The Athena X-ray Integral Field Unit: a consolidated des review of the preliminary definition phase

Experimental Astronomy 55, 373-426 DOI: 10.1007/s10686-022-09880-7

Citation Report

#	Article	IF	CITATIONS
1	Demonstration of a Full-Scale Brassboard TES Microcalorimeter Array for the <i>Athena</i> X-IFU. IEEE Transactions on Applied Superconductivity, 2023, 33, 1-5.	1.7	2
2	Correcting Gain Drift in TES Detectors for Future X-Ray Satellite Missions. IEEE Transactions on Applied Superconductivity, 2023, 33, 1-6.	1.7	4
3	Ir Film Structural Properties for TES Application. IEEE Transactions on Applied Superconductivity, 2023, 33, 1-4.	1.7	1
4	Refinement of Transition-Edge Sensor Dimensions for the X-Ray Integral Field Unit on ATHENA. IEEE Transactions on Applied Superconductivity, 2023, 33, 1-6.	1.7	3
5	Characterizing Thermal Background Events for <i>Athena</i> X-IFU. IEEE Transactions on Applied Superconductivity, 2023, 33, 1-6.	1.7	2
6	A novel approach to detect line emission under high background in high-resolution X-ray spectra. Monthly Notices of the Royal Astronomical Society, 2023, 521, 969-983.	4.4	0
7	The first X-ray look at SMSS J114447.77-430859.3: the most luminous quasar in the last 9 Gyr. Monthly Notices of the Royal Astronomical Society, 2023, 522, 5217-5237.	4.4	2
8	A hard look at the X-ray spectral variability of NGC 7582. Monthly Notices of the Royal Astronomical Society, 2023, 522, 1169-1182.	4.4	1
9	Components for Multiplexed dc-SQUID Readouts of Transition Edge Sensor Arrays. IEEE Transactions on Applied Superconductivity, 2023, , 1-6.	1.7	0
10	Extragalactic fast X-ray transient candidates discovered by <i>Chandra</i> (2014–2022). Astronomy and Astrophysics, 2023, 675, A44.	5.1	5
11	Physics Beyond the Standard Model with Future X-Ray Observatories: Projected Constraints on Very-light Axion-like Particles with Athena and AXIS. Astrophysical Journal, 2023, 951, 5.	4.5	1
12	Transition Edge Sensors X-ray Spectrometers: Applications for X-ray Astronomy. , 2023, , 71-91.		0
13	Evidence of a Massive Stellar Disruption in the X-Ray Spectrum of ASASSN-14li. Astrophysical Journal Letters, 2023, 953, L23.	8.3	2
14	Coordinated X-ray and UV absorption within the accretion disk wind of the active galactic nucleus PG 1126-041. Astronomy and Astrophysics, 0, , .	5.1	0
15	Observing gravitational redshift with X-ray emission in galaxy clusters with Athena X-IFU. Astronomy and Astrophysics, 0, , .	5.1	0
16	Time Evolving Photo Ionisation Device (TEPID): A novel code for out-of-equilibrium gas ionisation. Astronomy and Astrophysics, 2023, 679, A141.	5.1	2
17	Dynamical properties and detectability of the magneto-thermal instability in the intracluster medium. Astronomy and Astrophysics, 2023, 680, A24.	5.1	1
18	Soft X-ray emission from warm gas in IllustrisTNG circum-cluster environments. Astronomy and Astrophysics, 2023, 680, A94.	5.1	1

#	Article	IF	CITATIONS
19	Development of space-flight room-temperature electronics for the Line Emission Mapper Microcalorimeter Spectrometer. Journal of Astronomical Telescopes, Instruments, and Systems, 2023, 9, .	1.8	2
20	Development of the microcalorimeter and anticoincidence detector for the Line Emission Mapper x-ray probe. Journal of Astronomical Telescopes, Instruments, and Systems, 2023, 9, .	1.8	5
21	Characterization of a hybrid array of single and multi-absorber transition-edge sensor microcalorimeters for the Line Emission Mapper. Journal of Astronomical Telescopes, Instruments, and Systems, 2023, 9, .	1.8	2
22	Incorporation of Realistic Intrinsic Profiles for the Fe Kα and Fe Kβ Emission Lines in X-ray Reprocessor Models. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	Ο
25	A case study of an early galaxy cluster with the Athena X-IFU. Astronomy and Astrophysics, 0, , .	5.1	0
26	Fluorescent Fe K line emission of <i>$\hat{1}^3$</i> Cas stars. Astronomy and Astrophysics, 2024, 682, A179.	5.1	Ο
27	The high energy X-ray probe (HEX-P): probing the physics of the X-ray corona in active galactic nuclei. Frontiers in Astronomy and Space Sciences, 0, 10, .	2.8	0
28	X-ray Technologies for Astrophysics Missions Supported by the Italian Space Agency. Condensed Matter, 2024, 9, 11.	1.8	0
29	The TES-based Cryogenic AntiCoincidence Detector (CryoAC) of ATHENA X-IFU: A Large Area Silicon Microcalorimeter for Background Particles Detection. Journal of Low Temperature Physics, 2024, 214, 164-172.	1.4	2
30	<i>Chandra</i> /HETG Doppler velocity measurements in stellar coronal sources. Monthly Notices of the Royal Astronomical Society, 2024, 528, 4591-4622.	4.4	0
31	Thermalization of a SQUID Chip at Cryogenic Temperature: Thermal Conductance Measurement for GE 7031 Varnish Glue, Apiezon N Grease and Rubber Cement Between 20 and 200ÂmK. Journal of Low Temperature Physics, 2024, 214, 190-199.	1.4	0
32	Extending the high-resolution X-ray spectroscopy of Line Emission Mapper to UV/optically-bright sources. Journal of Astronomical Telescopes, Instruments, and Systems, 2024, 10, .	1.8	Ο
33	Current-Dependent Resistance in TES Wiring Superimposed Nb Striplines. Journal of Low Temperature Physics, 0, , .	1.4	0
34	The first cut is the cheapest: optimizing Athena/X-IFU-like TES detectors resolution by filter truncation. Experimental Astronomy, 2024, 57, .	3.7	0

CITATION REPORT