The cell masses in the brainstem of the South African cl topographical and topological analysis

Journal of Comparative Neurology 213, 199-219

DOI: 10.1002/cne.902130207

Citation Report

#	ARTICLE	IF	CITATIONS
1	Topological analysis of the brainstem of the reedfish, Erpetoichthys calabaricus. Journal of Comparative Neurology, 1983, 213, 220-232.	1.6	14
2	Evolution of Motor Systems: The Reticulospinal Pathways. American Zoologist, 1984, 24, 733-753.	0.7	34
3	Organization within the cranial IX–X complex in ranid frogs: A horseradish peroxidase transport study. Journal of Comparative Neurology, 1984, 222, 358-365.	1.6	64
4	Projection patterns of lateralâ€line afferents in anurans: A comparative HRP study. Journal of Comparative Neurology, 1984, 229, 451-469.	1.6	64
5	Cerebellar connections in Xenopus laevis. Anatomy and Embryology, 1984, 169, 167-176.	1.5	40
6	Early development of descending pathways from the brain stem to the spinal cord in Xenopus laevis. Anatomy and Embryology, 1984, 170, 295-306.	1.5	79
7	The area octavo-lateralis in Xenopus laevis. Cell and Tissue Research, 1985, 239, 147-161.	2.9	64
8	The area octavo-lateralis in Xenopus laevis. Cell and Tissue Research, 1985, 239, 163-175.	2.9	51
9	A proposed neural pathway for vocalization in South African clawed frogs, Xenopus laevis. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1985, 157, 749-761.	1.6	83
10	Development of early brainstem projections to the tail spinal cord ofxenopus. Journal of Comparative Neurology, 1985, 231, 519-529.	1.6	56
11	Early stages in the formation of the cerebellum in the frog. Journal of Comparative Neurology, 1985, 232, 129-142.	1.6	13
12	Growth and death of cells of the mesencephalic fifth nucleus inXenopus laevis larvae. Journal of Comparative Neurology, 1985, 233, 481-489.	1.6	19
13	The structure of the brainstem and cervical spinal cord in lungless salamanders (family) Tj ETQq0 0 0 rgBT /Overlo	ock 10 Tf 5	50 <u>2</u> 62 Td (plo
14	The development of serotonergic raphespinal projections in Xenopus laevis. International Journal of Developmental Neuroscience, 1986, 4, 465-469.	1.6	100
15	The ontogeny of androgen receptors in the CNS of Xenopus laevis frogs. Developmental Brain Research, 1986, 26, 193-200.	1.7	24
17	Origin and identification of fibers in the cranial nerve IX-X complex ofxenopus laevis: Lucifer yellow backfillsin vitro. Journal of Comparative Neurology, 1986, 244, 430-444.	1.6	59
18	Organisation of lateral line and auditory areas in the midbrain of <i>Xenopus laevis</i> . Journal of Comparative Neurology, 1986, 245, 498-513.	1.6	37
19	The development of the amphibian trochlear nucleus. An HRP study. Neuroscience Letters, 1987, 77, 143-148.	2.1	19

#	Article	IF	CITATIONS
20	Distribution of motoneurons involved in the prey-catching behavior in the Japanese toad, Bufo japonicus. Brain Research, 1987, 410, 395-400.	2.2	21
21	A cuneocochlear pathway in the rat. Neuroscience, 1987, 20, 209-219.	2.3	166
22	Metamorphic changes within the lateral-line system of Anura. Anatomy and Embryology, 1987, 175, 431-442.	1.5	25
23	Observations on the development of cerebellar afferents in Xenopus laevis. Anatomy and Embryology, 1987, 176, 431-439.	1.5	14
24	The trochlear nerve of amphibians and its relation to proprioceptive fibers: a qualitative and quantitative HRP study. Anatomy and Embryology, 1987, 177, 105-114.	1.5	16
25	Neurogenesis in the vocalization pathway of Xenopus laevis. Journal of Comparative Neurology, 1987, 257, 614-627.	1.6	25
26	Topography and cytoarchitecture of the motor nuclei in the brainstem of salamanders. Journal of Comparative Neurology, 1988, 278, 181-194.	1.6	34
27	Evolution of the red nucleus and rubrospinal tract. Behavioural Brain Research, 1988, 28, 9-20.	2.2	131
28	Central Organization of Wave Localization in the Clawed Frog, <i>Xenopus laevis</i> . Brain, Behavior and Evolution, 1988, 31, 349-357.	1.7	10
29	Central Organization of Wave Localization in the Clawed Frog, <i>Xenopus laevis</i> . Brain, Behavior and Evolution, 1988, 31, 358-368.	1.7	12
30	Comparative neuroanatomy of the histaminergic system in the brain of the frogxenopus laevis. Journal of Comparative Neurology, 1990, 292, 412-423.	1.6	44
31	Development of olivocerebellar fibers in the clawed toad,Xenopus laevis: A light and electron microscopical HRP study. Journal of Comparative Neurology, 1990, 293, 236-252.	1.6	6
32	Metamorphosis alters the response to spinal cord transection in Xenopus laevis frogs. Journal of Neurobiology, 1990, 21, 1108-1122.	3.6	104
33	Experimental reorganization in the alar plate of the clawed toad, Xenopus laevis. I. Quantitative and qualitative effects of embryonic otocyst extirpation. Developmental Brain Research, 1990, 51, 113-122.	1.7	25
34	Distribution of vasotocin- and mesotocin-like immunoreactivities in the brain of the South African clawed frog Xenopus-laevis. Journal of Chemical Neuroanatomy, 1992, 5, 465-479.	2.1	68
35	Early pattern of neuronal differentiation in the Xenopus embryonic brainstem and spinal cord. Journal of Comparative Neurology, 1993, 328, 213-231.	1.6	103
36	Noradrenaline in the brain of the south african clawed frog <i>Xenopus laevis</i> : A study with antibodies against noradrenaline and dopamineâ€Î²â€hydroxylase. Journal of Comparative Neurology, 1993, 331, 363-374.	1.6	65
37	Choline acetyltransferase immunoreactive neurons innervating labyrinthine and lateral line sense organs in amphibians. Journal of Comparative Neurology, 1993, 332, 258-268.	1.6	29

#	ARTICLE	IF	CITATIONS
38	Xenopus Laevis as a Model Organism. Systematic Biology, 1993, 42, 476-507.	5.6	122
39	The TRH neuronal phenotype forms embryonic cell clusters that go on to establish a regionalized cell fate in forebrain. Journal of Neurobiology, 1994, 25, 1095-1112.	3.6	4
40	Topological analysis of the brainstem of the bowfin, Amia calva. Journal of Comparative Neurology, 1994, 339, 12-26.	1.6	11
41	Anuran dorsal column nucleus: Organization, immunohistochemical characterization, and fiber connections in <i>Rana perezi</i> and <i>Xenopus laevis</i> Journal of Comparative Neurology, 1995, 363, 197-220.	1.6	53
42	Plexin: A novel neuronal cell surface molecule that mediates cell adhesion via a homophilic binding mechanism in the presence of calcium ions. Neuron, 1995, 14, 1189-1199.	8.1	137
43	The trochlear nucleus of the frog Rana ridibunda: Localization, morphology and ultrastructure of identified motoneurons. Brain Research Bulletin, 1995, 36, 433-441.	3.0	3
44	Localization of nitric oxide synthase in the brain of the frog, Xenopus laevis. Brain Research, 1996, 741, 331-343.	2.2	67
45	Motor nuclei of nerves innervating the tongue and hypoglossal musculature in a caecilian (Amphibia:) Tj ETQq1 I	. 0.78431	4 rgBT /Over
46	Evidence for an Anuran Homologue of the Mammalian Spinocervicothalamic System: AnIn VitroTract-tracing Study inXenopus laevis. European Journal of Neuroscience, 1996, 8, 1390-1400.	2.6	23
47	Basal ganglia organization in amphibians: Afferent connections to the striatum and the nucleus accumbens. Journal of Comparative Neurology, 1997, 378, 16-49.	1.6	114
48	Spinal ascending pathways in amphibians: Cells of origin and main targets. Journal of Comparative Neurology, 1997, 378, 205-228.	1.6	69
49	Basal ganglia organization in amphibians: development of striatal and nucleus accumbens connections with emphasis on the catecholaminergic inputs. , 1997, 383, 349-369.		38
50	Distribution of pro-opiomelanocortin and its peptide end products in the brain and hypophysis of the aquatic toad, Xenopus laevis. Cell and Tissue Research, 1998, 292, 251-265.	2.9	37
51	Topographical relationship between neuronal nitric oxide synthase immunoreactivity and cyclic $3\hat{a}\in^2$, $5\hat{a}\in^2$ -guanosine monophosphate accumulation in the brain of the adult Xenopus laevis. Journal of Chemical Neuroanatomy, 1998, 15, 41-56.	2.1	12
52	Morphogenesis and General Structure. , 1998, , 159-228.		40
53	Anurans. , 1998, , 1151-1314.		48
54	Central Control of the Cardiovascular and Respiratory Systems and Their Interactions in Vertebrates. Physiological Reviews, 1999, 79, 855-916.	28.8	324
55	Serotonergic Innervation of the Pituitary Pars Intermedia of <i>Xenopus laevis</i> Iournal of Neuroendocrinology, 1999, 11, 211-219.	2.6	19

#	Article	IF	Citations
56	Anatomy of the Central Auditory Pathways of Fish and Amphibians. Springer Handbook of Auditory Research, 1999, , 155-217.	0.7	73
57	Immunohistochemistry and spinal projections of the reticular formation in the northern leopard frog,Rana pipiens., 1999, 404, 387-407.		29
58	Comparative Hearing: Fish and Amphibians. Springer Handbook of Auditory Research, 1999, , .	0.7	54
59	Co-expression in Xenopus neurons and neuroendocrine cells of messenger RNA homologues of exocytosis proteins DOC2 and munc18-1. Neuroscience, 1999, 92, 763-772.	2.3	10
60	Localization and Physiological Regulation of the Exocytosis Protein SNAP-25 in the Brain and Pituitary Gland of Xenopus laevis. Journal of Neuroendocrinology, 2001, 12, 694-706.	2.6	20
61	Immunohistochemical distribution of enkephalin, substance P, and somatostatin in the brainstem of the leopard frog, <i>Rana pipiens</i> . Microscopy Research and Technique, 2001, 54, 229-245.	2.2	21
62	Descending supraspinal pathways in amphibians. I. A dextran amine tracing study of their cells of origin. Journal of Comparative Neurology, 2001, 434, 186-208.	1.6	67
63	Auditory and lateral line inputs to the midbrain of an aquatic anuran: Neuroanatomic studies in <i>Xenopus laevis</i> . Journal of Comparative Neurology, 2001, 438, 148-162.	1.6	50
64	Ascending and descending projections of the lateral vestibular nucleus in the frog <i>Rana esculenta</i> . Journal of Comparative Neurology, 2002, 444, 115-128.	1.6	27
65	?-Melanophore-stimulating hormone in the brain, cranial placode derivatives, and retina ofXenopus laevis during development in relation to background adaptation. Journal of Comparative Neurology, 2003, 456, 73-83.	1.6	14
66	Central projections of thoracic splanchnic and somatic nerves and the location of sympathetic preganglionic neurons in <i>Xenopus laevis</i>). Journal of Comparative Neurology, 2003, 456, 321-337.	1.6	5
67	Vocal circuitry inXenopus laevis: Telencephalon to laryngeal motor neurons. Journal of Comparative Neurology, 2003, 464, 115-130.	1.6	45
68	Distribution of the mRNAs encoding the thyrotropinâ€releasing hormone (TRH) precursor and three TRH receptors in the brain and pituitary of ⟨i⟩Xenopus laevis⟨li⟩: Effect of background color adaptation on TRH and TRH receptor gene expression. Journal of Comparative Neurology, 2004, 477, 11-28.	1.6	26
69	Differential distribution and regulation of expression of synaptosomal-associated protein of 25 kDa isoforms in the Xenopus pituitary gland and brain. Neuroscience, 2004, 128, 531-543.	2.3	6
70	<i>In Situ</i> Hybridization Localization of TRH Precursor and TRH Receptor mRNAs in the Brain and Pituitary of <i>Xenopus laevis</i> Annals of the New York Academy of Sciences, 2005, 1040, 95-105.	3.8	6
71	LIM-homeodomain genes as territory markers in the brainstem of adult and developing Xenopus laevis. Journal of Comparative Neurology, 2005, 485, 240-254.	1.6	27
72	Distribution of GABA, glycine, and glutamate in neurons of the medulla oblongata and their projections to the midbrain tectum in plethodontid salamanders. Journal of Comparative Neurology, 2005, 490, 145-162.	1.6	19
74	Neural responses to water surface waves in the midbrain of the aquatic predatorXenopus laevis laevis. European Journal of Neuroscience, 2006, 23, 729-744.	2.6	23

#	Article	IF	Citations
75	Central Auditory Pathways in Anuran Amphibians: The Anatomical Basis of Hearing and Sound Communication., 2007,, 221-249.		16
76	Lateral line units in the amphibian brain could integrate wave curvatures. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2008, 194, 777-783.	1.6	7
77	Immunohistochemical localization of calbindinâ€D28k and calretinin in the brainstem of anuran and urodele amphibians. Journal of Comparative Neurology, 2009, 515, 503-537.	1.6	60
78	In vivo spike-timing-dependent plasticity in the optic tectum of Xenopus laevis. Frontiers in Synaptic Neuroscience, 2010, 2, 7.	2.5	20
79	The Structural, Functional, and Molecular Organization of the Brainstem. Frontiers in Neuroanatomy, 2011, 5, 33.	1.7	33
80	Germinal sites and migrating routes of cells in the mesencephalic and diencephalic auditory areas in the African clawed frog (Xenopus laevis). Brain Research, 2011, 1373, 67-78.	2.2	2
81	Central representation of spatial and temporal surface wave parameters in the African clawed frog. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2012, 198, 797-815.	1.6	7
82	Coding Rate and Duration of Vocalizations of the Frog, Xenopus laevis. Journal of Neuroscience, 2012, 32, 12102-12114.	3.6	21
83	Transplantation of Xenopus laevis Tissues to Determine the Ability of Motor Neurons to Acquire a Novel Target. PLoS ONE, 2013, 8, e55541.	2.5	25
84	Transcription factors define the neuroanatomical organization of the medullary reticular formation. Frontiers in Neuroanatomy, 2013, 7, 7.	1.7	65
85	NeuN immunoreactivity in the brain of Xenopus laevis. Tissue and Cell, 2017, 49, 514-519.	2.2	3
86	Topological Analysis of the Brainstem of the Australian Lungfish <i>Neoceratodus forsteri</i> . Brain, Behavior and Evolution, 2022, 96, 242-262.	1.7	3
87	Retinoic acid causes abnormal development and segmental patterning of the anterior hindbrain in <i>Xenopus</i>	2.5	214