A recrystallization approach to repairing spent LiFePO<

Journal of Materials Chemistry A 11, 9057-9065 DOI: 10.1039/d3ta00655g

Citation Report

#	Article	IF	CITATIONS
1	Self-powered recycling of spent lithium iron phosphate batteries <i>via</i> triboelectric nanogenerator. Energy and Environmental Science, 2023, 16, 3873-3884.	30.8	16
2	Direct and rapid regeneration of spent LiFePO4 cathodes via a high-temperature shock strategy. Journal of Power Sources, 2023, 587, 233697.	7.8	3
3	Fundamentals, status and challenges of direct recycling technologies for lithium ion batteries. Chemical Society Reviews, 2023, 52, 8194-8244.	38.1	8
4	Recent progress and perspective of cathode recycling technology for spent LiFePO4 batteries. Journal of Industrial and Engineering Chemistry, 2023, , .	5.8	0
5	A systematic review of efficient recycling for the cathode materials of spent lithium-ion batteries: process intensification technologies beyond traditional methods. Green Chemistry, 2024, 26, 1170-1193.	9.0	0
6	Dynamic Li ⁺ Capture through Ligandâ€Chain Interaction for the Regeneration of Depleted LiFePO ₄ Cathode. Advanced Materials, 2024, 36, .	21.0	1
7	Exploring a sustainable and eco-friendly high-power ultrasonic method for direct regeneration of lithium iron phosphate. Journal of Energy Storage, 2024, 82, 110578.	8.1	0