Environmental and health impacts of PFAS: Sources, dis management in North Carolina (USA)

Science of the Total Environment 878, 163123 DOI: 10.1016/j.scitotenv.2023.163123

Citation Report

#	Article	IF	CITATIONS
1	Kinetic and Thermodynamic Study of Methylene Blue Adsorption on TiO2 and ZnO Thin Films. Materials, 2023, 16, 4434.	2.9	3
2	Molecular Imaging, Radiochemistry, and Environmental Pollutants. Journal of Nuclear Medicine, 2023, 64, 1179-1184.	5.0	0
3	Benefits from recreational catch improvements may hinge on fish consumption safety: Evidence from the Cape Fear River, North Carolina. Fisheries Research, 2023, 268, 106833.	1.7	0
4	A comparative analysis of ecological status assessment in river water quality under the European Water Framework Directive. Case Studies in Chemical and Environmental Engineering, 2023, 8, 100477.	6.1	1
5	Risks of Antibiotic Resistance Dissemination by Leachates from Municipal Landfills of Different Ages. Water (Switzerland), 2023, 15, 3349.	2.7	0
6	Perfluoroalkyl and polyfluoroalkyl substances (PFAS) — Fibrous substrates. Tappi Journal, 2023, 22, 559-572.	0.5	1
7	Association between the dietary inflammatory index and serum perfluoroalkyl and polyfluoroalkyl substance concentrations: evidence from NANHES 2007–2018. Food and Function, 0, , .	4.6	0
8	Rapid enzymatic activity model (REAM) to decipher the toxic action of per- and polyfluoroalkyl substances. Food and Chemical Toxicology, 2023, 182, 114117.	3.6	1
9	Shifting paradigms in PFAS resin removal with biomaterial alternatives. Journal of the Taiwan Institute of Chemical Engineers, 2023, , 105300.	5.3	1
11	GenX Disturbs the Indicators of Hepatic Lipid Metabolism Even at Environmental Concentration in Drinking Water via PPARα Signaling Pathways. Chemical Research in Toxicology, 2024, 37, 98-108.	3.3	2
12	A comprehensive review on the need for integrated strategies and process modifications for per- and polyfluoroalkyl substances (PFAS) removal: Current insights and future prospects. Case Studies in Chemical and Environmental Engineering, 2024, 9, 100623.	6.1	0
13	Reaction rate coefficient study of the perfluoroalkyl and ï‰-Perfluoroalkyloic acid radicals. Chemical Physics Letters, 2024, 838, 141077.	2.6	0
15	Estimated scale of costs to remove PFAS from the environment at current emission rates. Science of the Total Environment, 2024, 918, 170647.	8.0	0
16	Influence of water chemistry and operating parameters on PFOS/PFOA removal using rGO-nZVI nanohybrid. Journal of Hazardous Materials, 2024, 469, 133912.	12.4	0
17	Overview of Per- and Polyfluoroalkyl Substances (PFAS), Their Applications, Sources, and Potential Impacts on Human Health. Pollutants, 2024, 4, 136-152.	2.1	0
18	Evaluating the efficiency of modified hydrophobic PVDF membrane for the removal of PFOA substances from water by direct contact membrane distillation. Desalination, 2024, 579, 117509.	8.2	0
20	Review of Recent Computational Research on the Adsorption of PFASs with a Variety of Substrates. International Journal of Molecular Sciences, 2024, 25, 3445.	4.1	0
21	Changing the structure of PFOA and PFOS: a chemical industry strategy or a solution to avoid thyroid-disrupting effects?. Journal of Endocrinological Investigation, 0, , .	3.3	0