A new cubic equation of state for fluids and fluid mixtu

Chemical Engineering Science 37, 463-473 DOI: 10.1016/0009-2509(82)80099-7

Citation Report

#	Article	IF	CITATIONS
2	Vapor-liquid equilibria calculations by means of an equation of state. Chemical Engineering Science, 1983, 38, 1281-1291.	1.9	13
3	Equations of state - reworking the old forms. Fluid Phase Equilibria, 1983, 13, 15-33.	1.4	39
4	Corresponding states, complex mixtures and mixture models. Fluid Phase Equilibria, 1983, 14, 79-90.	1.4	16
5	The calculation of critical points of fluid mixtures-effect of improved pure component critical point representation. Fluid Phase Equilibria, 1983, 14, 265-272.	1.4	6
6	Predicting Phase Behavior of Mixtures of Reservoir Fluids With Carbon Dioxide. , 1983, , .		8
7	The performance of cubic equations of state on the critical isotherms of pure fluids. Fluid Phase Equilibria, 1984, 17, 57-75.	1.4	8
8	Diffusion coefficients near the spinodal curve. AICHE Journal, 1984, 30, 1004-1006.	1.8	21
9	ON THE FLEXIBILITY AND LIMITATIONS OF CUBIC EQUATIONS OF STATE. Chemical Engineering Communications, 1984, 26, 311-318.	1.5	9
10	Phase Equilibria and Density Calculations for Mixtures in the Critical Range with Simple Equations of State (Invited Lecture). Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1984, 88, 784-791.	0.9	16
11	Four-Parameter Modification of the Lawal-Lake-Silberberg Equation of State for Calculating Gas-Condensate Phase Equilibria. , 1985, , .		13
12	From Redlich-Kwong to the present. Fluid Phase Equilibria, 1985, 24, 1-23.	1.4	41
13	A new enthalpy-increment calorimeter enthalpy increments for n-hexane. Journal of Chemical Thermodynamics, 1985, 17, 1171-1186.	1.0	32
14	Vapor pressure measurement for light hydrocarbon mixtures by bubble point method Sekiyu Gakkaishi (Journal of the Japan Petroleum Institute), 1985, 28, 77-82.	0.1	9
15	CRITICAL POINT PREDICTION USING A MULTI-FLUID GENERALIZED CORRESPONDING STATES PRINCIPLE. Chemical Engineering Communications, 1986, 43, 211-223.	1.5	0
16	Vapor pressures of n-butane-ethane, isobutane-ethane, and n-butane-isobutane-propane-ethane systems Sekiyu Gakkaishi (Journal of the Japan Petroleum Institute), 1986, 29, 32-37.	0.1	6
17	Phase equilibria for CO2-C2H5OH-H2O system Journal of Chemical Engineering of Japan, 1986, 19, 48-56.	0.3	112
18	Continuous thermodynamics of phase equilibria using a multivariate distribution function and an equation of state. AICHE Journal, 1986, 32, 2067-2078.	1.8	60
19	Vapor-liquid equilibria with supercritical gases calculated by the excess Gibbs energy method. Fluid Phase Equilibria, 1986, 28, 265-281.	1.4	8

ARTICLE IF CITATIONS # Saturated phase equilibria and parameter estimation of pure fluids with two lattice-gas models. Fluid 20 1.4 17 Phase Equilibria, 1986, 30, 49-56. Phase equilibria in natural gas, crude oil and coal liquid mixtures. Fluid Phase Equilibria, 1986, 30, 1.4 247-253. A cubic equation of state for polar and other complex mixtures. Fluid Phase Equilibria, 1986, 29, 22 1.4 41 431-438. Accuracy and consistency comparisons of ten cubic equations of state for polar and non-polar compounds. Fluid Phase Équilibria, 1986, 29, 465-474. Heats and volumes of mixing in the critical region. An exploration using the van der Waals equation. 24 1.4 15 Fluid Phase Equilibria, 1986, 28, 137-153. Solubilities of solid n-octacosane, n-triacontane and n-dotriacontane in supercritical ethane. Fluid Phase Equilibria, 1986, 28, 199-209. 1.4 24 An approach for extending van der waals equations of state for polar, hydrogen bonding fluids 26 1.4 3 applied to the soave equation of state. Fluid Phase Equilibria, 1986, 31, 273-282. Correlation and prediction of VLE and LLE by empirical EOS. Fluid Phase Equilibria, 1986, 27, 289-308. 1.4 28 The enthalpy of acetone. Journal of Chemical Thermodynamics, 1986, 18, 371-379. 1.0 20 The enthalpy of methanol. Journal of Chemical Thermodynamics, 1986, 18, 719-726. 1.0 PRSV â€" An improved pengâ€Robinson equation of state with new mixing rules for strongly nonideal 30 0.9 183 mixtures. Canadian Journal of Chemical Engineering, 1986, 64, 334-340. Mixing rule containing regular-solution and residual excess free energy.. Journal of Chemical 0.3 Engineering of Japan, 1987, 20, 227-231. Solubilities of Five Solid n-Alkanes in Supercritical Ethane. ACS Symposium Series, 1987, , 130-137. 32 0.5 2 APPLICATIONS OF PATEL-TEJA EQUATION OF STATE TO THE PREDICTION OF VOLUMETRIC PROPERTIES OF 1.5 MIXTURES. Chemical Engineering Communications, 1987, 54, 161-172. On the choice of a third (and fourth) generalizing parameter for equations of state. Chemical 34 1.9 14 Engineering Science, 1987, 42, 2957-2961. Prediction of enthalpy and entropy departures using a two-fluid corresponding-states principle. 1.0 International Journal of Thermophysics, 1987, 8, 247-256. Application of a new cubic equation of state to hydrogen sulfide mixtures. Chemical Engineering 36 1.9 11 Science, 1987, 42, 2935-2940. Toward a molecular equation of state for real materials. AICHE Journal, 1987, 33, 729-740. 1.8

#	Article	IF	CITATIONS
38	Excess molar enthalpies and excess molar volumes of {xCO2 + (1â^x)C6H5CH3} at 298.15, 304.10, and 308.15 K from 7.5 to 12.6 MPa. Journal of Chemical Thermodynamics, 1987, 19, 845-856.	1.0	27
39	Development of a new four-parameter cubic equation of state. Fluid Phase Equilibria, 1987, 35, 1-18.	1.4	206
40	Generalized van der waals theory: a classical perspective. Fluid Phase Equilibria, 1987, 37, 29-62.	1.4	27
41	Comparison of corresponding states methods with and without density dependent mixing rules. Fluid Phase Equilibria, 1987, 37, 85-104.	1.4	2
42	A simple and accurate technique to obtain pure component parameters for three-parameter equations of state. Fluid Phase Equilibria, 1988, 39, 75-87.	1.4	1
43	A new three-parameter cubic equation of state for polar fluids and fluid mixtures. Fluid Phase Equilibria, 1988, 42, 21-41.	1.4	51
44	Generalized interaction parameters in cubic equations of state for CO2—n-alkane mixtures. Fluid Phase Equilibria, 1988, 40, 217-233.	1.4	25
45	Vapor-liquid equilibria applied to mas mixtures. Computers and Chemical Engineering, 1988, 12, 491-502.	2.0	3
46	Excess molar enthalpies and excess molar volumes of {xCO2 + (1 â^' x)C2H6} up to 308.4 K and 11.0 MPa. Journal of Chemical Thermodynamics, 1988, 20, 323-331.	1.0	42
47	High pressure phase equilibria in the carbon dioxide ― <i>n</i> â€Hexadecane and carbon dioxide — water systems. Canadian Journal of Chemical Engineering, 1988, 66, 319-323.	0.9	141
48	V‣â€5 multiphase equilibrium in bitumenâ€diluent systems. Canadian Journal of Chemical Engineering, 1988, 66, 870-878.	0.9	24
49	Comparative Study of Eight Equations of State for Predicting Hydrocarbon Volumetric Phase Behavior. SPE Reservoir Engineering, 1988, 3, 337-348.	0.5	31
50	Density-dependent local-composition effects on mixing rule of cubic equations of state Journal of Chemical Engineering of Japan, 1988, 21, 323-325.	0.3	2
51	A unified model for strongly polar and asymmetric mixtures Journal of Chemical Engineering of Japan, 1988, 21, 147-157.	0.3	6
52	A cubic equation of state for predicting vapor—liquid equilibria of hydrocarbon mixtures using a group contribution mixing rule. Fluid Phase Equilibria, 1989, 46, 197-210.	1.4	11
53	A new pseudocubic perturbed hard-sphere equation of state. Fluid Phase Equilibria, 1989, 47, 171-187.	1.4	6
54	A three-parameter cubic equation of state for reservoir fluids. Fluid Phase Equilibria, 1989, 52, 47-57.	1.4	26
55	Calculation of multiphase equilibria by a group contribution equation of state. Fluid Phase Equilibria, 1989, 52, 75-82.	1.4	5

#	Article	IF	CITATIONS
56	A simple group contribution equation of state for fluid mixtures. Chemical Engineering Science, 1989, 44, 2703-2710.	1.9	13
57	New equation of state based on the significant structure model. Fluid Phase Equilibria, 1989, 47, 17-38.	1.4	8
58	A density correction for the Peng—Robinson equation of state. Fluid Phase Equilibria, 1989, 47, 77-87.	1.4	124
59	Measurement and prediction of phase equilibria for the CO2-ethanol-water system. Fluid Phase Equilibria, 1989, 53, 23-30.	1.4	21
60	Calculation of critical loci with an equation of state based on the significant structure model. Fluid Phase Equilibria, 1989, 52, 103-110.	1.4	5
61	A computer program for the dynamic simulation of a semi-batch supercritical fluid extraction process. Computers and Chemical Engineering, 1989, 13, 1175-1181.	2.0	10
62	The enthalpy of ethanol. Journal of Chemical Thermodynamics, 1989, 21, 1151-1157.	1.0	25
63	Calculation of Thermodynamic Properties of Binary Fluid Mixtures to High Temperatures and High Pressures. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1989, 93, 898-905.	0.9	52
64	Extraction of ethanol from aqueous solutions using supercritical carbon dioxide Kagaku Kogaku Ronbunshu, 1989, 15, 519-525.	0.1	28
65	An Evaluation of Cubic Equations of State for Phase Behavior Calculations Near Miscibility Conditions. , 1990, , .		7
66	A generalized Patel-Teja equation of state for polar and nonpolar fluids and their mixtures Journal of Chemical Engineering of Japan, 1990, 23, 87-91.	0.3	253
67	A threeâ€parameter cubic equation of state for fluids and fluid mixtures. Canadian Journal of Chemical Engineering, 1990, 68, 479-486.	0.9	3
68	Phase equilibria of water + γ-butyrolactone system. Fluid Phase Equilibria, 1990, 55, 207-215.	1.4	9
69	Equation-of-state methods for the modelling of phase equilibria. Fluid Phase Equilibria, 1990, 61, 145-225.	1.4	94
70	Binary interaction parameters in cubic equations of state for hydrogen—hydrocarbon mixtures. Chemical Engineering Science, 1990, 45, 49-54.	1.9	21
71	Vapor—liquid equilibria for the ternary system N2 + CO2 + CH4 at 230 and 250 K. Fluid Phase Equilibria, 1990, 55, 159-172.	1.4	25
72	Temperature-dependent interaction parameters in cubic equations of state for nitrogen-containing mixtures. Fluid Phase Equilibria, 1990, 59, 195-205.	1.4	10
73	The significant structure model equation of state extended to mixtures. Fluid Phase Equilibria, 1990, 58, 239-264.	1.4	2

#	Article	IF	Citations
74	A new mixing rule for the Patel-Teja equation of state. study of vapor-liquid equilibria. Fluid Phase Equilibria, 1990, 58, 93-115.	1.4	11
75	Mixing expansivities and Grashof numbers in supercritical fluids using cubic equations-of-state. Journal of Supercritical Fluids, 1990, 3, 136-142.	1.6	18
76	Phase Behavior Modeling of Gas-Condensate Fluids Using an Equation of State. , 1991, , .		17
77	Application of the Du-Guo and SRK Equations of State To Predict the Phase Behavior of Chinese Reservoir Fluids. SPE Reservoir Engineering, 1991, 6, 379-388.	0.5	5
78	Simulation of a solar power engine in Rabat. Renewable Energy, 1991, 1, 141-144.	4.3	1
79	Equations of state from generalized perturbation theory. Part 1. The hard-core Lennard-Jones fluid. Fluid Phase Equilibria, 1991, 63, 1-25.	1.4	13
80	Comparative study of cubic equations of state for predicting phase behaviour and volumetric properties of injection gas-reservoir oil systems. Fluid Phase Equilibria, 1991, 63, 259-278.	1.4	84
81	Group-contribution equation of state for correlating and predicting thermodynamic properties of weakly polar and non-associating mixtures. Fluid Phase Equilibria, 1991, 68, 47-102.	1.4	89
82	Study of ternary liquid—liquid equilibria and of multiphase equilibria. Fluid Phase Equilibria, 1991, 65, 181-207.	1.4	3
83	Liquid volumetric behavior and phase equilibrium calculations by a hard-sphere three-parameter equation of state. Fluid Phase Equilibria, 1991, 67, 173-195.	1.4	10
84	A new fourâ€parameter cubic equation of state for fluids. Canadian Journal of Chemical Engineering, 1991, 69, 992-996.	0.9	12
85	Extension of the Patel—Teja equation of state to the prediction of the solubility of natural gas in formation water. Chemical Engineering Science, 1991, 46, 3251-3258.	1.9	96
86	Correlation of thermophysical properties of halogenated refrigerants. Fluid Phase Equilibria, 1991, 67, 111-125.	1.4	5
87	Equations of state from generalized perturbation theory. Fluid Phase Equilibria, 1991, 67, 127-150.	1.4	12
88	Simulation results and corresponding states correlation for pure rigid molecular fluids. Molecular Physics, 1992, 77, 351-379.	0.8	12
89	Correlation of ka12 for SVE systems containing a supercritical fluid Journal of Chemical Engineering of Japan, 1992, 25, 263-269.	0.3	2
90	Phase Equilibrium Measurements for Binary Mixtures of Methyl Benozoate Plus CO2, C2H6 and C2H4 Journal of Chemical Engineering of Japan, 1992, 25, 211-215.	0.3	10
91	MODELS FOR HIGH PRESSURE MULTICOMPONENT EQUILIBRIA. , 1992, , 25-68.		2

		CITATION R	EPORT	
#	Article		IF	CITATIONS
92	Calculations of solubilities of aromatic compounds in supercritical carbon dioxide. Industrial & Engineering Chemistry Research, 1992, 31, 967-973.	&	1.8	51
93	Thermodynamic property predictions for refrigerant mixtures. Industrial & Engineering C Research, 1992, 31, 1212-1216.	hemistry	1.8	18
94	Vapor-liquid equilibrium for binary systems containing a heavy liquid and a dense fluid. Indust & Engineering Chemistry Research, 1992, 31, 2769-2773.	rial	1.8	11
95	Molar enthalpy increments for {0.5(CH3)2CO + 0.5C6H6} at temperatures up to 573.2K and to 9.75 MPa. Journal of Chemical Thermodynamics, 1992, 24, 493-498.	pressures up	1.0	10
96				

-			_		
CIT		ON	DE	DO	DT
	AL		IVE	РU	IK I

#	Article	IF	CITATIONS
110	Correlation of steroid solubilities in supercritical carbon dioxide. Fluid Phase Equilibria, 1993, 83, 175-182.	1.4	8
111	High-pressure phase equilibria for carbon dioxide-methanol-water system: experimental data and critical evaluation of mixing rules. Industrial & Engineering Chemistry Research, 1993, 32, 2881-2887.	1.8	44
112	THERMODYNAMIC PERFORMANCE PREDICTION FOR NON-CFC MIXTURES. Chemical Engineering Communications, 1993, 126, 205-220.	1.5	2
113	A method for introducing scaling behaviour into a classical equation of state. Journal of the Chemical Society, Faraday Transactions, 1993, 89, 69.	1.7	4
114	Measurement and Correlation of Phase Equilibria for the Carbon Dioxide-Ethanol-Water System Journal of Chemical Engineering of Japan, 1993, 26, 408-415.	0.3	26
115	Phase Equilibrium Model for the Separation of Ethanol-waler Solution Using Super- and Subcritical Propane Solvent Extraction Journal of Chemical Engineering of Japan, 1993, 26, 482-489.	0.3	9
116	COMPARISON OF FIFTEEN GENERALIZED EQUATIONS OF STATE TO PREDICT GAS-PHASE ENTHALPY. Chemical Engineering Communications, 1994, 130, 1-9.	1.5	3
117	Prediction of VL and VLL equilibria of mixtures containing petroleum reservoir fluids and methanol with a cubic EoS. Fluid Phase Equilibria, 1994, 94, 181-216.	1.4	132
118	High pressure three-phase equilibria for the carbon dioxide-ethanol-water system. Fluid Phase Equilibria, 1994, 102, 287-292.	1.4	22
119	Phase equilibria for carbon dioxide-ethanol-water system at elevated pressures. Journal of Supercritical Fluids, 1994, 7, 219-230.	1.6	109
120	Chlorofluorohydrocarbon—alcohol mixtures: bubble pressures and saturated liquid molar volumes (experimental data and modeling). Chemical Engineering Science, 1994, 49, 2135-2144.	1.9	3
121	Investigation of phase equilibrium for ternary systems containing ethanol, water and carbon dioxide at elevated pressures. Fluid Phase Equilibria, 1994, 99, 249-259.	1.4	32
122	Vapor-liquid equilibrium for carbon dioxide/alcohol systems. Fluid Phase Equilibria, 1994, 92, 215-231.	1.4	33
123	Bubble pressures and saturated liquid molar volumes of binary and ternary mixtures of chlorofluorocarbons and hydrochlorofluorocarbons. Fluid Phase Equilibria, 1994, 93, 297-316.	1.4	9
124	Prediction of carbon dioxide gas hydrate formation conditions in aqueous electrolyte solutions. Canadian Journal of Chemical Engineering, 1994, 72, 119-124.	0.9	24
125	Phase equilibria modelling applied to fluid inclusions: Liquid-vapour equilibria and calculation of the molar volume in the CO2î—,CH4î—,N2 system. Geochimica Et Cosmochimica Acta, 1994, 58, 1073-1082.	1.6	105
126	CALCULATION OF VAPOR-LIQUID EQUILIBRIA AND SATURATED LIQUID VOLUMES FOR WATER-AMMONIA MIXTURES. Chemical Engineering Communications, 1994, 129, 99-108.	1.5	4
127	High-Pressure Vapor-Liquid Equilibria for Mixtures Containing a Supercritical Fluid. Industrial & Engineering Chemistry Research, 1994, 33, 1955-1961.	1.8	39

ARTICLE IF CITATIONS # A Study of Mass-transfer in the Extraction of Impurities from Ethanol Aqueous Solution by Carbon 128 0.3 1 Dioxide as a Solvent. Journal of Chemical Engineering of Japan, 1994, 27, 107-113. Hydrates Formed in Unprocessed Wellstreams., 1994,,. 129 Measurement and prediction of the bubble/dew point locus in the near-critical region and of the compressed fluid densities of the methanei-carbon dioxide-n-butane ternary system. Fluid Phase 130 1.4 8 Equilibria, 1995, 105, 259-271. Generalised van der Waals theory of fluids. Vapour-liquid equilibria in simple binary mixtures. Fluid 1.4 Phase Equilibria, 1995, 109, 183-204. Describing vapor-liquid equilibria in methanol +n-alkane systems by means of an equation of state 132 1.0 2 with association. International Journal of Thermophysics, 1995, 16-16, 227-236. High-temperature vapor-liquid equilibria of helium + 1-methylnaphthalene and helium + n-hexadecane. Fluid Phase Equilibria, 1995, 111, 89-99. 1.4 Computation and thermodynamic interpretation of high-pressure vapourâ€"liquid equilibriumâ€"a 134 0.1 5 review. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1995, 60, 1-29. Prediction of the critical points of natural gas mixtures by rigorous and semi-empirical methods. 2.1 Journal of Petroleum Science and Engineering, 1995, 13, 233-245. Crystallization of n-octacosane by the rapid expansion of supercritical solutions. Journal of Crystal 136 0.7 18 Growth, 1995, 155, 112-119. Vapour-liquid equilibrium of ternary mixtures of the refrigerants R32, R125 and R134a. International 1.8 Journal of Refrigeration, 1995, 18, 534-543. Molecular simulations of enthalpies for CH4î–,C2H6î–,CO2 mixtures at saturation conditions. 138 2 1.2 Thermochimica Acta, 1995, 254, 55-62. The solubility and the phase equilibria of essential oil with carbon dioxide calculated using a cubic 0.0 equation of state. Developments in Food Science, 1995, 37, 331-354. High-Temperature Phase Equilibria for Asymmetric Mixtures of Helium + m-Xylene and Nitrogen + 140 1.8 6 m-Xylene. Industrial & amp; Engineering Chemistry Research, 1995, 34, 4524-4530. Solubilities of Carbon Dioxide and Nitrous Oxide in Cyclohexanone, Toluene, and N,N-Dimethylformamide at Elevated Pressures. Journal of Chemical & amp; Engineering Data, 1995, 40, 141 1.0 850-855. Calculations of the Solubilities of Solids in Supercritical Fluids Using the Peng-Robinson Equation of 142 20 1.8 State and a Modified Mixing Model. Industrial & amp; Engineering Chemistry Research, 1995, 34, 332-339. High-pressure phase equilibrium in multicomponent hydrocarbon systems using the MFLG model. 143 Journal of Supercritical Fluids, 1995, 8, 273-281. Experimental and Modeling Studies on the Hydrate Formation of a Methane + Nitrogen Gas Mixture in 144 the Presence of Aqueous Electrolyte Solutions. Industrial & amp; Engineering Chemistry Research, 1.8 89 1996, 35, 4342-4347. Solubilities of Diamondoids in Supercritical Solvents. Journal of Chemical & amp; Engineering Data, 145 1996, 41, 923-925.

ARTICLE IF CITATIONS # High-Pressure Vaporâ⁻²Liquid Equilibria for Ethylene + 4-Methyl-1-pentene and 1-Butene + 1-Hexene. 146 1.0 15 Journal of Chemical & amp; Engineering Data, 1996, 41, 282-284. Vaporâ^'Liquid Equilibria of Cyclohexanol with Carbon Dioxide, Ethane, or Nitrogen at Elevated 147 1.0 Pressures. Journal of Chemical & amp; Engineering Data, 1996, 41, 339-343. An Equation of State for Real Fluids Based on the Lennard-Jones Potential. The Journal of Physical 148 2.9 57 Chemistry, 1996, 100, 17365-17372. Equations of State., 1996, , 165-186. 149 Calculation of Surface Tensions of Polar Mixtures with a Simplified Gradient Theory Model.. Journal 150 0.3 36 of Chemical Engineering of Japan, 1996, 29, 159-165. Conversion of CH4-Hydrate to CO2-Hydrate in Liquid CO2.. Journal of Chemical Engineering of Japan, 0.3 1996, 29, 1014-1020. Re-examination of collinearity tests for density-dependent mixing rules. Fluid Phase Equilibria, 1996, 152 1.4 0 122, 255-263. Reservoir fluid characterisation using gas chromatography-mass spectrometry. Journal of Petroleum Science and Engineering, 1996, 15, 81-89. 153 2.1 9 Improvements of the Patel-Teja equation of state. International Journal of Thermophysics, 1996, 17, 154 1.0 37 673-682. Solubilities of long-chain hydrocarbons in carbon dioxide. International Journal of Thermophysics, 1.0 1996, 17, 23-33. Excess enthalpies for (water + benzene) in the liquid and supercritical regions atT= 503 K toT= 592 K 156 9 1.0 andp= 16.4 MPa. Journal of Chemical Thermodynamics, 1996, 28, 627-636. Simulation of the high-pressure phase equilibria of hydrocarbon-water/brine systems. Journal of 2.1 Petroleum Science and Engineering, 1996, 15, 201-220. A new cubic simplified perturbed hard-body equation of state. Fluid Phase Equilibria, 1996, 118, 201-219. 158 1.4 5 Determination of binary parameters of an equation of state from methanol + n-alkane vapor-liquid equilibrium data ensuring thermodynamic stability of the calculated liquid phase. Fluid Phase Equilibria, 1996, 116, 68-74. 159 1.4 Vapor-liquid equilibria for nitrogen with 2-methyl-1-pentanol, 1-octanol, or 1-decanol binary systems. 160 1.4 8 Fluid Phase Equilibria, 1996, 122, 243-253. Thermodynamic modeling of hydrate formation based on new concepts. Fluid Phase Equilibria, 1996, 226 122, 43-65. AN IMPROVED PENG-ROBINSON EQUATION OF STATE WITH A NEW TEMPERATURE DEPENDENT ATTRACTIVE 162 1.5 10 TERM. Chemical Engineering Communications, 1997, 159, 209-229. High-Pressure Vapora^{^2}Liquid Equilibria of Two Binary Systems:Â Carbon Dioxide + Cyclohexanol and Carbon Dioxide + Cyclohexanone. Journal of Chemical & Amp; Engineering Data, 1997, 42, 155-159.

	C	tation Report	
#	Article	IF	CITATIONS
164	Prediction of Gas Hydrate Formation Conditions in Aqueous Solutions of Single and Mixed Electrolytes. SPE Journal, 1997, 2, 406-416.	1.7	15
165	Solubilities of Methane, Nitrogen, Carbon Dioxide, and a Natural Gas Mixture in Aqueous Sodium Bicarbonate Solutions under High Pressure and Elevated Temperature. Journal of Chemical & Engineering Data, 1997, 42, 69-73.	1.0	33
166	VLE calculations by applying a modified perturbed hard sphere EOS. Fluid Phase Equilibria, 1997, 129 21-35.	, 1.4	5
167	Vapor-liquid equilibria for benzyl alcohol with carbon dioxide, ethane, or nitrogen at elevated pressures. Fluid Phase Equilibria, 1997, 130, 231-242.	1.4	11
168	A lattice fluid approach to complex mixtures: natural gas and crude oil. Fluid Phase Equilibria, 1997, 137, 33-52.	1.4	6
169	Evaluation of vapor—liquid equilibrium of CO2 binary systems using UNIQUAC-based Huron—Vida mixing rules. Fluid Phase Equilibria, 1997, 140, 107-126.	al 1.4	27
170	A cubic equation of state for vapor-liquid equilibrium calculations of nonpolar and polar fluids. Fluid Phase Equilibria, 1997, 138, 43-59.	1.4	8
171	Viscosity model based on equations of state for hydrocarbon liquids and gases. Fluid Phase Equilibria 1997, 139, 405-421.	1.4	70
172	Extended law of corresponding states and thermodynamic properties of binary mixtures in and beyor the critical region. Fluid Phase Equilibria, 1997, 141, 129-154.	ıd 1.4	44
173	New fluids as substitute refrigerants for R12. Solar Energy Materials and Solar Cells, 1997, 46, 333-34	47. 3.0	9
174	Correlation of vapor-liquid equilibrium for systems of carbon dioxide + hydrocarbon by the corresponding-states principle. Chemical Engineering Journal, 1997, 66, 217-221.	6.6	6
175	Extension of the Wong-Sandler mixing rule to the three-parameter Patel-Teja equation of state: Application up to the near-critical region. Chemical Engineering Journal, 1997, 67, 27-36.	6.6	63
176	Calculation of interfacial tensions with gradient theory. Fluid Phase Equilibria, 1997, 132, 139-158.	1.4	64
177	Experimental and modeling studies on the solubility of CO2, CHC1F2, CHF3, C2H2F4 and C2H4F2 in and aqueous NaCl solutions under low pressures. Fluid Phase Equilibria, 1997, 129, 197-209.	water 1.4	83
178	Density improvement of the SRK equation of state. Fluid Phase Equilibria, 1997, 130, 49-63.	1.4	65
179	Isothermal vapor-liquid equilibria for mixtures of methyl tert-butyl ether, methyl acetate, and ethyl acetate. Fluid Phase Equilibria, 1997, 137, 193-207.	1.4	14
180	An EOS/GE type mixing rule for perturbed hard-sphere equation of state and its application to the calculation of solid solubility in supercritical carbon dioxide. Fluid Phase Equilibria, 1997, 141, 13-23.	1.4	14
181	Generalized calculation of phase equilibria by using cubic equations of state. Fluid Phase Equilibria, 1997, 141, 63-85.	1.4	15

#	Article	IF	CITATIONS
182	Vapor-liquid equilibrium predictions of refrigerant mixtures from a cubic equation of state with a GE-EoS mixing rule. Fluid Phase Equilibria, 1997, 140, 17-35.	1.4	9
183	On the design of environmentally benign refrigerant mixtures: a mathematical programming approach. Computers and Chemical Engineering, 1997, 21, 915-923.	2.0	61
184	Calculation of pure saturation properties using cubic equations of state. Computers and Chemical Engineering, 1997, 21, 1339-1347.	2.0	12
185	HEm and VEm thermodynamic surfaces for binary mixtures in the near critical region. Thermochimica Acta, 1997, 300, 169-181.	1.2	6
186	A modified Carnahan-Starling-de Santis equation of state to compute thermodynamic properties of refrigerants. International Journal of Refrigeration, 1997, 20, 38-48.	1.8	4
187	Excess enthalpies and volumes for (carbon dioxide + ethane) atT= 291.6 K, close to the minimum in the critical locus. Journal of Chemical Thermodynamics, 1997, 29, 75-85.	1.0	29
188	Application of cubic equations of state to the fit of vapor pressures of pure components. Chemical Engineering Science, 1998, 53, 743-751.	1.9	31
189	Cubic crossover equation of state. Fluid Phase Equilibria, 1998, 147, 7-23.	1.4	145
190	A systematic study of cubic three-parameter equations of state for deriving a structurally optimized PVT relation. Fluid Phase Equilibria, 1998, 147, 85-103.	1.4	16
191	Study of EOS-Gex mixing rules for liquid–liquid equilibria. AICHE Journal, 1998, 44, 1178-1187.	1.8	32
192	A new approach to gas hydrate modelling. Chemical Engineering Journal, 1998, 71, 145-151.	6.6	379
193	Application of a volume-translated Peng-Robinson equation of state on vapor-liquid equilibrium calculations. Fluid Phase Equilibria, 1998, 145, 193-215.	1.4	70
194	Solid–fluid equilibria in natural gas systems. Fluid Phase Equilibria, 1998, 150-151, 393-402.	1.4	9
195	High-pressure phase equilibria for the carbon dioxide–2-pentanol and carbon dioxide–water–2-pentanol systems. Fluid Phase Equilibria, 1998, 150-151, 695-701.	1.4	16
196	Mixing rules for van-der-Waals type equation of state based on thermodynamic perturbation theory. Fluid Phase Equilibria, 1998, 152, 219-233.	1.4	5
197	Measurement of the P–V–T relationship for carbon dioxide+n-butane and carbon dioxide+i-butane in the vicinity of the critical point. Journal of Supercritical Fluids, 1998, 13, 15-21.	1.6	17
198	Measurement and Correlation of Vaporâ´'Liquid Equilibria for Asymmetric Mixtures of Helium and Polar Compounds. Industrial & Engineering Chemistry Research, 1998, 37, 3508-3514.	1.8	5
199	Single-Component and Mixture Solubilities of Hexachlorobenzene and Pentachlorophenol in Supercritical Carbon Dioxide. Industrial & Engineering Chemistry Research, 1998, 37, 1510-1518.	1.8	23

#	Article	IF	CITATIONS
200	Vaporâ^'Liquid and Solidâ^'Fluid Equilibrium Calculations Using a Lennard-Jones Equation of State. Industrial & Engineering Chemistry Research, 1998, 37, 3151-3158.	1.8	14
201	Equations of State. Developments in Petroleum Science, 1998, , 129-166.	0.2	1
202	Application in Reservoir Simulation. Developments in Petroleum Science, 1998, 47, 301-352.	0.2	1
203	High-pressure phase equilibria for the carbon dioxide–2-methyl-1-butanol, carbon dioxide–2-methyl-2-butanol, carbon dioxide–2-methyl-1-butanol–water, and carbon dioxide–2-methyl-2-butanol–water systems. Fluid Phase Equilibria, 1999, 157, 81-91.	1.4	6
204	Isobaric heat capacity measurements for the n-pentane–acetone and the methanol–acetone mixtures at elevated temperatures and pressures. Fluid Phase Equilibria, 1999, 158-160, 1001-1010.	1.4	7
205	A simple non-classical equation of state for fluids and fluid mixtures. Fluid Phase Equilibria, 1999, 161, 63-76.	1.4	2
206	Cubic crossover equation of state for mixtures. Fluid Phase Equilibria, 1999, 162, 51-82.	1.4	93
207	Vapor–liquid equilibria for binary mixtures of carbon dioxide with 1,2-dimethoxybenzene, 2-methoxyphenol, or p-cresol at elevated pressures. Fluid Phase Equilibria, 1999, 162, 211-224.	1.4	17
208	Prediction of the critical locus in binary mixtures using equation of state. Fluid Phase Equilibria, 1999, 164, 13-47.	1.4	40
209	Critical (p , Ï•, T) properties of CH2F2, {xCO2+(1â^'x) SF6}, {xSF6+(1â^'x) CH2F2}, and {xCHF3+(1â^'x) CH2F2}. Journal of Chemical Thermodynamics, 1999, 31, 905-919.	1.0	21
210	Vapour—liquid equilibrium of H ₂ Sâ€Hydrocarbon mixtures using a generalized cubic equation of state. Canadian Journal of Chemical Engineering, 1999, 77, 1239-1243.	0.9	7
211	Prediction of Vapor-Liquid Equilibria Using Peng-Robinson and Soave-Redlich-Kwong Equations of State. Chemical Engineering and Technology, 1999, 22, 379-399.	0.9	38
212	Crossover SAFT Equation of State:Â Application for Normal Alkanes. Industrial & Engineering Chemistry Research, 1999, 38, 4993-5004.	1.8	119
213	Viscosity Calculations with the Eyringâ^'Patelâ^'Teja Model for Liquid Mixtures. Industrial & Engineering Chemistry Research, 1999, 38, 2867-2876.	1.8	29
214	High-Pressure Phase Equilibria for the Carbon Dioxide + 3-Pentanol and Carbon Dioxide + 3-Pentanol + Water Systems. Journal of Chemical & Engineering Data, 1999, 44, 524-527.	1.0	7
215	Calorimetry in the near-critical and supercritical regions. Nitrous oxide + hydrocarbon mixtures. Pure and Applied Chemistry, 1999, 71, 1197-1205.	0.9	2
216	Phase Stability Analysis in Binary Systems. Physics and Chemistry of Liquids, 2000, 38, 277-331.	0.4	12
217	Equations of state for the calculation of fluid-phase equilibria. AICHE Journal, 2000, 46, 169-196.	1.8	344

#	Article	IF	CITATIONS
218	A novel approach for defining parameters in a four-parameter EOS. Chemical Engineering Science, 2000, 55, 5705-5720.	1.9	25
219	Representation of solid-supercritical fluid phase equilibria using cubic equations of state. Fluid Phase Equilibria, 2000, 167, 41-61.	1.4	68
220	High-pressure phase equilibria of binary and ternary mixtures containing the methyl-substituted butanols. Fluid Phase Equilibria, 2000, 167, 131-144.	1.4	9
221	Crossover SAFT Equation of State and Thermodynamic Properties of Propan-1-ol. International Journal of Thermophysics, 2000, 21, 1373-1405.	1.0	37
222	Liquid Volumes from Generalized Cubic Equations of State: Take It with Care. Oil and Gas Science and Technology, 2000, 55, 523-531.	1.4	25
223	4 Cubic and generalized van der waals equations. Experimental Thermodynamics, 2000, 5, 75-126.	0.1	28
224	Molecular model for the VLE <i>p- T-x</i> relationships of binary mixtures. Phase Transitions, 2000, 72, 309-329.	0.6	6
225	DISTILLATION Vapour–Liquid Equilibrium: Theory. , 2000, , 1159-1169.		0
226	A Modified Equation of State for Gas-Condensate Systems. , 2000, , .		4
227	Thermodynamic Study of the N2O + CO2 and N2O + CO2 + Cyclohexane Systems in the Near-Critical and Supercritical Regions. Industrial & Engineering Chemistry Research, 2000, 39, 3566-3575.	1.8	16
228	Fractionation of Paraffin Wax Mixtures. Industrial & Engineering Chemistry Research, 2000, 39, 4871-4876.	1.8	14
229	New Apparatus for the Fast Determination of High-Pressure Vaporâ^'Liquid Equilibria of Mixtures and of Accurate Critical Pressures. Journal of Chemical & Engineering Data, 2000, 45, 265-271.	1.0	137
230	COMPARISON OF FOURTEEN GENERALIZED EQUATIONS OF STATE TO PREDICT GAS-PHASE FUGACITY. Chemical Engineering Communications, 2001, 187, 149-159.	1.5	1
231	Thermodynamic Properties at High Pressure. Industrial Chemistry Library, 2001, 9, 17-63.	0.1	2
232	Isothermal Vaporâ^'Liquid Equilibria for Binary Mixtures of Carbon Dioxide with Hexyl Acetate, Cyclohexyl Acetate, or Phenyl Acetate at Elevated Pressures. Journal of Chemical & Engineering Data, 2001, 46, 1410-1414.	1.0	6
233	Calculation of the solid solubilities in supercritical carbon dioxide using a modified mixing model. Fluid Phase Equilibria, 2001, 179, 67-84.	1.4	60
234	Excess molar volumes of (carbon dioxide + ethene) mixtures in the liquid and near-critical regions. Fluid Phase Equilibria, 2001, 179, 139-149.	1.4	13
235	Thermodynamic properties for model compounds of coal-liquids and their mixtures — measurements and calculations. Fluid Phase Equilibria, 2001, 179, 285-296.	1.4	5

	CITATIO		
#	Article	IF	CITATIONS
236	The modification and generalization of BWR equation. Fluid Phase Equilibria, 2001, 181, 71-82.	1.4	6
237	The application of the equations of state incorporated with mixing rules for viscosity estimations of binary mixtures. Fluid Phase Equilibria, 2001, 181, 47-58.	1.4	35
238	Mapping of theoretical equations of state for molecular fluids on a biquadratic equation. Fluid Phase Equilibria, 2001, 182, 27-36.	1.4	6
239	Critical properties (pc, Tc, and $\ddot{i}c$) and phase equilibria of binary mixtures of CO2, CHF3, CH2F2, and SF6. Fluid Phase Equilibria, 2001, 182, 121-131.	1.4	24
240	Vapor–liquid equilibria near critical point and critical points for the CO2+1-butanol and CO2+2-butanol systems at temperatures from 324 to 432 K. Fluid Phase Equilibria, 2001, 182, 145-156.	1.4	40
241	Modeling of ternary solubilities of organics in supercritical carbon dioxide. Fluid Phase Equilibria, 2001, 187-188, 255-264.	1.4	20
242	A new quartic equation of state. Fluid Phase Equilibria, 2001, 187-188, 275-298.	1.4	13
243	Measurements of HmE and VmE for {xCO2 + (1 â^' x)SF6} in the near critical region. Fluid Phase Equilibria, 2001, 187-188, 391-401.	1.4	19
244	Measurements of HmE and VmE for {xC2H6+(1â^'x)SF6} in the liquid and near critical region. Fluid Phase Equilibria, 2001, 192, 121-129.	1.4	7
245	Measurement of phase equilibria of supercritical ethane and paraffins. Journal of Supercritical Fluids, 2001, 21, 181-193.	1.6	27
246	Equation of state analog correlations for the viscosity and thermal conductivity of hydrocarbons and reservoir fluids. Journal of Petroleum Science and Engineering, 2001, 30, 15-27.	2.1	83
247	Modelling solutions of hydrocarbons in dense CO2 gas. Journal of the European Ceramic Society, 2001, 21, 1219-1227.	2.8	7
248	Excess molar enthalpies of (carbon dioxide + ethene) in the liquid and near-critical regions. Journal of Chemical Thermodynamics, 2001, 33, 775-786.	1.0	18
249	Simultaneous prediction of the critical and sub-critical phase behavior in mixtures using equation of state I. Carbon dioxide-alkanols. Chemical Engineering Science, 2001, 56, 6485-6510.	1.9	68
250	Solvation structure around 4-dimethylamino(benzonitrile) in a mixture of supercritical CO2and methanol. Journal of Physics Condensed Matter, 2002, 14, 11437-11441.	0.7	4
251	Optimal Synthesis of Mixed-Refrigerant Systems for Low-Temperature Processes. Industrial & Engineering Chemistry Research, 2002, 41, 5016-5028.	1.8	169
252	Predicting the Properties of Sour Gases and Condensates: Equations of State and Empirical Correlations. , 2002, , .		7
253	Near critical measurements of HmEandVmE for { xCO2+ (1 â^x)SF6} and measurements made over the pressure range 2.5 to 10.0 MPa at the temperature T= 301.95 K. Journal of Chemical Thermodynamics, 2002, 34, 303-317.	1.0	11

#	Article	IF	CITATIONS
254	Near critical measurements of HmE andVmE for (ethane + sulphur hexafluoride). Journal of Chemical Thermodynamics, 2002, 34, 875-884.	1.0	2
255	Measurements of HmE and VmE for (propane + sulphurhexafluoride) in the near critical region. Journal of Chemical Thermodynamics, 2002, 34, 1317-1327.	1.0	5
256	Measurement of phase equilibria of supercritical carbon dioxide and paraffins. Journal of Supercritical Fluids, 2002, 22, 185-199.	1.6	71
257	Phase equilibria of organic solid solutes and supercritical fluids with respect to the RESS process. Journal of Supercritical Fluids, 2002, 22, 175-184.	1.6	88
258	Oligomer fractionation with supercritical fluids. Journal of Supercritical Fluids, 2002, 24, 47-55.	1.6	4
259	Correlation of the solubility of low-volatile organic compounds in near and supercritical fluids. Fluid Phase Equilibria, 2002, 194-197, 469-482.	1.4	13
260	Nearcritical and supercritical ethanol as a benign solvent: polarity and hydrogen-bonding. Fluid Phase Equilibria, 2002, 198, 37-49.	1.4	70
261	Totally inclusive cubic equation of state with five parameters for pure fluids. Fluid Phase Equilibria, 2002, 193, 1-15.	1.4	8
262	High pressure viscosity and density modeling of two polyethers and two dialkyl carbonates. Fluid Phase Equilibria, 2002, 199, 249-263.	1.4	46
263	Vapor–liquid equilibria and critical points for the carbon dioxide +1-pentanol and carbon dioxide +2-pentanol systems at temperatures from 332 to 432 K. Fluid Phase Equilibria, 2002, 200, 161-172.	1.4	46
264	Mixing rules in cubic equations of state applied to refrigerant mixtures. Journal of Phase Equilibria and Diffusion, 2002, 23, 495-501.	0.3	2
265	Title is missing!. Topics in Catalysis, 2003, 22, 31-39.	1.3	30
266	The State of the Cubic Equations of State. Industrial & Engineering Chemistry Research, 2003, 42, 1603-1618.	1.8	463
267	Synthesis of platinum nano-particles in high-temperatures and high-pressures fluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 231, 131-141.	2.3	26
268	Modified Soave-Redlich-Kwong equations of state applied to mixtures containing supercritical carbon dioxide. Korean Journal of Chemical Engineering, 2003, 20, 709-715.	1.2	21
269	Extension of Valderrama–Patel–Teja equation of state to modelling single and mixed electrolyte solutions. Chemical Engineering Science, 2003, 58, 1743-1749.	1.9	18
270	Measurements of HmE and VmE for (n-butane+sulphur hexafluoride) in the supercritical region at the pressure 6.00MPa. Journal of Chemical Thermodynamics, 2003, 35, 393-403.	1.0	4
271	Comparison of methods for calculating thermodynamic properties of binary mixtures in the sub and super critical state: Lee–Kesler and cubic equations of state for binary mixtures containing either CO2 or H2S. Journal of Chemical Thermodynamics, 2003, 35, 1521-1539.	1.0	12

#	Article	IF	CITATIONS
272	Paraffin wax fractionation: state of the art vs. supercritical fluid fractionation. Journal of Supercritical Fluids, 2003, 27, 39-54.	1.6	18
273	Phase equilibrium of propane and alkanes. Journal of Supercritical Fluids, 2003, 27, 133-144.	1.6	57
274	Phase equilibrium of propane and alkanes part II: hexatriacontane through hexacontane. Journal of Supercritical Fluids, 2003, 27, 145-156.	1.6	29
275	Viscosity and density data of the system water + n-pentyl acetate + methanol. Fluid Phase Equilibria, 2003, 204, 217-232.	1.4	40
276	Measurements of HmE for {xCO2+(1â^'x)CS2} in the liquid region up to T=300.15 K and p=7.5 MPa. Fluid Phase Equilibria, 2003, 204, 303-308.	1.4	3
277	Modelling the gas hydrate formation of inhibitor containing systems. Fluid Phase Equilibria, 2003, 205, 291-302.	1.4	40
278	Solubility of solid solutes in supercritical carbon dioxide with and without cosolvents. Fluid Phase Equilibria, 2003, 207, 183-192.	1.4	112
279	A cubic equation of state for water and its application to power cycle calculations. Applied Thermal Engineering, 2003, 23, 1417-1425.	3.0	4
280	Measurements of HmE and VmE for {xC4H10 + (1 â^' x)SF6} in the supercritical region at the pressure 8.00 MPa. Fluid Phase Equilibria, 2003, 204, 143-153.	1.4	4
281	Isothermal vapor–liquid equilibria for binary mixtures of carbon dioxide with diethylene glycol (diethyl, butyl, hexyl, or dibutyl) ether at elevated pressures. Fluid Phase Equilibria, 2003, 209, 131-145.	1.4	9
282	Phase equilibria and pVT predictions for alkyl carbonate + n-alkane systems using equations of state. Fluid Phase Equilibria, 2003, 212, 111-128.	1.4	14
283	Generalized corresponding states model for bulk and interfacial properties in pure fluids and fluid mixtures. Journal of Chemical Physics, 2003, 119, 8645-8662.	1.2	64
284	Dielectric relaxation of lower alcohols in the whole fluid phase. Journal of Chemical Physics, 2003, 119, 7931-7942.	1.2	44
285	Application of High-Pressure Phase Equilibria to the Selective Oxidation of Alcohols over Supported Platinum Catalysts in Supercritical Carbon Dioxide. ACS Symposium Series, 2003, , 352-364.	0.5	5
286	Parameters for the attractive coefficient of the patel-teja-valderrama equation of state. Chemical Engineering Communications, 2003, 190, 1411-1426.	1.5	9
287	Predicting Volumetric and Transport Properties of Sour Gases and Gas Condensates Using EOSs, Corresponding State Models, and Empirical Correlations. Petroleum Science and Technology, 2003, 21, 1759-1787.	0.7	22
288	A New Model for Calculating the Viscosity of Pure Liquids at High Pressures. Industrial & Engineering Chemistry Research, 2003, 42, 3824-3830.	1.8	27
289	Optimizing the Number of Components in Tuning the Peng-Robinson Equation-of-State for Trinidad's Gas Condensates. , 2003, , .		0

#	Article	IF	CITATIONS
290	VLE MOLECULAR THERMODYNAMICS OF NONPOLAR FLUIDS AND THEIR MIXTURES. Reviews in Chemical Engineering, 2003, 19, .	2.3	16
291	Phase behaviour of organic solid solutes and supercritical fluids with respect to particle formation processes. , 2004, , 147-161.		2
292	Simplified crossover droplet model for adsorption of pure fluids in slit pores. Journal of Chemical Physics, 2004, 120, 8241-8252.	1.2	3
293	Equations of State with Emphasis on Excess Gibbs Energy Mixing Rules. Computer Aided Chemical Engineering, 2004, , 75-111.	0.3	2
294	Modeling of the solubility of solid solutes in supercritical CO2 with and without cosolvent using solution theory. Korean Journal of Chemical Engineering, 2004, 21, 1173-1177.	1.2	17
295	Efficient methods for calculations of compressibility, density and viscosity of natural gases. Fluid Phase Equilibria, 2004, 218, 1-13.	1.4	85
296	Vapor–liquid equilibria calculation for asymmetric systems using Patel–Teja equation of state with a new mixing rule. Fluid Phase Equilibria, 2004, 224, 213-219.	1.4	32
297	An extension of the Peng–Robinson equation of state for the correlation and prediction of high-pressure phase equilibrium in systems containing supercritical carbon dioxide and a salt. Fluid Phase Equilibria, 2004, 225, 85-99.	1.4	13
298	Solubilities of disperse dyes of blue 79:1, red 82 and modified yellow 119 in supercritical carbon dioxide and nitrous oxide. Journal of Supercritical Fluids, 2004, 32, 105-114.	1.6	24
299	P-V-T-x relationship for CO2+C4H10 and CO2+iC4H10 binary gas mixtures and the partial molar volume of C4H10 and iC4H10 at 360.00 K. Journal of Supercritical Fluids, 2004, 29, 215-220.	1.6	9
300	Phase equilibrium in supercritical CO2 mixtures using a modified Kwak-Mansoori mixing rule. AICHE Journal, 2004, 50, 480-488.	1.8	19
301	Prediction of the pressure dependence on the thermodynamic properties of dialkyl carbonate + alkane mixtures using Nitta–Chao model. Fluid Phase Equilibria, 2004, 217, 165-173.	1.4	4
302	Generalized crossover description of the thermodynamic and transport properties in pure fluids. Fluid Phase Equilibria, 2004, 222-223, 149-159.	1.4	48
303	New Identities for Critical-Point Constraints with Application to Cubic Equations of State. Industrial & amp; Engineering Chemistry Research, 2004, 43, 4446-4451.	1.8	5
304	pÏ₮Measurements and EoS Predictions of Glycol Ethers from (283.15 to 353.15) K at Pressures up to 25 MPa. Journal of Chemical & Engineering Data, 2004, 49, 1400-1405.	1.0	20
305	High-Pressure Volumetric Properties of Three Monoethylene Glycol Alkyl Ethers. Journal of Chemical & Engineering Data, 2004, 49, 1344-1349.	1.0	20
306	Modeling the PVTx Behavior of the N-Methylpyrrolidinone/Water Mixed Solvent. Industrial & amp; Engineering Chemistry Research, 2004, 43, 3205-3215.	1.8	34
307	Simple modifications of the van der Waals and Dieterici equations of state: vapour–liquid equilibrium properties. Physical Chemistry Chemical Physics, 2004, 6, 5402-5409.	1.3	27

#	Article	IF	CITATIONS
308	A new cubic equation of state and its applications to the modeling of vapor-liquid equilibria and volumetric properties of natural fluids. Geochimica Et Cosmochimica Acta, 2004, 68, 2997-3009.	1.6	30
309	Ice Formation and Pressurization under Low Pressure in Cryostat. Fusion Science and Technology, 2004, 46, 541-547.	0.6	5
310	Efficient Methods for Calculations of Compressibility, Density, and Viscosity of Natural Gases. , 2004, ,		2
312	Application of Generalized Pressure Perturbation Principle to Cubic Equation of State Formulation. , 2005, , .		0
313	Synthesis of colloidal dispersions of rhodium nanoparticles under high temperatures and high pressures. Journal of Colloid and Interface Science, 2005, 292, 113-121.	5.0	32
314	Practical and direct expressions of the heat of vaporization for mixtures. Chemical Engineering Science, 2005, 60, 4369-4376.	1.9	6
315	Development and application of a three-parameter RK–PR equation of state. Fluid Phase Equilibria, 2005, 232, 74-89.	1.4	152
316	Rescaling of three-parameter equations of state: PC-SAFT and SPHCT. Fluid Phase Equilibria, 2005, 234, 108-121.	1.4	46
317	Modelling the hydrate formation condition for sour gas and mixtures. Chemical Engineering Science, 2005, 60, 4879-4885.	1.9	37
318	Prediction of VLE and VLLE of Systems Containing Hydrocarbon Reservoir Fluids and Aqueous Methanol Solutions With a Cubic EOS. Journal of Canadian Petroleum Technology, 2005, 44, .	2.3	1
319	Phase equilibria in systems with specific CO2–polymer interactions. Fluid Phase Equilibria, 2005, 228-229, 487-491.	1.4	22
320	Empirical correction to the Peng–Robinson equation of state for the saturated region. Fluid Phase Equilibria, 2005, 233, 194-203.	1.4	58
321	Generalized binary interaction parameters in the Wong–Sandler mixing rules for mixtures containing n-alkanols and carbon dioxide. Fluid Phase Equilibria, 2005, 234, 136-143.	1.4	28
322	A Two Parameters Equation of State for Phase Equilibrium Behaviour Reservoir and Liquified Natural Gas. , 2005, , .		0
323	Thermodynamic Properties. , 2005, , 49-148.		5
324	Predicting Natural Gas Dew Points from 15 Equations of State. Energy & amp; Fuels, 2005, 19, 561-572.	2.5	62
326	CORRECTION ON PARAMETERS OF MMM EQUATION OF STATE FOR TEMPERATURE DEPENDENCE. Chemical Engineering Communications, 2005, 192, 725-748.	1.5	2
327	Semiempirical Model of the Vaporâ^'Liquid Phase Behavior of the Hydrogen Chlorideâ^'Water System. Industrial & Engineering Chemistry Research, 2005, 44, 639-644.	1.8	4

#	Article	IF	CITATIONS
328	Thermodynamic Modeling of Refrigerants Using the Statistical Associating Fluid Theory with Variable Range. 2. Applications to Binary Mixtures. Industrial & Engineering Chemistry Research, 2005, 44, 4806-4814.	1.8	21
329	Solar-based comparison of adsorption and absorption refrigerating machines. International Journal of Sustainable Energy, 2005, 24, 199-206.	1.3	4
330	High-Pressure Vaporâ^'Liquid Equilbria of Some Carbon Dioxide + Organic Binary Systems. Journal of Chemical & Engineering Data, 2005, 50, 60-65.	1.0	130
331	Volumetric Property Improvement for the Soaveâ^'Redlichâ^'Kwong Equation of State. Industrial & Engineering Chemistry Research, 2006, 45, 1829-1839.	1.8	42
332	Experimental and theoretical studies of viscosities of ternary mixture [2-propanol+ethyl acetate+n-hexane] and its binary constituents at 298.15, 308.15 and 313.15 K. Physics and Chemistry of Liquids, 2006, 44, 67-76.	0.4	14
333	Thermodynamic Properties of Light Synthetic Natural Gas Mixtures Using the RKâ^'PR Cubic Equation of State. Industrial & Engineering Chemistry Research, 2006, 45, 3684-3692.	1.8	29
334	PVTxMeasurements of theN-Methylpyrrolidone/Methanol Mixed Solvent:Â Cubic and SAFT EOS Analyses. Journal of Physical Chemistry B, 2006, 110, 6933-6942.	1.2	16
335	A New Cubic Equation of State for Predicting Phase Behavior of Hydrocarbons. Oil and Gas Science and Technology, 2006, 61, 269-276.	1.4	1
336	Correlation of the viscosity of pure liquids at high pressures based on an equation of state. Fluid Phase Equilibria, 2006, 240, 15-21.	1.4	12
337	Calculation of minimum miscibility pressure for gas condensate reservoirs. Fluid Phase Equilibria, 2006, 249, 75-81.	1.4	14
338	A new analytical formulation for the generalized corresponding states model for thermodynamic and surface properties in pure fluids. Chemical Engineering Science, 2006, 61, 5107-5113.	1.9	20
339	A new cubic equation of state for reservoir fluids. Fluid Phase Equilibria, 2006, 239, 83-90.	1.4	64
340	Vapor–liquid equilibria for nitrogen with 2-propanol, 2-butanol, or 2-pentanol binary systems. Fluid Phase Equilibria, 2006, 239, 200-205.	1.4	2
341	Vapor–liquid–liquid equilibria of perfluorohexane+CO2+methanol, +toluene, and +acetone at 313K. Fluid Phase Equilibria, 2006, 241, 20-24.	1.4	6
342	Prediction of thermodynamic properties of natural gas mixtures using 10 equations of state including a new cubic two-constant equation of state. Journal of Petroleum Science and Engineering, 2006, 51, 253-266.	2.1	84
343	(p,Vm,T) and phase equilibrium measurements for a natural gas-like mixture using an automated isochoric apparatus. Journal of Chemical Thermodynamics, 2006, 38, 1489-1494.	1.0	45
344	Generalization of the Friction Theory for Viscosity Modeling. Journal of Physical Chemistry B, 2006, 110, 12820-12834.	1.2	96
345	Investigation of Volumetric Properties of Some Glycol Ethers Using a Simple Equation of State. International Journal of Thermophysics, 2006, 27, 1515-1526.	1.0	12

#	Article	IF	CITATIONS
346	High-pressure vapor–liquid equilibria of argon+carbon dioxide+2-propanol. Journal of Supercritical Fluids, 2006, 37, 135-141.	1.6	6
347	A new two-parameter cubic equation of state for predicting phase behavior of pure compounds and mixtures. Fluid Phase Equilibria, 2006, 242, 19-28.	1.4	36
348	Vapor–liquid equilibria for nitrogen with 2-hexanol, 2-heptanol, or 2-octanol binary systems. Fluid Phase Equilibria, 2006, 248, 168-173.	1.4	3
349	Correlation of Viscosities for Alkane, Aromatic and Alcohol Family at High Pressure by Modified Tait Equation. Chinese Journal of Chemical Engineering, 2006, 14, 364-370.	1.7	9
350	A new modification on RK EOS for gaseous CO2 and gaseous mixtures of CO2 and H2O. International Journal of Energy Research, 2006, 30, 135-148.	2.2	14
351	General friction theory viscosity model for the PC-SAFT equation of state. AICHE Journal, 2006, 52, 1600-1610.	1.8	77
352	Preparation of Benzonic-Acid in Supercritical Carbon Dioxide with Alcohol Entrainer. Advanced Materials Research, 2006, 11-12, 709-712.	0.3	0
354	Master crossover behavior of parachor correlations for one-component fluids. Physical Review E, 2007, 76, 061109.	0.8	9
355	Properties of 1,8-Cineole:  A Thermophysical and Theoretical Study. Journal of Physical Chemistry B, 2007, 111, 3167-3177.	1.2	43
356	Isothermal Vaporâ^'Liquid Equilibria of Binary Mixtures of Nitrogen with Dimethyl Sulfoxide,N-Methyl-2-pyrrolidone, and Diethylene Glycol Monobutyl Ether at Elevated Pressures. Journal of Chemical & Engineering Data, 2007, 52, 511-516.	1.0	5
357	Determination of the Relative Permittivity and Density within the Gas Phase and Liquid Volume Fraction Formed within the Two-Phase Region for (0.4026 CH ₄ + 0.5974) Tj ETQq0 0 0 rgBT /Overla	ock 10 Tf ! 1.0	50 342 Td (C
358	Thermodynamic Modeling of Salt Precipitation and Gas Hydrate Inhibition Effect of Salt Aqueous Solution. Industrial & Engineering Chemistry Research, 2007, 46, 5074-5079.	1.8	23
359	Hydrate Film Growth on the Surface of a Gas Bubble Suspended in Water. Journal of Physical Chemistry B, 2007, 111, 12485-12493.	1.2	108
360	Prediction of Molar Volumes of CO2-Expanded Liquids Using a New Generalized Method. Industrial & Engineering Chemistry Research, 2007, 46, 8282-8287.	1.8	6
361	Calculation of Phase Equilibrium of Natural Gases with the Peng-Robinson and PC-SAFT Equations of State. Oil and Gas Science and Technology, 2007, 62, 707-714.	1.4	20
362	Supercritical CO2 extraction of turmerones from turmeric and high-pressure phase equilibrium of CO2+ turmerones. Journal of Supercritical Fluids, 2007, 43, 276-282.	1.6	23
363	Excess molar enthalpies of dimethylsulfoxide with chloroethanes and chloroethenes at 298.15K. Thermochimica Acta, 2007, 465, 1-5.	1.2	11
364	Phase behavior of CO2+biopolymer and CO2+fluoropolymer systems. Fluid Phase Equilibria, 2007, 261, 64-68.	1.4	20

#	Article	IF	CITATIONS
365	Viscosity modeling of several HFC refrigerants using the friction theory. Fluid Phase Equilibria, 2007, 262, 251-263.	1.4	17
366	Generalized crossover description of the thermodynamic and transport properties in pure fluids. Fluid Phase Equilibria, 2007, 252, 57-65.	1.4	30
367	Study on phase behaviors of supercritical CO2 including surfactant and water. Fluid Phase Equilibria, 2007, 261, 92-98.	1.4	14
368	Volumetric properties of 1-iodoperfluorohexane+n-octane binary system at several temperatures. Journal of Thermal Analysis and Calorimetry, 2007, 87, 179-187.	2.0	4
369	Vapor–liquid equilibrium measurements and correlations for the binary mixture of difluoromethane+isobutane and the ternary mixture of propane+isobutane+difluoromethane. Fluid Phase Equilibria, 2007, 261, 286-291.	1.4	16
370	Estimations of the viscosities of binary mixtures with different equations of state and mixing rules. Journal of the Taiwan Institute of Chemical Engineers, 2007, 38, 1-19.	1.4	9
371	Modelling of the phase behaviour for the direct synthesis of dimethyl carbonate from CO2 and methanol at supercritical or near critical conditions. Journal of Chemical Thermodynamics, 2007, 39, 536-549.	1.0	20
372	A crossover cubic equation of state near to and far from the critical region. Journal of Chemical Thermodynamics, 2007, 39, 1257-1263.	1.0	26
373	A three-parameter cubic equation of state for prediction of thermodynamic properties of fluids. Journal of Chemical Thermodynamics, 2008, 40, 84-95.	1.0	28
374	Formation of deagglomerated PLGA particles and PLGA-coated ultra fine powders by rapid expansion of supercritical solution with ethanol cosolvent. Korean Journal of Chemical Engineering, 2008, 25, 838-845.	1.2	10
375	Vapor-hydrate phases equilibrium of (CH4+C2H6) and (CH4+C2H4) systems. Petroleum Science, 2008, 5, 359-366.	2.4	18
376	Estimation of second-order derivative thermodynamic properties using the crossover cubic equation of state. Journal of Chemical Thermodynamics, 2008, 40, 688-694.	1.0	11
377	Estimation of 2nd-order derivative thermodynamic properties using the crossover lattice equation of state. Journal of Chemical Thermodynamics, 2008, 40, 1580-1587.	1.0	6
378	A modification of the alpha function (α), and the critical compressibility factor (ζc) in ER (Esmaeilzadeh–Roshanfekr) equation of state. Fluid Phase Equilibria, 2008, 273, 31-37.	1.4	26
379	Vapor–liquid phase equilibrium behavior of mixtures containing supercritical carbon dioxide near critical region. Journal of Supercritical Fluids, 2008, 44, 273-278.	1.6	51
380	Experimental setup to measure critical properties of pure and binary mixtures and their densities at different pressures and temperatures. Journal of Supercritical Fluids, 2008, 44, 123-138.	1.6	48
381	Excess enthalpies of dimethylsulfoxide with substituted benzenes at 298.15K. Fluid Phase Equilibria, 2008, 264, 23-28.	1.4	10
382	Study of vapor–hydrate two-phase equilibria. Fluid Phase Equilibria, 2008, 265, 84-93.	1.4	33

#	Article	IF	CITATIONS
383	An accurate direct technique for parameterizing cubic equations of state. Fluid Phase Equilibria, 2008, 265, 155-172.	1.4	13
384	Analysis and Comparison of the Alpha Functions of SRK Equation of State. Chinese Journal of Chemical Engineering, 2008, 16, 766-771.	1.7	8
385	Efficient Phase Equilibrium Calculation in a Reduced Flash Context. Canadian Journal of Chemical Engineering, 2004, 82, 1225-1238.	0.9	33
386	Vaporâ~'Liquid Phase Boundaries of Binary Mixtures of Carbon Dioxide with Ethanol and Acetone. Journal of Chemical & Engineering Data, 2008, 53, 2393-2402.	1.0	86
387	Effects of Solute Structure on Local Solvation and Solvent Interactions: Results from UV/Vis Spectroscopy and Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2008, 112, 14993-14998.	1.2	10
388	Thermodynamics and the Simulation Engineer. Chemical Product and Process Modeling, 2008, 3, .	0.5	5
389	Deterioration of Performance of Mixing Rules in Phase Behavior Modeling of High-Density Reservoir Fluids. Petroleum Science and Technology, 2008, 26, 1522-1544.	0.7	3
390	Compressible Lattice Model for Phase Equilibria in CO ₂ + Polymer Systems. Industrial & Engineering Chemistry Research, 2008, 47, 645-649.	1.8	19
391	Novel Density and Viscosity Correlations for Gases and Gas Mixtures Containing Hydrocarbon and Non-Hydrocarbon Components. Journal of Canadian Petroleum Technology, 2008, 47, .	2.3	7
392	Modélisation de la viscosité des fluides de gisement : Apport de la PLS bootstrap et des réseaux de neurones. Oil and Gas Science and Technology, 2008, 63, 629-643.	1.4	1
393	Bewertung von Zustandsgleichungen für Erdgase. Chemie-Ingenieur-Technik, 2009, 81, 1397-1415.	0.4	0
394	Adsorption of Methane on Water under Hydrate Formation Conditions. Chinese Journal of Chemistry, 2009, 27, 703-706.	2.6	7
395	Evaluating cubic equations of state for calculation of vapor–liquid equilibrium of CO2 and CO2-mixtures for CO2 capture and storage processes. Applied Energy, 2009, 86, 826-836.	5.1	175
396	Impacts of equations of state (EOS) and impurities on the volume calculation of CO2 mixtures in the applications of CO2 capture and storage (CCS) processes. Applied Energy, 2009, 86, 2760-2770.	5.1	105
397	Density-and-temperature-dependent volume translation for the SRK EOS: 1. Pure fluids. Fluid Phase Equilibria, 2009, 279, 56-63.	1.4	32
398	Exploitation of methane in the hydrate by use of carbon dioxide in the presence of sodium chloride. Petroleum Science, 2009, 6, 426-432.	2.4	27
399	Equation of state for the systems containing aqueous salt: Prediction of high pressure vapor-liquid equilibrium. Korean Journal of Chemical Engineering, 2009, 26, 168-174.	1.2	5
400	Effect of various types of equations of state for prediction of simple gas hydrate formation with or without the presence of kinetic inhibitors in a flow mini-loop apparatus. Fluid Phase Equilibria, 2009, 286, 33-42.	1.4	19

#	Article	IF	CITATIONS
401	Calculation of the solid solubilities in supercritical carbon dioxide using a new Gex mixing rule. Journal of Supercritical Fluids, 2009, 51, 148-158.	1.6	32
402	Combined equation of liquid and gas states, including classical and scaling parts. Journal of Molecular Liquids, 2009, 147, 162-165.	2.3	9
403	Interfacial properties of methane/aqueous VC-713 solution under hydrate formation conditions. Journal of Colloid and Interface Science, 2009, 336, 738-742.	5.0	28
404	High-pressure phase equilibria in the carbon dioxide+pyrrole system. Fluid Phase Equilibria, 2009, 275, 60-63.	1.4	10
405	An improved perturbed hard-sphere equation of state. Fluid Phase Equilibria, 2009, 284, 118-128.	1.4	3
406	THE EFFECT OF VARIOUS TYPES OF EQUATIONS OF STATE ON DRIVING FORCE CALCULATION AND GAS CONSUMPTION PREDICTION IN SIMPLE AND DOUBLE HYDRATE FORMATION WITH OR WITHOUT THE PRESENCE OF KINETIC INHIBITORS IN BATCH SYSTEMS. Chemical Engineering Communications, 2009, 197, 584-605.	1.5	3
407	Measurement of Interfacial Tension between Methane and Aqueous Solution Containing Hydrate Kinetic Inhibitors. Journal of Chemical & Engineering Data, 2009, 54, 1836-1839.	1.0	7
408	Encapsulation of SiO2 and TiO2 Fine Powders with Poly(dl-lactic-co-glycolic acid) by Rapid Expansion of Supercritical CO2 Incorporated with Ethanol Cosolvent. Industrial & Engineering Chemistry Research, 2009, 48, 11230-11235.	1.8	28
409	Critical Properties and High-Pressure Volumetric Behavior of the Carbon Dioxide + Propane System at <i>T</i> = 308.15 K. Krichevskii Function and Related Thermodynamic Properties. Journal of Physical Chemistry B, 2009, 113, 7243-7256.	1.2	17
410	Molecular Dynamics Simulations of Solvation and Solvent Reorganization Dynamics in CO ₂ -Expanded Methanol and Acetone. Journal of Chemical Theory and Computation, 2009, 5, 267-275.	2.3	9
411	Equation of state for He4, including a regular and a scalar part. Low Temperature Physics, 2009, 35, 741-747.	0.2	4
412	Comparative PVT Simulation: An Application to Australasian Fluid Samples. , 2009, , .		2
413	Impurities in CO2 - Rich Mixtures Impact CO2 Pipeline Design: Implications for Calculating CO2 Transport Capacity. , 2010, , .		3
414	Thermodynamic investigation for developing solar refrigerator. Applied Solar Energy (English) Tj ETQq1 1 0.7843	14 rgBT /0	Dverlock 10 T
415	Comparison of the prediction power of 23 generalized equations of state: Part II — Parametric evaluation. Fluid Phase Equilibria, 2010, 291, 48-58.	1.4	7
416	Estimation of solubility parameter by the modified ER equation of state. Fluid Phase Equilibria, 2010, 291, 141-150.	1.4	39
417	Crossover Peng-Robinson equation of state with introduction of a new expression for the crossover function. Fluid Phase Equilibria, 2010, 293, 251-260.	1.4	11
418	A modification to the Peng–Robinson-fitted equation of state for pure substances. Fluid Phase Equilibria, 2010, 298, 12-23.	1.4	12

#	Article	IF	CITATIONS
419	Thermodynamic property modeling for 2,3,3,3-tetrafluoropropene (HFO-1234yf). International Journal of Refrigeration, 2010, 33, 52-60.	1.8	101
420	Experimental investigation of moderately high temperature water source heat pump with non-azeotropic refrigerant mixtures. Applied Energy, 2010, 87, 1554-1561.	5.1	59
421	Evaluation of non-azeotropic mixtures containing HFOs as potential refrigerants in refrigeration and high-temperature heat pump systems. Science China Technological Sciences, 2010, 53, 1855-1861.	2.0	13
422	Extension of the Neoclassical Theory of Capillarity to Advanced Cubic Equations of State. International Journal of Thermophysics, 2010, 31, 253-275.	1.0	3
423	An improved model for predicting hydrate phase equilibrium in marine sediment environment. Journal of Natural Gas Chemistry, 2010, 19, 241-245.	1.8	20
424	Critical properties prediction based on a quartic equation of state. Canadian Journal of Chemical Engineering, 2010, 88, 1003-1009.	0.9	3
426	Hydrate phase equilibrium and structure for (methane+ethane+tetrahydrofuran+water) system. Journal of Chemical Thermodynamics, 2010, 42, 1173-1179.	1.0	46
427	Comparative study of eleven equations of state in predicting the thermodynamic properties of hydrogen. International Journal of Hydrogen Energy, 2010, 35, 3802-3811.	3.8	70
428	New analytic apparatus for experimental determination of vapor–liquid equilibria and saturation densities. Fluid Phase Equilibria, 2010, 296, 46-52.	1.4	6
429	A new three-parameter cubic equation of state for calculation physical properties and vapor–liquid equilibria. Fluid Phase Equilibria, 2010, 293, 209-218.	1.4	31
430	Extension of a compressible lattice model to CO2+cosolvent+polymer systems. Journal of Supercritical Fluids, 2010, 55, 358-362.	1.6	9
431	Measurements and modeling of high-pressure excess molar enthalpies and isothermal vapor–liquid equilibria of the carbon dioxide +N,N-dimethylformamide system. Journal of Supercritical Fluids, 2010, 55, 566-572.	1.6	11
433	Comparison of the prediction power of 23 generalized equations of state: Part I. Saturated thermodynamic properties of 102 pure substances. Fluid Phase Equilibria, 2010, 288, 67-82.	1.4	26
434	Combined equation of state for liquids and gases, which includes the classical and scaling parts. High Temperature, 2010, 48, 482-488.	0.1	6
435	OPTIMIZATION OF THE C3MR CYCLE WITH GENETIC ALGORITHM. Transactions of the Canadian Society for Mechanical Engineering, 2010, 34, 433-448.	0.3	47
436	Vapor-Liquid Phase Equilibria. , 2010, , 1096-1234.		3
437	Performance Simulation and Experimental Testing of Moderately High Temperature Heat Pump Using Non-azeotropic Mixture for Geothermal District Heating. , 2010, , .		0
438	Analysis and Measurement of Bubble Pumps and Impact on Single Pressure Absorption Refrigeration Cycle. , 2010, , .		2

#	Article	IF	CITATIONS
439	Chapter 13. Equations of State in Chemical Reacting Systems. , 2010, , 433-459.		2
440	Excess Molar Enthalpies of Binary Systems of 2-Octanone or 3-Octanone with Dodecane, Tetradecane, or Hexadecane at 298.15 K. Journal of Chemical & Comparison Data, 2010, 55, 217-222.	1.0	7
441	Thermodynamic Promotion of Tetrahydrofuran on Methane Separation from Low-Concentration Coal Mine Methane Based on Hydrate. Energy & Fuels, 2010, 24, 2530-2535.	2.5	83
442	Empirical Regularity of the Thermal Pressure Coefficient for Dense Fluids. Industrial & Engineering Chemistry Research, 2010, 49, 7654-7659.	1.8	5
443	Correlation of Cloud Points in CO ₂ + Fluorinated Polymer Systems. Journal of Chemical & Engineering Data, 2010, 55, 4385-4389.	1.0	2
444	<i>P</i> , ï; <i>T</i> Measurements and Isobaric Vaporâ^Liquidâ^Equilibria of the 1,3,3-Trimethyl-2-oxabicycle[2,2,2]octane + Propan-1-ol Mixture: Cubic and Statistical Associating Fluid Theory-Based Equation of State Analysis. Journal of Chemical & Engineering Data, 2010, 55,	1.0	13
445	5932-5940. Small-Angle Neutron Scattering of Silver Nanoparticles in Gas-Expanded Hexane. Journal of Physical Chemistry C, 2010, 114, 16285-16291.	1.5	22
446	Prediction of vapor–liquid equilibrium and PVTx properties of geological fluid system with SAFT-LJ EOS including multi-polar contribution. Part I: Application to H2O–CO2 system. Geochimica Et Cosmochimica Acta, 2010, 74, 1982-1998.	1.6	48
447	Thermodynamics Model of Predicting Gas Hydrate in Porous Media Based on Reactionâ [^] Adsorption Two-Step Formation Mechanism. Industrial & amp; Engineering Chemistry Research, 2010, 49, 3936-3943.	1.8	33
448	A Method To Estimate the Patelâ^'Teja Equation of State Constants. Journal of Chemical & Engineering Data, 2010, 55, 5094-5100.	1.0	16
449	The molecular characteristics dominating the solubility of gases in ionic liquids. Chemical Society Reviews, 2011, 40, 3802.	18.7	176
450	Theoretical Analysis of Isobutane as Refrigerant of Air Source Heat Pump. , 2011, , .		0
452	Excess Molar Enthalpies of Binary Systems of <i>n</i> -Valeric Anhydride or <i>n</i> -Hexanoic Anhydride with <i>n</i> -Dodecane, <i>n</i> -Tetradecane, or <i>n</i> -Hexadecane at 298.15 K. Journal of Chemical & Engineering Data, 2011, 56, 757-762.	1.0	2
453	Glass-Transition Temperatures in CO ₂ + Polymer Systems: Modeling and Experiment. Industrial & Engineering Chemistry Research, 2011, 50, 158-162.	1.8	20
454	Experimental Measurement of Vapor Pressures and Densities at Saturation of Pure Hexafluoropropylene Oxide: Modeling Using a Crossover Equation of State. Industrial & Engineering Chemistry Research, 2011, 50, 4761-4768.	1.8	22
455	Evaluation of Statistical Associating Fluid Theory (SAFT) and Perturbed Chain-SAFT Equations of State for the Calculation of Thermodynamic Derivative Properties of Fluids Related to Carbon Capture and Sequestration. Energy & amp; Fuels, 2011, 25, 3334-3343.	2.5	105
456	A New Quartic Equation of State Based on a General Form and Its Application to Pure Fluids. Industrial & Engineering Chemistry Research, 2011, 50, 13576-13584.	1.8	1
457	Experimental Data Assessment Test for Diamondoids Solubility in Gaseous System. Journal of Chemical & Engineering Data, 2011, 56, 2655-2659.	1.0	12

#	Article	IF	CITATIONS
458	<i>P</i> Ï <i>T</i> Behavior of a Lean Synthetic Natural Gas Mixture Using Magnetic Suspension Densimeters and an Isochoric Apparatus: Part I. Journal of Chemical & Engineering Data, 2011, 56, 212-221.	1.0	22
459	p–Ĩ–TBehavior of Three Lean Synthetic Natural Gas Mixtures Using a Magnetic Suspension Densimeter and Isochoric Apparatus from (250 to 450) K with Pressures up to 150 MPa: Part II. Journal of Chemical & Engineering Data, 2011, 56, 3766-3774.	1.0	19
460	PVTx properties of H2O–H2S fluid mixtures at elevated temperature and pressure based on new experimental data. Geochimica Et Cosmochimica Acta, 2011, 75, 5483-5495.	1.6	14
461	Artificial Neural Network Modeling of Solubilities of 21 Commonly Used Industrial Solid Compounds in Supercritical Carbon Dioxide. Industrial & Engineering Chemistry Research, 2011, 50, 221-226.	1.8	82
462	A New Multi-Sample EOS Model for the Gas Condensate Phase Behavior Analysis. Oil and Gas Science and Technology, 2011, 66, 1025-1033.	1.4	5
463	Applications of Equations of State in the Oil and Gas Industry. , 2011, , .		13
464	Processing behaviors of thin-film pentacene and benzene-1,4-diboronic acid in supercritical carbon dioxide. Thin Solid Films, 2011, 520, 1022-1026.	0.8	3
465	Teaching advanced equations of state in applied thermodynamics courses using open source programs. Education for Chemical Engineers, 2011, 6, e114-e121.	2.8	28
466	Thermophysical behaviour of the mixture (±)-3,7-dimethyl-1,6-octadien-3-ol with ethanol. Fluid Phase Equilibria, 2011, 308, 78-89.	1.4	15
467	Interfacial Tension between Methane and Octane at Elevated Pressure at Five Temperatures from (274.2) Tj ETQ	q1_1_0.784 1.0	-314 rgBT /○ 11
468	Predicting the vapor-liquid equilibrium of carbon dioxide+alkanol systems by using an artificial neural network. Korean Journal of Chemical Engineering, 2011, 28, 1286-1292.	1.2	18
469	Extension of a quartic equation of state to pure polar fluids. Canadian Journal of Chemical Engineering, 2011, 89, 453-459.	0.9	2
470	Threeâ€parameter cubic equation of state for pure components of heavy oils. Canadian Journal of Chemical Engineering, 2011, 89, 869-878.	0.9	8
471	Application of a new crossover treatment to a generalized cubic equation of state. Fluid Phase Equilibria, 2011, 302, 241-248.	1.4	15
472	Estimation of densities of ionic liquids using Patel–Teja equation of state and critical properties determined from group contribution method. Chemical Engineering Science, 2011, 66, 2690-2698.	1.9	58
473	PVTxy properties of CO2 mixtures relevant for CO2 capture, transport and storage: Review of available experimental data and theoretical models. Applied Energy, 2011, 88, 3567-3579.	5.1	214
474	Formation conditions and thermodynamic model predictions of carbon monoxide hydrates. Fluid Phase Equilibria, 2011, 307, 95-99.	1.4	8
475	Excess molar enthalpies of binary mixtures containing 2-decanone or dipentyl ether with long-chain n-alkanes at T=298 15 K Journal of Chemical Thermodynamics 2011 43 515-520	1.0	2

#	Article	IF	CITATIONS
476	Thermophysical properties of {(±)-linalool+propan-1-ol}: A first stage towards the development of a green process. Journal of Chemical Thermodynamics, 2011, 43, 527-536.	1.0	24
477	Wagner liquid–vapour pressure equation constants from a simple methodology. Journal of Chemical Thermodynamics, 2011, 43, 1235-1251.	1.0	37
478	Thermodynamic modeling of solubilities of various solid compounds in supercritical carbon dioxide: Effects of equations of state and mixing rules. Journal of Supercritical Fluids, 2011, 55, 861-875.	1.6	74
479	Measurement and prediction of dew point curves of natural gas mixtures. Fluid Phase Equilibria, 2012, 334, 1-9.	1.4	61
480	Volume-translated Peng–Robinson equation of state for saturated and single-phase liquid densities. Fluid Phase Equilibria, 2012, 335, 74-87.	1.4	71
481	Modeling of physical and chemical equilibrium for the direct synthesis of dimethyl carbonate at high pressure conditions. Fluid Phase Equilibria, 2012, 336, 41-51.	1.4	19
482	Experiment on the Separation of Air-Mixed Coal Bed Methane in THF Solution by Hydrate Formation. Energy & Fuels, 2012, 26, 4507-4513.	2.5	45
483	Fractionation of Surface-Modified Gold Nanorods Using Gas-Expanded Liquids. Industrial & Engineering Chemistry Research, 2012, 51, 5181-5189.	1.8	9
484	The Patel–Teja and the Peng–Robinson EoSs performance when Soave alpha function is replaced by an exponential function. Fluid Phase Equilibria, 2012, 332, 55-76.	1.4	28
485	Equation of state modelling of systems with ionic liquids: Literature review and application with the Cubic Plus Association (CPA) model. Fluid Phase Equilibria, 2012, 332, 128-143.	1.4	82
486	An improved generalized three-parameter cubic equation of state for pure fluids. Journal of Petroleum Science and Engineering, 2012, 96-97, 79-92.	2.1	12
487	Modeling of Hydrate Dissociation Conditions for Alkanes in the Presence of Single and Mixed Electrolyte Solutions Using Ion-Based Statistical Associating Fluid Theory. Industrial & Engineering Chemistry Research, 2012, 51, 5818-5825.	1.8	11
488	Predictive Method for the Change in Equilibrium Conditions of Gas Hydrates with Addition of Inhibitors and Electrolytes. Industrial & Engineering Chemistry Research, 2012, 51, 2456-2469.	1.8	36
489	Liquid Biofuels: Fluid Properties to Optimize Feedstock Selection, Processing, Refining/Blending, Storage/Transportation, and Combustion. Energy & Fuels, 2012, 26, 324-348.	2.5	42
490	Optimized Binary Interaction Parameters for VLE Calculations of Natural Gas Mixtures via Cubic and Molecular-Based Equations of State. Industrial & Engineering Chemistry Research, 2012, 51, 9687-9699.	1.8	9
491	Recovery of Hydrogen from Coke-Oven Gas by Forming Hydrate. Industrial & Engineering Chemistry Research, 2012, 51, 6205-6211.	1.8	14
492	Effects of Halogen Ions on Phase Equilibrium of Methane Hydrate in Porous Media. International Journal of Thermophysics, 2012, 33, 821-830.	1.0	12
493	Applications of cubic equations of state for determination of the solubilities of industrial solid compounds in supercritical carbon dioxide: A comparative study. Chemical Engineering Science, 2012, 71, 283-299.	1.9	30

#	Article	IF	CITATIONS
494	On the range of applicability of the Carnahan–Starling–Patel–Teja equation of state. Fluid Phase Equilibria, 2012, 319, 16-22.	1.4	2
495	New high pressure vapor–liquid equilibrium data and density predictions for carbon dioxide+ethyl acetate system. Fluid Phase Equilibria, 2012, 325, 45-52.	1.4	27
496	Recovery of methane from hydrate reservoir with gaseous carbon dioxide using a three-dimensional middle-size reactor. Energy, 2012, 40, 47-58.	4.5	207
497	A novel correlation approach to estimate thermal conductivity of pure carbon dioxide in the supercritical region. Journal of Supercritical Fluids, 2012, 64, 39-45.	1.6	50
498	Correlation of the volumetric behaviour of pyridinium-based ionic liquids with two different equations. Thermochimica Acta, 2012, 531, 21-27.	1.2	24
499	Excess molar enthalpies of binary systems containing 2-octanone, hexanoic acid, or octanoic acid at T= 298.15 K. Journal of Chemical Thermodynamics, 2012, 44, 51-56.	1.0	9
500	A unique approach to predict accurate heavy oil density with new three parameter cubic equation of state. Canadian Journal of Chemical Engineering, 2013, 91, 391-398.	0.9	2
501	Multimodel Predictive System for Carbon Dioxide Solubility in Saline Formation Waters. Environmental Science & Technology, 2013, 47, 130116073916007.	4.6	4
502	Phase behavior of sour natural gas systems using classical and statistical thermodynamic equations of states. Fluid Phase Equilibria, 2013, 356, 136-145.	1.4	15
503	Cubical equations of state for predicting the phase equilibria of poorly studied substances. Russian Journal of Physical Chemistry A, 2013, 87, 883-889.	0.1	4
504	Toward an intelligent approach for determination of saturation pressure of crude oil. Fuel Processing Technology, 2013, 115, 201-214.	3.7	67
505	Density prediction of long chain ethers and glycol ethers using a group contribution equation. Journal of Molecular Liquids, 2013, 184, 17-23.	2.3	3
506	Predictions of hydrate formation for systems containing hydrogen. Fluid Phase Equilibria, 2013, 358, 290-295.	1.4	13
507	Studies of the thermophysical properties of substances and materials at the Novosibirsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences, 2002–2012. High Temperature, 2013, 51, 695-711.	0.1	16
508	The calculation of thermodynamic properties Of R290-R744 using PT equation of state. , 2013, , .		0
509	Comparing Four Compound-specific Cohesion Factor Relationships for Soave–Redlich–Kwong Equation of State. Indian Chemical Engineer, 2013, 55, 1-28.	0.9	8
510	Vapor–liquid–liquid–hydrate phase equilibrium calculation for multicomponent systems containing hydrogen. Fluid Phase Equilibria, 2013, 338, 87-94.	1.4	15
511	Reverse micelle synthesis of silver nanoparticles in gas expanded liquids. Journal of Supercritical Fluids, 2013, 79, 236-243.	1.6	11

#	Article	IF	CITATIONS
512	Comment on "An improved perturbed hard-sphere equation of stateâ€, Fluid Phase Equilibria, 2013, 339, 112-118.	1.4	1
513	Investigating vapor–liquid equilibria of binary mixtures containing supercritical or near-critical carbon dioxide and a cyclic compound using cascade neural network. Fluid Phase Equilibria, 2013, 343, 24-29.	1.4	63
514	A modified Patel–Teja cubic equation of state: Part I – Generalized model for gases and hydrocarbons. Fluid Phase Equilibria, 2013, 342, 8-22.	1.4	23
515	An empirical extension for a generalized cubic equation of state, applied to a pure substance with small molecules. Fluid Phase Equilibria, 2013, 347, 22-27.	1.4	7
516	Modified Redlichâ¿¿Kwong equation of state for supercritical carbon dioxide. Journal of Supercritical Fluids, 2013, 81, 92-98.	1.6	33
517	Complexity of Density Dependencies of Thermal and Internal Pressure Compared to That of Total Pressure. Industrial & Engineering Chemistry Research, 2013, 52, 8034-8045.	1.8	2
518	Viscosity and density data for the ternary system water(1)–ethanol(2)–ethylene glycol(3) between 298.15K and 328.15K. Journal of Chemical Thermodynamics, 2013, 57, 500-505.	1.0	44
519	Prediction of vapor-liquid-liquid-hydrate phase equilibrium for multicomponent systems containing tetrahydrofuran. Science China Chemistry, 2013, 56, 1800-1810.	4.2	6
520	Experimental and Modeling Study on Phase Equilibria of Semiclathrate Hydrates of Tetra-n-butyl Ammonium Bromide + CH ₄ , CO ₂ , N ₂ , or Gas Mixtures. Industrial & Engineering Chemistry Research, 2013, 52, 18440-18446.	1.8	54
521	Study on Alternative Refrigerants for Direct Expansion Solar Assisted Heat Pump System. Applied Mechanics and Materials, 0, 361-363, 267-270.	0.2	1
522	Accurate Prediction of Dissociation Pressures of Natural Gas Hydrates Containing Carbon Dioxide and Hydrogen Sulfide for Efficient Flow Assurance Phenomena. , 2013, , .		0
523	Retrospective on Cubic Equation of State for R134a Refrigerant Used in Automotive Application. , 0, , .		1
524	A simple correlation to predict thermal conductivity of supercritical carbon dioxide. Journal of Supercritical Fluids, 2014, 86, 1-3.	1.6	22
525	Evaluation of various types' equations of state for prediction of rate of double gas hydrate formation based on Kashchiev model in flow loop apparatus. Journal of Natural Gas Science and Engineering, 2014, 18, 385-395.	2.1	7
526	Source strength and dispersion of CO2 releases from high-pressure pipelines: CFD model using real gas equation of state. Applied Energy, 2014, 126, 56-68.	5.1	81
527	The importance of liquid phase compositions in gas hydrate modeling: Carbon dioxide–methane–water case study. Journal of Chemical Thermodynamics, 2014, 68, 153-160.	1.0	9
528	A modified Patel–Teja cubic equation of state. Part II: Parameters for polar substances and its mixtures. Fluid Phase Equilibria, 2014, 364, 75-87.	1.4	12
529	Investigation of hydrofluoroolefins as potential working fluids in organic Rankine cycle for geothermal power generation. Energy, 2014, 67, 106-116.	4.5	53

IF

ARTICLE

CITATIONS

530	Natural Gas Properties. , 2014, , 23-58.		9
531	Solubility of Disperse Red 82 and modified Disperse Yellow 119 in supercritical carbon dioxide or nitrous oxide with ethanol as a cosolvent. Journal of Supercritical Fluids, 2014, 95, 258-264.	1.6	14
532	Investigation on Liquid Density Data at the Bubble Point and Equations for the Refrigerant HFC-404A over a Wide Temperature Range. Journal of Chemical & Engineering Data, 2014, 59, 2872-2878.	1.0	4
533	Experimental Investigation and Thermodynamic Modeling of the Phase Behavior of Reservoir Fluids. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2014, 36, 1256-1265.	1.2	4
534	Prediction of compressibility factor for gas condensate under a wide range of pressure conditions based on a three-parameter cubic equation of state. Journal of Natural Gas Science and Engineering, 2014, 20, 380-395.	2.1	9
535	Replacement of Methane from Hydrates in Porous Sediments with CO ₂ -in-Water Emulsions. Industrial & Engineering Chemistry Research, 2014, 53, 12476-12484.	1.8	36
536	Dissolution of CO ₂ and CH ₄ Bubbles and Drops Rising from the Deep Ocean. Industrial & Engineering Chemistry Research, 2014, 53, 9272-9281.	1.8	2
537	Suggestion of mixing rule for parameters of PRμ model for light liquid hydrocarbon mixtures. Korean Journal of Chemical Engineering, 2014, 31, 1246-1252.	1.2	9
538	Cubic equation of state: Limit of expectations. Fluid Phase Equilibria, 2014, 376, 141-153.	1.4	4
539	High pressure phase behavior modeling of asymmetric alkane+alkane binary systems with the RKPR EOS. Fluid Phase Equilibria, 2014, 362, 125-135.	1.4	24
540	Confined Phase Envelope of Gas-Condensate Systems in Shale Rocks. Archives of Mining Sciences, 2014, 59, 1005-1022.	0.6	10
541	Performance assessment of several equations of state and second virial coefficients in modified Enskog theory: Results for transport properties. Russian Journal of Physical Chemistry A, 2015, 89, 2084-2091.	0.1	1
542	Equations of State. , 2015, , 53-58.		0
544	Kinetics of Methane Clathrate Hydrate Formation in Water-in-Oil Emulsion. Energy & Fuels, 2015, 29, 2277-2288.	2.5	50
545	Vapor–hydrate two-phase and vapor–liquid–hydrate three-phase equilibrium calculation of THF/CH4/N2 hydrates. Fluid Phase Equilibria, 2015, 401, 70-76.	1.4	19
546	Fast Determination of Binary Vapor–Liquid Equilibrium of CO ₂ -Based Mixtures at Elevated Pressures. Journal of Chemical & Engineering Data, 2015, 60, 1642-1647.	1.0	9
547	Thermodynamic characterization of deepwater natural gas mixtures with heavy hydrocarbon content at high pressures. Journal of Chemical Thermodynamics, 2015, 82, 134-142.	1.0	8
548	Application of Wilcoxon generalized radial basis function network for prediction of natural gas compressibility factor. Journal of the Taiwan Institute of Chemical Engineers, 2015 <u>, 50, 131-141.</u>	2.7	50

#	ARTICLE	IF	CITATIONS
549	Study of the consequences of CO2 released from high-pressure pipelines. Atmospheric Environment, 2015, 116, 51-64.	1.9	34
550	High-pressure phase equilibrium in the {carbon dioxide (1) + 1-chloropropane (2)} binary system. Journal of Chemical Thermodynamics, 2015, 91, 165-171.	1.0	14
551	Experimental and modeling study on the phase equilibria for hydrates of gas mixtures in TBAB solution. Chemical Engineering Science, 2015, 137, 656-664.	1.9	18
552	Description of heat capacity C v of simple liquids using a thermal equation of state including regular and scaling parts. High Temperature, 2015, 53, 338-347.	0.1	8
553	Extension of the E-PPR78 equation of state to predict fluid phase equilibria of natural gases containing carbon monoxide, helium-4 and argon. Journal of Petroleum Science and Engineering, 2015, 133, 744-770.	2.1	29
554	Carbon dioxide compressibility factor determination using a robust intelligent method. Journal of Supercritical Fluids, 2015, 101, 140-149.	1.6	13
555	Modeling phase equilibria for acid gas mixtures using the CPA equation of state. Part IV. Applications to mixtures of CO2 with alkanes. Fluid Phase Equilibria, 2015, 397, 1-17.	1.4	20
556	Using an artificial neural network to predict carbon dioxide compressibility factor at high pressure and temperature. Korean Journal of Chemical Engineering, 2015, 32, 2087-2096.	1.2	50
557	Comparison of different equations of state in a model based on VdW–P for prediction of CO2 hydrate formation pressure in Lw-H-V phase and a new correlation to degrade error of the model. Journal of Natural Gas Science and Engineering, 2015, 22, 292-298.	2.1	10
558	Novel and conventional working fluid mixtures for solar Rankine cycles: Performance assessment and multi-criteria selection. Applied Thermal Engineering, 2015, 75, 384-396.	3.0	49
559	Decompression wave speed in CO2 mixtures: CFD modelling with the GERG-2008 equation of state. Applied Energy, 2015, 140, 20-32.	5.1	51
560	The formation of gas hydrates and the effect of inhibitiors on their formation process. Journal of Fundamental and Applied Sciences, 2016, 8, 1150.	0.2	1
561	Multi-Phase CFD Modelling of CO2 Releases From High-Pressure Pipelines. , 2016, , .		3
562	Experimental Study on the Saturated Liquid Density and Bubble Point Pressure for R1234ze(E) + R290. Journal of Chemical & Engineering Data, 2016, 61, 3241-3249.	1.0	18
563	Phase diagram of crushed powders. Physics of Fluids, 2016, 28, 123301.	1.6	0
565	Comparison of 20 Alpha Functions Applied in the Peng–Robinson Equation of State for Vapor Pressure Estimation. Industrial & Engineering Chemistry Research, 2016, 55, 6506-6516.	1.8	29
566	Solubilities of CO2 in some glycol ethers under high pressure by experimental determination and correlation. Chinese Journal of Chemical Engineering, 2016, 24, 373-378.	1.7	15
567	Relationship between the interfacial tension and inhibition performance of hydrate inhibitors. Chemical Engineering Science, 2016, 148, 182-189.	1.9	42

		15	2
#	ARTICLE	IF	CITATIONS
568	353ÂK and pressures up to 41ÂMPa. Fluid Phase Equilibria, 2016, 423, 156-171.	1.4	26
569	An improved thermodynamic model for Wax precipitation using a UNIQUACÂ+ PC-SAFT approach. Fluid Phase Equilibria, 2016, 425, 21-30.	1.4	26
570	Modeling study on phase equilibria of semiclathrate hydrates of pure gases and gas mixtures in aqueous solutions of TBAB and TBAF. Fluid Phase Equilibria, 2016, 430, 178-187.	1.4	30
571	Application of equations of state to predict methane solubility under hydrate-liquid water two-phase equilibrium. Fluid Phase Equilibria, 2016, 427, 35-45.	1.4	8
572	A new Peng-Robinson modification to enhance dew point estimations of natural gases. Journal of Natural Gas Science and Engineering, 2016, 34, 1137-1147.	2.1	18
573	Multipseudopotential interaction: A consistent study of cubic equations of state in lattice Boltzmann models. Physical Review E, 2016, 93, 013303.	0.8	8
574	Thermodynamics of Heat Pump Cycles. , 2016, , 23-95.		0
575	Predictive model based on ANFIS for estimation of thermal conductivity of carbon dioxide. Journal of Molecular Liquids, 2016, 224, 1266-1274.	2.3	27
576	Flash Calculation and Phase Stability Analysis of Reservoir Gas-Water System—Implication for Extracting Dissolved CH4 by CO2 Injection. , 2016, , .		1
577	Prediction of thermodynamic properties of refrigerant fluids with a new three-parameter cubic equation of state. International Journal of Refrigeration, 2016, 69, 418-436.	1.8	18
578	Modelling CaCO3 Scale in CO2 Water Alternating Gas CO2-WAG Processes. , 2016, , .		4
579	Hydrogen storage at low temperature and high pressure for application in automobile manufacturing. International Journal of Hydrogen Energy, 2016, 41, 1744-1758.	3.8	37
580	A corresponding states-based method for the estimation of natural gas compressibility factors. Journal of Molecular Liquids, 2016, 216, 25-34.	2.3	26
581	Hydrate – fluid phase equilibria modeling using PC-SAFT and Peng–Robinson equations of state. Fluid Phase Equilibria, 2016, 413, 209-219.	1.4	30
582	Modeling of the Thermodynamic Equilibrium Conditions for the Formation of TBAB and TBAC Semiclathrates Formed in the Presence of Xe, Ar, CH ₄ , CO ₂ , N ₂ , and H ₂ . Industrial & Engineering Chemistry Research, 2016, 55, 777-787.	1.8	19
583	Measurements and correlations of density and viscosity for short chain (C1–C3) n-alcohol–water mixtures in the temperature range from 350.7 K to 476.2 K at pressures up to 40 MPa. Fluid Phase Equilibria, 2016, 407, 198-208.	1.4	16
584	Measurement and prediction of dew points of six natural gases. Fluid Phase Equilibria, 2016, 424, 8-15.	1.4	24
585	A generalized cubic equation of state for non-polar and polar substances. Fluid Phase Equilibria, 2016, 418, 74-87.	1.4	32

#	Article	IF	CITATIONS
586	Prediction of solubility of solid compounds in supercritical CO2 using a connectionist smart technique. Journal of Supercritical Fluids, 2017, 120, 181-190.	1.6	21
587	Experimental study on the gaseous p ïT x properties for (HFO1234yf+HC290). Journal of Chemical Thermodynamics, 2017, 107, 126-132.	1.0	18
588	Evaluation of equations of state for simultaneous representation of phase equilibrium and critical phenomena. Fluid Phase Equilibria, 2017, 437, 140-154.	1.4	13
589	Equations of State. , 2017, , 65-116.		2
590	Tuning Equations of State. , 2017, , 189-248.		0
591	Retrograde Gas Condensate. , 2017, , 333-404.		1
592	Experiments and simulations for continuous recovery of methane from coal seam gas (CSG) utilizing hydrate formation. Energy, 2017, 129, 28-41.	4.5	17
593	Peng-Robinson equation of state: 40 years through cubics. Fluid Phase Equilibria, 2017, 447, 39-71.	1.4	251
594	Phase behavior modeling for gas condensate fluids with PC-SAFT and an improved binary interaction coefficient model. Fluid Phase Equilibria, 2017, 444, 37-46.	1.4	9
595	Modeling vapor-liquid phase equilibria of methane-water and methane-carbon dioxide-water systems at 274K to 573K and 0.1 to 150ÂMPa using PRSV equation of state and Wong-Sandler mixing rule. Fluid Phase Equilibria, 2017, 447, 12-26.	1.4	9
596	Improved equation of CO 2 Joule–Thomson coefficient. Journal of CO2 Utilization, 2017, 19, 296-307.	3.3	25
597	Kinetics of Carbon Dioxide Hydration Enhanced with a Phase-Change Slurry of <i>n</i> -Tetradecane. Energy & Fuels, 2017, 31, 4245-4254.	2.5	9
598	A comparison between Peng-Robinson and Soave-Redlich-Kwong cubic equations of state from modification perspective. Cryogenics, 2017, 84, 13-19.	0.9	29
600	High-Throughput Screening of Working Fluids for the Organic Rankine Cycle (ORC) Based on Conductor-like Screening Model for Realistic Solvation (COSMO-RS) and Thermodynamic Process Simulations. Industrial & Engineering Chemistry Research, 2017, 56, 788-798.	1.8	24
601	Prediction of vapor-liquid equilibrium in highly asymmetric paraffinic systems with new modified EOS-GE model. Journal of Petroleum Science and Engineering, 2017, 159, 810-817.	2.1	1
602	Measurement and Correlation of High Pressure Phase Equilibria for CO ₂ + Alkanes and CO ₂ + Crude Oil Systems. Journal of Chemical & Engineering Data, 2017, 62, 3807-3822.	1.0	13
603	New experimental density data and derived thermophysical properties of carbon dioxide – Sulphur dioxide binary mixture (CO2 - SO2) in gas, liquid and supercritical phases from 273ÂK to 353ÂK and at pressures up to 42ÂMPa. Fluid Phase Equilibria, 2017, 454, 64-77.	1.4	15
604	Prediction of the PVTx and VLE properties of natural gases with a general Helmholtz equation of state. Part I: Application to the CH4–C2H6–C3H8–CO2–N2 system. Geochimica Et Cosmochimica Acta, 2017, 219, 74-95.	1.6	10

#	Article	IF	CITATIONS
605	Modeling phase equilibrium with a modified Wong-Sandler mixing rule for natural gas hydrates: Experimental validation. Applied Energy, 2017, 205, 749-760.	5.1	33
606	Prediction of the Boyle temperature, second virial coefficient and Zeno line using the cubic and volume – translated cubic equations of state. Journal of Molecular Liquids, 2017, 242, 625-639.	2.3	12
607	The use of hydrate formation for the continuous recovery of ethylene and hydrogen from fluid catalytic cracking dry gas. Separation and Purification Technology, 2017, 187, 162-172.	3.9	5
608	Prediction of critical temperature, critical pressure and acentric factor of some ionic liquids using Patel-Teja equation of state based on genetic algorithm. Korean Journal of Chemical Engineering, 2017, 34, 2686-2702.	1.2	22
609	Experiments and modeling for recovery of hydrogen and ethylene from fluid catalytic cracking (FCC) dry gas utilizing hydrate formation. Fuel, 2017, 209, 473-489.	3.4	10
610	Interfacial Tension Measurement and Calculation of (Carbon Dioxide + <i>n</i> -Alkane) Binary Mixtures. Journal of Chemical & Engineering Data, 2017, 62, 2861-2871.	1.0	30
611	Multicomponent van der Waals equation of state: Applications in nuclear and hadronic physics. Physical Review C, 2017, 96, .	1.1	43
612	New insight into prediction of phase behavior of natural gas hydrate by different cubic equations of state coupled with various mixing rules. Petroleum Science, 2017, 14, 780-790.	2.4	6
613	Interfacial Tension between Methane and Water Containing Kinetic Hydrate Inhibitor PVP Ramification and Its Emulsification Property. Journal of Chemical & Engineering Data, 2017, 62, 2770-2775.	1.0	11
614	Simplified calculation of solubility of solid solutes in supercritical carbon dioxide by EoS models. Fluid Phase Equilibria, 2017, 432, 54-61.	1.4	7
615	Recent advances in modeling the vapor-liquid equilibrium of mixed working fluids. Fluid Phase Equilibria, 2017, 432, 28-44.	1.4	17
616	The implementation of ion-based ePC-SAFT EOS for calculation of the mean activity coefficient of single and mixed electrolyte solutions. Fluid Phase Equilibria, 2017, 433, 226-242.	1.4	9
617	A water droplet size distribution dependent modeling of hydrate formation in water/oil emulsion. AICHE Journal, 2017, 63, 1010-1023.	1.8	38
618	Review of the BACKONE equation of state and its applications. Molecular Physics, 2017, 115, 1041-1050.	0.8	9
619	Phase Behavior and Properties of Heavy Oils. Springer Handbooks, 2017, , 273-318.	0.3	3
620	Analysis of the impact of CO _{2 content on the physical properties of the liquid phase mixtures in oil production wells. International Journal of Global Warming, 2017, 12, 261.}	0.2	0
621	Effects of Combined Sorbitan Monolaurate Anti-Agglomerants on Viscosity of Water-in-Oil Emulsion and Natural Gas Hydrate Slurry. Energies, 2017, 10, 1105.	1.6	11
622	Viscosity models for pure hydrocarbons at extreme conditions: A review and comparative study. Fuel, 2018, 218, 89-111.	3.4	65

#	Article	IF	CITATIONS
623	Rheological Behavior of Mixtures of Ionic Liquids with Water. Chemical Engineering and Technology, 2018, 41, 819-826.	0.9	1
624	Hydrodynamic shrinkage of liquid CO2Taylor drops in a straight microchannel. Journal of Physics Condensed Matter, 2018, 30, 094002.	0.7	8
625	Simulating natural hydrate formation and accumulation in sediments from dissolved methane using a large three-dimensional simulator. Fuel, 2018, 216, 612-620.	3.4	22
626	A thermodynamic model to predict propane solubility in bitumen and heavy oil based on experimental fractionation and characterization. Journal of Petroleum Science and Engineering, 2018, 168, 156-177.	2.1	25
627	Transport Properties and Modeling of Viscosity for Binary Mixtures of Butanol Isomers \$\$+\$\$ + Hydrocarbons. Arabian Journal for Science and Engineering, 2018, 43, 6087-6096.	1.7	18
628	Experimental and modeling investigation on separation of methane from coal seam gas (CSG) using hydrate formation. Energy, 2018, 150, 377-395.	4.5	19
629	Viscometric and FTIR studies of molecular interactions in 2-propanol+hydrocarbons mixtures at 298.15 and 308.15 K. Korean Journal of Chemical Engineering, 2018, 35, 1167-1173.	1.2	23
630	Assessing thermodynamic models and introducing novel method for prediction of methane hydrate formation. Journal of Petroleum Exploration and Production, 2018, 8, 1401-1412.	1.2	13
631	Thermodynamic modeling of phase equilibria of clathrate hydrates formed from CH4, CO2, C2H6, N2 and C3H8, with different equations of state. Journal of Chemical Thermodynamics, 2018, 117, 180-192.	1.0	32
632	Modeling investigation on the viscosity of pure refrigerants and their liquid mixtures by using the Patel–Teja viscosity equation of state. International Journal of Refrigeration, 2018, 85, 255-267.	1.8	18
633	Density of carbon dioxide with impurities by Coriolis flow meter, oscillation-type densitometer and equations of state. Applied Energy, 2018, 212, 162-174.	5.1	10
634	Experimental Investigation into the Dissociation Behavior of CH ₄ –C ₂ H ₆ –C ₃ H ₈ Hydrates in Sandy Sediments by Depressurization. Energy & Fuels, 2018, 32, 204-213.	2.5	11
635	Saturated liquid density equation for pure refrigerants including CFCs, HCFCs, HFCs, HCs, HFOs, HFEs, PFAs and ISs based on the scaling law and the law of rectilinear diameter. International Journal of Refrigeration, 2018, 87, 65-77.	1.8	8
636	Prediction of dew points and liquid dropouts of gas condensate mixtures. Fluid Phase Equilibria, 2018, 457, 62-73.	1.4	26
637	Solubility of CO ₂ in water and NaCl solution in equilibrium with hydrate. Part II: Model calculation. Canadian Journal of Chemical Engineering, 2018, 96, 620-624.	0.9	5
640	Measurement and Prediction of Hydrocarbon Dew Points of Synthetic Natural Gas Mixtures. Journal of Chemical & Engineering Data, 2018, 63, 4226-4233.	1.0	3
641	Multiphase flash calculation for system containing TBAB semiclathrate: Application to semiclathrate-based post-combustion CO2 capture. Fluid Phase Equilibria, 2018, 476, 157-169.	1.4	2
642	A systematic review on CO2 capture with ionic liquids: Current status and future prospects. Renewable and Sustainable Energy Reviews, 2018, 96, 502-525.	8.2	368

#	ARTICLE Adiabatic calorimeter for isochoric specific heat capacity measurements and experimental data of	IF 1.0	Citations
644	Compressed liquid R1234yf. Journal of Chemical Thermodynamics, 2018, 125, 86-92. Thermodynamic modeling of HCl-H2O binary system with symmetric electrolyte NRTL model. Journal of Chemical Thermodynamics, 2018, 125, 159-171.	1.0	13
645	Applying the Patel-Teja EoS with regular solution theory to predict the onset of asphaltene precipitation. Fluid Phase Equilibria, 2018, 473, 112-126.	1.4	10
646	On the temperature dependence of the α function in the cubic equation of state. Chemical Engineering Science, 2018, 192, 565-575.	1.9	28
647	Thermodynamically consistent criteria for developing reliable equation of state model for compositional simulation. Fuel, 2018, 234, 770-784.	3.4	5
648	Research into the Polynomial Alpha Function for the Cubic Equation of State. Industrial & Engineering Chemistry Research, 2018, 57, 12602-12623.	1.8	8
649	Presenting a new predictive viscosity model based on virial-like equations of state for monatomic fluids. Chemical Engineering Communications, 2018, 205, 1469-1483.	1.5	4
650	A four-parameter cubic equation of state for pure compounds and mixtures. Chemical Engineering Science, 2018, 190, 173-189.	1.9	20
651	The effect of equations of state on the performances of compositional grading models. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2022, 44, 1126-1138.	1.2	1
652	Analyses of an Improved Double-Absorber Absorption Refrigeration System at Low Temperatures. Journal of Thermal Science, 2019, 28, 705-713.	0.9	4
653	Measurements and modeling of interfacial tension for (CO2 + n-alkyl benzene) binary mixtures. Journal of Supercritical Fluids, 2019, 154, 104625.	1.6	8
654	<i>I</i> -PC-SAFT: An Industrialized Version of the Volume-Translated PC-SAFT Equation of State for Pure Components, Resulting from Experience Acquired All through the Years on the Parameterization of SAFT-Type and Cubic Models. Industrial & Engineering Chemistry Research, 2019, 58, 20815-20827.	1.8	44
655	A Review of the Alpha Functions of Cubic Equations of State for Different Research Systems. International Journal of Thermophysics, 2019, 40, 1.	1.0	8
656	Experimental measurements and modelling of vapour-liquid equilibrium of 2,3,3,3-tetrafluoropropene (R-1234yf)†+†1,1,1,2,2-pentafluoropropane (R-245cb) system. International Journal of Refrigeration, 2019, 107, 315-325.	1.8	11
657	Physicochemical Properties of Gas. , 2019, , 13-41.		1
658	New empirical correlations for predicting Minimum Miscibility Pressure (MMP) during CO ₂ injection; implementing the Group Method of Data Handling (GMDH) algorithm and Pitzer's acentric factor. Oil and Gas Science and Technology, 2019, 74, 64.	1.4	10
659	Analysis of Thermodynamic Models for Simulation and Optimisation of Organic Rankine Cycles. Energies, 2019, 12, 3307.	1.6	2
660	Optimization of light hydrocarbon recovery system in condensate gas field. Energy Reports, 2019, 5, 1209-1221.	2.5	6

#	Article	IF	CITATIONS
661	A five-parameter cubic equation of state for pure fluids and mixtures. Chemical Engineering Science: X, 2019, 3, 100026.	1.5	5
662	Modeling the Hydrate Dissociation Pressure of Light Hydrocarbons in the Presence of Single NaCl, KCl, and CaCl ₂ Aqueous Solutions Using a Modified Equation of State for Aqueous Electrolyte Solutions with Partial Ionization. Industrial & Engineering Chemistry Research, 2019, 58. 12369-12391.	1.8	6
663	Effective Hamiltonians and empirical fluid equations of state. Fluid Phase Equilibria, 2019, 496, 80-92.	1.4	9
664	Viscosity of (CH4 + C3H8 + CO2 + N2) mixtures at temperatures between (243 and 423) K and between (1 and 28) MPa: Experiment and theory. Fuel, 2019, 251, 447-457.	pressures 3.4	7
665	Absorption refrigeration processes with organic working fluid mixtures- a review. Renewable and Sustainable Energy Reviews, 2019, 109, 239-270.	8.2	41
666	Rate enhancement of methane hydration in slurry of ice by phase change of water-in-oil emulsions. Fuel, 2019, 244, 296-303.	3.4	4
667	Cubic Equation of State Model for HC-290. , 2019, , .		0
669	Thermodynamic modelling of wax precipitation using PC-SAFT in a multi-solid framework. International Journal of Oil, Gas and Coal Technology, 2019, 21, 229.	0.1	6
670	Correlation and Prediction of Thermal Conductivity Using the Redlich–Kwong Cubic Equation of State and the Geometric Similitude Concept for Pure Substances and Mixtures. Industrial & Engineering Chemistry Research, 2019, 58, 23417-23437.	1.8	13
671	A four parameter cubic equation of state with temperature dependent covolume parameter. Chinese Journal of Chemical Engineering, 2019, 27, 1132-1148.	1.7	16
672	Investigating the influence of CO2 injection and reservoir cores on the phase behavior of two low-permeability crude oils: Experimental verification and thermodynamic model development. Fuel, 2019, 239, 701-708.	3.4	11
673	Prediction of phase equilibrium of methane hydrate below 272.2â€ [−] K based on different equations of state. Fluid Phase Equilibria, 2019, 490, 61-67.	1.4	11
674	Measurements and predictions of Middle Eastern heavy crude oil viscosity using compositional data. Journal of Petroleum Science and Engineering, 2019, 173, 990-1004.	2.1	19
675	Classical Models Part 1., 2019, , 73-102.		Ο
676	Study of different models of prediction of the simple gas hydrates formation induction time and effect of different equations of state on them. Heat and Mass Transfer, 2019, 55, 1245-1255.	1.2	4
677	Nanoscale-extended alpha functions for pure and mixing confined fluids. Fluid Phase Equilibria, 2019, 482, 64-80.	1.4	8
678	Vapor-Liquid Phase Equilibria. , 2019, , 1109-1225.		2
679	Thermodynamic properties of (R1234yf + R290): Isochoric pï∓x and specific heat capacity c measurements and an equation of state. Journal of Chemical Thermodynamics, 2019, 129, 36-43.	1.0	17

#	Article	IF	CITATIONS
680	The effects of alkyl polyglucosides on the formation of CH ₄ hydrate and separation of CH ₄ /N ₂ via hydrates formation. Separation Science and Technology, 2020, 55, 81-87.	1.3	6
681	Analytical attractive functions and their derivatives in bulk and nanoconfined pores. Canadian Journal of Chemical Engineering, 2020, 98, 566-582.	0.9	1
682	Modeling study on absorption-adsorption of gas in ZIF-8/absorbent slurry system. Fluid Phase Equilibria, 2020, 506, 112396.	1.4	2
683	Prediction of solubility of sunitinib malate (an anti-cancer drug) in supercritical carbon dioxide (SC–CO2): Experimental correlations and thermodynamic modeling. Journal of Molecular Liquids, 2020, 297, 111740.	2.3	46
684	Modeling natural gas compressibility factor using a hybrid group method of data handling. Engineering Applications of Computational Fluid Mechanics, 2020, 14, 27-37.	1.5	20
685	Transient simulation of gas-condensate two-phase flow in pipes. Journal of Petroleum Science and Engineering, 2020, 185, 106609.	2.1	7
686	Modeling of interfacial tension in binary mixtures of CH4, CO2, and N2 - alkanes using gene expression programming and equation of state. Journal of Molecular Liquids, 2020, 320, 114454.	2.3	25
687	Equation of State. , 2020, , .		0
688	Gas condensate reservoirs: Characterization and calculation of dew-point pressure. Petroleum Exploration and Development, 2020, 47, 1091-1102.	3.0	9
689	Evaluation of translated-consistent equations of state compared for the prediction of the Joule–Thomson effect at high pressures and high temperatures. Fluid Phase Equilibria, 2020, 523, 112775.	1.4	6
690	Estimation of the critical properties of compounds using volumeâ€based thermodynamics. AICHE Journal, 2020, 66, e17004.	1.8	6
691	Search for the optimal expression of the volumetric dependence of the attractive contribution in cubic equations of state. Fluid Phase Equilibria, 2020, 522, 112750.	1.4	16
692	Physical and transport properties of ionic liquids using geometric similitude and a cubic equation of state. Part 2: Thermal conductivity, and speed of sound of waterÂ+Âionic liquid mixtures. Journal of Molecular Liquids, 2020, 317, 113926.	2.3	6
693	Thermodynamic modeling and correlations of CH4, C2H6, CO2, H2S, and N2 hydrates with cage occupancies. Journal of Petroleum Exploration and Production, 2020, 10, 3689-3709.	1.2	5
694	Experimental and modeling using a generalized Patel-Teja-Valderrama equation of state for computation of mono ethanol amine (MEA) solution density in a CO2 capturing pilot plant. Fluid Phase Equilibria, 2020, 525, 112803.	1.4	8
695	A continuous and high-efficiency process to separate coal bed methane with porous ZIF-8 slurry: Experimental study and mathematical modelling. Green Energy and Environment, 2020, 5, 347-363.	4.7	17
696	Insight into the thermo-physics of gas hydrates: Three phase equilibrium in presence of electrolyte. Journal of Chemical Thermodynamics, 2020, 150, 106182.	1.0	8
697	The hydrate-based gas separation of hydrogen and ethylene from fluid catalytic cracking dry gas in presence of Poly (sodium 4-styrenesulfonate). Fuel, 2020, 275, 117895.	3.4	12

#	Article	IF	CITATIONS
698	Prediction of Gas Hydrate Formation Conditions in the Presence of Electrolytes Using an N-NRTL-NRF Activity Coefficient Model. Industrial & amp; Engineering Chemistry Research, 2020, 59, 6269-6278.	1.8	12
699	Physical and transport properties of ionic liquids using the geometric similitude concept and a cubic equation of state. Part 1: Thermal conductivity and speed of sound of pure substances. Journal of Molecular Liquids, 2020, 315, 113681.	2.3	12
700	Possible Bose-Einstein condensation of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>α</mml:mi> particles in the ground state of nuclear matter. Physical Review C, 2020, 101, .</mml:math 	1.1	8
701	Determination of bubble point pressure and oil formation volume factor: Extra trees compared with LSSVM-CSA hybrid and ANFIS models. Fuel, 2020, 269, 116834.	3.4	51
702	Two-Stage Separation of the Tail Gases of Ammonia Synthesis to Recover H ₂ and N ₂ via Hydrate Formation. Journal of Chemical & Engineering Data, 2020, 65, 1715-1720.	1.0	6
703	Experimental measurement and thermodynamic modeling of methane hydrate phase equilibria in the presence of chloride salts. Chemical Engineering Journal, 2020, 395, 125126.	6.6	31
704	A new two-parameters cubic equation of state with benefits of three-parameters. Chemical Engineering Science, 2021, 229, 116045.	1.9	11
705	Improved Prediction of Saturated and Single-Phase Liquid Densities of Water through Volume-Translated SRK EOS. Fluid Phase Equilibria, 2021, 528, 112852.	1.4	11
706	Cubic equation of state as a quartic in disguise. Fluid Phase Equilibria, 2021, 531, 112908.	1.4	10
707	Review of Density Measurements and Predictions of CO ₂ –Alkane Solutions for Enhancing Oil Recovery. Energy & Fuels, 2021, 35, 2914-2935.	2.5	13
708	Investigation of Aerogel Production Processes: Solvent Exchange under High Pressure Combined with Supercritical Drying in One Apparatus. Gels, 2021, 7, 4.	2.1	10
709	Review on the Applications and Modifications of the Chen–Guo Model for Hydrate Formation and Dissociation. Energy & Fuels, 2021, 35, 2936-2964.	2.5	25
710	Study the high pressure effect on compressibility factors of high CO2 content natural gas. Journal of Natural Gas Science and Engineering, 2021, 87, 103759.	2.1	2
711	An improved dispersive contribution for the COSMO-SAC-Phi equation of state. Fluid Phase Equilibria, 2021, 534, 112942.	1.4	4
712	Decompression modelling of natural gas-hydrogen mixtures using the Peng-Robinson equation of state. International Journal of Hydrogen Energy, 2021, 46, 15793-15806.	3.8	13
713	An Accurate Model to Calculate CO2 Solubility in Pure Water and in Seawater at Hydrate–Liquid Water Two-Phase Equilibrium. Minerals (Basel, Switzerland), 2021, 11, 393.	0.8	3
714	Experiment and model investigation of D-sorbitol as a thermodynamic hydrate inhibitor for methane and carbon dioxide hydrates. Journal of Natural Gas Science and Engineering, 2021, 90, 103927.	2.1	15
715	Application of supercritical carbon dioxide jet: A parametric study using numerical simulation model. Journal of Petroleum Science and Engineering, 2021, 201, 108422.	2.1	14

#	Article	IF	CITATIONS
716	The Thermodynamic and Kinetic Effects of Sodium Lignin Sulfonate on Ethylene Hydrate Formation. Energies, 2021, 14, 3291.	1.6	3
717	Comparing the predictive ability of two- and three-parameter cubic equations of state in calculating specific heat capacity, Joule – Thomson coefficient, inversion curve and outlet temperature from Joule – Thomson 116, 103288.	0.9	9
718	Phase Equilibria of Natural Gas Hydrates in Bulk Brine and Marine Sediments from the South China Sea. Journal of Chemical & Engineering Data, 2021, 66, 4064-4074.	1.0	7
719	Ionic liquid excess molar volume prediction: A conceptual comparison. Journal of Molecular Liquids, 2021, 336, 116581.	2.3	11
720	A Comprehensive Review of Recent Advances in the Estimation of Natural Gas Compressibility Factor. , 2021, , .		0
721	Structure-H hydrate of mixed gases: Phase equilibrium modeling and experimental validation. Journal of Molecular Liquids, 2021, 343, 117605.	2.3	12
722	Prediction of equilibrium conditions for gas hydrates in the organic inhibitor aqueous solutions using a thermodynamic consistency-based model. Fluid Phase Equilibria, 2021, 544-545, 113118.	1.4	7
723	A novel modification of ionic liquid mixture density based on semi-empirical equations using laplacian whale optimization algorithm. Arabian Journal of Chemistry, 2021, 14, 103368.	2.3	10
724	Determination of clathrate hydrates dissociation conditions in aqueous solutions of methanol and salt using the e-NRTL based model. Fluid Phase Equilibria, 2021, 546, 113121.	1.4	4
725	Introducing hydrogen bonding term to the Patel-Teja viscosity equation of state for hydrochlorofluorocarbons, hydrofluorocarbons and hydrofluoroolefins. Fluid Phase Equilibria, 2021, 547, 113178.	1.4	2
726	Comprehensive assessment and evaluation of correlations for gas-oil ratio, oil formation volume factor, gas viscosity, and gas density utilized in gas kick detection. Journal of Petroleum Science and Engineering, 2021, 207, 109135.	2.1	4
727	Esmaeilzadeh–Roshanfekr equation of state coupled with <scp>CPA</scp> model: Application in viscosity modeling. Asia-Pacific Journal of Chemical Engineering, 2018, 13, e2159.	0.8	8
728	Thermodynamic Properties of Diamondoids. , 2007, , 7-28.		3
729	A New Square-Root-Type Pseudo-Cubic Equation of State. Advances in Cryogenic Engineering, 1988, , 1045-1052.	0.3	1
730	Physico-chemical data required for the design of near-critical fluid extraction process. , 1993, , 184-231.		24
731	Equations of State for Phase Equilibrium Computations. , 1994, , 147-175.		7
732	A constitutive model for predicting the solubility of gases in water at high temperature and pressure. Journal of Petroleum Science and Engineering, 2020, 192, 107337.	2.1	6
733	Cubic and Generalized van der Waals Equations of State. , 2010, , 53-83.		5

	CITATION RE	CITATION REPORT	
#	Article	IF	Citations
734	Chapter 5. Mixing and Combining Rules. , 2010, , 84-134.		6
735	MODEL DEVELOPMENT OF A SUITABLE EQUATION OF STATE FOR MULTICOMPONENT MULTIPHASE SYSTEMS: APPLICATION TO CRUDE OIL PHASE STABILITY REQUIREMENTS. International Journal of Thermodynamics, 2018, 21, 111-118.	0.4	3
736	Thermodynamic modeling of several alcohol-hydrocarbon binary mixtures at low to moderate conditions. Journal of Molecular Liquids, 2022, 346, 117924.	2.3	12
737	Extension of a Group Contribution Method to Predict Viscosity Based on Momentum Transport Theory Using a Modified Peng–Robinson EoS. Industrial & Engineering Chemistry Research, 2021, 60, 14903-14926.	1.8	4
738	Extension of LCVM-Type mixing rule to three-parameter equations of state for vapor-liquid equilibria of mixtures. Journal of Zhejiang University: Science A, 2005, 6, 17-22.	1.3	0
739	Vapor-Liquid Phase Equilibria. , 2006, , 1096-1234.		0
742	Unsteady numerical simulation of dynacim reactor-evaporator interaction in thermochemical refrigeration systems. CTyF - Ciencia, Tecnologia Y Futuro, 2013, 5, 107-126.	0.3	0
743	Pseudo-cubic equation of state for polar substances Sekiyu Gakkaishi (Journal of the Japan Petroleum) Tj ETQq1	1 0.7843	314 ₀ rgBT /Ove
744	Correlation of High Pressure Vapor-Liquid Equilibria with Pseudocubic Perturbed Hard Sphere Equation of State Sekiyu Gakkaishi (Journal of the Japan Petroleum Institute), 1991, 34, 562-566.	0.1	1
745	Evaluationof equations of state for fluid mixtures of the water+ammonia system Netsu Bussei, 1992, 6, 240-246.	0.1	1
746	A Modified Patel-Teja Equation of State for Cryogenic Fluids. , 1997, , 639-642.		0
747	PVT MEASUREMENTS OF BINARY GASEOUS MIXTURES AT HIGH TEMPERATURES AND PRESSURES. , 1998, , 311-321.		0
748	A Study of Mixed Refrigerant Process Control in Liquefied Natural Gas Process using Dynamic Simulation. Journal of the Korean Institute of Gas, 2015, 19, 99-104.	0.1	0
749	High-Throughput Screening of ORC Fluids for Mobile Applications. , 2017, , 35-40.		2
750	ESTIMAÇÃO DOS PARÃ,METROS DE INTERAÇÃO DE SISTEMAS BINÃRIOS FORMADOS POR CO2 + HIDROCARBONETOS USANDO A EQUAÇÃO DE ESTADO CÚBICA DE PATEL-TEJA. , 0, , .		0
751	Joule-Thomson coefficients and inversion curves from newly developed cubic equations of state. European Journal of Chemistry, 2019, 10, 244-255.	0.3	0
754	A consistent three-parameter cubic EOS for precise prediction of volumetric and saturation properties through wide-temperature-ranged adjusted critical compressibility factor. Fluid Phase Equilibria, 2022, 554, 113330.	1.4	1
755	Association between multiphase seepage and exploitation of natural gas hydrate based on the Shenhu area of South China Sea. Journal of Petroleum Science and Engineering, 2022, 209, 109855.	2.1	9

#	Article	IF	CITATIONS
756	Solutions, in Particular Dilute Solutions of Nonelectrolytes: A Review. Journal of Solution Chemistry, 2022, 51, 626-710.	0.6	2
757	Evaluating cubic equations of state for predictions of solid-fluid equilibrium in liquefied natural gas production. Fuel, 2022, 314, 123033.	3.4	13
758	A new simplified virial equation of state for high temperature and high pressure gas. AIP Advances, 2022, 12, 015119.	0.6	2
759	Modelling the hydrate formation condition in consideration of hydrates structure transformation. Chemical Engineering Science, 2022, 251, 117487.	1.9	4
760	Introducing hydrogen bonding contribution to the Patel-Teja thermal conductivity equation of state for hydrochlorofluorocarbons, hydrofluorocarbons and hydrofluoroolefins. Journal of Molecular Liquids, 2022, 351, 118631.	2.3	6
761	Effect of guest-dependent reference hydrate vapor pressure in thermodynamic modeling of gas hydrate phase equilibria, with various combinations of equations of state and activity coefficient models. Fluid Phase Equilibria, 2022, 556, 113356.	1.4	5
762	The formation of structure I hydrate in presence of n-octyl-β-D-glucopyranoside. Fluid Phase Equilibria, 2022, 556, 113373.	1.4	2
763	New Alpha Functions for the Peng–Robinson Cubic Equation of State. ACS Omega, 2022, 7, 5332-5339.	1.6	2
764	Hydrate phase equilibrium of hydrogen-natural gas blends: Experimental study and thermodynamic modeling. Fluid Phase Equilibria, 2022, 556, 113417.	1.4	5
765	Formulating noncovalent interactions to predict structural transition in mixed guest hydrates. AICHE Journal, 2022, 68, .	1.8	3
766	A Modified Solid–Liquid–Gas Phase Equation of State. ACS Omega, 2022, 7, 9322-9332.	1.6	3
767	Thermoresponsive Ionic Liquid/Water Mixtures: From Nanostructuring to Phase Separation. Molecules, 2022, 27, 1647.	1.7	14
768	A rapidly convergent method for solving third-order polynomials. AIP Advances, 2022, 12, 045002.	0.6	0
770	Effect of H2S content on relative permeability and capillary pressure characteristics of acid gas/brine/rock systems: A review. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14, 2003-2033.	3.7	7
771	Applicability research of thermodynamic models of gas hydrate phase equilibrium based on different equations of state. RSC Advances, 2022, 12, 15870-15884.	1.7	1
772	Thermodynamic Perturbation Theory Coefficients for Hard Spherocylinders and Cylinders. SSRN Electronic Journal, 0, , .	0.4	1
773	Thermodynamic modeling of gas hydrate phase equilibrium of carbon dioxide and its mixture using different equations of states. Journal of Chemical Thermodynamics, 2022, 173, 106834.	1.0	3
774	Vapor-liquid equilibrium phase behavior of binary systems of carbon dioxide with dimethyl succinate or dimethyl glutarate. Journal of the Taiwan Institute of Chemical Engineers, 2022, 136, 104402.	2.7	8

#	Article	IF	CITATIONS
775	Fundamental equations of state of individual substances. , 2022, , 335-395.		0
776	Measurements and modeling of the hydrate phase equilibria of CO2 in the presence of promoters. Fluid Phase Equilibria, 2022, 562, 113548.	1.4	7
777	Thermodynamic perturbation theory coefficients for hard spherocylinders and cylinders. Fluid Phase Equilibria, 2022, 561, 113543.	1.4	0
778	Measurement and Prediction of Hydrate Phase Equilibrium Conditions for Hydrogen-Containing Gas Mixtures in Pure Water and Brines. SSRN Electronic Journal, 0, , .	0.4	Ο
779	The hydrate-based separation of hydrogen and ethylene from fluid catalytic cracking dry gas in presence of n-octyl-β-d-glucopyranoside. International Journal of Hydrogen Energy, 2022, 47, 31350-31369.	3.8	1
780	Interfacial and Wetting Properties in Shale/Methane/Water and Shale/Methane/Surfactant Systems at Geological Conditions. Energy & Fuels, 2022, 36, 10155-10166.	2.5	3
781	Measurements and Modeling of the Hydrate Phase Equilibrium Condition of Sour Gas Mixtures in the Presence of Salts and Alcohols. Journal of Chemical & Engineering Data, 2022, 67, 2563-2572.	1.0	4
782	Predictions of thermodynamic properties of pure fluids, refrigerants, and binary mixtures using modified Peng-Robinson equation of state. Korean Journal of Chemical Engineering, 2022, 39, 3452-3463.	1.2	8
783	Insights into modelling and evaluation of thermodynamic and transport properties of refrigerants using machine-learning methods. Energy, 2023, 262, 125099.	4.5	1
784	Cálculo del volumen especÃfico de lÃquidos puros con la ecuación de estado cubica de Valderrama-Patel-Teja. Ingenieria E Investigacion, 2002, , 41-48.	0.2	Ο
785	Development of a new approach using an artificial neural network for estimating oil formation volume factor at bubble point pressure of Egyptian crude oil. Journal of King Saud University, Engineering Sciences, 2024, 36, 72-80.	1.2	1
786	Avoiding Artifacts in Noncubic Equations of State. Industrial & Engineering Chemistry Research, 2022, 61, 15661-15677.	1.8	5
787	Further Results on a Generalized van der Waals Model. International Journal of Thermophysics, 2022, 43, .	1.0	0
788	A thermodynamic framework to identify apposite refrigerant former for hydrate-based applications. Scientific Reports, 2022, 12, .	1.6	3
789	Modelling of Single-Gas Adsorption Isotherms. Metals, 2022, 12, 1698.	1.0	4
790	High-Pressure Fluid Phase Equilibria. , 0, , .		0
791	Theoretical model of the Leidenfrost temperature. Physical Review E, 2022, 106, .	0.8	0
792	The state of the art of cubic equations of state with temperature-dependent binary interaction coefficients: From correlation to prediction. Fluid Phase Equilibria, 2023, 567, 113697.	1.4	5

#	Article	IF	CITATIONS
793	Patel-Teja cubic equation of state – A review of modifications and applications till 2022. Fluid Phase Equilibria, 2023, 567, 113707.	1.4	7
794	Correlation of phase equilibria for gas hydrates in organic inhibitor aqueous solutions within wide concentration range. Fluid Phase Equilibria, 2023, 568, 113733.	1.4	0
795	Data-Driven Modeling of General Fluid Density Under Subcritical and Supercritical Conditions. AIAA Journal, 2023, 61, 1519-1531.	1.5	3
796	Phase behavior investigation of the vinyl toluene and poly (vinyl toluene)Â+Âco-solvents in supercritical CO2. Journal of Industrial and Engineering Chemistry, 2023, 121, 92-99.	2.9	9
797	On the Integration of CO2 Capture Technologies for an Oil Refinery. Energies, 2023, 16, 865.	1.6	10
798	Experimental and modeling on hydrate phase equilibrium conditions for hydrogen-containing gas mixtures in pure water and brines. Journal of Chemical Thermodynamics, 2023, 179, 107001.	1.0	1
799	Calculating densities and viscosities of natural gas with a high content of C2+ to predict two-phase liquid-gas flow pattern. Petroleum, 2023, 9, 579-591.	1.3	0
800	Thermodynamic modeling of gas hydrate phase equilibrium conditions in porous media in the presence of inhibitor solution. Fluid Phase Equilibria, 2023, 568, 113752.	1.4	1
801	Prediction method for methane solubility in high-temperature and high-pressure aqueous solutions in ultra-deep drilling. , 2023, 223, 211522.		1
815	Thermodynamics of Petroleum Mixtures. Petroleum Engineering, 2023, , 31-83.	0.6	0
825	Equations of state for pure fluids. , 2024, , 247-286.		0
827	Process Design of Hydrate-Membrane Coupled Separation for CO2 Capture from Flue Gas: Energy Efficiency Analysis and Optimization, Lecture Notes in Civil Engineering, 2024, , 370-389.	0.3	0