Process monitoring and machine learning for defect detadditive manufacturing

Journal of Intelligent Manufacturing 35, 1407-1437

DOI: 10.1007/s10845-023-02119-y

Citation Report

#	Article	IF	CITATIONS
1	In-situ porosity prediction in metal powder bed fusion additive manufacturing using spectral emissions: a prior-guided machine learning approach. Journal of Intelligent Manufacturing, 0 , , .	7.3	1
2	Machine Learning Techniques for Acoustic Data Processing in Additive Manufacturing In Situ Process Monitoring: A Review. Materials Evaluation, 2023, 81, 50-60.	0.2	1
3	Boron-induced microstructural manipulation of titanium and titanium alloys in additive manufacturing. Virtual and Physical Prototyping, 0, , .	10.4	0
4	Complementary Methods for the Assessment of the Porosity of Laser Additive-Manufactured Titanium Alloy. Materials, 2023, 16, 6383.	2.9	0
5	Laser powder bed additive manufacturing: A review on the four drivers for an online control. Journal of Manufacturing Processes, 2023, 103, 413-429.	5.9	4
6	A novel image feature based self-supervised learning model for effective quality inspection in additive manufacturing. Journal of Intelligent Manufacturing, 0, , .	7.3	1
7	Numerical analysis of fault detection in additive manufacturing based on sustainable automation techniques. International Journal of Advanced Manufacturing Technology, 0, , .	3.0	0
8	Deep learning based porosity prediction for additively manufactured laser powder-bed fusion parts. Journal of Materials Research and Technology, 2023, 27, 7330-7335.	5.8	1
9	Recent innovations in laser additive manufacturing of titanium alloys. International Journal of Extreme Manufacturing, 2024, 6, 032001.	12.7	0
10	Machine learning-assisted in-situ adaptive strategies for the control of defects and anomalies in metal additive manufacturing. Additive Manufacturing, 2024, 81, 104013.	3.0	1
11	Defect detection by multi-axis infrared process monitoring of laser beam directed energy deposition. Scientific Reports, 2024, 14, .	3.3	0
12	A review of laser additive manufacturing (LAM) aluminum alloys: Methods, microstructures and mechanical properties. Optics and Laser Technology, 2024, 175, 110722.	4.6	0
13	A new intelligent approach of surface roughness measurement in sustainable machining of AM-316L stainless steel with deep learning models. Measurement: Journal of the International Measurement Confederation, 2024, 230, 114515.	5.0	0