Hybrid assembly of polymeric nanofiber network for rohydrogels

Nature Communications

14,

DOI: 10.1038/s41467-023-36438-8

Citation Report

#	Article	IF	CITATIONS
1	An Anisotropic Hydrogel by Programmable Ionic Crosslinking for Sequential Two-Stage Actuation under Single Stimulus. Gels, 2023, 9, 279.	4.5	3
2	Current Progress in Conductive Hydrogels and Their Applications in Wearable Bioelectronics and Therapeutics. Micromachines, 2023, 14, 1005.	2.9	9
3	Synthesis and application of polypyrrole nanofibers: a review. Nanoscale Advances, 2023, 5, 3606-3618.	4.6	5
4	Toughening Weak Polyampholyte Hydrogels with Weak Chain Entanglements via a Secondary Equilibrium Approach. Polymers, 2023, 15, 2644.	4.5	4
6	Robust and fouling-resistant ultrathin membranes for water purification tailored via semi-dissolved electrospun nanofibers. Journal of Cleaner Production, 2023, 418, 138056.	9.3	1
7	Hybrid assembly of conducting nanofiber network for ultra-stretchable and highly sensitive conductive hydrogels. Journal of Materials Science and Technology, 2024, 169, 1-10.	10.7	1
8	Aramid Nanofiber/Polypyrrole Composite Films for Broadband EMI Shielding, Wearable Electronics, Joule Heating, and Photothermal Conversion. ACS Applied Nano Materials, 2023, 6, 15108-15118.	5.0	4
9	Electrospray Preparation of Robust Aramid Nanofiber Microbead Adsorbents for Wastewater Treatment. Industrial & Engineering Chemistry Research, 2023, 62, 13479-13487.	3.7	0
10	Mechanical robust and highly conductive composite hydrogel reinforced by a combination of cellulose nanofibrils/polypyrrole toward high-performance strain sensor. Composites Part B: Engineering, 2023, 266, 111022.	12.0	3
11	Advances in the Preparation of Tough Conductive Hydrogels for Flexible Sensors. Polymers, 2023, 15, 4001.	4.5	2
12	Selfâ€Assembled Nanofibrous Hydrogels with Tunable Porous Network for Highly Efficient Solar Desalination in Strong Brine. Advanced Functional Materials, 2023, 33, .	14.9	3
13	Mussel-Inspired Wet-Adhesive Multifunctional Organohydrogel with Extreme Environmental Tolerance for Wearable Strain Sensor. ACS Applied Materials & Interfaces, 2023, 15, 44342-44353.	8.0	2
14	A Laminated Gravityâ€Ðriven Liquid Metalâ€Ðoped Hydrogel of Unparalleled Toughness and Conductivity. Advanced Functional Materials, 0, , .	14.9	4
15	Biomimetic scale-like polysaccharide-based highly-sensitive piezoresistive sensor with "shell-core― nanostructure. Chemical Engineering Journal, 2023, 476, 146572.	12.7	4
16	Constructing ion-transport blockchain by polypyrrole to link CoTi-ZIF-9 derived carbon materials for high-performance seawater desalination. Journal of Colloid and Interface Science, 2024, 654, 466-475.	9.4	0
17	Resilient and Tough Conductive Polymer Hydrogel for a Lowâ€Hysteresis Strain Sensor. Macromolecular Rapid Communications, 2024, 45, .	3.9	0
18	Liquid metal-hydrogel composites for flexible electronics. Chemical Communications, 0, , .	4.1	0
19	Recent perspective of polymeric biomaterial in tissue engineering– a review. Materials Today Chemistry, 2023, 34, 101818.	3.5	6

#	Article	IF	Citations
20	Electroconductive and Immunomodulatory Natural Polymerâ€Based Hydrogel Bandages Designed for Peripheral Nerve Regeneration. Advanced Functional Materials, 2024, 34, .	14.9	2
21	Enhanced heterogeneous interface to construct intelligent conductive hydrogel gas sensor for individualized treatment of infected wounds. International Journal of Biological Macromolecules, 2024, 258, 128520.	7.5	0

CITATION REPORT

22 Coordinated self-assembly of ultraporous 3D aramid nanofibrous separators with a poly(vinyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 662

23	Aramid nanofiber-based functional composite materials: Preparations, applications and perspectives. Composites Part B: Engineering, 2024, 271, 111151.	12.0	2
24	Water vapor assisted aramid nanofiber reinforcement for strong, tough and ionically conductive organohydrogels as high-performance strain sensors. Materials Horizons, 2024, 11, 1272-1282.	12.2	1
25	Highly Strong, Tough, and Cryogenically Adaptive Hydrogel Ionic Conductors via Coordination Interactions. Research, 2024, 7, .	5.7	1
26	Hydrogel sensors for biomedical electronics. Chemical Engineering Journal, 2024, 481, 148317.	12.7	0
27	Skinâ€Integrated Electrodes Based on Roomâ€Temperature Curable, Highly Conductive Silver/Polydimethylsiloxane Composites. Small, 0, , .	10.0	0
28	Materials-Driven Soft Wearable Bioelectronics for Connected Healthcare. Chemical Reviews, 2024, 124, 455-553.	47.7	2
29	Hierarchically Structured Hydrogel Composites with Ultraâ€High Conductivity for Soft Electronics. Advanced Functional Materials, 2024, 34, .	14.9	1
31	DLP 3D printing of electrically conductive hybrid hydrogels <i>via</i> polymerization-induced phase separation and subsequent <i>in situ</i> assembly of polypyrrole. Journal of Materials Chemistry A, 2024, 12, 5348-5356.	10.3	0
32	Mechanical Robust GO/PVA Hydrogel for Strong and Recyclable Adhesion in Air, Underwater, and Underoil Environments. Langmuir, 2024, 40, 3087-3094.	3.5	0
33	Mechanical tough and stretchable quaternized cellulose nanofibrils/MXene conductive hydrogel for flexible strain sensor with multi-scale monitoring. Journal of Materials Science and Technology, 2024, 191, 181-191.	10.7	0
34	Mxene hybrid conductive hydrogels with mechanical flexibility, frost-resistance, photothermoelectric conversion characteristics and their multiple applications in sensing. Chemical Engineering Journal, 2024, 483, 149299.	12.7	1
35	Thermal and Near-Infrared Light-Responsive Hydrogel Actuators with Spatiotemporally Developed Polypyrrole Patterns. ACS Applied Materials & amp; Interfaces, 2024, 16, 9286-9292.	8.0	0
36	In Situâ€5prayed Bioinspired Adhesive Conductive Hydrogels for Cavernous Nerve Repair. Advanced Materials, 2024, 36, .	21.0	1
37	Selective Induction of Molecular Assembly to Tissue‣evel Anisotropy on Peptideâ€Based Optoelectronic Cardiac Biointerfaces. Advanced Materials, 0, , .	21.0	0
38	A Sweat Absorbing Skin Electrode for Electrophysiology During Exercise. Advanced Functional Materials, 0, , .	14.9	0

CITATION REPORT

#	Article	IF	CITATIONS
39	A cigarette filter-derived biomimetic cardiac niche for myocardial infarction repair. Bioactive Materials, 2024, 35, 362-381.	15.6	0
40	Thermally Activated Delayed Fluorescent Emitters Based on Cyanobenzene Exhibiting Fast Reverse Intersystem Crossing to Suppress the Efficiency Roll-Off. , 2024, 6, 1020-1028.		0
41	Water-resistant conformal hydrogels toward underwater human-machine interfaces based on synergistic immersion method and supramolecular interactions strategy. Chemical Engineering Journal, 2024, 485, 149925.	12.7	0
42	Tough Hydrogels with Different Toughening Mechanisms and Applications. International Journal of Molecular Sciences, 2024, 25, 2675.	4.1	0
43	Injectable Bombyx mori (B. mori) silk fibroin/MXene conductive hydrogel for electrically stimulating neural stem cells into neurons for treating brain damage. Journal of Nanobiotechnology, 2024, 22, .	9.1	0
44	Small functional hydrogels with big engineering applications. Materials Today Physics, 2024, 43, 101397.	6.0	0
45	Low-impedance tissue-device interface using homogeneously conductive hydrogels chemically bonded to stretchable bioelectronics. Science Advances, 2024, 10, .	10.3	0