Thermally conductive polyvinyl alcohol composite film hetero-structured MXene@silver fillers

Nano Research 16, 7820-7828

DOI: 10.1007/s12274-023-5594-1

Citation Report

#	Article	IF	CITATIONS
1	A facile and green strategy to achieve metallized woven carbon fiber through the triple roles of dopamine in in-situ thermal reduction of Ag. Composites Communications, 2023, 40, 101585.	6.3	1
2	Advancing pressure sensors performance through a flexible MXene embedded interlocking structure in a microlens array. Nano Research, 2023, 16, 10493-10499.	10.4	6
3	High EMI shielding effectiveness and superhydrophobic properties based on step-wise asymmetric structure constructed by one-step method. Nano Research, 2023, 16, 10483-10492.	10.4	4
4	Hybrid-Filler-Incorporated, Photocurable, Thermally Conductive Elastomers with High Stretchability and Self-Attachability. Industrial & Engineering Chemistry Research, 2023, 62, 9257-9267.	3.7	1
5	Bacterial-Cellulose-Reinforced Graphite Nanoplate Films for Electromagnetic Interference Shielding, Heat Conduction, and Joule Heating. ACS Applied Nano Materials, 2023, 6, 10202-10212.	5.0	4
6	Flexible thermoregulatory microcapsule/polyurethane-MXene composite films with multiple thermal management functionalities and excellent EMI shielding performance. Journal of Materials Science and Technology, 2023, 165, 27-38.	10.7	51
7	Hexagonal boron nitride nanosheets: Preparation, heat transport property and application as thermally conductive fillers. Progress in Materials Science, 2023, 138, 101154.	32.8	19
8	Thermally conductive epoxy composites with efficient heat transfer pathways by in-situ growth of CNTs on oriented BNNS. Composites Communications, 2023, 41, 101636.	6.3	1
9	Highly fire safe and flexible nanoarchitectures with tunable interface towards excellent electromagnetic interference shielding. Journal of Alloys and Compounds, 2023, 960, 171025.	5.5	6
10	Bioinspired multifunctional high-performance electromagnetic shielding coatings resistant to extreme space environments., 2023, 1, 100010.		2
11	Enhanced thermal properties of <scp>HDPE</scp> / <scp>EG</scp> nanocomposites via synergy of multiâ€source pulsating flow and phase transition. Polymer Composites, 2023, 44, 5781-5791.	4.6	0
12	Low-Load MXene Nanosheet/Melamine Composite Sponges for Enhanced Electromagnetic Interference Shielding. ACS Applied Nano Materials, 2023, 6, 10953-10959.	5.0	5
13	Poly(L-lactic acid)/graphene composite films with asymmetric sandwich structure for thermal management and electromagnetic interference shielding. Chemical Engineering Journal, 2023, 466, 143190.	12.7	7
14	Multifunctional Conductive Material Based on Intelligent Porous Paper Used in Conjunction with a Vitrimer for Electromagnetic Shielding, Sensing, Joule Heating, and Antibacterial Properties. ACS Applied Materials & Diterraces, 2023, 15, 33763-33773.	8.0	9
15	Eco-Friendly Silver Nanoparticles/Chitosan/Poly(vinyl alcohol) Composites Exhibit Remarkable EMI Shielding Capabilities and Outstanding Thermal Conductivities. ACS Applied Materials & Diterfaces, 2023, 15, 35631-35638.	8.0	1
16	Adjustable boron nitride segregated framework in epoxy resin for high performance thermal management and flame retardant applications. Composites Science and Technology, 2023, 242, 110161.	7.8	7
17	Alkylated modified boron nitride nanosheets/polyimide composite films with advanced thermal conductivity and low dielectric constant. Ceramics International, 2023, 49, 32577-32587.	4.8	4
18	Electricâ€Fieldâ€Induced Alignment of Functionalized Carbon Nanotubes Inside Thermally Conductive Liquid Crystalline Polyimide Composite Films. Angewandte Chemie - International Edition, 2023, 62, .	13.8	36

#	Article	IF	Citations
19	Electricâ€Fieldâ€Induced Alignment of Functionalized Carbon Nanotubes Inside Thermally Conductive Liquid Crystalline Polyimide Composite Films. Angewandte Chemie, 2023, 135, .	2.0	8
20	Carbonized Syndiotactic Polystyrene/Carbon Nanotube/MXene Hybrid Aerogels with Egg-Box Structure: A Platform for Electromagnetic Interference Shielding and Solar Thermal Energy Management. ACS Applied Materials & Samp; Interfaces, 2023, 15, 39740-39751.	8.0	4
21	Bio-inspired surface manipulation of halloysite nanotubes for high-performance flame retardant polylactic acid nanocomposites. Nano Research, 2024, 17, 1595-1606.	10.4	7
22	Reinforcing and toughening bacterial cellulose/MXene films assisted by interfacial multiple cross-linking for electromagnetic interference shielding and photothermal response. Journal of Colloid and Interface Science, 2023, 652, 1645-1652.	9.4	4
23	Direct ink writing of multifunctional gratings with gel-like MXene/norepinephrine ink for dynamic electromagnetic interference shielding and patterned Joule heating. Nano Research, 2024, 17, 1585-1594.	10.4	4
24	Hugely improved electromagnetic interference shielding and mechanical properties for UHMWPE composites via constructing an oriented conductive carbon nanostructures (CNS) networks. Journal of Materials Research and Technology, 2023, 26, 6520-6531.	5.8	0
25	Pyrolyzed cellulose/rGO aerogel composites via I2 treatment and silane surface functionalization with highly improved through-plane thermal conductivity and EMI shielding effectiveness. Journal of Materials Research and Technology, 2023, 26, 2782-2795.	5.8	1
26	External field-assisted techniques for polymer matrix composites with electromagnetic interference shielding. Science Bulletin, 2023, 68, 1938-1953.	9.0	55
27	Hot-pressing induced alignment of AlN whiskers in polymer matrix leading to enhanced in-plane thermal conductivity. Ceramics International, 2023, 49, 35094-35103.	4.8	1
28	Large scale fabrication of recyclable and multifunctional sandwich-structured electromagnetic interference shielding films based on waste Nylon-6 silk. Materials Today Physics, 2023, 36, 101177.	6.0	2
29	Utilizing a metal-forging inspired chain combing strategy to enhance properties and expand applications of Nylon 66 plastic via heat inducing. Nano Research, 2024, 17, 2164-2171.	10.4	0
30	Electromagnetic interference shielding of graphene/PMMA composites depending on growth temperature of CVD-graphene. Synthetic Metals, 2023, 299, 117464.	3.9	1
31	Fatigue-resistant polyimide aerogels with hierarchical cellular structure for broadband frequency sound absorption and thermal insulation. Advanced Composites and Hybrid Materials, 2023, 6, .	21.1	6
32	Construction of mechanically robust and fire safe thermoplastic polyurethane-based nanocomposites for electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing, 2023, 175, 107818.	7.6	3
33	ÂDevelopment Aramid Nanofiber―and Pentaerythritolâ€Grafted Graphene Nanoplateâ€Based Highâ€Performance Thermally Conductive Composites. Advanced Electronic Materials, 2023, 9, .	5.1	0
34	Three-dimensional macroscopic absorbents: From synergistic effects to advanced multifunctionalities. Nano Research, 2024, 17, 1952-1983.	10.4	11
35	MOF@wood Derived Ultrathin Carbon Composite Film for Electromagnetic Interference Shielding with Effective Absorption and Electrothermal Management. Advanced Functional Materials, 2024, 34, .	14.9	4
36	Tunable construction of fire safe and mechanically strong hierarchical composites towards electromagnetic interference shielding. Journal of Colloid and Interface Science, 2023, 652, 1554-1567.	9.4	5

3

#	Article	IF	CITATIONS
37	Multilayer Ti3C2Tx MXene/graphene oxide/carbon fiber fabric/thermoplastic polyurethane composite for improved mechanical and electromagnetic interference shielding performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 677, 132339.	4.7	3
38	Flexible Graphene/MXene Composite Thin Films for High-Performance Electromagnetic Interference Shielding and Joule Heating. ACS Applied Nano Materials, 2023, 6, 16730-16739.	5.0	0
39	Realizing balanced flame retardancy and electromagnetic interference shielding in hierarchical elastomer nanocomposites. Journal of Colloid and Interface Science, 2024, 653, 634-642.	9.4	0
40	Recent Advances of MXenesâ€Based Optical Functional Materials. Advanced Photonics Research, 2023, 4,	3.6	20
41	Cl-terminated decoration to modulate the permittivity of MXene for enhanced electromagnetic-absorbing performance. Journal of Materials Science and Technology, 2024, 179, 187-197.	10.7	0
42	Flexible and Wearable Piezoresistive Sensors Based on Double Wrinkled Layers for Motion Monitoring and Human Physiological Signal Monitoring. ACS Applied Electronic Materials, 0, , .	4.3	0
43	Multi-layer hierarchical cellulose nanofibers/carbon nanotubes/vinasse activated carbon composite materials for supercapacitors and electromagnetic interference shielding. Nano Research, 2024, 17, 904-912.	10.4	11
44	High MXene loading, nacre-inspired MXene/ANF electromagnetic interference shielding composite films with ultralong strain-to-failure and excellent Joule heating performance. Nano Research, 2024, 17, 2061-2069.	10.4	9
45	Flexible Fluorinated Graphene/Poly(vinyl Alcohol) Films toward High Thermal Management Capability. ACS Applied Materials & Diterfaces, 0, , .	8.0	0
46	Preparation and Properties of UV-Curable Waterborne Polyurethane Acrylate/MXene Nanocomposite Films. Nanomaterials, 2023, 13, 3022.	4.1	1
47	Preparation of a thermally conductive phaseâ€change coating with good antiâ€corrosion. Polymer Composites, 2024, 45, 2546-2557.	4.6	0
48	Layered Structural PBAT Composite Foams for Efficient Electromagnetic Interference Shielding. Nano-Micro Letters, 2024, 16, .	27.0	24
49	Alveoliâ€Mimetic Synergistic Liquid and Solid Thermal Conductive Interface as a Novel Strategy for Designing Highâ€Performance Thermal Interface Materials. Small, 0, , .	10.0	0
50	Synchronous deprotonation–protonation for mechanically robust chitin/aramid nanofibers conductive aerogel with excellent pressure sensing, thermal management, and electromagnetic interference shielding. Nano Research, 2024, 17, 2038-2049.	10.4	3
51	Carbon-based materials with combined functions of thermal management and electromagnetic protection: Preparation, mechanisms, properties, and applications. Nano Research, 2024, 17, 883-903.	10.4	0
52	Highly Thermoconductive, Strong Graphene-Based Composite Films by Eliminating Nanosheets Wrinkles. Nano-Micro Letters, 2024, 16, .	27.0	1
53	One-step in-situ preparation of C/TiO2@rGO aerogel derived from Ti3C2T MXene for integrating microwave absorption, electromagnetic interference shielding and catalytic degradation of antibiotics. Carbon, 2024, 217, 118610.	10.3	3
54	Enhanced electromagnetic wave absorption of three-dimensional flower-like ZnO/TiO2/Ti3C2Tx composites. Ceramics International, 2024, 50, 1918-1931.	4.8	1

#	Article	IF	CITATIONS
55	Self-assembly tungsten selenide hybrid ternary MOF derived magnetic alloys via multi-polarization to boost microwave absorption. Nano Research, 2024, 17, 1625-1635.	10.4	10
56	Robust CoFe ₂ O ₄ @Carbon Nanotube/Polydimethylsiloxane Foams with Low Thermal Conductivity for Electromagnetic Interference Shielding. ACS Applied Nano Materials, 2023, 6, 21733-21740.	5.0	0
57	MXenes and Clay Minerals in the Framework of the 2D Organic–Inorganic Hybrid Nanomaterials. Chemistry of Materials, 0, , .	6.7	1
58	Insitu assembly of Fe3O4@FeNi3 spherical mesoporous nanoparticles embedded on 2D reduced graphene oxide (RGO) layers as protective barrier for EMI pollution. Applied Surface Science Advances, 2024, 19, 100545.	6.8	0
59	A Stretchable Electromagnetic Interference Shielding Fabric with Dualâ€Mode Passive Personal Thermal Management. Advanced Functional Materials, 0, , .	14.9	3
60	Bilayered Distribution of Ag and Fe ₃ O ₄ in Electrospun TPU Films for Low-Reflection Electromagnetic Interference Shielding and Multiple Thermal Management Functionalities. Industrial & Engineering Chemistry Research, 0, , .	3.7	0
61	Research progress on high-performance electromagnetic interference shielding materials with well-organized multilayered structures. Materials Today Physics, 2024, 40, 101330.	6.0	0
62	Large flakes of Al–Ti3C2Tx MXene constructing highly ordered layered MXene/ANF films with integrated multifunctionalities. Ceramics International, 2024, 50, 11379-11391.	4.8	0
63	Liquid metal based conductive textile via reactive wetting for stretchable electromagnetic shielding and electro-thermal conversion applications. Chemical Engineering Journal, 2024, 481, 148504.	12.7	0
64	Flexible, Reliable, and Lightweight Multiwalled Carbon Nanotube/Polytetrafluoroethylene Membranes with Dualâ€Nanofibrous Structure for Outstanding EMI Shielding and Multifunctional Applications. Small, 0, , .	10.0	0
65	Lightweight HfC nanowire-carbon fiber/graphene aerogel composites for high-efficiency electromagnetic interference shielding. Carbon, 2024, 219, 118788.	10.3	0
66	Rapid exfoliation and surface hydroxylation of high-quality boron nitride nanosheets enabling waterborne polyurethane with high thermal conductivity and flame retardancy. Advanced Composites and Hybrid Materials, 2024, 7, .	21.1	0
67	Progress in development of MXene-based nanocomposites for supercapacitor application-A review. FlatChem, 2024, 44, 100609.	5.6	0
68	Conducting polymer hollow nanostructures by surfactant-free Ouzo emulsion for an exceptional EMI shielding performance. European Polymer Journal, 2024, 206, 112771.	5.4	1
69	Electrospun nanofiber nonwovens and sponges towards practical applications of waterproofing, thermal insulation, and electromagnetic shielding/absorption. Materials Today Nano, 2024, 25, 100452.	4.6	1
70	Recent progress in smart electromagnetic interference shielding materials. Journal of Materials Science and Technology, 2024, 186, 256-271.	10.7	0
71	<i>N</i> -Doped Graphene/MXene Nanocomposite as a Temperature-Adaptive Neuromorphic Memristor. ACS Applied Nano Materials, 2024, 7, 3631-3644.	5.0	0
72	Multifunctional syndiotacticity-rich poly (vinyl alcohol)/MXene sediment for multilayered composite films with effective electromagnetic interference shielding and thermal conductivity. Composites Science and Technology, 2024, 249, 110490.	7.8	0

#	Article	IF	CITATIONS
73	Two-dimensional MXene nanosheets on nano-scale fibrils in hierarchical porous structure to achieve ultra-high sensitivity. Nanoscale, 2024, 16, 6961-6972.	5.6	0
74	Flexible, hierarchical MXene@SWNTs transparent conductive film with multi-source thermal response for electromagnetic interference shielding. Composites Science and Technology, 2024, 249, 110484.	7.8	0
75	Highly sensitive, anti-freeze, repairable, and conductive double-network organohydrogel for flexible pressure sensors. Polymer, 2024, 298, 126892.	3.8	0
76	Highly Thermally Conductive Triple-Level Ordered CNT/PVA Nanofibrous Films. Polymers, 2024, 16, 734.	4.5	0
77	Competitively Assembled Aramidâ€MXene Janus Aerogel Film Exhibiting Concurrently Robust Shielding and Effective Antiâ€Reflection Performance. Advanced Functional Materials, 0, , .	14.9	0
78	Study on improving mechanical and electromagnetic shielding performances of MXene reinforced rigid polyurethane composites. Materials Today Communications, 2024, 39, 108607.	1.9	0
79	Highly Thermally Conductive Polydimethylsiloxane Composites with Controllable 3D GO@f-CNTs Networks via Self-sacrificing Template Method. Chinese Journal of Polymer Science (English Edition), 0, , .	3.8	0