Complex I inhibitor of oxidative phosphorylation in adv myeloid leukemia: phase I trials

Nature Medicine 29, 115-126 DOI: 10.1038/s41591-022-02103-8

Citation Report

#	Article	IF	CITATIONS
1	Time to hit pause on mitochondria-targeting cancer therapies. Nature Medicine, 2023, 29, 29-30.	30.7	21
2	OXPHOS inhibitors, metabolism and targeted therapies in cancer. Biochemical Pharmacology, 2023, 211, 115531.	4.4	2
4	From mitochondria to cells to humans: Targeting bioenergetics in aging and disease. International Journal of Biochemistry and Cell Biology, 2023, 157, 106391.	2.8	2
6	What is cancer metabolism?. Cell, 2023, 186, 1670-1688.	28.9	41
7	Targeting Mitochondrial Metabolic Reprogramming as a Potential Approach for Cancer Therapy. International Journal of Molecular Sciences, 2023, 24, 4954.	4.1	8
8	Mitochondrial redox adaptations enable alternative aspartate synthesis in SDH-deficient cells. ELife, 0, 12, .	6.0	8
9	Targeting Mitochondria with ClpP Agonists as a Novel Therapeutic Opportunity in Breast Cancer. Cancers, 2023, 15, 1936.	3.7	6
10	Crosstalk between oxidative phosphorylation and immune escape in cancer: a new concept of therapeutic targets selection. Cellular Oncology (Dordrecht), 2023, 46, 847-865.	4.4	8
11	Integrated bioinformatic analysis of mitochondrial metabolism-related genes in acute myeloid leukemia. Frontiers in Immunology, 0, 14, .	4.8	1
12	Oxidative stress enhances the therapeutic action of a respiratory inhibitor in <scp>MYC</scp> â€driven lymphoma. EMBO Molecular Medicine, 2023, 15, .	6.9	4
13	Alanine supplementation exploits glutamine dependency induced by SMARCA4/2-loss. Nature Communications, 2023, 14, .	12.8	2
16	Redox-crippled MitoQ potently inhibits breast cancer and glioma cell proliferation: A negative control for verifying the antioxidant mechanism of MitoQ in cancer and other oxidative pathologies. Free Radical Biology and Medicine, 2023, 205, 175-187.	2.9	1
17	Synthesis and biological evaluation of novel pyrazole amides as potent mitochondrial complex I inhibitors. European Journal of Medicinal Chemistry, 2023, 258, 115576.	5.5	0
18	Rethinking our approach to cancer metabolism to deliver patient benefit. British Journal of Cancer, 0,	6.4	0
20	Lactic acidosis switches cancer cells from dependence on glycolysis to OXPHOS and renders them highly sensitive to OXPHOS inhibitors. Biochemical and Biophysical Research Communications, 2023, 671, 46-57.	2.1	1
21	First-in-Class NADH/Ubiquinone Oxidoreductase Core Subunit S7 (NDUFS7) Antagonist for the Treatment of Pancreatic Cancer. ACS Pharmacology and Translational Science, 0, , .	4.9	0
22	Respiratory complex I in mitochondrial membrane catalyzes oversized ubiquinones. Journal of Biological Chemistry, 2023, , 105001.	3.4	0
23	Compensatory cross-talk between autophagy and glycolysis regulates senescence and stemness in heterogeneous glioblastoma tumor subpopulations. Acta Neuropathologica Communications, 2023, 11,	5.2	7

TATION REDO

CITATION REPORT

#	Article	IF	CITATIONS
24	Oxidative phosphorylation is a metabolic vulnerability of endocrine therapy and palbociclib resistant metastatic breast cancers. Nature Communications, 2023, 14, .	12.8	14
25	Combined GLUT1 and OXPHOS inhibition eliminates acute myeloid leukemia cells by restraining their metabolic plasticity. Blood Advances, 2023, 7, 5382-5395.	5.2	2
26	Therapeutic targeting of leukemia stem cells in acute myeloid leukemia. Frontiers in Oncology, 0, 13, .	2.8	0
27	Emerging therapies in cancer metabolism. Cell Metabolism, 2023, 35, 1283-1303.	16.2	12
28	Cancer Metabolism Historical Perspectives: A Chronicle of Controversies and Consensus. Cold Spring Harbor Perspectives in Medicine, 0, , a041530.	6.2	0
29	Targeting mitochondrial oxidative phosphorylation: lessons, advantages, and opportunities. British Journal of Cancer, 0, , .	6.4	2
30	Canagliflozin mediates tumor suppression alone and in combination with radiotherapy in nonâ€small cell lung cancer (NSCLC) through inhibition of HIFâ€1α. Molecular Oncology, 2023, 17, 2235-2256.	4.6	2
31	Preventing mitochondrial reverse electron transport as a strategy for cardioprotection. Basic Research in Cardiology, 2023, 118, .	5.9	4
32	Multifaceted roles of mitochondrial dysfunction in diseases: from powerhouses to saboteurs. Archives of Pharmacal Research, 2023, 46, 723-743.	6.3	0
33	Targeting chemoresistance and mitochondria-dependent metabolic reprogramming in acute myeloid leukemia. Frontiers in Oncology, 0, 13, .	2.8	0
34	Bioenergetic alteration in gastrointestinal cancers: The good, the bad and the ugly. World Journal of Gastroenterology, 0, 29, 4499-4527.	3.3	1
35	Rewiring of mitochondrial metabolism in therapy-resistant cancers: permanent and plastic adaptations. Frontiers in Cell and Developmental Biology, 0, 11, .	3.7	5
36	OXPHOS-targeting drugs in oncology: new perspectives. Expert Opinion on Therapeutic Targets, 2023, 27, 939-952.	3.4	1
37	Pan-tissue mitochondrial phenotyping reveals lower OXPHOS expression and function across cancer types. Scientific Reports, 2023, 13, .	3.3	0
39	MitoTam-01 Trial: Mitochondrial Targeting as Plausible Approach to Cancer Therapy. Comment on Yap et al. Complex I Inhibitor of Oxidative Phosphorylation in Advanced Solid Tumors and Acute Myeloid Leukemia: Phase I Trials. Nat. Med. 2023, 29, 115–126. Cancers, 2023, 15, 4476.	3.7	1
40	EGR1-mediated metabolic reprogramming to oxidative phosphorylation contributes to ibrutinib resistance in B cell lymphoma. Blood, 0, , .	1.4	1
41	Mitochondrially targeted tamoxifen as anticancer therapy: case series of patients with renal cell carcinoma treated in a phase I/Ib clinical trial. Therapeutic Advances in Medical Oncology, 2023, 15, .	3.2	0
42	Distinct Mechanisms of Resistance to CDK4/6 Inhibitors Require Specific Subsequent Treatment Strategies: One Size Does Not Fit All. Cancer Research, 2023, 83, 3165-3167.	0.9	ο

CITATION REPORT

#	Article	IF	CITATIONS
44	MYC is a regulator of androgen receptor inhibition-induced metabolic requirements in prostate cancer. Cell Reports, 2023, 42, 113221.	6.4	0
45	Selective activator of human ClpP triggers cell cycle arrest to inhibit lung squamous cell carcinoma. Nature Communications, 2023, 14, .	12.8	1
46	Diffuse Gliomas with FGFR3-TACC3 Fusions: Oncogenic Mechanisms, Hallmarks, and Therapeutic Perspectives. Cancers, 2023, 15, 5555.	3.7	0
47	Chronic lymphocytic leukemia patient-derived xenografts recapitulate clonal evolution to Richter transformation. Leukemia, 2024, 38, 557-569.	7.2	0
48	The cross-talk between macrophages and tumor cells as a target for cancer treatment. Frontiers in Oncology, 0, 13, .	2.8	0
49	Regulation of leukemogenesis via redox metabolism. Trends in Cell Biology, 2023, , .	7.9	0
50	Reductive stress in cancer: coming out of the shadows. Trends in Cancer, 2024, 10, 103-112.	7.4	1
51	Phase Ib Trial of Phenformin in Patients with V600-mutated Melanoma Receiving Dabrafenib and Trametinib. Cancer Research Communications, 2023, 3, 2447-2454.	1.7	0
52	MYC-driven increases in mitochondrial DNA copy number occur early and persist throughout prostatic cancer progression. JCI Insight, 0, , .	5.0	0
53	Integrative multiomics enhancer activity profiling identifies therapeutic vulnerabilities in cholangiocarcinoma of different etiologies. Gut, 0, , gutjnl-2023-330483.	12.1	4
54	Targeting Metabolic Vulnerabilities to Overcome Prostate Cancer Resistance: Dual Therapy with Apalutamide and Complex I Inhibition. Cancers, 2023, 15, 5612.	3.7	0
56	Targeting S100A9 protein affects mTOR-ER stress signaling and increases venetoclax sensitivity in Acute Myeloid Leukemia. Blood Cancer Journal, 2023, 13, .	6.2	0
58	Reductive carboxylation of glutamine as a potential target in acute myeloid leukemia. Oncotarget, 2023, 14, 947-948.	1.8	0
59	<i>IDH1</i> -Mutant Preleukemic Hematopoietic Stem Cells Can Be Eliminated by Inhibition of Oxidative Phosphorylation. Blood Cancer Discovery, 2024, 5, 114-131.	5.0	1
61	UCP2 and pancreatic cancer: conscious uncoupling for therapeutic effect. Cancer and Metastasis Reviews, 0, , .	5.9	0
62	Targeting cancer and immune cell metabolism with the complex I inhibitors metformin and IACSâ€010759. Molecular Oncology, 0, , .	4.6	1
63	Antitumour effect of the mitochondrial complex III inhibitor Atovaquone in combination with anti-PD-L1 therapy in mouse cancer models. Cell Death and Disease, 2024, 15, .	6.3	0
66	Metabolic alterations in hereditary and sporadic renal cell carcinoma. Nature Reviews Nephrology, 2024, 20, 233-250.	9.6	0

CITATION REPORT

#	Article	IF	CITATIONS
67	Molecular and cellular mechanisms underlying the failure of mitochondrial metabolism drugs in cancer clinical trials. Journal of Clinical Investigation, 2024, 134, .	8.2	0
68	Deoxycytidine kinase inactivation enhances gemcitabine resistance and sensitizes mitochondrial metabolism interference in pancreatic cancer. Cell Death and Disease, 2024, 15, .	6.3	0
69	SLC25A51 decouples the mitochondrial NAD+/NADH ratio to control proliferation of AML cells. Cell Metabolism, 2024, 36, 808-821.e6.	16.2	0
70	Metabolic reprogramming in the CLL TME; potential for new therapeutic targets. Seminars in Hematology, 2024, , .	3.4	0
71	Oxidative phosphorylation is a pivotal therapeutic target of fibrodysplasia ossificans progressiva. Life Science Alliance, 2024, 7, e202302219.	2.8	0
72	Altered Oxidative Phosphorylation Confers Vulnerability on <i>IDH1</i> -Mutant Leukemia Cells: Is This Therapeutically Tractable?. Blood Cancer Discovery, 2024, 5, 83-85.	5.0	0
73	Treatment of Thoracic SMARCA4-Deficient Undifferentiated Tumors: Where We Are and Where We Will Go. International Journal of Molecular Sciences, 2024, 25, 3237.	4.1	0
74	Unlocking potential: the role of the electron transport chain in immunometabolism. Trends in Immunology, 2024, 45, 259-273.	6.8	0