Structure Optimization of Ensemble Learning Methods Approaches to Energy Price Forecasting in Latin Americ

Energies 16, 3184 DOI: 10.3390/en16073184

Citation Report

#	Article	IF	CITATIONS
1	China mainland new energy index price forecasting with the neural network. Energy Nexus, 2023, 10, 100210.	7.7	7
2	Ensemble learning methods using the Hodrick–Prescott filter for fault forecasting in insulators of the electrical power grids. International Journal of Electrical Power and Energy Systems, 2023, 152, 109269.	5.5	19
3	Group Method of Data Handling Using Christiano–Fitzgerald Random Walk Filter for Insulator Fault Prediction. Sensors, 2023, 23, 6118.	3.8	8
4	Video-Based Human Activity Recognition Using Deep Learning Approaches. Sensors, 2023, 23, 6384.	3.8	8
5	The Sustainability Concept: A Review Focusing on Energy. Sustainability, 2023, 15, 14049.	3.2	1
6	Recency, Frequency, Monetary Value, Clustering, and Internal and External Indices for Customer Segmentation from Retail Data. Algorithms, 2023, 16, 396.	2.1	2
7	Optimized hybrid ensemble learning approaches applied to very short-term load forecasting. International Journal of Electrical Power and Energy Systems, 2024, 155, 109579.	5.5	10
8	Bootstrap aggregation with Christiano–Fitzgerald random walk filter for fault prediction in power systems. Electrical Engineering, 0, , .	2.0	0
9	A Review of Automation and Sensors: Parameter Control of Thermal Treatments for Electrical Power Generation. Sensors, 2024, 24, 967.	3.8	0
10	Random Convolutional Kernel Transform with Empirical Mode Decomposition for Classification of Insulators from Power Grid. Sensors, 2024, 24, 1113.	3.8	0
11	Hypertuned temporal fusion transformer for multi-horizon time series forecasting of dam level in hydroelectric power plants. International Journal of Electrical Power and Energy Systems, 2024, 157, 109876.	5.5	0
12	Variational mode decomposition and bagging extreme learning machine with multi-objective optimization for wind power forecasting. Applied Intelligence, 2024, 54, 3119-3134.	5.3	0
13	Enhancing hydroelectric inflow prediction in the Brazilian power system: A comparative analysis of machine learning models and hyperparameter optimization for decision support. Electric Power Systems Research, 2024, 230, 110275.	3.6	0
14	Current Challenges in Operation, Performance, and Maintenance of Photovoltaic Panels. Energies, 2024, 17, 1306.	3.1	0