. 1996,

Responses to comprehension questions and verbal protocols as measures of computer program

comprehension processes. 1997, 16, 320-336

369 PUI:atool to support program understanding. 2

On integrating visualization techniques for effective software exploration.

An empirical study of novice program comprehension in the imperative and object-oriented styles.
367 1997, 29

365 Hypothesis-driven understanding processes during corrective maintenance of large scale software. 10

How do program understanding tools affect how programmers understand programs?.

363 Building a research infrastructure for program comprehension observations. 1

Incremental redocumentation with hypertext.

361 Towards standard for experiments in program comprehension. 10

Towards a precise description of reverse engineering methods and tools.

Cognitive design elements to support the construction of a mental model during software
359 yisualization.

Interactive Explanation of Software Systems. 1997, 4, 53-75

357 Model-based design of reverse engineering tools. 1998, 10, 353-380 3

Conditioned program slicing. 1998, 40, 595-607

355 . 11

Developing the designer’s toolkit with software comprehension models.

353 Intent specifications: an approach to building human-centered specifications. 3

Task oriented software understanding.

Eo

349

343

341

339

337

335

CITATION REPORT

FEPSS: a flexible and extensible program comprehension support system.

The case for user-centered CASE tools. 1998, 41, 93-99

Evaluating software maintenance support tools for their support of program comprehension. 2

Archetypal source code searches: a survey of software developers and maintainers.

Program understanding behavior during adaptation of large scale software. 15

The Relevance of Application Domain Knowledge: Characterizing the Computer Program
Comprehension Process. 1998, 15, 51-78

Task orientation and tailoring of interactive software explanations.

Cognitive design elements to support the construction of a mental model during software
exploration. 1999, 44, 171-185

Portability by automatic translation: A large-scale case study. 1999, 107, 1-28

Episodic Indexing: A Model of Memory for Attention Events. 1999, 23, 117-156 11

Mental representations of expert procedural and object-oriented programmers in a software
maintenance task. 1999, 50, 61-83

Introduction to the Special Issue Best of Empirical Studies of Programmers 7001999, 51, 3-5 1

Program understanding behavior during corrective maintenance of large-scale software. 1999, 51, 31-70

Novice comprehension of small programs written in the procedural and object-oriented styles.
1999, 51, 71-87

Editorial: 30th Anniversary Issue. 1999, 51, 119-124

An evaluation of the cognitive processes of programmers engaged in software debugging. 1999, 5
11, 73-91

(2001H999)

333 Aframework for analysing the effect of ‘change’ in legacy code. 1999, 2

Browsing and searching software architectures. 1999,

331 Empirical evaluation of hypertextual information access from program text. 1

Building documentation generators. 1999,

A coding scheme to support systematic analysis of software comprehension. /EEE Transactions on
Software Engineering, 1999, 25, 526-540

Detecting the error threshold for rule-based programs: a logit model. Expert Systems With 3
327 Applications, 2000, 19, 229-233 7

How do program understanding tools affect how programmers understand programs?. 2000, 36, 183-207

An empirical analysis of debugging performance [Hifferences between iterative and recursive
325 constructs. 2000, 54, 17-28

The role of comprehension in software inspection. 2000, 52, 121-129

323 The use of domain knowledge in program understanding. 2000, 9, 143-192 27

The Multimedia Maintenance Interface (MuMMI) system.

Intent specifications: an approach to building human-centered specifications. /IEEE Transactions on

321 software Engineering, 2000, 26, 15-35 35

114

320 . 19

. Direction and scope of comprehension-related activities by procedural and object-oriented
319 programmers: an empirical study. 5

Inference-based and expectation-based processing in program comprehension.

317 Comparing two spreadsheet calculation paradigms: an empirical study with novice users. 2001, 13, 427-446 >

Near-term memory in programming: a simulation-based analysis. 2001, 54, 189-210

]

E

311

307

S5

301

=

CITATION REPORT

Focal structures and information types in Prolog. 2001, 54, 211-236 5

An exploratory study of program comprehension strategies of procedural and object-oriented
programmers. 2001, 54, 1-23

Managing crosscutting concerns during software evolution tasks. 2002, 13

Software Evolution and the Staged Model of the Software Lifecycle. 2002, 1-54

Constructivism and program comprehension strategies. 3

Traceability recovery in RAD software systems. 13

Program comprehension by visualization in contexts.

A model for understanding software components. 10

Two controlled experiments assessing the usefulness of design pattern documentation in program
maintenance. /EEE Transactions on Software Engineering, 2002, 28, 595-606

. IEEE Transactions on Software Engineering, 2002, 28, 970-983 3.5 608

Theory-based analysis of cognitive support in software comprehension tools.

Experimental evaluation of hypertext access structures. 2002, 14, 83-108 6

A semantic entropy metric. 2002, 14, 293-310

A relational approach to defining and implementing transformations between metamodels. 2003, -
2,215-239

A comparison of methods for locating features in legacy software. 2003, 65, 105-114

Code and data spatial complexity: two important software understandability measures. 2003, 45, 539-546 28

Developing relational navigation to effectively understand software.

10

(2004-)

297 Case study: reconnaissance techniques to support feature location using RECON2. 1

Learning and Teaching Programming: A Review and Discussion. 2003, 13, 137-172

295 Applying the signature concept to plan-based program understanding. 1

Analogy of incremental program development and constructivist learning.

293 Exploring software systems. 6

A framework for understanding conceptual changes in evolving source code.

Programming at runtime: Requirements & paradigms for nonprogrammer web application

291 development. 2003,

Cognitive and social aspects of software engineering. 2003, 35, 3-6

289 Cognitive and social aspects of software engineering. 2003, 1

Visualizing model mappings in UML. 2003,

287 Verification of the cryptlib Kernel. 2004, 167-213

An initial approach to assessing program comprehensibility using spatial complexity, number of
concepts and typographical style.

285 Comprehension Strategies of End-User Programmers in an Event-Driven Application. 6

A multi-national study of reading and tracing skills in novice programmers. 2004,

283 MFV-class: a multi-faceted visualization tool of object classes. 2004, 5, 1374-81 o)

Expectation-based, inference-based, and bottom-up software comprehension. 2004, 16, 427-447

281 Program comprehension and authentic measurement:. 2004, 61, 169-185 11

Measurement of object-oriented software spatial complexity. 2004, 46, 689-699

11

CITATION REPORT

279 Combined software and hardware comprehension in reverse engineering. 1

Using feature modeling for program comprehension and software architecture recovery.

277 Program comprehension for Web services. 6

Structural Knowledge and Language Notational Properties in Program Comprehension.

275 Programming style changes in evolving source code. 1

Cognitive process during program debugging. 2004,

273 Semantic driven program analysis. 6

A multi-national study of reading and tracing skills in novice programmers. 2004, 36, 119-150

271 Towards understanding programs through wear-based filtering. 2005, 56

An empirical study of programmer learning during incremental software development. 2005,

269 Aninvestigation into professional programmers’ mental representations of variables. 1

. 2005,

267 Managing software change tasks: an exploratory study. 23

Presenting micro-theories of program comprehension in pattern form.

265 A cognitive model for program comprehension. 2005,

Theories, methods and tools in program comprehension: past, present and future. 2005,

263 Empirically studying software practitioners - bridging the gap between theory and practice. 2005, 6

A First Look at Novice Compilation Behaviour Using BlueJ. 2005, 15, 25-40

12

(2007-2006)

An Ontology-Based Approach to Software Comprehension - Reasoning about Security Concerns.

261 5006,

12

A Context-Driven Software Comprehension Process Model. 2006,

259 A Program Beacon Recognition Tool. 2006, 2

Legacysoftware. 2006,

257 Using Sex Differences to Link Spatial Cognition and Program Comprehension. 2006, 27

A Context-Aware Analysis Scheme for Bloom's Taxonomy.

255 Reverse Engineering in Support of Litigation: Experiences in an Adversarial Environment. 2006,

A study of design characteristics in evolving software using stability as a criterion. /EEE Transactions
on Software Engineering, 2006, 32, 315-329

253 The SEXTANT Software Exploration Tool. /EEE Transactions on Software Engineering, 2006, 32, 753-768 35 9

Measurement of Object-Oriented Software Understandability Using Spatial Complexity. 2006, 155-181

a(MDJR: A Model Driven Approach to Multi-Dimensional Separation of Concerns with OCL. 2006,
251

163, 19-29
Theories, tools and research methods in program comprehension: past, present and future. 2006,
14,187-208

249 A formal methods approach to medical device review. 2006, 39, 61-67 42

An eye-tracking methodology for characterizing program comprehension processes. 2006,

Transparency, holophrasting, and automatic layout applied to control structures for visual dataflow
247 programming languages. 2006,

Using Abstraction-driven Slicing for Postmortem Analysis of Software.

245 Towards Spatial Complexity Measures for Comprehension of Java Programs. 2006, 2

Supporting CS1 with a program beacon recognition tool. 2007,

L

243

241

255

237

255

255

231

229

227

CITATION REPORT

Spatial skills and navigation of source code. 2007, 7

A Review of Australasian Investigations into Problem Solving and the Novice Programmer. 2007,
17,201-213

. 2007, 11

Towards A Process-Oriented Software Architecture Reconstruction Taxonomy. 2007,

Spatial skills and navigation of source code. 2007, 39, 231-235 8

A Systematic Review of Theory Use in Software Engineering Experiments. /EEE Transactions on
Software Engineering, 2007, 33, 87-107

Software Visualization - A Process Perspective. 2007, 1

Toward Reducing Fault Fix Time: Understanding Developer Behavior for the Design of Automated
Fault Detection Tools. 2007,

Source Code Analysis: A Road Map. 2007, 8o

Constructivist Learning During Software Development. 2007, 1, 78-101

Debugging strategies and tactics in a multi-representation software environment. 2007, 65, 992-1009 22

Comprehension strategies and difficulties in maintaining object-oriented systems: An explorative
study. 2007, 80, 1541-1559

An objective-oriented approach to program comprehension using multiple information sources.
2008, 51, 825-847

The impacts of function extraction technology on program comprehension: A controlled
experiment. 2008, 50, 1165-1179

Story-driven approach to software evolution. 2008, 2, 304 7

Patterns for understanding frameworks. 2008,

DonHbdo this [Pitfalls in using anti-patterns in teaching humandomputer interaction principles.
2008, 50, 979-1008 4

Asking and Answering Questions during a Programming Change Task. /EEE Transactions on Software

Engineering, 2008, 34, 434-451

14

(2010-2008)

225 Evaluating Key Statements Analysis. 2008, 2

Expressiveness and effectiveness of program comprehension: Thoughts on future research
directions. 2008,

BEYOND INFORMATION SILOS [AN OMNIPRESENT APPROACH TO SOFTWARE EVOLUTION. 2008

,02,431-468 11

223

Checklist Inspections and Modifications: Applying Bloom’s Taxonomy to Categorise Developer
Comprehension. 2008,

221 Remixing visualization to support collaboration in software maintenance. 2008, 4

Beyond generated software documentation [A web 2.0 perspective. 2009,

219 Non-programmers identifying functionality in unfamiliar code: Strategies and barriers. 2009, 2

Mapping a sequence diagram to the related code: Cognitive levels expressed by developers. 2009,

217 Program Comprehension for User-Assisted Test Oracle Generation. 2009, 1

IT Revolutions. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering, 2009,

215 . IEEE Transactions on Software Engineering, 2009, 35, 305-324 3.5 4

. IEEE Transactions on Software Engineering, 2009, 35, 573-591

213 Non-programmers identifying functionality in unfamiliar code: strategies and barriers. 2010, 21, 263-276 26

An introduction to program comprehension for computer science educators. 2010,

211 Influence of Synchronized Domain Visualizations on Program Comprehension. 2010,

An evaluation of object oriented example programs in introductory programming textbooks. 2010,
41,126-143

The Monitoring System for Electric Quantity Consumed in Extruder Based on WB Electrical

299 Transducer. 201 0,

Reactive information foraging for evolving goals. 2010,

1y

207

205

203

201

50

157

100

8

191

CITATION REPORT

An eye tracking study on the effects of layout in understanding the role of design patterns. 2010, 39

Estimating the Optimal Number of Latent Concepts in Source Code Analysis. 2010,

Trustrace: Improving Automated Trace Retrieval through Resource Trust Analysis. 2011, 2

Trust-Based Requirements Traceability. 2011,

Automatic Segmentation of Method Code into Meaningful Blocks to Improve Readability. 2011, 18

Advances in Artificial Intelligence. Lecture Notes in Computer Science, 2011,

Empirical assessment of UML class diagram layouts based on architectural importance. 2011, 8

Context and Vision: Studying Two Factors Impacting Program Comprehension. 2011,

On the Quality of Examples in Introductory Java Textbooks. ACM Transactions on Computing

Education, 2011, 11, 1-21 21 13

Categorization of concerns. 2011,

On the role of human thought. 2011, 1

The Influence of the Task on Programmer Behaviour. 2011,

Is iteration really easier to learn than recursion for CS1 students?. 2012, 8

Automatic recognition of students’ sorting algorithm implementations in a data structures and
algorithms course. 2012,

An eye-tracking study on the role of scan time in finding source code defects. 2012, 62

Systematizing pragmatic software reuse. 2012, 21, 1-44

Using Concept Maps to Assist Program Comprehension and Concept Location: An Empirical Study.
2012, 11, 1250018 3

Categorizing variations of student-implemented sorting algorithms. 2012, 22, 109-138

16

(2014-2012)

189 How do professional developers comprehend software?. 2012, 81

Transactions on Edutainment VIII. Lecture Notes in Computer Science, 2012,

Expertise-dependent visual attention strategies develop over time during debugging with multiple

187 code representations. 2012, 70, 143-155 40

Meta-Programming and Model-Driven Meta-Program Development. 2013,

How Programmers Debug, Revisited: An Information Foraging Theory Perspective. /[EEE

185 Transactions on Software Engineering, 2013, 39, 197-215 35 67

How Does Software Visualization Contribute to Software Comprehension? A Grounded Theory
Approach. 2013, 29, 743-763

An Information Foraging Theory Perspective on Tools for Debugging, Refactoring, and Reuse Tasks.

183 2013, 22, 1-41

On the effect of program exploration on maintenance tasks. 2013,

The impact of identifier style on effort and comprehension. Empirical Software Engineering, 2013,

181 18219276 33 59

Assessing the quality factors found in in-line documentation written in natural language: The
JavadocMiner. 2013, 87, 19-40

179 Meta-Program Development as a Model Transformation Process. 2013, 189-208 1

Meta-Programming Task Specification Using Feature-Based Patterns and Domain Program
Scenarios. 2013, 171-188

177 Evaluating software clustering algorithms in the context of program comprehension. 2013, 7

Program Comprehension. 2014, 289-324

175 .2014, 8

Human factors in webserver log file analysis. 2014,

173 Degree-of-knowledge. 2014, 23, 1-42 34

Developers’ code context models for change tasks. 2014,

L7

171

169

167

165

163

161

457

57

155

CITATION REPORT

Assessing representation techniques of programs supported by GreedEx. 2014, 1

A visualization tool recording historical data of program comprehension tasks. 2014,

Automatic Segmentation of Method Code into Meaningful Blocks: Design and Evaluation. 2014, 26, 27-49 5

Visualizing the problem domain for spreadsheet users: A mental model perspective. 2014,

On the Comprehension of Program Comprehension. 2014, 23, 1-37 55

Visualizing Software Structure Understandability. 2014,

Enhanced JavaScript Learning Using Code Quality Tools and a Rule-Based System in the FLIP
Exploratory Learning Environment. 2014,

Human factors in software development: On its underlying theories and the value of learning from
related disciplines. A guest editorial introduction to the special issue. 2014, 56, 1537-1542

Eye Movements in Code Reading: Relaxing the Linear Order. 2015, 52

Document Retrieval Metrics for Program Understanding. 2015,

Task Mental Model and Software Developers[Performance: An Experimental Investigation. 2015,
36,

Program comprehension with four-layered mental model. 2015,

An empirical study on program comprehension task classification of novices. 2015, o)

To Fix or to learn? How production bias affects developers’ information foraging during debugging.
2015,

Code, Camera, Action: How Software Developers Document and Share Program Knowledge Using L
YouTube. 2015, 3

Automatic comprehension of algorithms for algorithmic assessment. 2015, 18, 413

The Impact of Hierarchies on the Architecture-Level Software Understandability - A Controlled
Experiment. 2015,

Comparing Trace Visualizations for Program Comprehension through Controlled Experiments.

2015,

18

(2017-2015)

153 Tracing software developers’ eyes and interactions for change tasks. 2015, 61

Exploring Theory of Cognition for General Theory of Software Engineering. 2015,

151 A mental model perspective for tool development and paradigm shift in spreadsheets. 2016, 86, 149-163 4

Evaluation Experiences of the Representation Techniques of Greedy Programs: Application to the
GreedEx Tool. 2016, 11, 179-186

149 Foraging and navigations, fundamentally: developers’ predictions of value and cost. 2016, 7

Program Comprehension: Past, Present, and Future. 2016,

L Linguistic antipatterns: what they are and how developers perceive them. Empirical Software
47 Engineering, 2016, 21, 104-158 3345

A theory of distances in software engineering. 2016, 70, 204-219

Tracking Students[Cognitive Processes During Program Debugging@n Eye-Movement Approach.
45 2016, 59, 175-186 25

Supporting comprehension of unfamiliar programs by modeling cues. 2017, 25, 307-340

143 Eye gaze and interaction contexts for change tasks [Dbservations and potential. 2017, 128, 252-266 12

Documenting and sharing software knowledge using screencasts. Empirical Software Engineering,
2017, 22, 1478-1507 33

141 Distributed analysis and filtering of application event streams. 2017, 129, 1-25

Shorter identifier names take longer to comprehend. 2017,

139 Measuring neural efficiency of program comprehension. 2017, 37

A problem posing-based practicing strategy for facilitating studentsltomputer programming skills
in the team-based learning mode. 2017, 65, 1655-1671

137 Syntax, Predicates, Idioms - What Really Affects Code Complexity?. 2017, 9

Comprehension First. 2017,

19

CITATION REPORT

135 On the use of visual clustering to identify landmarks in code navigation. 2017, fe)

Modeling information flow for an autonomous agent to support reverse engineering work. 2017,
14, 245-256

Do Programmers do Change Impact Analysis in Debugging?. Empirical Software Engineering, 2017,

133 22 631-669 33 12

Software landscape and application visualization for system comprehension with ExplorViz. 2017,
87,259-277

131 Infusing Topic Modeling into Interactive Program Comprehension: An Empirical Study. 2017, 1

Facilitating Scenario-Based Program Comprehension with Topic Models. 2017,

129 Beyond gaze. 2018, 1

Simultaneous measurement of program comprehension with FMRI and eye tracking. 2018,

127 Towards Understanding Programs by Counting Objects. 2018,

Search-Based Cost-Effective Software Remodularization. 2018, 33, 1320-1336

125 Descriptive compound identifier names improve source code comprehension. 2018, 12

Toward conjoint analysis of simultaneous eye-tracking and FMRI data for program-comprehension
studies. 2018,

123 Gaze as a Proxy for Cognition and Communication. 2018, 3

A neuro-cognitive perspective of program comprehension. 2018,

The GreedEx experience: Evolution of different versions for the learning of greedy algorithms.

121 2018, 26, 1306-1317 3

Syntax, predicates, idioms Wwhat really affects code complexity?. Empirical Software Engineering,
2019, 24, 287-328

119 Shorter identifier names take longer to comprehend. Empirical Software Engineering, 2019, 24, 417-443 33 8

Looks can mean achieving. 2019,

20

(2019-2019)

117 Factors influencing dwell time during source code reading. 2019, 2

On the Frequency of Words Used in Answers to Explain in Plain English Questions by Novice
Programmers. 2019,

115 Fifty years of the psychology of programming. 2019, 131, 52-63 9

A Nano-Pattern Language for Java. 2019, 54, 100905

113 Isopleth. 2019, 26, 1-42 1

An Important and Timely Field. 2019, 1-8

111 The History of Computing Education Research. 2019, 11-39 12

Computing Education Research Today. 2019, 40-55

109 Computing EducationLiterature Review and Voices from the Field. 2019, 56-78 6

A Study Design Process. 2019, 81-101

107 Descriptive Statistics. 2019, 102-132 2

Inferential Statistics. 2019, 133-172

105 Qualitative Methods for Computing Education. 2019, 173-207 2

Learning Sciences for Computing Education. 2019, 208-230

103 Higher Education Pedagogy. 2019, 276-291 1

Engineering Education Research. 2019, 292-322

101 Novice Programmers and Introductory Programming. 2019, 327-376 19

Programming Paradigms and Beyond. 2019, 377-413

21

CITATION REPORT

99 Assessment and Plagiarism. 2019, 414-444 2

Pedagogic Approaches. 2019, 445-480

97 Equity and Diversity. 2019, 481-510 5

Computational Thinking. 2019, 513-546

95 Schools (Ki2). 2019, 547-583 1

Computing for Other Disciplines. 2019, 584-605

93 New Programming Paradigms. 2019, 606-636 1

Tools and Environments. 2019, 639-662

91 Tangible Computing. 2019, 663-678 19

Leveraging the Integrated Development Environment for Learning Analytics. 2019, 679-706

89 Teacher Learning and Professional Development. 2019, 727-748 1

Learning Outside the Classroom. 2019, 749-772

87 Student Knowledge and Misconceptions. 2019, 773-800 1

Students As Teachers and Communicators. 2019, 827-858

85 A Case Study of Peer Instruction. 2019, 861-874 1

A Case Study of Qualitative Methods. 2019, 875-894

83 Index. 2019, 895-906

Cognitive Sciences for Computing Education. 2019, 231-275

22

(2021-2019)

81 Teacher Knowledge for Inclusive Computing Learning. 2019, 709-726 6

Motivation, Attitudes, and Dispositions. 2019, 801-826

79 An Empirical Study Assessing Source Code Readability in Comprehension. 2019, 1

Assessing students’ understanding of object structures. 2019,

Eye tracking analysis of computer program comprehension in programmers with dyslexia. Empirical
77 Software Engineering, 2019, 24, 1109-1154 33 4

Using reverse engineering techniques to infer a system use case model. 2019, 31, e2121

How to trick the Borg: threat models against manual and automated techniques for detecting
75 network attacks. 2019, 81, 25-40

Mining reading patterns from eye-tracking data: method and demonstration. 2020, 19, 345-369

Characterizing the transfer of program comprehension in onboarding: an information-push
/3 perspective. Empirical Software Engineering, 2020, 25, 940-995 33 3

Mining Association Rules from Code (MARC) to support legacy software management. 2020, 28, 633-662

- Exploring Programmers’ APl Learning Processes: Collecting Web Resources as External Memory. 5
2020,

Using Hypotheses as a Debugging Aid. 2020,

69 Do Programmers Prefer Predictable Expressions in Code?. 2020, 44, e12921 1

A large scale empirical study of the impact of Spaghetti Code and Blob anti-patterns on program
comprehension. 2020, 122, 106278

67 How Developers Choose Names. /EEE Transactions on Software Engineering, 2020, 1-1 35 2

There is No Such Thing as a Trial and Error Strategy(12021, 190-201

65 Recording, Visualising and Understanding Developer Programming Behaviour. 2021, 3

Striffs: Architectural Component Diagrams for Code Reviews. 2021,

=

61

55

53

51

47

CITATION REPORT

Understanding large-scale software systems Btructure and flows. Empirical Software Engineering,
2021, 26, 1 33 2

Considerations and Pitfalls in Controlled Experiments on Code Comprehension. 2021,

Program Comprehension and Code Complexity Metrics: An FMRI Study. 2021, 1

Is Algorithm Comprehension Different from Program Comprehension?. 2021,

Exploring Beverse-tracinglQuestions as a Means of Assessing the Tracing Skill on Computer-based
CS 1 Exams. 2021,

EEG Activities During Program Comprehension: An Exploration of Cognition. /EEE Access, 2021, 9, 12040%:420431

Designing a Software Exploration Tool Using a Cognitive Framework. 2003, 113-147 2

Reading Behavior and Comprehension of C++ Source Code - A Classroom Study. Lecture Notes in
Computer Science, 2019, 597-616

Investigating Eye Movements in Natural Language and C++ Source Code - A Replication
Experiment. Lecture Notes in Computer Science, 2017, 206-218 °9 3

A Unified Ontology-Based Process Model for Software Maintenance and Comprehension. 2006, 56-65

A Clustering-Based Approach for Tracing Object-Oriented Design to Requirement. 2007, 412-422 3

Empowering Software Maintainers with Semantic Web Technologies. Lecture Notes in Computer
Science, 2007, 37-52

Automatic Quality Assessment of Source Code Comments: The JavadocMiner. Lecture Notes in

Computer Science, 2010, 68-79 09 26

Intelligent Software Development Environments: Integrating Natural Language Processing with
the Eclipse Platform. Lecture Notes in Computer Science, 2011, 408-419

Analysis of Expertslhind Novices[Thinking Process in Program Debugging. Communications in L
Computer and Information Science, 2012, 122-134 03 4

Effects of the Sequence of Game-Play and Game-Design on Novices[Motivation, Flow, and
Performance. Lecture Notes in Computer Science, 2012, 46-55

Expert Systems and Creativity. 1987, 173-193 6

The Tasks of Programming. 1990, 45-62

24

(2010-1990)

45 Expert Programming Knowledge: A Schema-based Approach. 1990, 205-222 8

Software Comprehension. 1988, 107-121

43 Expertise and Instruction in Software Development. 1997, 1105-1126 1

The Cambridge Handbook of Computing Education Research. 2019,

41 Here we go again. 2020, 8

A Human Study of Comprehension and Code Summarization. 2020,

39 What Drives the Reading Order of Programmers?. 2020, 3

Early childhood preservice teachersliebugging block-based programs: An eye tracking study.
Journal of Childhood Education & Society, 2020, 1, 63-77

A Survey of Concepts Location Enhancement for Program Comprehension and Maintenance.

37 Journal of Software Engineering and Applications, 2014, 07, 413-421 06 3

Program Understanding Behavior During Estimation of Enhancement Effort on Small Java
Programs. Lecture Notes in Computer Science, 2001, 356-370

35 On the Meaning of Computer Programs. Lecture Notes in Computer Science, 2001, 165-174 0.9

Empirical Research on Program Comprehension.

33 Design. 2005, 139-168

Personnel Management. 2005, 51-71

31 Programming. 2005, 169-176

Reverse Engineering Methods. 2007, 47-65

Measuring Cognition Levels in Collaborative Processes for Software Engineering Code Inspections.
29 Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications 02 1
Engineering, 2009, 32-43

References. 2010, 453-472

25

CITATION REPORT

27 An Experimental Study of the Logical Complexity of Data Structures. 1985, 225-239

Software Complexity Assessment and Human-Machine Interface Evaluation. 1987, 187-202

25 The Software Maintenance of Large Software Systems: Management, Methods and Tools. 1990, 1-26 1

PROGRAM UNDERSTANDING AND KNOWLEDGE ORGANIZATION: THE INFLUENCE OF ACQUIRED
SCHEMATA. 1990, 245-256

. A Schema-Based Model of Program Understanding. Human Factors in Information Technology, 1991,
2,225-239

Ein Visualisierungswerkzeug fidie Wartung modularer Programme. /nformatik-Fachberichte, 1991, 405-414

Program Comprehension Skills and Their Acquisition: A Call for an Ecological Paradigm. NATO AS/

21 Series Series F: Computer and System Sciences, 1993, 71-79

Anskize des Programmverstehens. 1996, 159-176

Through (Tracking) Their Eyes: Abstraction and Complexity in Program Comprehension. ACM

19 Transactions on Computing Education, 2022, 22, 1-33 21 1

Performing Tasks Can Improve Program Comprehension Mental Model of Novice Developers. 2020,

17 Interactive Explanation of Software Systems. 1997, 53-75 1

BEACONS IN PROGRAM COMPREHENSION. ACM SIGCHI Bulletin, 1986, 18, 56-57

15 On the cognitive development of the novice programmer. 2020, 1

Exploring Algorithm Comprehension: Linking[ProoflandProgram[Code. 2021,

13 Naming Practices in Java Projects: An Empirical Study. 2021, o)

What does this Python code do? An exploratory analysis of novice studentsltode explanations.
2021,

Pride: Prioritizing Documentation Effort Based on a PageRank-Like Algorithm and Simple Filtering

11 Rules. IEEE Transactions on Software Engineering, 2022, 1-1 35

An empirical evaluation of machine learning techniques to classify code comprehension based on

EEG data. Expert Systems With Applications, 2022, 117354

26

CITATION REPORT

DeepCode: An Annotated Set of Instructional Code Examples to Foster Deep Code Comprehension o
9 and Learning. Lecture Notes in Computer Science, 2022, 36-50 9

Supporting program comprehension by generating abstract code summary tree. 2022,

Considerations and Pitfalls for Reducing Threats to the Validity of Controlled Experiments on Code
7 Comprehension. Empirical Software Engineering, 2022, 27,

How do we Help Students Bee the Forest from the Trees?[12022,

5 Pinpoint: A Record, Replay, and Extract System to Support Code Comprehension and Reuse. 2022,

Deja Vu: semantics-aware recording and replay of high-speed eye tracking and interaction data to
support cognitive studies of software engineering tasksthethodology and analyses. 2022, 27,

3 Supporting program comprehension by generating abstract code summary tree. 2022, fe)

Unraveling novicesltode composition difficulties. 1-28

1 CrossCode: Multi-level Visualization of Program Execution. 2023, 0

27

