Exciton binding energy in quantum wells

Physical Review B 26, 1974-1979 DOI: 10.1103/physrevb.26.1974

Citation Report

#	Article	IF	CITATIONS
1	Binding energy of biexcitons and bound excitons in quantum wells. Physical Review B, 1983, 28, 871-879.	3.2	265
2	Variational calculations on a quantum well in an electric field. Physical Review B, 1983, 28, 3241-3245.	3.2	740
3	Binding energy for the surface biexcitonic positive ion. Journal of Physics C: Solid State Physics, 1983, 16, 5723-5728.	1.5	24
4	Eigenstates of Wannier excitons near a semiconductor surface. Physical Review B, 1983, 28, 4585-4592.	3.2	65
5	Raman Scattering Resonant with Quasi-Two-Dimensional Excitons in Semiconductor Quantum Wells. Physical Review Letters, 1983, 51, 1293-1296.	7.8	122
6	Wannier exciton in quantum wells. Physical Review B, 1983, 28, 4878-4881.	3.2	147
7	Wannier excitons in GaAs-Ga1â^'xAlxAsquantum-well structures: Influence of the effective-mass mismatch. Physical Review B, 1984, 30, 7302-7304.	3.2	69
8	A Wannier Exciton in a Quantum Well: Subband Dependence. Journal of the Physical Society of Japan, 1984, 53, 3138-3145.	1.6	50
9	Spectrum of two-dimensional excitons in heterojunction superlattices. Physics Letters, Section A: General, Atomic and Solid State Physics, 1984, 101, 158-160.	2.1	4
10	An alternative approach to exciton binding energy in a GaAs-AlxGa1-x as quantum well. Solid State Communications, 1984, 50, 589-593.	1.9	61
11	Picosecond time-resolved study of excitons in GaAs-A1As multi-quantum-well structures. Physical Review B, 1984, 29, 2324-2327.	3.2	103
12	Solid-state perspectives of the photoelectrochemistry of semiconductor–electrolyte junctions. Nature, 1984, 312, 21-27.	27.8	104
13	Interband magnetooptical experiments in Ga1â^'xAlxAs-GaAs quantumwells. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1984, 127, 426-432.	0.9	1
14	Hydrogenic impurity states in quantum-well wires. Physical Review B, 1984, 29, 6632-6639.	3.2	206
15	Band-Edge Electroabsorption in Quantum Well Structures: The Quantum-Confined Stark Effect. Physical Review Letters, 1984, 53, 2173-2176.	7.8	1,558
16	Sharp-line photoluminescence spectra from GaAs-GaAlAs multiple-quantum-well structures. Physical Review B, 1984, 29, 7038-7041.	3.2	80
17	Energy levels of Wannier excitons inGaAsâ^'Ga1â^'xAlxAsquantum-well structures. Physical Review B, 1984, 29, 1807-1812.	3.2	555
18	Magneto-optical determination of exciton binding energy in GaAs-Ga1â^'xAlxAsquantum wells. Physical Review B, 1984, 30, 2253-2256.	3.2	264

#	Article	IF	CITATIONS
19	Localization induced electronâ€hole transition rate enhancement in GaAs quantum wells. Applied Physics Letters, 1984, 44, 84-86.	3.3	119
20	Screened Coulombic impurity bound states in semiconductor quantum wells. Physical Review B, 1984, 30, 905-908.	3.2	102
21	Low-temperature exciton trapping on interface defects in semiconductor quantum wells. Physical Review B, 1984, 29, 7042-7044.	3.2	248
22	Observation of heavy-hole and light-hole excitons in InGaAs/InAlAs MQW structures at room temperature. Electronics Letters, 1985, 21, 371.	1.0	29
23	Electronic structure of GaSbî—,AlSb superlattices. Superlattices and Microstructures, 1985, 1, 155-159.	3.1	20
24	Coulombic bound states in semiconductor quantum wells. Journal of Luminescence, 1985, 30, 488-501.	3.1	47
25	Two-dimensional semiconductors: Recent development. Journal of Luminescence, 1985, 30, 502-519.	3.1	46
26	Injection, intersubband relaxation and recombination in GaAs multiple quantum wells. Journal of Luminescence, 1985, 30, 562-579.	3.1	67
27	Excitons in GaAs quantum wells. Journal of Luminescence, 1985, 30, 520-540.	3.1	259
28	Short pulse physics of quantum well structures. Journal of Luminescence, 1985, 30, 541-550.	3.1	39
29	ASPECTS OF THE THEORY OF SUPERLATTICES. , 1985, , 77-112.		3
30	Excitons formed between excited sub-bands in GaAs-Ga1-xAlxAs quantum wells. Journal of Physics C: Solid State Physics, 1985, 18, L789-L794.	1.5	56
31	Hydrogenic impurity states in GaAs-Ga1-xAlxAs quantum well structures. Journal of Physics C: Solid State Physics, 1985, 18, 691-700.	1.5	15
32	Optical transitions and acceptor binding energies in GaAs/AlxGa1â~'xAs single quantum well heterostructures grown by molecular beam epitaxy. Applied Physics Letters, 1985, 47, 166-168.	3.3	12
33	Nonparabolic subband structure of Ga0.47In0.53Asâ€InP quantum wells. Applied Physics Letters, 1985, 46, 675-677.	3.3	35
34	Roomâ€ŧemperature excitons in 1.6â€î¼m bandâ€gap GalnAs/AllnAs quantum wells. Applied Physics Letters, 19 46, 619-621.	85 _{3.3}	167
35	Direct experimental observation of two-dimensional shrinkage of the exciton wave function in quantum wells. Physical Review B, 1985, 32, 4275-4278.	3.2	119
36	Possibility of an excitonic ground state in quantum wells. Physical Review B, 1985, 32, 2607-2609.	3.2	32

	CITATION	Report	
#	Article	IF	CITATIONS
37	Hydrogenic impurity states in quantum-well wires: Shape effects. Physical Review B, 1985, 31, 7812-7818.	3.2	166
38	Localization and homogeneous dephasing relaxation of quasi-two-dimensional excitons in quantum-well heterostructures. Physical Review B, 1985, 32, 7013-7015.	3.2	97
39	Electric-field-induced dissociation of excitons in semiconductor quantum wells. Physical Review B, 1985, 31, 3893-3898.	3.2	197
40	Localization and energy transfer of quasi-two-dimensional excitons in GaAs-AlAs quantum-well heterostructures. Physical Review B, 1985, 31, 6552-6573.	3.2	197
41	Electric field dependence of optical absorption near the band gap of quantum-well structures. Physical Review B, 1985, 32, 1043-1060.	3.2	1,837
42	Simple calculations of confinement states in a quantum well. Physical Review B, 1985, 31, 8041-8048.	3.2	150
43	Electronic properties of semiconductor alloy systems. Reports on Progress in Physics, 1985, 48, 1091-1154.	20.1	168
44	Absorption coefficients and exciton oscillator strengths in AlGaAs-GaAs superlattices. Physical Review B, 1985, 32, 8027-8034.	3.2	187
45	Mobility in a quantum well heterostructure limited by scattering from remote impurities. Surface Science, 1985, 159, 425-429.	1.9	14
46	Binding energy of the screened exciton in twoâ€dimensional systems. Journal of Applied Physics, 1985, 58, 1893-1897.	2.5	35
47	Theory of excitons in semiconductor quantum wells containing degenerate electrons or holes. Physical Review B, 1985, 32, 3766-3771.	3.2	85
48	Band-gap renormalization in semiconductor quantum wells containing carriers. Physical Review B, 1985, 32, 2266-2272.	3.2	178
49	Room-temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures. Journal of the Optical Society of America B: Optical Physics, 1985, 2, 1155.	2.1	390
50	Binding energies of Wannier excitons in GaAs-Ga1â^'xAlxAs quantum-well structures in a magnetic field. Physical Review B, 1985, 31, 6498-6502.	3.2	89
51	Luminescence linewidths of excitons in GaAs quantum wells below 150 K. Physical Review B, 1986, 33, 5512-5516.	3.2	427
52	Two-dimensional shrinkage of the exciton wavefunction in quantum wells probed by optical absorption. Surface Science, 1986, 170, 635-640.	1.9	32
53	Theory of electric field-induced optical modulation in single and multiquantum well structures using a Monte Carlo approach. IEEE Journal of Quantum Electronics, 1986, 22, 2017-2021.	1.9	11
54	Electronic states in semiconductor heterostructures. IEEE Journal of Quantum Electronics, 1986, 22, 1625-1644.	1.9	483

		Citation R	EPORT	
#	Article		IF	Citations
55	Subbands and excitons in a quantum well in an electric field. Physical Review B, 1986, 3	33, 8385-8389.	3.2	111
56	Excitons in semimagnetic semiconductor quantum-well systems: Magnetic polaron effo Review B, 1986, 34, 1080-1084.	ects. Physical	3.2	43
57	Theory of valence subbands in GaAs heterostructures. Surface Science, 1986, 174, 105	j-110.	1.9	8
58	Oscillator strength of excitons in quantum wells. Surface Science, 1986, 174, 183-187		1.9	26
59	Magneto-optical determination of the exciton binding energy in GaAs quantum wells. S 1986, 174, 188-193.	Surface Science,	1.9	88
60	Recombination dynamics of carriers in GaAs-GaAlAs quantum well structures. Surface S 174, 261-271.	Science, 1986,	1.9	20
61	Binding Energy of a Screened Hydrogenic Impurity in a Quasi One-Dimensional Electron the Physical Society of Japan, 1986, 55, 3941-3947.	n Gas. Journal of	1.6	9
62	Binding energy of the exciton-phonon system in GaAs-Ga1â [~] xAlxAs quantum well struc State Communications, 1986, 57, 441-444.	ctures. Solid	1.9	17
63	Wannier exciton in microcrystals. Solid State Communications, 1986, 59, 405-408.		1.9	261
64	Dynamics of charge carrier energy relaxation and recombination in undoped and P-dop quantum wells. Superlattices and Microstructures, 1986, 2, 251-257.	ed GaAs	3.1	13
65	Quantum theory of free arrier absorption in quasiâ€ŧwoâ€dimensional semiconduct Physica Status Solidi (B): Basic Research, 1986, 133, 563-572.	ing structures.	1.5	18
66	Valence-band coupling and Fano-resonance effects on the excitonic spectrum in undop wells. Physical Review B, 1986, 34, 3917-3923.	bed quantum	3.2	141
67	"ABC―Free Theory of Polariton: From Semi-Infinite Medium to Quantum Well. Jou Society of Japan, 1986, 55, 4113-4121.	rnal of the Physical	1.6	93
68	Diamagnetic shift of exciton energy levels in GaAs-Ga1â^'xAlxAs quantum wells. Solid S Communications, 1986, 60, 669-673.	tate	1.9	27
69	Thermally modulated photoluminescence inGaxIn1â^'xAsâ^'InPquatum wells. Physical R 1356-1359.	eview B, 1986, 34,	3.2	17
70	Photoluminescence study of a dilute two-dimensional electron gas inGaAsâ^AlxGa1â^y wells. Physical Review B, 1986, 34, 7436-7439.	kAsquantum	3.2	30
71	Study of the lowâ€temperature line broadening mechanisms for excitonic transitions in modulator structures. Applied Physics Letters, 1986, 49, 331-333.	n GaAs/AlGaAs	3.3	26
72	Exciton linewidth in semiconducting quantum-well structures. Physical Review B, 1986	, 34, 2554-2560.	3.2	51

#	Article	IF	CITATIONS
73	Optical absorption in semiconducting quantum-well structures: Indirect interband transitions. Physical Review B, 1986, 33, 5456-5460.	3.2	11
74	Magnetic quantization in superlattices. Advances in Solid State Physics, 1987, , 137-167.	0.8	24
75	Chapter 1 Fundamental Properties of III-V Semiconductor Two-Dimensional Quantized Structures: The Basis for Optical and Electronic Device Applications. Semiconductors and Semimetals, 1987, 24, 1-133.	0.7	52
76	The exciton-phonon system in GaAs-Ga1-xAlxAs quantum wells. Semiconductor Science and Technology, 1987, 2, 578-581.	2.0	2
77	Semiconductor Quantum-Well Structures for Optoelectronics–Recent Advances and Future Prospects–. Japanese Journal of Applied Physics, 1987, 26, 315-330.	1.5	63
78	Exciton in a slab of polar crystal. Physical Review B, 1987, 35, 9817-9829.	3.2	23
79	Photoluminescence in strained InGaAs/GaAs superlattices. Journal of Applied Physics, 1987, 61, 2079-2082.	2.5	15
80	Atomistic nature of heterointerfaces in III-V semiconductor-based quantum-well structures and its consequences for photoluminescence behavior. Physical Review B, 1987, 36, 1662-1672.	3.2	61
81	Exciton binding energy in type-II GaAs-(Al,Ga)As quantum-well heterostructures. Physical Review B, 1987, 35, 4152-4154.	3.2	51
82	Nonparabolic behavior of GaSb-AlSb quantum wells under hydrostatic pressure. Physical Review B, 1987, 35, 1230-1235.	3.2	32
83	Dynamics of exciton transfer between monolayerâ€flat islands in single quantum wells. Applied Physics Letters, 1987, 51, 828-830.	3.3	82
84	Excitonic energies and inhomogeneous line broadening effects in InAlAs/InGaAs modulator structures. Journal of Applied Physics, 1987, 62, 1994-1999.	2.5	28
85	Photoemission spectroscopy of ultrathin hydrogenated amorphous silicon layers. Physical Review B, 1987, 35, 9395-9398.	3.2	22
86	Effect of hydrostatic pressure on GaAs-Ga1â^'xAlxAs microstructures. Physical Review B, 1987, 35, 5630-5634.	3.2	64
87	Long-lived excitons in InAs quantum wells under uniaxial stress. Physical Review B, 1987, 36, 7955-7963.	3.2	12
88	Anomalous displacement of excitons in a quantum well. Physical Review B, 1987, 36, 7653-7655.	3.2	1
89	Polaron effects on excitons in GaAs-Ga1â^'xAlxAs quantum wells. Physical Review B, 1987, 35, 4507-4510.	3.2	42
90	Chapter 5 Nonlinear Optical Properties of Multiple Quantum Well Structures for Optical Signal Processing. Semiconductors and Semimetals, 1987, 24, 279-318.	0.7	15

#	Article	IF	CITATIONS
91	Optical studies of GaAs quantum well based fieldâ€effect transistor. Applied Physics Letters, 1987, 51, 1346-1348.	3.3	32
92	Effects of alloying and hydrostatic pressure on electronic and optical properties of GaAs-Al_{x}Ga_{1-x}As superlattices and multiple-quantum-well structures. Physical Review B, 1987, 35, 1196-1222.	3.2	95
93	Exciton binding energy in a quantum-well wire. Physical Review B, 1987, 35, 3009-3012.	3.2	128
94	Study of excitons in an arbitrarily shaped GaAs/Al0.3Ga0.7As single quantum well in the presence of static transverse electric field. Journal of Applied Physics, 1987, 61, 5346-5352.	2.5	21
95	Exciton Binding Energy in Small-Period GaAs/Ga _(1- <i>x</i>) Al _{<i>x</i>} As Superlattices. Europhysics Letters, 1987, 4, 461-466.	2.0	118
96	Theoretical studies of optical modulation in lattice matched and strained quantum wells due to transverse electric fields. IEEE Journal of Quantum Electronics, 1987, 23, 2181-2195.	1.9	37
97	Influence of transverse electric field on the photoluminescence linewidth of excitonic transition in quantum wells: Alloy disorder and composition fluctuation contributions. Journal of Applied Physics, 1987, 62, 1381-1384.	2.5	4
98	Exciton binding energy in a quantum well with inclusion of valence-band coupling and nonparabolicity. Physical Review B, 1987, 35, 7585-7595.	3.2	121
99	Optical studies of shallow impurities in semiconductor quantum well structures. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1987, 146, 112-120.	0.9	13
100	Free carrier effects on exciton spectra in p-type modulation-doped GaAs-AlGaAs quantum wells in high magnetic fields. Solid State Communications, 1987, 64, 597-601.	1.9	12
101	Scattering of excitons by excitons in semiconducting quantum well structures. Journal of Physics and Chemistry of Solids, 1987, 48, 1191-1196.	4.0	9
102	Manyâ€Exciton Theory for Multiple Quantumâ€Well Structures. Physica Status Solidi (B): Basic Research, 1987, 139, 233-239.	1.5	46
103	Magneto-photoluminescence study of a dilute two-dimensional electron gas in quantum wells. Superlattices and Microstructures, 1987, 3, 133-136.	3.1	2
104	Effect of coupling between heavy and light holes on the binding energy of an exciton in a quantum well. Superlattices and Microstructures, 1987, 3, 199-204.	3.1	7
105	Theoretical studies of polarization dependent electro-optical modulation in lattice matched and strained multi-quantum well structures. Superlattices and Microstructures, 1987, 3, 645-656.	3.1	12
106	Scattering of excitons by free carriers in semiconducting quantum well structures. Journal of Physics and Chemistry of Solids, 1987, 48, 593-601.	4.0	37
107	Exciton linewidths due to lo phonon coupling in semiconductor quantum wells in the presence of applied electric fields. Solid State Communications, 1988, 68, 739-742.	1.9	7
108	Study on the Size and Shape of CuCl Microcrystals Embedded in Alkaliâ€Chloride Matrices and Their Correlation with Exciton Confinement. Physica Status Solidi (B): Basic Research, 1988, 145, 567-577.	1.5	192

ARTICLE IF CITATIONS # Impurity Binding Energies in Heterostructures. Physica Status Solidi (B): Basic Research, 1988, 145, 109 1.5 4 597-602. Molecular beam epitaxy of AlAs/GaAs heterostructures and superlattices. Thin Solid Films, 1988, 163, 1.8 1-12. Theory of magneto-exciton binding energy in realistic quantum well structures. Solid State 111 1.9 32 Communications, 1988, 68, 1-5. Excitons in semiconductor quantum wells with a small band offset: Exact numerical solution to the envelope function. Solid State Communications, 1988, 67, 911-914. Photoluminescence spectra of two-dimensional excitons in a GaAs single quantum well in a magnetic 113 1.9 2 field. Solid State Communications, 1988, 65, 925-928. Well size dependence of exciton linewidths in semiconductor quantum wells. Solid State Communications, 1988, 68, 483-485. Magneto-optical studies of GaAs/AlAs quantum wells. Superlattices and Microstructures, 1988, 4, 115 3.1 8 147-151. Electronic structure of quantum-well states revealed under high pressures. Superlattices and 3.1 21 Microstructures, 1988, 4, 525-535. The binding energy of hydrogenic impurity in quantum well structures. Physica B: Physics of 117 0.9 5 Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1988, 150, 361-368. Quantum wells with enhanced exciton effects and optical non-linearity. Materials Science and 3.5 132 Engineering B: Solid-State Materials for Advanced Technology, 1988, 1, 255-258. Optical investigations of GaAs/Ga1â[^] x Al x As Quantum wells grown by molecular-beam epitaxy. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, 119 4 0.4 Biophysics, 1988, 10, 1093-1114. Photoluminescence in quantum well and bulk GaAs: a direct comparative study. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 0.4 1988, 10, 847-859. Tunable superlattice p-i-n photodetectors: characteristics, theory, and application. IEEE Journal of 121 1.9 102 Quantum Electronics, 1988, 24, 787-801. Exciton mixing in quantum wells. Physical Review B, 1988, 38, 6015-6030. 3.2 229 Rapid radiative decay and enhanced optical nonlinearity of excitons in a quantum well. Physical 123 3.2 421 Review B, 1988, 38, 1228-1234. Wannier excitons in semiconductor quantum wells with small valence-band offsets: A generalized 124 33 variational approach. Physical Review B, 1988, 38, 1504-1507. Excitons in quantum boxes: Correlation effects and quantum confinement. Physical Review B, 1988, 37, 125 3.2268 8763-8772. Excitons in type-II quantum-well systems: Binding of the spatially separated electron and hole. Physical Review B, 1988, 38, 9830-9837.

# 127	ARTICLE Optical Properties of Quantum Wells and Superlattices. Physica Scripta, 1988, T23, 59-62.	IF 2.5	Citations 5
128	Effects of an optical phonon on excitons in quantum wells. Physical Review B, 1988, 37, 6977-6982.	3.2	27
129	Optical Characterization of III-V and II-VI Semiconductor Heterolayers. Advances in Electronics and Electron Physics, 1988, 72, 1-180.	0.6	7
130	Magneto-optical properties of superlattices and quantum wells. Surface Science, 1988, 196, 518-532.	1.9	40
131	Nonlinear absorption properties of AlGaAs/GaAs multiple quantum wells grown by metalorganic chemical vapor deposition. IEEE Journal of Quantum Electronics, 1988, 24, 1581-1592.	1.9	36
132	Modulation of absorption in field-effect quantum well structures. IEEE Journal of Quantum Electronics, 1988, 24, 1664-1676.	1.9	67
133	Band-mixing effects and excitonic optical properties in GaAs quantum wire structures-comparison with the quantum wells. IEEE Journal of Quantum Electronics, 1988, 24, 1778-1790.	1.9	126
134	A model for GRIN-SCH-SQW diode lasers. IEEE Journal of Quantum Electronics, 1988, 24, 2191-2214.	1.9	182
135	Mechanism of reactions on colloidal microelectrodes and size quantization effects. , 1988, , 113-180.		478
136	Experimental exciton binding energies in GaAs/AlxGa1â^'xAs quantum wells as a function of well width. Physical Review B, 1988, 37, 6332-6335.	3.2	110
137	Magnetoexcitons in quasiperiodic superlattices. Physical Review B, 1988, 37, 4007-4012.	3.2	20
138	Well-resolved higher excited states of the light- and heavy-hole free excitons in a 225-AÌŠAlxGa1â [®] xAs-GaAs multi-quantum-well structure. Physical Review B, 1988, 37, 3117-3119.	3.2	45
139	Anisotropy effects on excitonic properties in realistic quantum wells. Physical Review B, 1988, 38, 13486-13489.	3.2	79
140	Optical investigation of confinement and strain effects in CdTe/Cd1â^'xZnxTe single quantum wells. Physical Review B, 1988, 38, 12443-12448.	3.2	80
141	Observation of the 2sstate excitons in (111)-oriented GaAs/AlxGa1â^'xAs quantum-well structures. Physical Review B, 1988, 38, 1526-1528.	3.2	25
142	Growth of ZnSe/ZnS strainedâ€layer superlattices on Si substrates. Journal of Applied Physics, 1988, 64, 5201-5205.	2.5	25
143	Analysis of the quantumâ€confined Stark effect in GaSb/AlGaSb multiple quantum wells. Applied Physics Letters, 1988, 53, 2305-2307.	3.3	16
144	Excitons near interfaces of polar crystals. Physical Review B, 1988, 37, 8805-8810.	3.2	10

		CITATION [Report	
#	Article		IF	CITATIONS
145	Band offsets and excitons in CdTe/(Cd,Mn)Te quantum wells. Physical Review B, 1988, 37	7, 1191-1198.	3.2	138
146	Calculation of optical absorption associated with indirect transitions in siliconnâ€iâ€pâ€i Journal of Applied Physics, 1988, 64, 3187-3192.	structures.	2.5	2
147	Excitons near interfaces of polar-nonpolar crystals with strong interactions between the e and optical phonons. Physical Review B, 1988, 38, 13271-13276.	excitons	3.2	1
148	Optical Absorption Spectra of Excitions in Very Thin KCl–KBr Multilayer Structures. Jour Physical Society of Japan, 1989, 58, 2669-2672.	rnal of the	1.6	6
149	Magnetoexciton ground state in a quantum well: A variational and perturbation approach Review B, 1989, 40, 10523-10528.	ı. Physical	3.2	25
150	Variations in the optical spectra of the ground-state exciton in GaAs quantum wells induc uniaxial stress. Physical Review B, 1989, 40, 1703-1711.	ced by	3.2	18
151	Tightâ€binding analysis on exciton binding energy in fieldâ€induced Starkâ€localized sup Physics Letters, 1989, 55, 2002-2004.	erlattices. Applied	3.3	19
152	Extremely slow energy relaxation of a two-dimensional exciton in a GaAs superlattice stru Physical Review B, 1989, 40, 1685-1691.	icture.	3.2	100
153	Excitons in ZnSe-ZnS strained-layer superlattices. Physical Review B, 1989, 39, 8743-874	6.	3.2	19
154	Coupling between a donor potential and quantum wells: Effect on binding energies. Phys 1989, 40, 10529-10534.	ical Review B,	3.2	9
155	Quantum subband interference effect on the exciton spectra in semiconductor quantum Physical Review B, 1989, 40, 8490-8494.	wells.	3.2	4
156	Binding energy of ionized-donor-bound excitons in two-dimensional semiconductors. Phy B, 1989, 39, 5345-5348.	isical Review	3.2	18
157	One-dimensional magneto-excitons in GaAs/AlxGa1â^'xAs quantum wires. Physical Review 63, 2124-2127.	/ Letters, 1989,	7.8	163
158	Polaron properties of the Wannier exciton in a quantum well confinement. Journal of Phy Condensed Matter, 1989, 1, 1999-2007.	sics	1.8	3
159	Intermediate-coupling exciton in a quantum well. Journal of Physics Condensed Matter, 1 10343-10349.	989, 1,	1.8	3
160	Exact solutions for hydrogenic donor states in a spherically rectangular quantum well. Ph Review B, 1989, 39, 8780-8783.	ysical	3.2	116
161	Exciton-phonon system in a polar semiconductor quantum well. Physical Review B, 1989,	40, 9846-9857.	3.2	15
162	Binding energies of wannier excitons in semiconductor quantum wells: Numerical integra in-plane radial equation. Solid State Communications, 1989, 69, 1057-1060. ———————————————————————————————————	tion of the	1.9	22

#		IF	CITATIONS
#	Effect of dielectric anisotropy of quantum wells on reflection. Superlattices and Microstructures.	IF	CHAHONS
163	1989, 5, 65-69.	3.1	7
164	Well width dependence of the carrier life time in InGaAs/InP quantum wells. Superlattices and Microstructures, 1989, 5, 227-230.	3.1	16
165	Ground state energy of an exciton bound to an ionized donor impurity in two dimensional semiconductors. Superlattices and Microstructures, 1989, 5, 451-453.	3.1	17
166	Effect of the electric field on the binding energy of excitons in InAs/GaSb superlattices. Solid State Communications, 1989, 71, 1123-1125.	1.9	4
167	Membrane photobiophysics and photochemistry. Progress in Surface Science, 1989, 30, 1-199.	8.3	29
168	Assisted relaxation and vertical transport of electrons, holes and excitons in semiconductor heterostructures. Journal of Luminescence, 1989, 44, 247-263.	3.1	49
169	Optical properties of short-period GaAs/AlGaAs superlattices. Journal of Luminescence, 1989, 44, 265-276.	3.1	13
170	Exciton-phonon interactions in quantum wells and superlattices. Journal of Luminescence, 1989, 44, 315-346.	3.1	45
171	Binding Energy of Twoâ€Dimensional Excitons in Strong Magnetic Fields. Physica Status Solidi (B): Basic Research, 1989, 151, 133-138.	1.5	3
172	Phonon-assisted optical absorption by excitons in semiconductor quantum wells. Physical Review B, 1989, 39, 8488-8493.	3.2	8
173	Binding energies of excitons in semiconductor quantum wells: Quantum subband interference effect. Physical Review B, 1989, 39, 12944-12947.	3.2	12
174	Diamagnetism as a probe of exciton localization in quantum wells. Physical Review B, 1989, 39, 10943-10954.	3.2	46
175	Excitonic lifetimes in thinInxGa1â^'xAs/InP quantum wells. Physical Review B, 1989, 39, 6257-6259.	3.2	50
176	Binding energy of screened two-dimensional excitons. Surface Science, 1989, 224, 581-590.	1.9	15
177	Linear and nonlinear optical properties of semiconductor quantum wells. Advances in Physics, 1989, 38, 89-188.	14.4	1,064
178	Enhancement of the Stark effect in coupled quantum wells for optical switching devices. IEEE Journal of Quantum Electronics, 1989, 25, 2260-2265.	1.9	24
179	Excitons in double quantum wells. Physical Review B, 1989, 40, 8378-8384.	3.2	61
180	Exciton binding energy and external-field-induced blue shift in double quantum wells. Physical Review B, 1989, 40, 5515-5521.	3.2	73

		CITATION REPORT		
#	Article		IF	CITATIONS
181	Two-dimensional excitons in magnetic fields. Physical Review B, 1989, 39, 7697-7704.		3.2	30
182	Excitonic behavior in pseudomorphic InGaAs/(Al,Ga)As quantum wells grown by molecula epitaxy. Journal of Applied Physics, 1989, 66, 2746-2749.	râ€beam	2.5	2
183	Characterization and Griwth of Oicanic Multiple Qanm Well Structures. Materials Researd Symposia Proceedings, 1990, 198, 71.	ch Society	0.1	2
184	Exciton Quantization and Polariton Interference in Thin Films: Comparison of Different Ap Journal of the Physical Society of Japan, 1990, 59, 1853-1867.	pproaches.	1.6	32
185	Exciton Quantization in CdTe Thin Films. Europhysics Letters, 1990, 11, 169-174.		2.0	24
186	Confined electron and hydrogenic donor states in a spherical quantum dot of GaAs-Ga1â Physical Review B, 1990, 41, 6001-6007.	°xAlxAs.	3.2	271
187	Quasiâ€Twoâ€Dimensional Screening of the Electronâ€Hole Interaction in Modulationâ€ Wells. Physica Status Solidi (B): Basic Research, 1990, 159, 143-154.	Doped Quantum	1.5	12
188	Comparative investigation of the interface quality of quantum wells grown by MBE. Supe Microstructures, 1990, 8, 183-186.	rlattices and	3.1	2
189	Exciton quantization and optical properties in semiconductor quantum gratings. Superla Microstructures, 1990, 8, 425-427.	ttices and	3.1	7
190	Absorption spectra of quantum well exciton in RbCl-KBr multilayer structures. Solid State Communications, 1990, 73, 849-852.		1.9	4
191	Excitonic insulator transition in a GaSbî—,AlSbî—,InAs quantum-well structure. Solid State Communications, 1990, 75, 595-599.		1.9	20
192	Excitons in semiconductor confined systems. Solid State Communications, 1990, 74, 112	21-1124.	1.9	44
193	Absorption spectra of quantum well excitons in alkali halide multilayer structures. Physica 1990, 41, 95-98.	a Scripta,	2.5	6
194	Nonvariational numerical calculations of excitonic properties in quantum wells in the press strain, electric fields, and free carriers. Physical Review B, 1990, 42, 7154-7162.	sence of	3.2	37
195	Temperature-dependent exciton linewidths in semiconductor quantum wells. Physical Rev 41, 3017-3027.	view B, 1990,	3.2	96
196	Correlated transmission electron microscopy and photoluminescence studies of the Se+a implantation of a GaAs/(Al,Ga)As multiple quantum well. Journal of Applied Physics, 1990	i€ion , 67, 1279-1287.	2.5	8
197	Binding energy of the exciton–ionized-donor complex with the donor on the surface of semiconductor. Physical Review B, 1990, 42, 1258-1261.	a nonpolar	3.2	4
198	Exciton mixing in a wide GaAs/AlAs quantum well in weak and intermediate magnetic field Review B, 1990, 42, 1478-1481.	ds. Physical	3.2	18

#	Article	IF	CITATIONS
199	Identification of valence subbands in CdTe-Cd1â^'xZnxTe strained-layer quantum wells by differential spectroscopy. Physical Review B, 1990, 41, 8195-8202.	3.2	32
200	Observation of excitonic effects on electroabsorption in coupled quantum wells. Physical Review B, 1990, 41, 10280-10282.	3.2	19
201	Observation of miniband formation in the CdTe/Cd1â^'xMnxTe quantum well system. Applied Physics Letters, 1990, 57, 1769-1771.	3.3	6
202	Two-photon transitions to excitons in quantum wells. Physical Review B, 1990, 42, 9073-9079.	3.2	18
203	Excitons in spatially separatedssV-shaped quantum wells: Application to GaAs sawtooth-doping superlattices. Physical Review B, 1990, 41, 6036-6039.	3.2	5
204	Exchange-induced splitting of exciton energy levels in quantum wires. Physical Review B, 1990, 41, 10604-10607.	3.2	6
205	Exciton states in type-I and type-II GaAs/Ga1â^'xAlxAs superlattices. Physical Review B, 1990, 41, 2865-2878.	3.2	63
206	Faraday Rotation in a DMS Quantum Well. Journal of the Physical Society of Japan, 1990, 59, 1154-1157.	1.6	14
207	Simple method for calculating exciton binding energies in quantum-confined semiconductor structures. Physical Review B, 1990, 42, 11774-11783.	3.2	105
208	Accurate theory of excitons in GaAs-Ga1â^'xAlxAs quantum wells. Physical Review B, 1990, 42, 8928-8938.	3.2	356
209	Exciton quantization and polariton propagation in semiconductor slabs: From semi-infinite crystals to quantum wells. Physical Review B, 1990, 41, 1413-1423.	3.2	76
210	Exciton binding energy in type-II heterojunctions. Physical Review B, 1990, 42, 11701-11707.	3.2	20
211	Image charges in semiconductor quantum wells: Effect on exciton binding energy. Physical Review B, 1990, 42, 5906-5909.	3.2	136
212	GaAsî—ʿAlAs quantum well magneto-exciton spectrum — theory and experiment. Surface Science, 1990, 228, 184-187.	1.9	3
213	Effect of the wire width on 1D magneto excitons in GaAs-AlGaAs quantum-well wires. Surface Science, 1990, 229, 248-251.	1.9	5
214	Electronic States in Semiconductor Heterostructures. Solid State Physics, 1991, , 229-415.	O.5	167
215	General variational expressions for the calculation of the binding energies of anisotropic donor states in stepped quantum wells. Journal of Applied Physics, 1991, 70, 4357-4361.	2.5	3
216	Enhanced radiative recombination of free excitons in GaAs quantum wells. Physical Review Letters, 1991, 67, 2355-2358.	7.8	310

#	Article	IF	CITATIONS
217	Electroabsorptive modulators in InGaAs/AlGaAs. Applied Physics Letters, 1991, 59, 888-890.	3.3	42
218	Frequency and density dependent radiative recombination processes in Ill–V semiconductor quantum wells and superlattices. Advances in Physics, 1991, 40, 535-623.	14.4	186
219	Exciton states in coupled double quantum wells in a static electric field. Physical Review B, 1991, 43, 4084-4096.	3.2	67
220	Exciton binding energy in GaAs/AlxGa1â^'xAs multiple quantum wells. Physical Review B, 1991, 43, 12626-12629.	3.2	13
221	Excitons in anisotropic solids: The model of fractional-dimensional space. Physical Review B, 1991, 43, 2063-2069.	3.2	269
222	Evidence for exciton confinement in crystalline organic multiple quantum wells. Physical Review Letters, 1991, 66, 2649-2652.	7.8	233
223	Wannier exciton binding energies in GaAs/AlxGa1-xAs quantum wells. Solid State Communications, 1991, 78, 145-148.	1.9	10
224	Ground state energy of an exciton bound to an ionized donor impurity in semiconductor quantum wells. Solid State Communications, 1991, 80, 983-985.	1.9	10
225	Analytical variational expressions for calculation of binding energies of the donor states in quantum wells. Solid State Communications, 1991, 79, 999-1003.	1.9	0
226	Effects of longitudinal electric fields on the binding energy of excitons in shallow InGaAs-GaAs quantum wells. Solid State Communications, 1991, 80, 811-815.	1.9	5
227	Exciton binding energies in II–VI compound strained layer superlattices. Superlattices and Microstructures, 1991, 9, 461-465.	3.1	10
228	Perturbation approach for the calculation of the magnetoexciton ground state in an asymmetric quantum well. Superlattices and Microstructures, 1991, 10, 187-191.	3.1	5
229	Excitonic effects on the two-photon transition rate in quantum wells. Superlattices and Microstructures, 1991, 9, 157-160.	3.1	8
230	Exciton cooling and localization in GaAs/AlGaAs multiquantum well structures. Superlattices and Microstructures, 1991, 10, 415-420.	3.1	14
231	Optical properties of small period superlattices. Journal of Luminescence, 1991, 48-49, 699-703.	3.1	1
232	Effect of the image potential on the binding energy of excitons in semiconductor quantum wells. Journal of Physics Condensed Matter, 1991, 3, 9907-9914.	1.8	13
233	Exciton-binding-energy maximum inGa1â^'xInxAs/GaAs quantum wells. Physical Review B, 1991, 43, 11944-11949.	3.2	30
234	Exciton binding energy in a GaAs/AlxGa1â^'xAs quantum well with uniform electric field. Physical Review B, 1991, 44, 8054-8060.	3.2	11

#	Article	IF	CITATIONS
235	Experimental evidence for the transition from two- to three-dimensional behavior of excitons in quantum-well structures. Physical Review B, 1991, 43, 4933-4938.	3.2	40
236	Wannier excitons in low-dimensional microstructures: Shape dependence of the quantum size effect. Physical Review B, 1991, 44, 13085-13088.	3.2	104
237	Binding energies of excitons in type-II GaAs-AlAs quantum-well structures in the presence of a magnetic field. Physical Review B, 1991, 44, 10913-10916.	3.2	8
238	Effects of interface defects on polaron states in GaAs-Ga1â^'xAlxAs quantum wells. Physical Review B, 1991, 43, 6602-6611.	3.2	0
239	Binding energy of the barbell exciton. Physical Review B, 1991, 43, 5159-5162.	3.2	34
240	Improvement of the carrier confinement by doubleâ€barrier GaAs/AlAs/(Al,Ga)As quantum well structures. Applied Physics Letters, 1991, 58, 2111-2113.	3.3	23
241	Exciton binding energy and subband structures of GaAs/AlxGa1â^'xAs superlattices. Physical Review B, 1991, 43, 14504-14512.	3.2	16
242	Observation of quantum confinement by strain gradients. Physical Review Letters, 1991, 67, 1326-1329.	7.8	122
243	Screening in modulation-doped quantum wells: Finite-thickness correction. Physical Review B, 1991, 44, 3340-3343.	3.2	20
244	Spin superlattice behavior in ZnSe/Zn0.99Fe0.01Se quantum wells. Physical Review Letters, 1991, 67, 3820-3823.	7.8	91
245	Excitons and interband transitions in III-V semiconductor superlattices. Physical Review B, 1991, 44, 12969-12976.	3.2	22
247	Quantum Size Effect of Excitonic Band-Edge Luminescence in Strained Si1-xGex/Si Single Quantum Well Structures Grown by Gas-Source Si Molecular Beam Epitaxy. Japanese Journal of Applied Physics, 1992, 31, L1319-L1321.	1.5	29
248	Dynamics of carrier capture in AlGaAs / GaAs multiple quantum wells. Acta Physica Sinica (overseas) Tj ETQq0 0 C) rgBT /Ove 0.1	erlock 10 Tf 5
249	The temperature dependence of in-plane transient photoconductivity in GalnAs/InP MQWs. Semiconductor Science and Technology, 1992, 7, 498-504.	2.0	5
250	Simple formula for exciton binding energy in quantum wells with zero band offsets. Physical Review B, 1992, 45, 6950-6952.	3.2	16
251	Modified perturbational method for the magnetoexciton ground state in quantum wells. Physical Review B, 1992, 46, 10269-10276.	3.2	20
252	Nearâ€bandâ€gap photoluminescence from pseudomorphic Si1â^'xGexsingle layers on silicon. Journal of Applied Physics, 1992, 71, 1407-1414.	2.5	206
253	Semiconductor superlattice exciton states in crossed electric and magnetic fields. Physical Review B, 1992, 45, 6819-6838.	3.2	37

		CITATION REPORT	
#	Article	IF	CITATIONS
254	Longitudinal Coulomb attraction in coupled quantum wells. Physical Review B, 1992, 46, 12535-1	2541. 3.2	2
255	Low-temperature exciton linewidth in short-period superlattices. Physical Review B, 1992, 46, 13268-13273.	3.2	5
256	Magnetoexcitons in a GaSb-AlSb-InAs quantum-well structure. Physical Review B, 1992, 46, 7212-	7215. 3.2	24
257	Excitons in semiconductor superlattices: Heuristic description of the transfer between Wannier-lik and Frenkel-like regimes. Physical Review B, 1992, 46, 13603-13606.	e 3.2	43
258	Excitons in semiconductor quantum wells: A straightforward analytical calculation. Journal of Applied Physics, 1992, 72, 300-302.	2.5	54
259	Exciton binding energies and the valence-band offset in mixed type-l–type-ll strained-layer super Physical Review B, 1992, 46, 1557-1563.	lattices. 3.2	66
260	Exciton wave functions and optical properties in a grating of quantum-well wires. Physical Review 1992, 46, 2363-2374.	B, 3.2	24
261	Optical properties of highly excited ZnSe/ZnSxSe1-xmultiple-quantum-well structures. Semicondu Science and Technology, 1992, 7, 681-685.	ctor 2.0	19
262	Electronic transitions in semiconductor quantum wells and epilayers under pressure. High Pressur Research, 1992, 9, 57-82.	2 1.2	17
263	Optical properties of electric field tunable quantum well structures. , 1992, , 61-80.		2
264	Simple analytical method for calculating exciton binding energies in semiconductor quantum wells Physical Review B, 1992, 46, 4092-4101.	3. 3.2	284
265	First-principles calculations of the electronic properties of silicon quantum wires. Physical Review Letters, 1992, 69, 1232-1235.	7.8	415
266	Numerical analysis of the absorption and the refractive index change in arbitrary semiconductor quantum-well structures. IEEE Journal of Quantum Electronics, 1992, 28, 1670-1677.	1.9	43
267	Excitonic properties in semiconductor quantum wells: numerical calculations and scaling behavior IEEE Journal of Quantum Electronics, 1992, 28, 1765-1772.	. 1.9	16
268	Enhanced radiative recombination of free excitons in GaAs quantum wells. Surface Science, 1992, 491-495.	263, 1.9	177
269	Variational methods for calculating exciton binding energies in quantum well structures. Journal o Physics A, 1992, 25, 2395-2401.	1.6	34
270	Optical properties of excitons in GaAs/Al0.3Ga0.7As symmetric double quantum wells. Physical Re B, 1992, 45, 1784-1792.	view 3.2	35
271	Optical properties of CdTe/Cd1â^'xZnxTe strained-layer single quantum wells. Physical Review B, 1 46, 6961-6968.	992, <u>3.2</u>	42

#	Article	IF	CITATIONS
272	Resonant Raman scattering in GaAs/AlAs superlattices under electric fields. Physical Review B, 1992, 46, 6990-7001.	3.2	44
273	Bound energy of the Wannier exciton in similar heterogeneous double structures. Physica Status Solidi (B): Basic Research, 1992, 174, 463-470.	1.5	6
274	Homogeneous-linewidth effects on radiative lifetimes of excitons in quantum wells. Solid State Communications, 1992, 84, 281-284.	1.9	53
275	Improved two - band model for quantum well excitons: Asymmetric wells. Solid State Communications, 1992, 84, 71-76.	1.9	27
276	Excitons and type I – type II transition under magnetic fields. Superlattices and Microstructures, 1992, 12, 387-391.	3.1	4
277	Binding energy of the exciton in type-II quantum wells. Physica B: Condensed Matter, 1992, 176, 327-333.	2.7	4
278	Versatile approach to the excitonic properties in semiconductor quantum wells. Journal of Physics and Chemistry of Solids, 1992, 53, 785-790.	4.0	6
279	Excitons in confined systems: from quantum well to bulk behaviour. Physics Letters, Section A: General, Atomic and Solid State Physics, 1992, 168, 451-459.	2.1	35
280	The effect of optical phonons on the exciton in a type-II heterostructure quantum well. Physics Letters, Section A: General, Atomic and Solid State Physics, 1993, 183, 408-412.	2.1	1
281	States confined in the barriers of type-III HgTe/CdTe superlattices. Journal of Electronic Materials, 1993, 22, 1103-1106.	2.2	4
282	Effect of charge-carrier screening on the exciton binding energy in GaAs/AlxGa1â^'xAs quantum wells. Physical Review B, 1993, 47, 2101-2106.	3.2	22
283	Effects of Electron(Hole)–SO-Phonon Coupling on the Ground Exciton State in Quantum Wires. Physica Status Solidi (B): Basic Research, 1993, 178, 377-383.	1.5	3
284	Absorption spectroscopy on room temperature excitonic transitions in strained layer InGaAs/InGaAlAs multiquantumâ€well structures. Journal of Applied Physics, 1993, 74, 570-578.	2.5	12
285	Radiative lifetimes of excitons in quantum wells: Localization and phase-coherence effects. Physical Review B, 1993, 47, 3832-3841.	3.2	305
286	Exciton energies in shallow quantum wells and spin superlattices. Physical Review B, 1993, 48, 17321-17330.	3.2	47
287	Photoluminescence of ZnSe/ZnMnSe superlattices under hydrostatic pressure. Journal of Applied Physics, 1993, 73, 7730-7738.	2.5	8
288	Fractionalâ€dimensional calculation of exciton binding energies in semiconductor quantum wells and quantumâ€well wires. Journal of Applied Physics, 1993, 74, 5626-5637.	2.5	87
289	Observation of quasibound states in semiconductor single quantum barriers. Physical Review Letters, 1993, 70, 1307-1310.	7.8	48

#	Article	IF	CITATIONS
290	Excitons in type-II quantums dots: Binding of spatially separated electron and hole. Physical Review B, 1993, 48, 4659-4665.	3.2	16
291	Well-width and aluminum-concentration dependence of the exciton binding energies in GaAs/AlxGa1â ^{~^} xAs quantum wells. Physical Review B, 1993, 47, 15755-15762.	3.2	57
292	Fabrication and characteristics of 8â€hydroxyquinoline aluminum/aromatic diamine organic multiple quantum well and its use for electroluminescent diode. Applied Physics Letters, 1993, 62, 3250-3252.	3.3	114
293	Magneto-Optical Properties of Semiconductor Heterostructures. , 1993, , 333-374.		1
294	A theory for excitons in type II quantum dot systems. Semiconductor Science and Technology, 1993, 8, 1470-1474.	2.0	3
295	Fabrication and optical characteristics of an organic multi-layer structure utilizing 8-hydroxyquinoline aluminium/aromatic diamine and its application for an electroluminescent diode. Journal of Physics Condensed Matter, 1993, 5, 7979-7986.	1.8	11
296	Observation of spectral narrowing and emission energy shift in organic electroluminescent diode utilizing 8â€hydroxyquinoline aluminum/aromatic diamine multilayer structure. Applied Physics Letters, 1993, 63, 1871-1873.	3.3	86
297	Electric field dependence of exciton spin relaxation in GaAs/AlGaAs quantum wells. Applied Physics Letters, 1993, 63, 3164-3166.	3.3	54
298	Modeling of selfâ€electroâ€opticâ€effect devices. Journal of Applied Physics, 1993, 74, 1388-1397.	2.5	24
299	Absorption and photoluminescence investigations of excitonic transitions in compressively strained InGaAs/InGaAlAs multiple quantum wells. , 0, , .		0
300	Magneto-optical studies of strain effects on the excitons inInxGa1â^'xAs/AlyGa1â^'yAs strained quantum wells. Physical Review B, 1993, 48, 5256-5260.	3.2	12
301	Unified formulation of excitonic absorption spectra of semiconductor quantum wells, superlattices, and quantum wires. Physical Review B, 1993, 48, 17308-17315.	3.2	92
302	Influence of piezoelectric fields on Rydberg energies in (Ga,In)As-GaAs single quantum wells embedded inp-i-nstructures. Physical Review B, 1993, 48, 9122-9125.	3.2	7
303	Exciton energies as a function of electric field: Confined quantum Stark effect. Physical Review B, 1993, 48, 1963-1966.	3.2	27
304	Exciton quantization in symmetric and asymmetric quantum wells: Pseudo-two-dimensional behavior. Physical Review B, 1993, 47, 7176-7181.	3.2	17
305	Excitons in type-II quantum-dot systems: A comparison of the GaAs/AlAs and InAs/GaSb systems. Physical Review B, 1993, 48, 4643-4649.	3.2	32
306	Theoretical study on optimum barrier height of GaAs/AlxGa1â^`xAs multiple quantum well modulator: Inhomogeneous broadening effects. Journal of Applied Physics, 1993, 74, 3692-3697.	2.5	0
307	Intra- and Interband Magneto-Optical Properties of Bulk Semiconductors and Heterostructures. , 1993, , 181-207.		6

#	ARTICLE Type-l–Type-ll Transition in GaAs/AlAs Short Period Superlattices Studied under Pulsed High Magnetic	IF	CITATIONS
308	Fields and High Pressures. Journal of the Physical Society of Japan, 1993, 62, 2490-2500.	1.6	12
309	Proceedings, 1993, 298, 21.	0.1	13
310	Unique Dynamic Characteristics of Electroluminescent Diode with Superlattice Structure Utilizing Cyclopentadiene Derivative and Aromatic Diamine. Japanese Journal of Applied Physics, 1994, 33, L1232-L1235.	1.5	0
311	Efficient Energy Transfer in Organic Multilayer Structure Utilizing 8-Hydroxyquinoline Aluminum and Aromatic Diamine. Japanese Journal of Applied Physics, 1994, 33, L1236-L1238.	1.5	9
312	Photoluminescence Quenching under Reverse Bias in Organic Multilayer Structure Utilizing 8-Hydroxyquinoline Aluminum and Aromatic Diamine. Japanese Journal of Applied Physics, 1994, 33, L348-L350.	1.5	25
313	Determination of the reduced mass of the exciton ground state in a quantum well. Journal of Applied Physics, 1994, 76, 5778-5781.	2.5	7
314	Donor-excited states and infrared-transition strengths in cylindrical GaAs-(Ga,Al)As quantum-well wires. Physical Review B, 1994, 49, 10450-10455.	3.2	34
315	Exciton binding energies and oscillator strengths in a symmetricAlxGa1â^'xAs/GaAs double quantum well. Physical Review B, 1994, 49, 8487-8490.	3.2	9
316	Twoâ€dimensional versus threeâ€dimensional excitons in wide GaAs quantum wells. Journal of Applied Physics, 1994, 75, 289-296.	2.5	13
317	Electricâ€field induced excitons in an AlInAs/InP typeâ€II superlattice. Journal of Applied Physics, 1994, 76, 5916-5920.	2.5	8
318	Nonvariational approach to impurity states in quantum wires. Physical Review B, 1994, 50, 14647-14650.	3.2	3
319	Longitudinal-optical-phonon effects on the exciton binding energy in a semiconductor quantum well. Physical Review B, 1994, 49, 14554-14563.	3.2	8
320	Electronic states and binding energies in ZnS-ZnSe superlattices. Physical Review B, 1994, 50, 18231-18239.	3.2	19
321	Exciton binding energies in shallow GaAs-AlyGa1â^'yAs quantum wells. Physical Review B, 1994, 50, 11251-11254.	3.2	27
322	A first-principles study of the electronic properties of silicon quantum wires. Physica A: Statistical Mechanics and Its Applications, 1994, 207, 411-419.	2.6	4
323	Enhanced exciton blue shift in spin polarized dense exciton system in quantum wells. Physics Letters, Section A: General, Atomic and Solid State Physics, 1994, 193, 105-110.	2.1	30
324	A variational calculation of light-hole envelope functions and exciton binding energies in (Ga,) Tj ETQq0 0 0 rgBT	/Overlock 1.9	10 Tf 50 102

325	Temperature dependence of photoluminescence in InAsP/InP strained multiple quantum wells. Journal of Applied Physics, 1994, 76, 5921-5926.	2.5	24
-----	--	-----	----

#	Article	IF	CITATIONS
326	Type-II band alignment in Si/Si1â^'xGexquantum wells from photoluminescence line shifts due to optically induced band-bending effects: Experiment and theory. Physical Review B, 1994, 50, 15191-15196.	3.2	106
327	A single equation describes excitonic absorption spectra in all quantum-sized semiconductors. IEEE Journal of Quantum Electronics, 1994, 30, 2287-2292.	1.9	23
328	A semiempirical line shape model of GaAs MQW structures. IEEE Journal of Quantum Electronics, 1994, 30, 2547-2559.	1.9	6
329	The effect of electric field on the excitonic states in coupled quantum well structures. Journal of Applied Physics, 1994, 76, 2299-2305.	2.5	25
330	Improved modeling of excitons in type-II semiconductor heterostructures by use of a three-dimensional variational function. Physical Review B, 1994, 50, 11840-11844.	3.2	25
331	The influence of different phonon modes on the exciton energy in a quantum well. Journal of Physics Condensed Matter, 1994, 6, 1007-1018.	1.8	18
332	Exciton states and relaxation dynamics in shallow quantum wells. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1995, 17, 1493-1498.	0.4	8
333	Binding energies and oscillator strengths of excitons in shallow quantum wells. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1995, 17, 1505-1508.	0.4	3
334	Exciton Energies as a Function of Electric Field in Quantum Wells Finite Potential Barrier Case. Physica Status Solidi (B): Basic Research, 1995, 190, 211-217.	1.5	18
335	Combined quantum effects for electron and photon systems in semiconductor microcavity light emitters. Progress in Quantum Electronics, 1995, 19, 1-39.	7.0	9
336	Variational treatment of the exciton binding energy problem in low-dimensional systems with one marginal potential. Solid State Communications, 1995, 94, 883-888.	1.9	17
337	Optical properties, electronic structure, and exciton binding energies in short period ZnS-ZnSe superlattices. Journal of Electronic Materials, 1995, 24, 123-129.	2.2	3
338	Excitonic absorption in CdTe-based piezoelectric quantum wells. Physical Review B, 1995, 52, 12013-12019.	3.2	25
339	Excitonsstates in semiconductor quantum wells in a magnetic field. Physical Review B, 1995, 52, 12026-12032.	3.2	20
340	Exciton states in two-dimensional systems of GaAs/AlAs multi-quantum-well structures under high magnetic fields. Physical Review B, 1995, 51, 9813-9819.	3.2	8
341	Exciton localization by a fractional monolayer of ZnTe inserted in a wide CdTe quantum well. Physical Review B, 1995, 52, 16612-16617.	3.2	11
342	Exciton Stark and Landau ladders in a GaAs/AlxGa1â^'xAs superlattice. Physical Review B, 1995, 51, 14414-14420.	3.2	19
343	Exciton spectroscopy inZn1â^'xCdxSe/ZnSe quantum wells. Physical Review B, 1995, 51, 5176-5183.	3.2	87

#	Article	IF	CITATIONS
344	Excitons in spatially separated electron–hole systems: A quantum Monte Carlo study. Journal of Applied Physics, 1995, 78, 7099-7102.	2.5	8
345	Excitons in a quantum wire subjected to a magnetic field. Physical Review B, 1995, 52, 8312-8316.	3.2	16
346	Relative importance of self-consistency and variable symmetry in the calculation of exciton energies in type-I and type-II semiconductor heterostructures. Physical Review B, 1995, 52, 14111-14117.	3.2	21
347	Effect of a magnetic field on the excitonic luminescence line shape in a quantum well. Physical Review B, 1995, 51, 4278-4284.	3.2	20
348	Novel characteristics of electroluminescent diode with organic superlattice structure utilizing 8-hydroxyquinoline aluminum and aromatic diamine. Synthetic Metals, 1995, 71, 2015-2016.	3.9	5
349	Excitons and fundamental absorption in quantum wells. Physical Review B, 1995, 51, 14395-14409.	3.2	100
350	A model for exciton binding energies in III-V and II-VI quantum wells. Semiconductor Science and Technology, 1995, 10, 1561-1567.	2.0	18
351	Optical Transitions, Excitons, and Polaritons in Bulk and Low-Dimensional Semiconductor Structures. NATO ASI Series Series B: Physics, 1995, , 57-112.	0.2	42
352	Binding energies and oscillator strengths of excitons in thin GaAs/Ga0.7Al0.3As quantum wells. Physical Review B, 1995, 52, 10725-10728.	3.2	30
353	Evidence for a Stable Excitonic Ground State in a Spatially Separated Electron-Hole System. Physical Review Letters, 1995, 74, 450-453.	7.8	100
354	Excitons in type-II quantum dots: Finite offsets. Physical Review B, 1995, 52, 2697-2703.	3.2	68
355	Center-of-mass quantization of excitons in CdTe/Cd1â [~] xZnxTe quantum wells. Physical Review B, 1995, 51, 5005-5012.	3.2	26
356	Radiative states in type-II GaSb/GaAs quantum wells. Physical Review B, 1995, 52, 14058-14066.	3.2	205
357	Enhanced Binding Energy of One-Dimensional Excitons in Quantum Wires. Physical Review Letters, 1996, 76, 2965-2968.	7.8	115
358	Polarized interacting exciton gas in quantum wells and bulk semiconductors. Physical Review B, 1996, 54, 11582-11591.	3.2	48
359	Time-domain theory of resonant Rayleigh scattering by quantum wells: Early-time evolution. Physical Review B, 1996, 54, 14572-14579.	3.2	23
360	Exciton capture by shallow quantum wells in separate confinement heterostructures. Physical Review B, 1996, 54, 5629-5636.	3.2	9
361	Recombination of Localized Excitons in InGaN Single- and Multiquantum-Well Structures. Materials Research Society Symposia Proceedings, 1996, 449, 653.	0.1	11

#	Article	IF	CITATIONS
362	Electronic and Optical Properties of Alkali Halides KBr/RbCl Superlattices. Journal of the Physical Society of Japan, 1996, 65, 2188-2193.	1.6	2
363	Magnetic Circular Dichroic Spectra of CuCl Thin Films. Journal of the Physical Society of Japan, 1996, 65, 3983-3988.	1.6	1
364	Femtosecond study of exciton tunneling in (Zn,Cd)Se/ZnSe asymmetric double quantum wells. Physical Review B, 1996, 53, 12637-12640.	3.2	35
365	Interface simulation of strained and non-abrupt Ill–V quantum wells. Part 2: energy level calculation versus experimental data. Computer Physics Communications, 1996, 93, 82-119.	7.5	16
366	Excitons and electron-hole plasma phase in multiple quantum well laser structures grown by molecular beam epitaxy. Solid State Communications, 1996, 97, 713-717.	1.9	6
367	Diamagnetic shift of exciton level in ultra-thin PbI2 crystals. Solid State Communications, 1996, 97, 587-590.	1.9	4
368	Transition in the nature of magnetoexcitons in shallow quantum wells. Solid State Communications, 1996, 98, 379-383.	1.9	3
369	Spontaneous symmetry breaking of excitons in multiple-quantum-wells. Solid State Communications, 1996, 99, 601-605.	1.9	5
370	On the line shape of intensity correlated nonlinear photoluminescence spectra due to delocalized excitons in GaAs quantum wells. Solid State Communications, 1996, 100, 287-292.	1.9	4
371	Confined many-electron systems. Physics Reports, 1996, 271, 1-66.	25.6	352
371 372	Confined many-electron systems. Physics Reports, 1996, 271, 1-66. Magnetic field induced transitions in diluted magnetic semiconductor quantum wells. Journal of Crystal Growth, 1996, 159, 1037-1040.	25.6 1.5	352 2
371 372 373	Confined many-electron systems. Physics Reports, 1996, 271, 1-66. Magnetic field induced transitions in diluted magnetic semiconductor quantum wells. Journal of Crystal Growth, 1996, 159, 1037-1040. Optical characterization of MOVPE-grown ZnSî—,ZnSe short period superlattices. Journal of Crystal Growth, 1996, 159, 506-509.	25.6 1.5 1.5	352 2 4
371 372 373 374	Confined many-electron systems. Physics Reports, 1996, 271, 1-66. Magnetic field induced transitions in diluted magnetic semiconductor quantum wells. Journal of Crystal Growth, 1996, 159, 1037-1040. Optical characterization of MOVPE-grown ZnSî—,ZnSe short period superlattices. Journal of Crystal Growth, 1996, 159, 506-509. Optical properties of ultrathin Pbl2 microcrystallite in polymer. Journal of Luminescence, 1996, 70, 435-447.	25.6 1.5 1.5 3.1	352 2 4 7
371 372 373 374 375	Confined many-electron systems. Physics Reports, 1996, 271, 1-66. Magnetic field induced transitions in diluted magnetic semiconductor quantum wells. Journal of Crystal Growth, 1996, 159, 1037-1040. Optical characterization of MOVPE-grown ZnSi—,ZnSe short period superlattices. Journal of Crystal Growth, 1996, 159, 506-509. Optical properties of ultrathin Pbl2 microcrystallite in polymer. Journal of Luminescence, 1996, 70, 435-447. Surface effects on excitons in nâ€period CdMnTe/CdTe superlattices. Physica Status Solidi (B): Basic Research, 1996, 195, 475-481.	25.6 1.5 1.5 3.1 1.5	 352 2 4 7 3
 371 372 373 374 375 376 	Confined many-electron systems. Physics Reports, 1996, 271, 1-66.Magnetic field induced transitions in diluted magnetic semiconductor quantum wells. Journal of Crystal Growth, 1996, 159, 1037-1040.Optical characterization of MOVPE-grown ZnSi—,ZnSe short period superlattices. Journal of Crystal Growth, 1996, 159, 506-509.Optical properties of ultrathin PbI2 microcrystallite in polymer. Journal of Luminescence, 1996, 70, 435-447.Surface effects on excitons in na€period CdMnTe/CdTe superlattices. Physica Status Solidi (B): Basic Research, 1996, 195, 475-481.Longitudinala€Opticala€Phonon effects on excitons in GaAsa€Ga _{1â~'x} Al _x As quantum well. Physica Status Solidi (B): Basic Research, 1996, 121-130.	25.6 1.5 1.5 3.1 1.5 1.5	 352 2 4 7 3 6
 371 372 373 374 375 376 377 	Confined many-electron systems. Physics Reports, 1996, 271, 1-66.Magnetic field induced transitions in diluted magnetic semiconductor quantum wells. Journal of Crystal Growth, 1996, 159, 1037-1040.Optical characterization of MOVPE-grown ZnSi—ZnSe short period superlattices. Journal of Crystal Growth, 1996, 159, 506-509.Optical properties of ultrathin Pbl2 microcrystallite in polymer. Journal of Luminescence, 1996, 70, 435-447.Surface effects on excitons in nâ€period CdMnTe/CdTe superlattices. Physica Status Solidi (B): Basic Research, 1996, 195, 475-481.Longitudinalâ€Opticalâ€Phonon effects on excitons in GaAsâ€Ga _{1â~x} Al _x As quantum well. Physica Status Solidi (B): Basic Research, 1996, 121-130.Optical properties of quantum wires and dots., 1997, 105-133.	25.6 1.5 1.5 3.1 1.5 1.5	 352 2 4 7 3 6 0
 371 372 373 374 375 376 377 378 	Confined many-electron systems. Physics Reports, 1996, 271, 1-66. Magnetic field induced transitions in diluted magnetic semiconductor quantum wells. Journal of Crystal Growth, 1996, 159, 1037-1040. Optical characterization of MOVPE-grown ZnSi,ZnSe short period superlattices. Journal of Crystal Growth, 1996, 159, 506-509. Optical properties of ultrathin PbI2 microcrystallite in polymer. Journal of Luminescence, 1996, 70, 435-447. Surface effects on excitons in nâ€period CdMnTe/CdTe superlattices. Physica Status Solidi (B): Basic Research, 1996, 195, 475-481. Longitudinalã€Opticalã€Phonon effects on excitons in GaAsã€Ga _{1ã°x} Al _x As quantum well. Physica Status Solidi (B): Basic Research, 1996, 196, 121-130. Optical properties of quantum wires and dots., 1997, 105-133. Electromagnetic properties of a dielectric grating. II. Quantum wells excited by surface waves. Physical Review B, 1996, 54, 10763-10772.	25.6 1.5 1.5 3.1 1.5 1.5 3.2	 352 2 4 7 3 6 0 13

		CITATION REPORT		
#	Article		IF	CITATIONS
380	Spin instabilities in coupled semiconductor quantum wells. Physical Review B, 1996, 54	ł, 13832-13858.	3.2	24
381	Nitrogen acceptors confined in CdZnTe quantum well structures. Journal of Applied Phy 2070-2073.	vsics, 1996, 79,	2.5	7
382	Magnetobiexcitonic states in a quantum wire. Physical Review B, 1996, 54, 5712-5720		3.2	7
383	Analytical perturbation derivation of the exciton binding energy in generalized infinite of wells: Application to type-I and -II finite-quantum-well structures. Physical Review B, 199	quantum 96, 53, 3983-3986.	3.2	2
384	Structural and optical studies of InxGa1â^xxAs/GaAs multiple quantum wells. Journal of 1996, 80, 482-489.	Applied Physics,	2.5	27
385	Enhancement of exciton binding energies in quantum wires and quantum dots. Europh 1997, 39, 453-458.	ysics Letters,	2.0	19
386	Excitonic and shallow-donor states in semiconducting quantum wells: a fractional-dime approach. Journal of Physics Condensed Matter, 1997, 9, 8477-8488.	nsional space	1.8	34
387	Exciton - exciton scattering in semiconducting quantum well structures in the presence transverse electric field. Journal of Physics Condensed Matter, 1997, 9, 7845-7853.	e of a	1.8	1
388	Electronic structures and optical-absorption spectra of hydrogen-terminated Si quantu Physical Review B, 1997, 55, 5124-5128.	m slabs.	3.2	9
389	WKB approximation of screened two-dimensional excitons. Physical Review B, 1997, 56	5, 14893-14896.	3.2	9
390	Excitonic wave packets inIn0.135Ga0.865As/GaAs quantum wires. Physical Review B, 1	997, 55, 9290-9293.	3.2	12
391	Crossover from strong to weak confinement for excitons in shallow or narrow quantum Physical Review B, 1997, 56, 3922-3932.	n wells.	3.2	59
392	Excitonic effects in free-standing ultrathin GaAs films. Physical Review B, 1997, 55, 154	16-15419.	3.2	16
393	Influence of screening in the magneto-optical properties of a two-dimensional electron Photoluminiscence fromIn0.53Ga0.47As/InP quantum wells. Physical Review B, 1997, 5	gas: 5, 16390-16394.	3.2	10
394	Localized Excitons in InGaN. Materials Research Society Symposia Proceedings, 1997, 4	182, 648.	0.1	5
395	Chapter 5 Optical Properties of Excitons in ZnSe-based Quantum Well Heterostructure Semiconductors and Semimetals, 1997, , 163-226.	S.	0.7	6
396	Fractional-dimensional space and applications in quantum-confined semiconducting heterostructures. Journal of Applied Physics, 1997, 82, 3155-3157.		2.5	18
397	Exciton-phonon interaction effects in quantum wells. Physical Review B, 1997, 56, 205	8-2061.	3.2	18

#	Article	IF	CITATIONS
398	Nonlinear Emission from 8-Hydroxyquinoline Aluminum and Diamine Derivative Superlattice Structures Excited by Third-Harmonic-Generation from Nd:YAG Laser Light. Japanese Journal of Applied Physics, 1997, 36, L421-L424.	1.5	20
399	Three- and low-dimensional inorganic semiconductors. Progress in Solid State Chemistry, 1997, 25, 125-270.	7.2	303
400	Consistent calculations of multi-quantum well semiconductor optical wave guide modes including the effects of size-quantization and 2D-excitons on the refractive index. Solid-State Electronics, 1997, 41, 798-801.	1.4	1
401	Effect of optical phonons on the binding energy of an exciton in a quantum well. Journal of Luminescence, 1997, 72-74, 358-360.	3.1	0
402	Magneto-Optical Investigation of Excitons in Narrow GaAs–AlGaAs Quantum Wires. Physica Status Solidi A, 1997, 164, 325-329.	1.7	3
403	Thermalization of free excitons in ZnSe quantum wells. Journal of Crystal Growth, 1998, 184-185, 795-800.	1.5	19
404	Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures. Applied Physics Letters, 1998, 73, 2006-2008.	3.3	427
405	Exciton localization and interisland exciton diffusion in interrupted-growth GaAs–AlAs quantum well. Journal of Luminescence, 1998, 78, 25-31.	3.1	2
406	Optical model of excitons in a quantum well with randomly rough interfaces. Solid State Communications, 1998, 108, 83-87.	1.9	8
407	Staggered excitonic resonances of Stark-ladder transitions in an asymmetric double-well GaAs/AlAs superlattice. Physica E: Low-Dimensional Systems and Nanostructures, 1998, 2, 299-302.	2.7	4
408	Eigenstates and fine structure of a hydrogenic impurity in a spherical quantum dot. Physical Review B, 1998, 58, 1954-1961.	3.2	78
409	Exciton binding energies and diamagnetic shifts in semiconductor quantum wires and quantum dots. Physical Review B, 1998, 57, 6584-6591.	3.2	113
410	Exciton binding energy in a quantum well. Physical Review B, 1998, 58, 10568-10577.	3.2	52
411	Exciton binding energies in polar quantum wells with finite potential barriers. Physical Review B, 1998, 58, 10769-10777.	3.2	37
412	Observation of confinement-dependent exciton binding energy of GaN quantum dots. Applied Physics Letters, 1998, 73, 1104-1106.	3.3	117
413	Wannier-Mott exciton formed by electron and hole separated in parallel quantum wires. Physical Review B, 1998, 57, 1690-1697.	3.2	8
414	Excitons in parabolic quantum wells. Semiconductor Science and Technology, 1998, 13, 1076-1079.	2.0	12
415	Polaronic effects on excitons in quantum wells. Physical Review B, 1998, 57, 1749-1761.	3.2	45

#	Article	IF	CITATIONS
416	Confinement-induced reduction of the effective exchange parameters in semimagnetic semiconductor nanostructures. Physical Review B, 1998, 58, 15660-15665.	3.2	40
417	Above-barrier states inInxGa1â^'xAs/GaAsmultiple quantum wells with a thin cap layer. Physical Review B, 1998, 58, 3977-3988.	3.2	10
418	Excitonic recombination dynamics in shallow quantum wells. Physical Review B, 1998, 58, 7076-7085.	3.2	16
419	Fractional-dimensional approach for excitons inGaAsâ	3.2	56
420	Spectroscopic Studies in InGaN Quantum Wells. Materials Research Society Symposia Proceedings, 1998, 537, 1.	0.1	0
421	Electric Field Distribution in strained p-i-n GaN/InGaN multiple quantum well structures MRS Internet Journal of Nitride Semiconductor Research, 1999, 4, 1.	1.0	9
422	Contact correlations of charged fermions in two dimensions and the electron-hole plasma lifetime in semiconductor quantum wells. Journal of Physics Condensed Matter, 1999, 11, 2607-2617.	1.8	1
423	Analytical Green's function model for the evaluation of the linear and nonlinear optical properties of the excitons in quasi-two-dimensional systems. Physical Review B, 1999, 59, 13196-13201.	3.2	12
424	Effect of an electric field on the exciton linewidth due to scattering of excitons by ionized impurities in semiconducting quantum well structures. Journal of Applied Physics, 1999, 86, 4477-4482.	2.5	1
425	Determination of photoluminescence mechanism in InGaN quantum wells. Applied Physics Letters, 1999, 75, 2241-2243.	3.3	104
426	Scaling of exciton binding energy and virial theorem in semiconductor quantum wells and wires. Physical Review B, 1999, 59, 2040-2044.	3.2	37
427	Confinement induced decrease of the exciton-longitudinal optical phonon coupling in GaN quantum dots. Applied Physics Letters, 1999, 75, 1935-1937.	3.3	33
428	Optical properties ofGaAs/Al1â^'xGaxAsquantum wells subjected to large in-plane uniaxial stress. Physical Review B, 1999, 60, 1900-1914.	3.2	22
429	Ground-state energy of an exciton-(LO) phonon system in a parabolic quantum well. Physical Review B, 1999, 60, 16569-16583.	3.2	10
430	Electromagnetic-field quantization in absorbing confined systems. Physical Review A, 1999, 60, 1614-1625.	2.5	21
431	Optical properties of InGaN quantum wells. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 59, 298-306.	3.5	164
432	Resonance elastic scattering of light by a quantum well with statistically uneven boundaries. Physics of the Solid State, 1999, 41, 296-301.	0.6	2
433	Excitonic state in quantum wells formed from "above-barrier―electronic states. JETP Letters, 1999, 70, 621-627.	1.4	4

#	Article		CITATIONS
434	An exciton in a quantum well in the presence of crossed electric and magnetic fields. Superlattices and Microstructures, 1999, 26, 229-240.	3.1	5
435	Properties of Quantum Well Excitons in GaN/AlGaN and InGaN/GaN/AlGaN UV, Blue, Green, and Amber Light Emitting Diode Structures. Physica Status Solidi A, 1999, 176, 85-90.	1.7	1
436	A new polarization-insensitive 1.55-μm InGaAsP-InGaAsP multiquantum-well electroabsorption modulator using a strain-compensating layer. IEEE Journal of Quantum Electronics, 1999, 35, 730-736.	1.9	8
437	Recent developments and applications in electroabsorption semiconductor modulators. Materials Science and Engineering Reports, 1999, 25, 155-194.	31.8	12
438	Spectroscopic Studies in InGaN Quantum Wells. MRS Internet Journal of Nitride Semiconductor Research, 1999, 4, 93-105.	1.0	9
439	Intraexcitonic Energy Transition in GaAs Quantum Wells. Physica Status Solidi (B): Basic Research, 2000, 220, 131-135.	1.5	2
440	Combination of Hartree and Ritz approaches for problem of excitons in semiconductor quantum wells. Additional exciton states. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 8, 275-280.	2.7	7
441	Thermal dissociation of excitons in a type-I GaAs/AlAs superlattice studied by time-resolved photoluminescence measurements. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 7, 581-585.	2.7	1
442	Elastic scattering of light from quantum-well exciton-polarization fluctuations in a microcavity. Physics of the Solid State, 2000, 42, 1914-1920.		3
443	Excitons and shallow impurities inGaAsâ^Ga1â^xAlxAssemiconductor heterostructures within a fractional-dimensional space approach:â€,Magnetic-field effects. Physical Review B, 2000, 61, 13104-13114.	3.2	59
444	Characterization of undoped and silicon-doped InGaN/GaN single quantum wells. Journal of Electronic Materials, 2000, 29, 31-36.	2.2	1
445	Comparison of Optical Properties of GaN/AlGaN and InGaN/AlGaN Single Quantum Wells. Japanese Journal of Applied Physics, 2000, 39, 2417-2424.	1.5	19
446	Intrinsic and Extrinsic Excitonic Features in MgS/ZnSe Superlattices Revealed by Microspectroscopy. Japanese Journal of Applied Physics, 2000, 39, 501-504.	1.5	2
447	Optical Investigation of Critical Thickness and Interface Fluctuation in CdSe/ZnSe Strained Layer Superlattices Grown on InP. Japanese Journal of Applied Physics, 2000, 39, 2541-2545.	1.5	1
448	Binding energy of excitons in symmetric and asymmetric coupled double quantum wells in a uniform magnetic field. Semiconductor Science and Technology, 2000, 15, 219-224.	2.0	17
449	Dimensionality transformation of the exciton state in quantum wells with asymmetric barriers. Nanotechnology, 2000, 11, 286-290.	2.6	2
450	Magnetophonon resonance in photoluminescence excitation spectra of magnetoexcitons inGaAs/Al0.3Ga0.7Assuperlattice. Physical Review B, 2000, 62, 2743-2750.	3.2	4
451	Optical properties of GaN quantum dots. Journal of Applied Physics, 2000, 87, 3883-3890.	2.5	75

#	Article	IF	Citations
452	Exciton–LO-phonon interaction in zinc-compound quantum wells. Physical Review B, 2000, 61, 9960-9963.	3.2	11
453	Localized quantum well excitons in InGaN single-quantum-well amber light-emitting diodes. Journal of Applied Physics, 2000, 88, 5153-5157.	2.5	81
454	Role of Localized Quantum Well Excitons in InGaN Quantum Well Structure Correlated with Microstructural Analysis. Materials Research Society Symposia Proceedings, 2000, 639, 931.	0.1	0
455	The First Covalent Organicâ~'Inorganic Networks of Hybrid Chalcogenides:Â Structures That May Lead to a New Type of Quantum Wells. Journal of the American Chemical Society, 2000, 122, 8789-8790.	13.7	251
456	Preparation of Size-Quantized ZnS Thin Films Using Electrochemical Atomic Layer Epitaxy and Their Photoelectrochemical Properties. Langmuir, 2000, 16, 5820-5824.	3.5	37
457	Bright-to-dark exciton transition in symmetric coupled quantum wells induced by an in-plane magnetic field. Physical Review B, 2001, 63, .	3.2	49
458	1.1 Electronic states and phonons in mesoscopic microstructures. , 0, , 6-21.		0
459	1.4 References for 1. , 0, , 49-54.		0
460	Intra-magnetoexciton transitions in semiconductor quantum wells. Materials Research Society Symposia Proceedings, 2001, 692, 1.	0.1	0
461	Model simulation of excitons in semiconductor nanostructures at high concentration and strong disorder. Solid State Communications, 2001, 119, 45-49.	1.9	0
462	Use of excitons in materials characterization of semiconductor systems. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 79, 203-243.	3.5	11
463	Use of excitons in materials characterization of semiconductor system. Materials Science and Engineering Reports, 2001, 34, 59-120.	31.8	38
464	A study for the cartography of the interface roughness of V-shaped AlGaAs/GaAs quantum wires. Superlattices and Microstructures, 2001, 29, 367-377.	3.1	6
465	Investigation of Localized and Conventional Photoluminescence in an Asymmetric Quantum Well. Physica Status Solidi A, 2001, 187, 49-56.	1.7	0
466	Confined systems and nanostructured materials. , 2001, , 291-416.		0
467	Microscopic calculation of noise current operators for electromagnetic field quantization in absorbing material systems. Journal of Optics B: Quantum and Semiclassical Optics, 2001, 3, 288-292.	1.4	16
468	Optical and structural studies in InGaN quantum well structure laser diodes. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 2177.	1.6	72
469	Time-resolved photoluminescence ofInxGa1â^'xN/GaNmultiple quantum well structures: Effect of Si doping in the barriers. Physical Review B, 2001, 64,	3.2	61

#	Article	IF	CITATIONS
470	Localized excitons in an In0.06Ga0.94N multiple-quantum-well laser diode lased at 400 nm. Applied Physics Letters, 2001, 79, 341-343.	3.3	21
471	Optical response of a quantum dot superlattice under electric and magnetic fields. Physical Review B, 2001, 64, .	3.2	37
472	Magnetoabsorption spectra of intraexcitonic transitions in GaAs-(Ga,Al)As semiconductor quantum wells. Journal of Applied Physics, 2002, 92, 1227-1231.	2.5	8
473	Control of wave packet dynamics in quantum wells: Effects of Coulomb interactions. Journal of Applied Physics, 2002, 91, 6533.	2.5	4
474	Ab initiopseudopotential study of a model tetracene/ZnSe organic–inorganic superlattice: Its electronic structure and optical responses. Journal of Applied Physics, 2002, 92, 5779-5784.	2.5	0
475	SOLUTION TO THE EXCITONIC PROBLEM OF AN ELECTRON IN A QUANTUM WIRE AND A HOLE IN A PERPENDICULAR 2D QUANTUM LAYER. Surface Review and Letters, 2002, 09, 1651-1654.	1.1	0
476	Magnetoexciton transitions in GaAs-Ga1-xAlxAs quantum wells. Journal of Physics Condensed Matter, 2002, 14, 1021-1033.	1.8	8
477	Quantum well interference in double quantum wells. , 2002, , 169-206.		0
478	Electro-optical and transport properties of quasi-two-dimensional nanostructured materials. , 2002, , 207-335.		1
479	Surface Effects on Wannier Excitons in Superlattices: Monte Carlo Simulation. Chinese Physics Letters, 2002, 19, 1164-1167.	3.3	1
480	Effect of magnetic field on excitons in bulk and heterostructure semiconductors containing disorder. Physical Review B, 2002, 66, .	3.2	3
481	Self-Consistent Calculations of Excitonic States in T-Shaped Quantum Wires. Physica Status Solidi (B): Basic Research, 2002, 229, 557-561.	1.5	3
482	Infrared photomodulation spectroscopy of an In 0.22Ga 0.78Sb/GaSb single quantum well. Superlattices and Microstructures, 2002, 32, 19-23.	3.1	16
483	Exciton binding energy in a double quantum well: effect of the barrier shift. Superlattices and Microstructures, 2002, 32, 73-77.	3.1	8
484	Wannier–Mott excitons formed by electrons in a quantum wire and holes in a perpendicular quantum layer. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 15, 124-130.	2.7	2
485	Localized exciton dynamics in InGaN quantum well structures. Applied Surface Science, 2002, 190, 330-338.	6.1	11
486	Effect of nitrogen on the exciton binding energy in GaxIn1â^'xNyAs1â^'y/GaAs quantum well. Solid State Communications, 2002, 122, 323-327.	1.9	18
487	Mott effect for an electron–hole plasma in a two-dimensional structure. Solid State Communications, 2002, 123, 489-494.	1.9	20

#	Article	IF	CITATIONS
488	Photoelectrochemical activities of ultrathin lead sulfide films prepared by electrochemical atomic layer epitaxy. Journal of Electroanalytical Chemistry, 2002, 522, 33-39.	3.8	37
489	Investigation of intermixing induced by sputtering and annealing in multiple quantum well. Applied Surface Science, 2003, 205, 182-187.	6.1	0
490	Resonant elastic scattering of light from single quantum wells in semiconductor multilayers. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 18, 452-468.	2.7	2
491	Spontaneous emission and elastic scattering of light from quantum-well excitons in a Fabry-Perot microcavity. Physics of the Solid State, 2003, 45, 736-751.	0.6	2
492	EXCITONS IN A NARROW PARABOLIC QUANTUM WELL UNDER EXTERNAL FIELDS. Modern Physics Letters B, 2003, 17, 1253-1264.	1.9	6
493	Influence of annealing condition on photoluminescence characteristics of AlGaAs/GaAs multiple quantum well. Materials Letters, 2003, 57, 2932-2935.	2.6	9
494	Parametrized equations for excitons in two-dimensional semiconductor quantum wells with arbitrary potential profiles. Semiconductor Science and Technology, 2003, 18, 377-384.	2.0	9
495	Investigation of the electron non-radiative transition in GalnNAs/GaAs single quantum well structures by using a piezoelectric photothermal spectroscopy. , 0, , .		0
496	Binding Energies of Excitons in GaAs/AlAs Quantum Wells Under Pressure. Modern Physics Letters B, 2003, 17, 863-870.	1.9	16
497	Optical Properties of Excitons in Quantum Well Wires Under the Magnetic Field. Surface Review and Letters, 2003, 10, 737-743.	1.1	2
498	Magnetophotoluminescence studies of InxGa1ÂxAs1ÂyNy: a measurement of the electron effective mass, exciton size, and degree of carrier localization. Journal of Physics Condensed Matter, 2004, 16, S3187-S3200.	1.8	3
499	Temperature dependence of photoluminescence bands inZn1â^'xCdxSe/ZnSequantum wells with planar CdSe islands. Physical Review B, 2004, 69, .	3.2	59
500	Electroreflectance studies of Stark shifts and polarization-induced electric fields in InGaN/GaN single quantum wells. Journal of Applied Physics, 2004, 95, 4905-4913.	2.5	27
501	ZnMgO epilayers and ZnO–ZnMgO quantum wells for optoelectronic applications in the blue and UV spectral region. Applied Physics Letters, 2004, 84, 5359-5361.	3.3	253
502	Investigation of the Electron Nonradiative Transition in Extremely Thin GalnNAs/GaAs Single Quantum Well by Using a Piezoelectric Photothermal Spectroscopy. Japanese Journal of Applied Physics, 2004, 43, 2942-2945.	1.5	18
503	Femtosecond spectroscopy in semiconductors: a key to coherences, correlations and quantum kinetics. Reports on Progress in Physics, 2004, 67, 433-512.	20.1	183
504	BARRIER THICKNESS DEPENDENCE OF OPTICAL ABSORPTION OF EXCITONS IN GaAs COUPLED QUANTUM WIRE. Surface Review and Letters, 2004, 11, 49-55.	1.1	2
505	The use of synchrotron radiation techniques in the characterization of strained semiconductor heterostructures and thin films. Surface Science Reports, 2004, 53, 1-197.	7.2	94

#	Article		CITATIONS
506	Self-consistent approach for calculations of exciton binding energy in quantum wells. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 25, 539-553.		22
507	Piezoelectric field-dependent optical nonlinearities induced by interband transition in InGaN/GaN quantum well. Physica E: Low-Dimensional Systems and Nanostructures, 2005, 27, 221-226.	2.7	8
508	The influence of interdiffusion on the binding energy of excitons in InxGa1â^'xNyAs1â^'y /GaAs quantum wells. Superlattices and Microstructures, 2005, 37, 273-280.	3.1	9
509	Dynamic Structure Factor of Dusty and Low-Dimensional Plasmas. Contributions To Plasma Physics, 2005, 45, 441-449.	1.1	4
510	Effect of Induced Strain Due to Lattice Mismatch between MgyZn1-yS Cladding Layers and CdxZn1-xS/ZnS Quantum Wells on Effective Band Gap Energy in CdxZn1-xS/ZnS/MgyZn1-yS Separate-Confinement Heterostructures. Japanese Journal of Applied Physics, 2005, 44, 5017-5024.	1.5	2
511	Reduction in Induced Strain in CdxZn1-xS Well Layers Using ZnS1-ySeyBarrier Layers and Inhibition of Induced Strain due to Lattice Mismatch between MgzZn1-zS Cladding Layers and CdxZn1-xS/ZnS1-ySeyMultiple Quantum Wells by Adjusting Mg Content. Japanese Journal of Applied Physics 2005 44 1825-1833	1.5	0
512	Short-period InAsâ^•GaSb type-II superlattices for mid-infrared detectors. Applied Physics Letters, 2005, 87, 261106.	3.3	41
513	Resonant impurity and exciton states in a narrow quantum well. Physical Review B, 2005, 71, .	3.2	15
514	GaAs-based multiple-quantum-well spatial light modulators fabricated by a wafer-scale process. Applied Optics, 2005, 44, 1635.	2.1	12
515	Finite depth square well model: Applicability and limitations. Journal of Applied Physics, 2005, 97, 073706.	2.5	107
516	Effect of interwall surface roughness correlations on optical spectra of quantum well excitons. Physical Review B, 2005, 71, .	3.2	11
517	Effects of confinement on the Rydberg molecule NeH. Journal of Physics B: Atomic, Molecular and Optical Physics, 2005, 38, 1143-1159.	1.5	13
518	Photocurrent and transmission spectroscopy of direct-gap interband transitions in Geâ^•SiGe quantum wells. Applied Physics Letters, 2006, 89, 262119.	3.3	44
519	Pushing the envelope to the maximum: Short-period InAs/GaSb type-II superlattices for mid-infrared detectors. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 32, 289-292.	2.7	12
520	Effect of screening on the electric field dependence of the exciton linewidth due to scattering by ionized impurities in semiconducting quantum well structures. Physica E: Low-Dimensional Systems and Nanostructures, 2006, 33, 201-206.	2.7	1
521	Self-consistent Hartree method for calculations of exciton binding energy in quantum wells. Superlattices and Microstructures, 2006, 40, 77-92.	3.1	19
522	Electronic and optical properties of Cd1-xZnxS nanocrystals. European Physical Journal B, 2006, 51, 75-78.	1.5	11
523	Proposal for BexZn1-xS Barrier Layers Combined with ZnS Wells. Japanese Journal of Applied Physics, 2006, 45, 5821-5825.	1.5	4

ARTICLE IF CITATIONS Spin-exchange interaction in ZnO-based quantum wells. Physical Review B, 2006, 74, . 3.2 26 524 Excitongfactor of type-IIInPâ[•]GaAssingle quantum dots. Physical Review B, 2006, 73, . 3.2 EFFECT OF HYDROSTATIC PRESSURE ON THE BINDING ENERGIES OF EXCITONS IN QUANTUM WELLS. 526 2.0 7 International Journal of Modern Physics B, 2007, 21, 2735-2747. Exciton diamagnetic shifts in GaAs–Ga1â° xAlxAs quantum dots and ultrathin quantum wells. Journal 1.8 of Physics Condensed Matter, 2007, 19, 216224. Exciton dissociation and hole escape in the thermal photoluminescence quenching 528 3.2 25 of(Ga,In)(N,As)quantum wells. Physical Review B, 2007, 75, . Biexciton Stability in Carbon Nanotubes. Physical Review Letters, 2007, 99, 126806. 7.8 44 Room-temperature photoluminescence from ZnOâ[•]ZnMgO multiple quantum wells grown on Si(111) 530 3.3 50 substrates. Applied Physics Letters, 2007, 91, 022103. Binding energy of impurity states in an inverse parabolic quantum well under magnetic field. Physica 531 2.7 B: Condensed Matter, 2007, 390, 216-219. Density of impurity states of hydrogenic impurities in an inverse parabolic quantum well under the 532 2.7 19 magnétic field. Phýsica B: Condensed Matter, 2007, 392, 213-216. Interband absorption and exciton binding energy in an inverse parabolic quantum well under the 2.1 magnetic field. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 372, 56-59. Hydrostatic pressure effects on the binding and transition energies for Wannier excitons in quantum 534 2 2.0 wells. Microelectronics Journal, 2008, 39, 1261-1263. Magnetoexciton binding energies for parabolic confinement in cylindrical quantum wire structures. Physica B: Condensed Matter, 2008, 403, 2856-2860. Carrier lifetimes in AlGaN quantum wells: electric field and excitonic effects. Journal Physics D: 536 2.8 14 Applied Physics, 2008, 41, 155116. Non-polar<i>a</i>-plane ZnMgO1/ZnO quantum wells grown by molecular beam epitaxy. 59 Semiconductor Science and Technology, 2008, 23, 035005. Accessing structural and electronic properties of semiconductor nanostructures via 538 9 photoluminescence., 2008, , 175-208. Quantum optics of a quantum dot embedded in a photonic crystal cavity., 2008, , . The effect of confinement on the temperature dependence of the excitonic transition energy in 540 GaAs/Al_{<i>x</i>}Ga_{1a^'<i>x</i>}As quantum wells. Journal of Physics Condensed 1.8 4 Matter, 2008, 20, 255246. The effects of crystallographic orientation and strain on the properties of excitonic emission from 541 1.8 wurtzite InGaN/GaN quantum wells. Journal of Physics Condensed Matter, 2008, 20, 215223.

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
542	Cylindrical two-dimensional electron gas in a transverse magnetic field. Physical Review B, 2008, 78, .	3.2	48
543	Optical polarization anisotropy of a-plane GaN/AlGaN multiple quantum well structures grown on r-plane sapphire substrates. Journal of Applied Physics, 2009, 105, 123112.	2.5	24
544	Exciton and biexciton properties in GaN nanocolumn: dependence on morphology and diameter. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 141-143.	0.8	1
545	The magnetoexciton binding energy dependency on aluminium concentration in cylindrical quantum wires. Superlattices and Microstructures, 2009, 45, 506-513.	3.1	11
546	Applicability of the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mi mathvariant="bold">k</mml:mi><mml:mo>â<</mml:mo><mml:mi mathvariant="bold">p</mml:mi </mml:mrow></mml:math> method to modeling of InAs/GaSb short-period superlattices. Physical Review B, 2009, 79, .	3.2	19
547	Blue Luminescence Based on Quantum Confinement at Peptide Nanotubes. Nano Letters, 2009, 9, 3111-3115.	9.1	187
548	Variational calculation for the direct-gap exciton in the Ge quantum well systems. Physical Review B, 2009, 79, .	3.2	13
549	Features of mode locking in laser with quantum well in broad waveguide layer. Technical Physics Letters, 2010, 36, 1038-1041.	0.7	9
550	Quantum Confinement in Selfâ€Assembled Bioinspired Peptide Hydrogels. Advanced Materials, 2010, 22, 2311-2315.	21.0	86
551	Magneto-infrared modes in InAs-AlSb-GaSb coupled quantum wells. Physical Review B, 2010, 82, .	3.2	5
552	Semiconductor quantum tubes: Dielectric modulation and excitonic response. Physical Review B, 2010, 81, .	3.2	8
553	LOCALIZED WANNIER EXCITON IN DEFECT LAYER EMBEDDED BETWEEN TWO SEMI-INFINITE SUPERLATTICES. International Journal of Modern Physics B, 2010, 24, 3501-3511.	2.0	0
554	On the interplay between quantum confinement and dielectric mismatch in high-k based quantum wells. Journal of Applied Physics, 2010, 108, 054311.	2.5	8
555	Dimensional and correlation effects of charged excitons in low-dimensional semiconductors. Journal of Physics A: Mathematical and Theoretical, 2010, 43, 474031.	2.1	5
556	Excitons in semiconducting carbon nanotubes: diameter-dependent photoluminescence spectra. Physical Chemistry Chemical Physics, 2011, 13, 14879.	2.8	25
557	Optical Absorption Characteristics of Silicon Nanowires for Photovoltaic Applications. IEEE Nanotechnology Magazine, 2011, 10, 1293-1297.	2.0	7
558	One-dimensional exciton luminescence induced by extended defects in nonpolar GaN/(Al,Ga)N quantum wells. Semiconductor Science and Technology, 2011, 26, 025012.	2.0	15
559	Optical lattices of InGaN quantum well excitons. Applied Physics Letters, 2011, 99, 251103.	3.3	27

#	Article		CITATIONS
560	Effect of Excitons in AlGaAs/GaAs Superlattice Solar Cells. Japanese Journal of Applied Physics, 2011, 50, 052302.	1.5	4
561	VARIATIONAL COMPUTATIONS FOR EXCITONS IN QUANTUM DOTS: A QUANTUM MONTE CARLO STUDY. International Journal of Modern Physics B, 2011, 25, 119-130.	2.0	2
562	Continuous Transition from 3D to 1D Confinement Observed during the Formation of CdSe Nanoplatelets. Journal of the American Chemical Society, 2011, 133, 3070-3077.	13.7	332
563	Barrier width and built-in electric field effects on hydrogenic impurity in wurtzite GaN/AlGaN quantum well. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 44, 511-514.	2.7	6
564	Chiral splitting and polarization-dependent optical absorption of exciton for Rashba spin–orbit interaction. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 3025-3031.	2.1	0
565	Excitons in a cylindrical GaAs Pöschl–Teller quantum dot. Physica Status Solidi (B): Basic Research, 2011, 248, 1412-1419.	1.5	12
566	Effect of excitons on the absorption in the solar-cell with AlGaAs/GaAs superlattice grown by molecular beam epitaxy. Journal of Crystal Growth, 2011, 323, 504-507.	1.5	10
567	Variational quantum Monte Carlo study of charged excitons in fractional dimensional space. Physical Review B, 2011, 84, .	3.2	14
568	Biexcitons in semiconducting single-walled carbon nanotubes. Physical Review B, 2011, 83, .	3.2	16
569	THE INTERSUBBAND TRANSITIONS AND BINDING ENERGY OF SHALLOW DONOR IMPURITIES IN DIFFERENT SHAPED QUANTUM WELLS UNDER THE MAGNETIC FIELD. Modern Physics Letters B, 2011, 25, 2451-2459.	1.9	7
570	Bloch Oscillations and Ultrafast Coherent Optical Phenomena. , 2011, , 343-399.		8
571	Quantum-correlated two-photon transitions to excitons in semiconductor quantum wells. Optics Express, 2012, 20, 4470.	3.4	11
572	Theoretical approach to the excitonic response of GaAs nanomembranes in the averaged-strain approximation. Journal of the Optical Society of America B: Optical Physics, 2012, 29, A60.	2.1	1
573	Impact of biexcitons on the relaxation mechanisms of polaritons in III-nitride based multiple quantum well microcavities. Physical Review B, 2012, 85, .	3.2	13
574	Electronic and optical properties of quantum wells embedded in wrinkled nanomembranes. Journal of Applied Physics, 2012, 111, 043105.	2.5	15
575	Structural and optical properties of ZnCdO/ZnO multiple quantum wells grown on sapphire substrates using pulsed laser deposition. Journal of Applied Physics, 2012, 112, 083513.	2.5	17
576	Physics and engineering of peptide supramolecular nanostructures. Physical Chemistry Chemical Physics, 2012, 14, 6391.	2.8	67
577	Thermal carrier emission and nonradiative recombinations in nonpolar (Al,Ga)N/GaN quantum wells grown on bulk GaN. Journal of Applied Physics, 2012, 111, 033517.	2.5	10

#	Article	IF	CITATIONS
578	Spectroscopy of Single CdSe Nanoplatelets. ACS Nano, 2012, 6, 6751-6758.	14.6	279
579	Magneto-optic studies of rare earth containing sodium silicate glasses and semiconductor quantum dots in glass composites: Nonlinear effects. Journal of Non-Crystalline Solids, 2012, 358, 3517-3523.	3.1	2
580	Combined effects of intense laser field and applied electric field on exciton states in GaAs quantum wells: Transition from the single to double quantum well. Physica Status Solidi (B): Basic Research, 2012, 249, 118-127.	1.5	33
581	Biexciton binding energy in fractional dimensional semiconductors. Physical Review B, 2012, 85, .	3.2	20
582	Excitonic optical absorption in wurtzite InGaN/GaN quantum wells. Superlattices and Microstructures, 2012, 51, 9-15.	3.1	9
583	Finite barrier width effects on exciton states and optical properties in wurtzite InGaN/GaN quantum well. Journal of Luminescence, 2012, 132, 607-611.	3.1	9
584	Laser dressed donor impurities in free-standing GaAs films under an electric field. Journal of Luminescence, 2012, 132, 585-591.	3.1	5
585	Quantum efficiency of InAs/InP nanowire heterostructures grown on silicon substrates. Physica Status Solidi - Rapid Research Letters, 2013, 7, 878-881.	2.4	0
586	Exciton spectra in two-dimensional graphene derivatives. Physical Review B, 2013, 88, .	3.2	31
587	Theoretical investigation of InAs/GaSb type-II pin superlattice infrared detector in the mid wavelength infrared range. Journal of Applied Physics, 2013, 113, .	2.5	7
588	Theoretical study of the indium incorporation into III-V compounds revisited: The role of indium segregation and desorption. Journal of Applied Physics, 2013, 113, 033515.	2.5	8
589	Electronic structure of a cylindrically confined hydrogen atom by the B-splines method: energy levels and dipole polarizability. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 47, 015002.	1.5	18
590	Photoluminescence and exciton resonances over the scattered light in multiphonon spectra of resonant scattering in the CdTe/ZnTe superlattices with narrow quantum wells. Physics of the Solid State, 2013, 55, 2355-2360.	0.6	4
592	Third-order nonlinear optical susceptibility and photoionization of an exciton in quantum dots. Superlattices and Microstructures, 2013, 56, 8-15.	3.1	13
593	Two-Dimensional Growth of CdSe Nanocrystals, from Nanoplatelets to Nanosheets. Chemistry of Materials, 2013, 25, 639-645.	6.7	124
594	Intense laser field effects on exciton states in direct-gap Ge/SiGe quantum well. Superlattices and Microstructures, 2013, 58, 81-86.	3.1	5
595	Quantum Structures of Advanced Materials. Springer Series in Materials Science, 2013, , 1-38.	0.6	0
596	Photoluminescence Characterization of Structural and Electronic Properties of Semiconductor Quantum Wells. , 2013, , 509-556.		2

#	Article		CITATIONS
597	Carrier dynamics and photoluminescence quenching mechanism of strained InGaSb/AlGaSb quantum wells. Journal of Applied Physics, 2013, 113, 053505.	2.5	5
598	Laser field and electric field effects on exciton states and optical properties in zinc-blende GaN/AlGaN quantum well. Journal of Applied Physics, 2013, 113, .	2.5	8
599	High-Absorption-Efficiency Superlattice Solar Cells by Excitons. Japanese Journal of Applied Physics, 2013, 52, 112302.	1.5	4
600	Reflectance modulation by free-carrier exciton screening in semiconducting nanotubes. Journal of Applied Physics, 2013, 114, 024310.	2.5	8
601	Optical Absorption in Nano-Structures: Classical and Quantum Models. ISRN Nanomaterials, 2013, 2013, 1-7.	0.7	6
602	GaAs-based high temperature electrically pumped polariton laser. Applied Physics Letters, 2014, 104, .	3.3	15
603	Electrically pumped single-photon emission at room temperature from a single InGaN/GaN quantum dot. Applied Physics Letters, 2014, 105, .	3.3	83
604	Polarization of emission from non-polar III-nitride quantum wells: the influence of confinement. Journal Physics D: Applied Physics, 2014, 47, 045101.	2.8	3
605	An Organic Quantum Well Based on Highâ€Quality Crystalline Heteroepitaxy Films. Advanced Materials, 2014, 26, 4582-4587.	21.0	24
606	Ferminoic Physics in Dipolariton Condensates. Physical Review Letters, 2014, 112, 116401.	7.8	7
607	Revealing the dark side of a bright exciton–polariton condensate. Nature Communications, 2014, 5, 4648.	12.8	51
608	Tunable built-in electric field and optical properties in wurtzite ZnO/MgZnO quantum wells. Physics Letters, Section A: General, Atomic and Solid State Physics, 2014, 378, 2251-2255.	2.1	7
609	Exciton–Mott Physics in Two-Dimensional Electron–Hole Systems: Phase Diagram and Single-Particle Spectra. Journal of the Physical Society of Japan, 2014, 83, 084702.	1.6	29
610	Analytical method for determining quantum well exciton properties in a magnetic field. Physical Review B, 2015, 91, .	3.2	11
611	Bose-Einstein Condensation of Excitons in Planar Systems and Superconductive Phase Transition Temperature. Journal of Superconductivity and Novel Magnetism, 2015, 28, 3211-3219.	1.8	1
612	Two-Dimensional Colloidal Metal Chalcogenides Semiconductors: Synthesis, Spectroscopy, and Applications. Accounts of Chemical Research, 2015, 48, 22-30.	15.6	248
613	The size of smallest subnanometric voids estimated by positron annihilation method. Correction to the Tao-Eldrup model. Chemical Physics Letters, 2015, 622, 20-22.	2.6	12
614	What did I explore in half a century of research?: What discovery, what invention, where, when?. Japanese Journal of Applied Physics, 2015, 54, 040101.	1.5	1

#	Article		CITATIONS
615	Strong terahertz absorption in long-period InAs/GaSb type-II superlattices with inverted band structures. Superlattices and Microstructures, 2015, 80, 1-10.	3.1	5
616	Evolution of Electronic Structure as a Function of Layer Thickness in Group-VIB Transition Metal Dichalcogenides: Emergence of Localization Prototypes. Nano Letters, 2015, 15, 949-957.	9.1	72
617	Optical lattices of excitons in InGaN/GaN quantum well systems. Semiconductors, 2015, 49, 4-8.	0.5	7
618	Solar Water Splitting Using Semiconductor Photocatalyst Powders. Topics in Current Chemistry, 2015, 371, 73-103.	4.0	52
619	Enhanced terahertz emission by Landau quantization in semiconductor superlattices. Superlattices and Microstructures, 2015, 87, 97-102.	3.1	4
620	High absorption efficiency of AlGaAs/GaAs superlattice solar cells. Japanese Journal of Applied Physics, 2015, 54, 052301.	1.5	5
621	Interfacing single photons and single quantum dots with photonic nanostructures. Reviews of Modern Physics, 2015, 87, 347-400.	45.6	1,014
622	Frenkel-like Wannier-Mott excitons in few-layer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Pb</mml:mi><mml:msub><mml:mi mathvariant="normal">I<mml:mn>2</mml:mn></mml:mi </mml:msub></mml:mrow>. Physical Review B, 2015, 91.</mml:math 	3.2	61
623	Exciton binding energy in an infinite potential semiconductor quantum well–wire heterostructure. Superlattices and Microstructures, 2015, 86, 456-466.	3.1	10
624	Optical properties of one- and two-dimensional excitons in <i>m</i> -plane ZnO/MgZnO multiple quantum wells. Journal Physics D: Applied Physics, 2016, 49, 095105.	2.8	11
626	Optical spectrum and excitons in bulk and monolayer MX2 (M=Zr, Hf; X=S, Se). Physica Status Solidi (B): Basic Research, 2016, 253, 705-711.	1.5	32
627	Electronic and optical properties of MX ₃ (M = Ti, Zr and Hf; X = S, Se) structures: A first principles insight. Physica Status Solidi (B): Basic Research, 2016, 253, 868-874.	1.5	17
628	Theoretical modeling of exciton-light coupling in quantum wells. Journal of Physics: Conference Series, 2016, 690, 012018.	0.4	5
629	Radiative decay rate of excitons in square quantum wells: Microscopic modeling and experiment. Journal of Applied Physics, 2016, 119, .	2.5	50
630	Superluminescent light emitting diodes on naturally survived InGaN/GaN lateral nanowires. Applied Physics Letters, 2016, 109, 031111.	3.3	13
631	Strong Quantum Confinement Effect in the Optical Properties of Ultrathin αâ€In ₂ Se ₃ . Advanced Optical Materials, 2016, 4, 1939-1943.	7.3	89
632	Dilution-Induced Formation of Hybrid Perovskite Nanoplatelets. ACS Nano, 2016, 10, 10936-10944.	14.6	130
633	Tuning the Optical Properties of Perovskite Nanoplatelets through Composition and Thickness by Ligandâ€Assisted Exfoliation. Advanced Materials, 2016, 28, 9478-9485.	21.0	276

		CITATION RE	PORT	
#	Article		IF	CITATIONS
634	Single-Photon Superradiance from a Quantum Dot. Physical Review Letters, 2016, 116, 163	504.	7.8	48
635	Trion formation dynamics in monolayer transition metal dichalcogenides. Physical Review B,	2016,93,.	3.2	159
636	Dynamical calculation of third-harmonic generation in a semiconductor quantum well. Physic Review B, 2016, 94, .	cal	3.2	7
637	Observation of excitonic super-radiance in quantum well structures and its application for la cooling of solids. , 2016, , .	ser		0
638	Structural, electronic and optical properties of TcX2 (X = S, Se, Te) from first principles calcu Computational Materials Science, 2016, 115, 177-183.	lations.	3.0	18
639	Early nucleation stages of low density InAs quantum dots nucleation on GaAs by MOVPE. Jou Crystal Growth, 2016, 434, 47-54.	urnal of	1.5	6
640	Acoustically-Driven Trion and Exciton Modulation in Piezoelectric Two-Dimensional MoS ₂ . Nano Letters, 2016, 16, 849-855.		9.1	91
641	Photo-induced electronic properties in single quantum well system: effect of excitonic lifetin Materials Research Express, 2017, 4, 016301.	ne.	1.6	6
642	Nanomaterials: Basic Concepts and Quantum Models. NATO Science for Peace and Security Physics and Biophysics, 2017, , 43-105.	Series B:	0.3	1
643	The binding energy of excitons in narrow quantum wells. Journal of Physics: Conference Serie 816, 012018.	es, 2017,	0.4	12
644	Layer-controlled two-dimensional perovskites: synthesis and optoelectronics. Journal of Mate Chemistry C, 2017, 5, 5610-5627.	erials	5.5	60
645	Photocatalytic Water Splitting: Quantitative Approaches toward Photocatalyst by Design. A Catalysis, 2017, 7, 8006-8022.	CS	11.2	656
646	Radiative Decay of a Trion in a Quantum Well of a Semiconductor Heterostructure. Journal o Spectroscopy, 2017, 84, 611-619.	f Applied	0.7	1
647	Angular dependence of giant Zeeman effect for semimagnetic cavity polaritons. Physical Rev 95, .	/iew B, 2017,	3.2	19
648	Two-Dimensional GeSe as an Isostructural and Isoelectronic Analogue of Phosphorene: Sonication-Assisted Synthesis, Chemical Stability, and Optical Properties. Chemistry of Mate 29, 8361-8368.	rials, 2017,	6.7	65
649	Type-II quantum-dot-in-nanowire structures with large oscillator strength for optical quantur applications. Physical Review B, 2017, 96, .	n gate	3.2	13
650	Suppression of exciton-exciton annihilation in tungsten disulfide monolayers encapsulated b hexagonal boron nitrides. Physical Review B, 2017, 95, .	y	3.2	92
651	Coherent exciton-polariton devices. Semiconductor Science and Technology, 2017, 32, 0930	003.	2.0	25

#	Article		CITATIONS
652	Electrons, Excitons, and Phonons in Two-Dimensional Hybrid Perovskites: Connecting Structural, Optical, and Electronic Properties. Journal of Physical Chemistry Letters, 2018, 9, 1434-1447.		283
653	Waterâ€Assisted Size and Shape Control of CsPbBr ₃ Perovskite Nanocrystals. Angewandte Chemie - International Edition, 2018, 57, 3337-3342.	13.8	223
654	Waterâ€Assisted Size and Shape Control of CsPbBr ₃ Perovskite Nanocrystals. Angewandte Chemie, 2018, 130, 3395-3400.	2.0	37
655	Free charges <i>versus</i> excitons: photoluminescence investigation of InGaN/GaN multiple quantum well nanorods and their planar counterparts. Nanoscale, 2018, 10, 5358-5365.	5.6	16
656	Crystal-Phase Quantum Wires: One-Dimensional Heterostructures with Atomically Flat Interfaces. Nano Letters, 2018, 18, 247-254.	9.1	7
657	Carrier trapping and activation at short-period wurtzite/zinc-blende stacking sequences in polytypic InAs nanowires. Physical Review B, 2018, 97, .	3.2	10
658	All-Electric Laser Beam Control Based on a Quantum-Confined Heterostructure with an Integrated Distributed Bragg Grating. Semiconductors, 2018, 52, 1595-1602.	0.5	3
659	Energy Band Structure. Springer Series in Materials Science, 2018, , 5-51.	0.6	0
660	Light Emission Properties of 2D Transition Metal Dichalcogenides: Fundamentals and Applications. Advanced Optical Materials, 2018, 6, 1800420.	7.3	88
661	Monitoring the electronic, thermal and optical properties of two-dimensional MoO ₂ under strain <i>via</i> vibrational spectroscopies: a first-principles investigation. Physical Chemistry Chemical Physics, 2019, 21, 19904-19914.	2.8	24
662	Hubbard excitons in two-dimensional nanomaterials. Journal of Physics Condensed Matter, 2019, 31, 275302.	1.8	1
663	Computational Design of Novel Hydrogen-Doped, Oxygen-Deficient Monoclinic Zirconia with Excellent Optical Absorption and Electronic Properties. Scientific Reports, 2019, 9, 10159.	3.3	26
664	Optical Signature of Quantum Coherence in Fully Dark Exciton Condensates. Physical Review Letters, 2019, 123, 097401.	7.8	6
665	Excitonic Probe for Characterization of High-Quality Quantum-Well Heterostructures. Physical Review Applied, 2019, 12, .	3.8	3
666	Room-temperature stability of excitons and transverse-electric polarized deep-ultraviolet luminescence in atomically thin GaN quantum wells. Applied Physics Letters, 2019, 115, .	3.3	29
667	Interlayer excitons in bilayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>MoS</mml:mi><ml:mn>2with strong oscillator strength up to room temperature. Physical Review B, 2019, 99, .</ml:mn></mml:msub></mml:math 	:m a. 2 <td>nl:masub></td>	nl:masub>
668	Combined theoretical and experimental characterizations of semiconductors for photoelectrocatalytic applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, 40, 212-233.	11.6	29
669	Exciton Binding Energy of Two-Dimensional Highly Luminescent Colloidal Nanostructures Determined from Combined Optical and Photoacoustic Spectroscopies. Journal of Physical Chemistry Letters, 2019, 10, 3459-3464.	4.6	33

#	Article	IF	CITATIONS
670	Phonon-Assisted Exciton Absorption in CdSe/CdS Colloidal Nanoplatelets. JETP Letters, 2019, 109, 372-376.	1.4	9
671	Thermally stable and hydrophilic CsPbBr ₃ /mPEG-NH ₂ nanocrystals with enhanced aqueous fluorescence for cell imaging. Journal of Materials Chemistry B, 2019, 7, 4153-4160.	5.8	31
672	Recombination dynamics in GaInN/GaN quantum wells. Semiconductor Science and Technology, 2019, 34, 073002.	2.0	9
673	Anomalous Quantum Oscillations of Interacting Electron-Hole Gases in Inverted Type-II InAs/GaSb Quantum Wells. Physical Review Letters, 2019, 122, 186802.	7.8	20
674	Numerical modeling of indirect excitons in double quantum wells in an external electric field. Journal of Physics: Conference Series, 2019, 1199, 012018.	0.4	3
675	Energy spectrum of excitons in square quantum wells. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 112, 96-108.	2.7	26
676	Magnetic moment and susceptibility of an impurity in a parabolic quantum dot. Journal of Magnetism and Magnetic Materials, 2019, 483, 83-88.	2.3	15
677	New Family of Two-Dimensional Ternary Photoelectric Materials. ACS Applied Materials & Interfaces, 2019, 11, 14457-14462.	8.0	35
678	Highly radiative nature of ultra-thin c-plane Al-rich AlGaN/AlN quantum wells for deep ultraviolet emitters. Applied Physics Letters, 2019, 114, .	3.3	18
679	Photogeneration of a single electron from a single Zeeman-resolved light-hole exciton with preserved angular momentum. Physical Review B, 2019, 99, .	3.2	16
680	Excitonic effects on layer- and strain-dependent optoelectronic properties of PbI2. Applied Surface Science, 2019, 470, 143-149.	6.1	10
681	Quantum confined Rydberg excitons in reduced dimensions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 024001.	1.5	19
682	Review—Defect-Tolerant Luminescent Properties of Low InN Mole Fraction In <i>_x</i> Ga ₁₋ <i>_x</i> N Quantum Wells under the Presence of Polarization Fields. ECS Journal of Solid State Science and Technology, 2020, 9, 015016.	1.8	5
683	Optically active energy states of the exciton in quantum wells of various widths. Journal of Physics: Conference Series, 2020, 1482, 012018.	0.4	0
684	Spin–orbit interaction in hybrid photonic crystals and clusters. European Physical Journal B, 2020, 93, 1.	1.5	2
685	An Excitonic Perspective on Low-Dimensional Semiconductors for Photocatalysis. Journal of the American Chemical Society, 2020, 142, 14007-14022.	13.7	129
686	Realization of Harmonic Oscillator Arrays with Graded Semiconductor Quantum Wells. Physical Review Letters, 2020, 125, 097403.	7.8	15
687	Anisotropic shape of CsPbBr ₃ colloidal nanocrystals: from 1D to 2D confinement effects. Nanoscale, 2020, 12, 18978-18986.	5.6	9

#	Article	IF	Citations
688	Synthesis of Twoâ€Dimensional Perovskite by Inverse Temperature Crystallization and Studies of Exciton States by Twoâ€Photon Excitation Spectroscopy. Advanced Functional Materials, 2020, 30, 2002661.	14.9	15
689	Excitons in spherical quantum dots revisited: analysis of colloidal nanocrystals. European Physical Journal B, 2020, 93, 1.	1.5	4
690	Strongly-ligated perovskite quantum dots with precisely controlled dimensions and architectures for white light-emitting diodes. Nano Energy, 2020, 77, 105043.	16.0	52
691	Photoluminescence efficiency of Al-rich AlGaN heterostructures in a wide range of photoexcitation densities over temperatures up to 550 K. Physical Review B, 2020, 102, .	3.2	1
692	Thickness-dependent band gap of <i>α</i> -ln ₂ Se ₃ : from electron energy loss spectroscopy to density functional theory calculations. Nanotechnology, 2020, 31, 315711.	2.6	18
693	Optical property and lasing of GaAs-based nanowires. Science China Materials, 2020, 63, 1364-1381.	6.3	12
694	The optical conductivity of few-layer black phosphorus by infrared spectroscopy. Nature Communications, 2020, 11, 1847.	12.8	40
695	High mobility and enhanced photoelectric performance of two-dimensional ternary compounds NaCuX (X = S, Se, and Te). Physical Chemistry Chemical Physics, 2021, 23, 2475-2482.	2.8	22
696	Controlling relaxation dynamics of excitonic states in monolayer transition metal dichalcogenides WS2 through interface engineering. Applied Physics Letters, 2021, 118, 121104.	3.3	5
697	Lattice strain influence on conduction band nonparabolicity in GaAs and InAs: Application to intraband optical absorption in InGaAs-GaAs asymmetric step quantum wells. Materials Science in Semiconductor Processing, 2021, 123, 105490.	4.0	2
698	Increase in the radiative decay rate of the indirect exciton due to application of the magnetic field. Journal of Physics: Conference Series, 2021, 1851, 012011.	0.4	0
699	Two photon pumped nanowire laser based on all inorganic perovskite with high exciton binding energy grown by physical vapor deposition. Journal Physics D: Applied Physics, 2021, 54, 275103.	2.8	3
700	Quantum Plasmonics: Energy Transport Through Plasmonic Gap. Advanced Materials, 2021, 33, e2006606.	21.0	19
701	Optical activity in resonant hybrid photonic crystals and clusters. European Physical Journal B, 2021, 94, 1.	1.5	0
702	Tuning the optoelectronic properties of naphthodithiophene (NDT) for designing of A-D-A type photovoltaic materials. Optik, 2021, 247, 167892.	2.9	21
703	Optical properties of two-dimensional black phosphorus. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 027802.	0.5	7
704	From Quantum Well Exciton Polaritons to One-Dimensional Excitons. NATO ASI Series Series B: Physics, 1991, , 123-139.	0.2	2
705	Excitons in Thin Films. NATO ASI Series Series B: Physics, 1989, , 289-300.	0.2	4

IF ARTICLE CITATIONS # Compositional Superlattices., 1985, , 143-184. 706 19 Nonlinear Interactions and Excitonic Effects in Semiconductor Quantum Wells. Springer Proceedings 0.2 in Physics, 1986, , 65-78. 708 Band Structure, Impurities and Excitons in Superlattices., 1986, , 12-37. 38 Wave Functions and Optical Properties of Excitons in a Slab. Springer Proceedings in Physics, 1988, , 102-109. Optical Properties of Excitons in Quantum Wells. Springer Proceedings in Physics, 1988, , 204-217. 710 0.2 4 Semiconductor Superlattices and Quantum Wells through Development of Molecular Beam Epitaxy., 1985, , 1-36. 713 Envelope Function Approach to the Superlattices Band Structure., 1985, , 381-423. 5 Theory of Optical Properties of Quantum Wells, Wires and Dots., 2003, , 261-322. 714 715 Electrons and Holes in Quantum Structures., 1995, , 153-171. 1 Electrochemical and Photoelectrical Properties of Bilayer Lipid Membranes (Blm). Topics in Inclusion Science, 1991, , 191-274. HISTORY AND PERSPECTIVE OF SEMICONDUCTOR SUPERLATTICES., 1985, , 3-41. 717 3 COMPOSITIONALLY MODULATED SUPERLATTICES., 1985, , 113-161. NONLINEAR OPTICAL PROPERTIES OF SEMICONDUCTOR QUANTUM WELLS., 1988, , 83-120. 719 32 TWO-DIMENSIONAL SEMICONDUCTORS: RECENT DEVELOPMENT., 1985, 502-519. The Electrodynamics of Superlattices. Modern Problems in Condensed Matter Sciences, 1989, , 459-541. 721 0.1 5 Thorium-doped Csl: Implications for the thorium nuclear clock transition. Physical Review A, 2018, 97, . Exciton-polaron spectral structures in two-dimensional hybrid lead-halide perovskites. Physical 723 2.4 116 Review Materials, 2018, 2, . Effect of Excitons in AlGaAs/GaAs Superlattice Solar Cells. Japanese Journal of Applied Physics, 2011, 50, 1.5 052302.

#	Article	IF	CITATIONS
726	Application: Linear Response. Springer Series in Solid-state Sciences, 2003, , 73-135.	0.3	0
727	Toward Quantum Fluids at Room Temperature: Polariton Condensation in III-Nitride Based Microcavities. Springer Series in Solid-state Sciences, 2013, , 201-230.	0.3	0
729	Advantages of Multiple Quantum Wells with Abrupt Interfaces for Light-Emitting Devices. Springer Series in Solid-state Sciences, 1984, , 136-146.	0.3	3
730	Selected Topics in Semiconductor Quantum Wells. Springer Series in Solid-state Sciences, 1984, , 168-175.	0.3	0
731	Picosecond Carrier Dynamics in Semiconductors. Springer Series in Chemical Physics, 1984, , 150-155.	0.2	0
732	SHORT PULSE PHYSICS OF QUANTUM WELL STRUCTURES. , 1985, , 541-550.		0
733	Advances in Semiconductor Superlattices, Quantum Wells and Heterostructures. Springer Series in Surface Sciences, 1985, , 48-59.	0.3	1
734	Interband Magneto-Optical Studies of GaAs-Ga1-xAlxAs Quantum Wells. , 1985, , 463-466.		1
735	Investigation of Carrier Dynamics in GaAs/GaAlAs Quantum Well Structures by Picosecond Luminescence Spectroscopy. , 1985, , 575-578.		0
736	COULOMBIC BOUND STATES IN SEMICONDUCTOR QUANTUM WELLS. , 1985, , 488-501.		1
737	INJECTION, INTERSUBBAND RELAXATION AND RECOMBINATION IN GaAs MULTIPLE QUANTUM WELLS. , 1985, , 562-579.		0
738	EXCITONS IN GaAs QUANTUM WELLS. , 1985, , 520-540.		0
739	Photoluminescence in Semiconductor Quantum Wells. , 1986, , 64-72.		0
740	Optical and Magnetooptical Absorption in Quantum Wells and Superlattices. , 1986, , 73-83.		0
741	Advances in Semiconductor Superlattices and Quantum Wells. , 1986, , 2-10.		0
742	Quantum Well Structures for Optical Signal Processing. , 1987, , 529-551.		0
743	Stark Shifts and Excitonic Effects in Semiconductor Quantum Wells and Superlattices. , 1988, , 189-209.		0
744	Excitons in Quantum Well Structures. NATO ASI Series Series B: Physics, 1989, , 311-324.	0.2	0

#	Article	lF	CITATIONS
745	Excitons in Quantum Boxes. NATO ASI Series Series B: Physics, 1989, , 211-218.	0.2	0
746	Electronic Energy Levels in Semiconductor Quantum Wells and Superlattices. NATO ASI Series Series B: Physics, 1991, , 117-142.	0.2	0
747	Spectroscopic Investigations of Quantum Wires and Quantum Dots. NATO ASI Series Series B: Physics, 1991, , 209-241.	0.2	1
748	Coherence in Ill–V Semiconductor Superlattices. , 1992, , 817-861.		0
749	Free Exciton Radiative Recombination in GaAs Quantum Wells. , 1993, , 129-144.		0
750	Light Detectors. , 1993, , 245-290.		0
751	Excitons and Polaritons in Quantum Wells. , 1993, , 187-216.		3
752	Super-Radiant Decay in Two-Dimensional Layered Semiconductors. Springer Series in Chemical Physics, 1998, , 292-294.	0.2	0
755	Localized excitons and trions in semiconductor nanosystems. Physics-Uspekhi, 2022, 65, 111-130.	2.2	8
756	Franz-Keldysh and Stark Effects in Two-Dimensional Metal Halide Perovskites. , 2022, 1, .		9
758	Linewidths and energy shifts of electron-impurity resonant states in quantum wells with infinite barriers. Physical Review B, 2022, 105, .	3.2	2
759	Evaporation-induced nano- to micro-sized transformation of photoluminescent Cs ₄ PbBr ₆ crystals. Journal of Materials Chemistry C, 0, , .	5.5	Ο
760	Photoreflectance studies of the band gapalignments in boron diluted BGaInAs/GaAsquantum wells. Optical Materials Express, 0, , .	3.0	0
761	Linewidth broadenings of the electron impurity resonant states in quantum wells with infinite barriers. AIP Conference Proceedings, 2022, , .	0.4	1
762	Theoretical Study of the Exciton Binding Energy and Exciton Absorption in Different Hyperbolic-Type Quantum Wells under Applied Electric, Magnetic, and Intense Laser Fields. International Journal of Molecular Sciences, 2022, 23, 11429.	4.1	3
763	Polarization-Induced 2D Electron and Holes in Undoped AlN/GaN/AlN Heterostructures. Springer Theses, 2022, , 107-153.	0.1	1
764	Fmoc-diphenylalanine gelating nanoarchitectonics: A simplistic peptide self-assembly to meet complex applications. Journal of Colloid and Interface Science, 2023, 636, 113-133.	9.4	16
765	Analysis of the quantum confined stark effect in GaSb/AlGaSb multiple quantum wells. , 1989, ,		0

#	Article	IF	Citations
766	Excitons in Double Quantum Wells-beyond the single-subband limit. , 1989, , .		0
767	Efficient biphoton emission in semiconductors by single-photon recycling. Physical Review A, 2023, 107,	2.5	0
768	Thickness-dependent ultrafast nonlinear optical response of germanium selenide nanosheets. Journal of Materials Science, 2023, 58, 11527-11538.	3.7	1
769	Essential role of momentum-forbidden dark excitons in the energy transfer responses of monolayer transition-metal dichalcogenides. Npj 2D Materials and Applications, 2023, 7, .	7.9	0
770	Excitonic ground states in phosphorene nanoflakes. Physical Chemistry Chemical Physics, 2023, 25, 21723-21729.	2.8	0
771	III-Nitride optoexcitonics: Physics, epitaxy, and emerging device applications. Semiconductors and Semimetals, 2023, , .	0.7	0
772	Temperature-Regulated In-Plane Exciton Dynamics in CdSe/CdSeS Colloidal Quantum Well Heterostructures. ACS Photonics, 2023, 10, 4052-4060.	6.6	1
773	Strongly interacting two-dimensional electron systems: Evidence for enhanced one-dimensional edge-channel coupling. Physical Review B, 2023, 108, .	3.2	0
774	Leave No Photon Behind: Artificial Intelligence in Multiscale Physics of Photocatalyst and Photoreactor Design. Advanced Science, 0, , .	11.2	0