Study of theL23edges in the3dtransition metals and the spectroscopy with comparisons to theory

Physical Review B 26, 614-635 DOI: 10.1103/physrevb.26.614

Citation Report

#	Article	IF	CITATIONS
1	Role of multielectron excitations in the L3 XANES of Pd. Solid State Communications, 1983, 46, 367-370.	0.9	21
2	Study of theKedges of3dtransition metals in pure and oxide form by x-ray-absorption spectroscopy. Physical Review B, 1983, 27, 2111-2131.	1.1	479
3	Selection Rules and Multiplet Effects in Comparison of X-Ray Absorption and Photoemission Peak Energies. Physical Review Letters, 1983, 50, 910-913.	2.9	65
4	Localisation of the electron distribution in small nickel particles embedded in metallic or insulating matrices. Journal of Physics F: Metal Physics, 1984, 14, 1897-1904.	1.6	7
5	Extended fine structures above TiL2,3edge: A comparison between reflection energy loss and extended x-ray-absorption fine-structure results. Physical Review B, 1984, 29, 3730-3732.	1.1	35
6	Auger and autoionization features of clean and oxygen-exposed iron. Physical Review B, 1984, 30, 6960-6964.	1.1	31
7	L3/L2 white-line intensity ratios in the electron energy-loss spectra of 3d transition-metal oxides. Chemical Physics Letters, 1984, 108, 547-550.	1.2	125
8	CopperL2,3near-edge structure inCu2O. Physical Review B, 1984, 30, 2120-2126.	1.1	53
9	Reflection electron-energy-loss investigation of the electronic and structural properties of palladium. Physical Review B, 1984, 29, 4878-4889.	1.1	81
10	Bremsstrahlung isochromat spectra and density-of-states calculations for the3dand4dtransition metals. Physical Review B, 1984, 30, 6921-6930.	1.1	130
11	The XPS valence band of chromium. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1984, 49, L61-L64.	0.6	12
12	Electron Energy Loss Fine Structure of Carbides and Nitrides. Materials Research Society Symposia Proceedings, 1985, 62, 129.	0.1	2
13	Prospects for high-resolution electron energy-loss experiments with the scanning transmission electron microscope. Ultramicroscopy, 1985, 18, 125-129.	0.8	14
14	The determination of Ti, Mn and Fe oxidation states in minerals by electron energy-loss spectroscopy. Ultramicroscopy, 1985, 18, 285-289.	0.8	64
15	A verification of the relativistic correction for electro-static electron spectrometers. Journal of Electron Spectroscopy and Related Phenomena, 1985, 35, 145-153.	0.8	9
16	The X-ray Absorption Near Edge Structure of transition metal oxides: A one-electron interpretation. Solid State Communications, 1985, 56, 895-898.	0.9	41
17	Multiplet Structures in the L2,3Absorption Spectra of 3d Transition-Metal Fluorides. Journal of the Physical Society of Japan, 1985, 54, 4034-4041.	0.7	21
18	Extended energy loss fine structure measurement above shallow and deep core levels of 3d transition metals. Journal of Physics C: Solid State Physics, 1985, 18, 3595-3614.	1.5	44

ATION REDO

#	Article	IF	CITATIONS
19	Validity of the (Z+1) ion-core approximation for deep and shallow levels as studied by the extended energy-loss fine-structure technique. Physical Review B, 1985, 31, 7469-7471.	1.1	22
20	Comparison between extended x-ray-absorption and extended electron energy-loss fine-structure results above theM2,3edge of cobalt. Physical Review B, 1985, 32, 7826-7829.	1.1	17
21	Extended energy loss fine structure in reflection electron energy loss spectra of Cu and Ni. Surface Science, 1985, 149, 558-576.	0.8	54
22	Extended energy loss fine structures (EELFS): A new structural probe for surfaces and interfaces. Surface Science, 1985, 162, 838-846.	0.8	45
23	Electron-energy-loss spectroscopy and the study of solids. Accounts of Chemical Research, 1985, 18, 324-330.	7.6	31
24	2pabsorption spectra of the3delements. Physical Review B, 1985, 32, 4899-4904.	1.1	208
25	Intensity analysis of boron and nitrogen Kâ€edge spectra for hexagonal boron nitride by EELS. Journal of Microscopy, 1986, 142, 141-151.	0.8	9
26	Structural study of clean and oxygen-covered Fe(110) by surface extended energy-loss fine-structure technique. Surface Science, 1986, 175, L767-L772.	0.8	10
27	Structural study of clean and oxygen-covered Fe(110) by surface extended energy-loss fine-structure technique. Surface Science Letters, 1986, 175, L767-L772.	0.1	0
28	Model calculation for contributions of d- and s-final states to the M2, 3 extended energy loss fine structure. Solid State Communications, 1986, 58, 319-322.	0.9	9
29	Anomalous white line ratios and spin pairing in 3d transition metals and alloys: Cr metal and Cr20Au80. Physics Letters, Section A: General, Atomic and Solid State Physics, 1986, 114, 491-494.	0.9	39
30	High spatial resolution analysis using parallel detection EELS. Ultramicroscopy, 1986, 20, 43-49.	0.8	5
31	In-situ electron-beam-induced reduction of CuO: A study of phase transformations in cupric oxide. Ultramicroscopy, 1986, 20, 151-159.	0.8	47
32	Surface Extended Energy Loss Fine Structure (EELFS) above Cr L2,3Edge. Japanese Journal of Applied Physics, 1986, 25, L710-L711.	0.8	0
33	Near-Edge X-Ray Absorption Spectroscopy in Catalysis. Advances in Catalysis, 1986, , 203-296.	0.1	49
34	L2,3absorption edges inNi2Si. Physical Review B, 1986, 34, 2875-2877.	1.1	17
35	Electron-energy-loss near-edge structure ofBe2C. Physical Review B, 1986, 33, 5642-5651.	1.1	38
36	White lines in theL2,3electron-energy-loss and x-ray absorption spectra of3dtransition metals. Physical Review B, 1986, 34, 1467-1473.	1.1	106

#	Article	IF	CITATIONS
37	The comparison of transition metal concentration ratios determined by EELS and EDX. Journal of Microscopy, 1987, 146, 1-16.	0.8	11
38	Systematics of the Relation between Spin-Orbit Splitting in the Valence Band and the Branching Ratio in X-Ray Absorption Spectra. Europhysics Letters, 1987, 4, 1083-1086.	0.7	25
40	Soft x-ray absorption studies on high-Tcsuperconducting oxides. Physical Review B, 1987, 36, 3983-3985.	1.1	25
41	Surface electron-energy-loss fine-structure investigation on the local structure of copper clusters on graphite. Physical Review B, 1987, 35, 5997-6003.	1.1	67
42	L3 White line Splitting of Copper in the Electron Energy loss Spectrum of YBa2Cu3O7â^'x. Materials Research Society Symposia Proceedings, 1987, 99, 793.	0.1	0
43	Fine structure in electron energy-loss and auger spectra. Surface Science, 1987, 189-190, 590-604.	0.8	33
44	Primary-energy dependence of the momentum transfer in reflection inner-shell-electron energy-loss spectra of layered transition-metal dichalcogenides. Physical Review B, 1987, 36, 7500-7509.	1.1	28
45	Electron energy-loss spectroscopy. Progress in Solid State Chemistry, 1987, 17, 87-143.	3.9	10
46	Valence electronic structure ofY1Ba2Cu3O7. Physical Review B, 1987, 36, 3967-3970.	1.1	238
47	Radiation damage in TiO _x at high current density. Philosophical Magazine Letters, 1987, 56, 179-185.	0.5	45
48	The oxidation state of Ti in hornblende and biotite determined by electron energy-loss spectroscopy, with inferences regarding the Ti substitution. Physics and Chemistry of Minerals, 1987, 14, 45-51.	0.3	15
49	Electron energy loss spectroscopic investigation of Cr-L2,3 core levels in Cr and chromium silicides. Solid State Communications, 1987, 61, 5-7.	0.9	7
50	L2,3 xanes of the high Tc superconductor YBa2Cu3Oâ‰^7 with variable oxygen content. Solid State Communications, 1987, 63, 1009-1013.	0.9	200
51	Copper-zinc oxide-alumina methanol catalysts revisited. Catalysis Today, 1987, 2, 1-124.	2.2	349
52	Electron energy loss spectra of microscopy regions of quasicrystalline and crystalline Al86Mn14 alloys. Physics Letters, Section A: General, Atomic and Solid State Physics, 1987, 120, 417-421.	0.9	11
53	New examples for near-edge fine structures in electron energy loss spectroscopy. Ultramicroscopy, 1987, 21, 379-383.	0.8	69
54	Electron energy-loss spectroscopy and chemical change. Ultramicroscopy, 1987, 23, 305-312.	0.8	92
55	Further evidence for core-hole effects in the near-edge structures of light-element K-edges. Chemical	1.2	24

ARTICLE IF CITATIONS # Analytical electron microscopy of YBa2Cu3O7â^{*}x. Physica C: Superconductivity and Its Applications, 0.6 1 56 1988, 153-155, 998-999. Branching ratio in x-ray absorption spectroscopy. Physical Review B, 1988, 38, 3158-3171. 1.1 508 58 Local Probe for Spin-Orbit Interaction. Physical Review Letters, 1988, 60, 1977-1980. 2.9 162 Resonant behavior in soft x-ray fluorescence excited by monochromatized synchrotron radiation. 59 Physical Review Letters, 1988, 60, 1759-1762. Linear relation between x-ray absorption branching ratio and valence-band spin-orbit expectation 60 1.0 131 value. Physical Review A, 1988, 38, 1943-1947. Electron-energy-loss study of theTiO2(110) surface. Physical Review B, 1988, 37, 8417-8423. 1.1 Anisotropy in the near-edge absorption fine structure ofYBa2Cu3O7â[~]Î[′]. Physical Review B, 1988, 37, 62 1.1 42 635-637. Insufficiency of O and Cu holes for oxide superconductivity: X-ray absorption spectroscopy. Physical 1.1 Review B, 1988, 38, 6588-6595. Core-exciton absorption in the FKabsorption spectra of 3dtransition-metal fluorides. Physical Review 64 1.1 31 B, 1988, 37, 10895-10897. XANES in condensed systems., 1988,, 29-67. Recent Developments in Energy-Loss Spectroscopy. Advances in Electronics and Electron Physics, 1989, 0.6 348 66 75, 121-232. Local electronic structure of Cu2O, CuO and YBa2Cu3O7??. European Physical Journal B, 1989, 75, 1-9. The X-ray absorption branching ratio of transition metal compounds. Physica B: Condensed Matter, 68 1.3 11 1989, 158, 395-397. Quantification of white lines in Electron Energy Loss Spectroscopy (EELS). Ultramicroscopy, 1989, 28, 69 0.8 49-55. Local structural investigation of surfaces and interfaces by EELFS and EXFAS techniques. 70 0.8 3 Ultramicroscopy, 1989, 28, 65-71. Experimental resolution in soft X-ray monochromators. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1989, 275, 435-441. X-ray fluorescence spectra and molecular orbital studies of cuprous and cupric oxide. Journal of 72 0.8 6 Electron Spectroscopy and Related Phenomena, 1989, 49, 183-194. Electron energy loss and X-ray absorption spectroscopy of rutile and anatase: a test of structural 294 sensitivity. Journal of Physics Condensed Matter, 1989, 1, 797-812.

#	Article	IF	CITATIONS
74	Structural determination of crystalline silicon by extended energy-loss fine-structure spectroscopy. Physical Review B, 1989, 39, 8409-8422.	1.1	57
75	Unoccupied electronic states of CuO: An oxygen 1sx-ray-absorption spectroscopy investigation. Physical Review B, 1989, 39, 4886-4890.	1.1	90
76	Extended energy loss fine structure analysis. Critical Reviews in Solid State and Materials Sciences, 1989, 15, 279-325.	6.8	36
77	Sensitivity of the ELNES in reels to the beam reductions at the TiO2(110) surfaces. Surface Science, 1989, 216, 528-538.	0.8	9
78	Oxygen 1sx-ray-absorption edges of transition-metal oxides. Physical Review B, 1989, 40, 5715-5723.	1.1	1,102
79	Electron energy-loss studies of Fe–Cr–Mn oxide films. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1990, 62, 229-238.	0.6	4
80	Analytical Transmission Electron Microscopy in Materials Science. Materials Transactions, JIM, 1990, 31, 538-544.	0.9	3
81	Structural study of thin films by extended energyloss fine structure spectroscopy. Thin Solid Films, 1990, 193-194, 289-304.	0.8	5
82	Structural characterization of supported chromium clusters by extended energy-loss fine structure. Surface and Interface Analysis, 1990, 16, 14-17.	0.8	6
83	Transition metal 2p excitaton of organometallic compounds studied by electron energy loss spectroscopy. Chemical Physics, 1990, 147, 51-63.	0.9	62
84	Iron L3,2 near-edge fine structure studies. Ultramicroscopy, 1990, 32, 309-311.	0.8	52
85	A structural investigation on evaporated small clusters of Cr by surface electron energy loss fine structure spectroscopy. Vacuum, 1990, 41, 356-358.	1.6	6
86	Soft-x-ray magnetic circular dichroism at theL2,3edges of nickel. Physical Review B, 1990, 42, 7262-7265.	1.1	598
87	Electronic structure of yttrium oxide. Physical Review B, 1990, 42, 7587-7595.	1.1	104
88	LandMedges of copper: Theory and experiment. Physical Review B, 1990, 41, 11760-11769.	1.1	33
89	L2,3x-ray-absorption edges ofd0compounds:K+,Ca2+,Sc3+, andTi4+inOh(octahedral) symmetry. Physical Review B, 1990, 41, 928-937.	1.1	586
90	Empty state anisotropies in ultrathin Ni/Si(111)7 × 7 and Cu/Si(111)7 × 7 interfaces. Surface Science, 1991, 251-252, 301-304.	0.8	7
91	Structural investigation of the Cr/Si interface. Surface Science, 1991, 251-252, 579-582.	0.8	7

#	Article	IF	CITATIONS
92	Electron-energy-loss-spectroscopy near-edge fine structures in the iron-oxygen system. Physical Review B, 1991, 44, 11402-11411.	1.1	342
93	Structural characterization of airâ€oxidized chromium particles by extended energyâ€loss fineâ€structure spectroscopy. Journal of Microscopy, 1991, 162, 279-289.	0.8	3
94	Fine structure of the Ca 2px-ray-absorption edge for bulk compounds, surfaces, and interfaces. Physical Review B, 1991, 43, 6899-6907.	1.1	89
95	Structural investigation of the Cr/Si interface. Surface Science Letters, 1991, 251-252, A345.	0.1	0
96	Detection of boron and carbon in flux grown single crystals of hexagonal ferrites using electron energy loss spectroscopy. Journal of Crystal Growth, 1991, 110, 947-949.	0.7	1
97	Electronic structure of Cr clusters on graphite. Zeitschrift Für Physik D-Atoms Molecules and Clusters, 1991, 20, 387-390.	1.0	12
98	Anisotropic empty electron-band states at the pseudo-5×5 Si(111)/Cu interface. Physical Review B, 1991, 44, 1958-1961.	1.1	15
99	Factors influencing the extraction of structural information fromL2,3-edge extended electron-energy-loss fine structure. Physical Review B, 1991, 44, 6477-6487.	1.1	2
100	Absorption resonances in the 2p threshold of manganese atoms. Journal of Physics B: Atomic, Molecular and Optical Physics, 1992, 25, 3747-3755.	0.6	33
101	Controlled-valence properties ofLa1â^'xSrxFeO3andLa1â^'xSrxMnO3studied by soft-x-ray absorption spectroscopy. Physical Review B, 1992, 46, 4511-4519.	1.1	619
102	L3- toL2-intensity ratios in soft-x-ray valence-band emission spectra of 3dtransition metals. Physical Review B, 1992, 46, 8790-8796.	1.1	7
103	Unoccupied electronic structure and core-hole effects in the x-ray-absorption spectra ofCu2O. Physical Review B, 1992, 45, 3309-3318.	1.1	154
104	Extended electron energyâ€loss fine structure and selectedâ€area electron diffraction studies of small palladium clusters. Journal of Microscopy, 1992, 166, 231-245.	0.8	14
105	Valence determination of titanium and iron using electron energy loss spectroscopy. Journal of Materials Science, 1992, 27, 2731-2733.	1.7	32
106	2p X-ray absorption of titanium in minerals. Physics and Chemistry of Minerals, 1992, 19, 140-147.	0.3	152
107	Extended energy loss fine structure and selected area electron diffraction combined study of copper cluster oxidation. Vacuum, 1992, 43, 575-581.	1.6	5
108	DOS investigation of 3d transition metals by ionization loss spectroscopy. Vacuum, 1992, 43, 1137-1139.	1.6	3
109	L2,3 edges of chromium: comparison between electron energy loss spectra in transmission and reflection mode. Solid State Communications, 1992, 83, 921-925.	0.9	7

#	Article	IF	CITATIONS
110	Strong anisotropies in the unoccupied electronic structure of Si(111)/Cu interfaces via polarization dependent Cu L2,3 XAS. Applied Surface Science, 1992, 56-58, 563-567.	3.1	2
111	The interaction of N with Ti and the oxidation of TiN studied by soft X-ray absorption spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 1993, 62, 197-206.	0.8	32
112	L ₂ and L ₃ Xâ€Ray Absorption Edge in Fluoride Glasses. Physica Status Solidi (B): Basic Research, 1993, 178, 525-531.	0.7	0
113	Chemical analysis of passivated and oxidized layers on FeCr and FeTi alloys by soft x-ray absorption spectroscopy. Surface and Interface Analysis, 1993, 20, 21-26.	0.8	34
114	Chemical changes induced by sputtering in TiO2 and some selected titanates as observed by X-ray absorption spectroscopy. Surface Science, 1993, 290, 427-435.	0.8	68
115	The interaction of nitrogen with titanium studied by soft X-ray absorption spectroscopy: adsorption versus implantation. Surface Science, 1993, 281, 120-126.	0.8	19
116	Three-body signature of the bcc structure in extended energy-loss spectra of Cr metal. Physical Review B, 1993, 47, 8494-8501.	1.1	7
117	Strong evolution of thep-projected empty density of states in Pd-Al alloys: AnM4,5x-ray-absorption-spectroscopy investigation. Physical Review B, 1993, 47, 6937-6941.	1.1	5
118	Surface x-ray-absorption fine structures ofSiOx(0 <x<2) 10972-10977.<="" 1993,="" 3)="" 48,="" andsinx(0<x<4="" b,="" by="" implantation="" in="" ion="" low-energy="" physical="" produced="" review="" si(100).="" td=""><td>1.1</td><td>24</td></x<2)>	1.1	24
119	Vibrational entropy of ordered and disorderedNi3Al. Physical Review Letters, 1993, 70, 1128-1130.	2.9	119
120	Electron-energy-loss core-edge structures in manganese oxides. Physical Review B, 1993, 48, 2102-2108.	1.1	314
121	Chemical analysis of Cu-Be-Co alloys using quantitative parallel electron-energy-loss spectroscopy. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1993, 67, 1007-1020.	0.8	5
122	Local structures around Mn, Co and Ni atoms in glasses of the systems CaMgSi2O6-CaMnSi2O6, CaMgSi2O6-CaCoSi2O6 and CaMgSi2O6-CaNiSi2O6 determined by the XAFS spectroscopy Journal of the Mineralogical Society of Japan, 1993, 16, 345-357.	1.0	2
123	A new phase in the intermetallic Au-Cu system. Philosophical Magazine Letters, 1994, 70, 203-209.	0.5	1
124	2p absorption spectra of atomic copper using the soft X-ray absorption and total photoion yield methods. Journal of Physics B: Atomic, Molecular and Optical Physics, 1994, 27, 3389-3398.	0.6	9
125	Structural and spectroscopic investigation of (111) twins in barium titanate. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1994, 70, 1021-1034.	0.6	88
126	The short-range order in some ternary ZrF4-based glasses. Journal of Physics Condensed Matter, 1994, 6, 2159-2168.	0.7	2
127	Electronâ€energyâ€loss spectroscopy of Fe thin films on GaAs(001). Journal of Applied Physics, 1994, 75, 6501-6503.	1.1	19

		_	
CITA	TION	REPORT	
		REPORT	

#	Article	IF	CITATIONS
128	Analysis of the electronic properties of CoCrPt thin films using parallel electron energy loss spectroscopy (PEELS). Journal of Applied Physics, 1994, 75, 6141-6143.	1.1	4
129	High-resolution parallel electron energy-loss spectroscopy of Mn L2,3-edges in inorganic manganese compounds. Physics and Chemistry of Minerals, 1994, 21, 191.	0.3	108
130	A Method of Data Processing for Xâ€Ray Lâ€Edge Absorption. Physica Status Solidi (B): Basic Research, 1994, 186, 545-551.	0.7	0
131	lodine insertion in high-Tc cuprates Raman, magnetization, X-ray photoelectron and electron energy loss measurements. Physica C: Superconductivity and Its Applications, 1994, 219, 297-314.	0.6	15
132	Local structure analysis of the mineral core of reverse micelles in dispersion in hydrocarbons. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1994, 90, 167-182.	2.3	6
134	Electron-beam-induced reduction of Mn4+ in manganese oxides as revealed by parallel EELS. Ultramicroscopy, 1994, 54, 83-92.	0.8	52
135	Exafs like oscillations in X-ray excited autoionization spectra assisted by compton process. Solid State Communications, 1994, 90, 831-835.	0.9	3
136	Iron-intercalated molybdenum disulfide obtained from single-layer dispersion. Materials Research Bulletin, 1994, 29, 833-841.	2.7	47
137	A NEXAFS determination of the oxidation state of vanadium carbide on V(110): observation of charge transfer from vanadium to carbon. Surface Science, 1994, 321, 145-155.	0.8	78
138	Magnetic and Structural Properties of Iron Nitride thin Films Obtained by Argon-Nitrogen Reactive Radio-Frequency Sputtering. Materials Research Society Symposia Proceedings, 1995, 384, 103.	0.1	1
139	EELS Studies of B2-Type Transition Metal Aluminides: Experiment and Theory. Materials Research Society Symposia Proceedings, 1995, 408, 567.	0.1	1
140	Structural surface investigation with low energy backscattered electrons. Journal of Electron Spectroscopy and Related Phenomena, 1995, 76, 29-36.	0.8	2
141	Structural surface investigations with low-energy backscattered electrons. Surface Science Reports, 1995, 21, 89-175.	3.8	44
142	Modelling the bonding at metal-ceramic interfaces using PEELS in the STEM. Ultramicroscopy, 1995, 59, 81-92.	0.8	27
143	Simulation of the extended fine structure of K-shell edges in intermetallic ordered alloys. Ultramicroscopy, 1995, 59, 121-136.	0.8	12
144	A quantitative approach for spatially-resolved electron energy-loss spectroscopy of grain boundaries and planar defects on a subnanometer scale. Ultramicroscopy, 1995, 59, 215-227.	0.8	71
145	Magnetic permeability disaccomodation in Fe73.5Cu1Nb3Si13.5B9 alloy. Journal of Magnetism and Magnetic Materials, 1995, 140-144, 447-448.	1.0	2
146	Shortâ€range ordering in faceâ€centeredâ€cubic Ni3Al. Journal of Applied Physics, 1995, 77, 4380-4383.	1.1	8

#	Article	IF	CITATIONS
147	Metallic Oxide Microphases in Fly Ashes: An Ultrastructural Investigation. International Journal of Environmental Analytical Chemistry, 1995, 61, 195-206.	1.8	2
148	The short-range order in ternary ZrF4î—,BaF2î—,ErF3 glasses. Journal of Non-Crystalline Solids, 1995, 180, 285-291.	1.5	2
149	An electron energy loss spectroscopy study of Ni60B40 alloys prepared by chemical reduction and melt spinning. Journal of Non-Crystalline Solids, 1995, 192-193, 616-619.	1.5	7
150	Spatially resolved electron energyâ€loss studies of metal–ceramic interfaces in transition metal/alumina cermets. Journal of Microscopy, 1995, 177, 369-386.	0.8	47
151	Electron energyâ€loss nearâ€edge structure of internal interfaces by spatial difference spectroscopy. Journal of Microscopy, 1995, 180, 12-21.	0.8	41
152	X-ray-absorption spectroscopy at the FeL2,3threshold in iron oxides. Physical Review B, 1995, 52, 3143-3150.	1.1	227
153	Electronic structure of ultrathin ordered iron oxide films grown onto Pt(111). Physical Review B, 1995, 52, 17449-17460.	1.1	223
154	Experimental and theoretical study of the electronic structure of Fe, Co, and Ni aluminides with theB2 structure. Physical Review B, 1996, 54, 1682-1691.	1.1	89
155	The bonding characteristics between rare-earth elements and fluorine in fluorozirconate glasses. Applied Physics A: Materials Science and Processing, 1996, 62, 163-167.	1.1	2
156	Application of Mxcd to Magnetic Thin-Film Sensors. Materials Research Society Symposia Proceedings, 1996, 437, 79.	0.1	3
157	Scanning Transmission X-Ray Microscopy Study of TiSe2/NbSe2 Superlattices. Materials Research Society Symposia Proceedings, 1996, 441, 603.	0.1	0
158	Electron Microscopy Studies of the High Temperature Oxidation Behavior of NiAl. Materials Research Society Symposia Proceedings, 1996, 466, 197.	0.1	2
159	Electron energy loss spectroscopy studies of CoCrTaPt/Cr thin films for high-density longitudinal magnetic recording media. Journal of Magnetism and Magnetic Materials, 1996, 155, 209-211.	1.0	5
160	Metal-oxygen-carbon interaction in the poly(p-phenylene vinylene)-aluminum system: a study by analytical transmission electron microscopy and X-ray photoelectron spectroscopy. Thin Solid Films, 1996, 283, 135-139.	0.8	29
161	Influence of non-dipolar terms on the Cu L2,3 and M2,3 electron energy loss fine structure (EELFS) spectra in transmission and reflection mode. Journal of Electron Spectroscopy and Related Phenomena, 1996, 82, 1-12.	0.8	8
162	Core level absorption spectroscopy of perovskites and high temperature superconductors. Phase Transitions, 1996, 58, 197-205.	0.6	0
163	Chemistry and bonding investigations of interfaces. Journal Physics D: Applied Physics, 1996, 29, 1716-1724.	1.3	28
164	Measurement of the localized electronic structure associated with bismuth segregation to copper grain boundaries. Journal Physics D: Applied Physics, 1996, 29, 1730-1739.	1.3	18

	CITATION RE	PORT	
#	Article	IF	Citations
165	Electron Energy Loss Spectroscopy with Subnanometer Spatial Resolution on Compositionally Modulated TiNxMultilayers. Journal of the Physical Society of Japan, 1997, 66, 2097-2102.	0.7	7
166	Electron-Specimen Interactions. Springer Series in Optical Sciences, 1997, , 143-196.	0.5	1
167	On the grain boundary and defect structure of nanocrystalline titanium oxide. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1997, 76, 573-583.	0.6	13
168	Cu 2p X-ray absorption spectroscopy of the metastable interface. Surface Science, 1997, 377-379, 279-282.	0.8	0
169	NEXAFS investigations of transition metal oxides, nitrides, carbides, sulfides and other interstitial compounds. Surface Science Reports, 1997, 30, 1-152.	3.8	553
170	An experimental study of the difference in vibrational entropy between ordered and disordered Fe3A1. Journal of Phase Equilibria and Diffusion, 1997, 18, 551-555.	0.3	16
171	Cadmium Bioaccumulation in Tetraselmis suecica : An Electron Energy Loss Spectroscopy (EELS) Study. Archives of Environmental Contamination and Toxicology, 1997, 33, 156-161.	2.1	30
172	Synthesis of analytical and high-resolution transmission electron microscopy to determine the interface structure of Cu/Al2O3. Ultramicroscopy, 1997, 67, 207-217.	0.8	49
173	THE DEFECT STRUCTUFE OF SrTi 1â^'x Fe x O 3â^'y (x = 0–0.8) INVESTIGATED BY ELECTRICAL CONDUCTIVITY MEASUREMENTS AND ELECTRON ENERGY LOSS SPECTROSCOPY (EELS). Journal of Physics and Chemistry of Solids, 1997, 58, 969-976.	1.9	319
174	Chemical Analysis of Ternary Ti Oxides using Soft X-ray Absorption Spectroscopy. Surface and Interface Analysis, 1997, 25, 804-808.	0.8	28
175	Pre-edge fine structure of the 3d atom K x-ray absorption spectra and quantitative atomic structure determinations for ferroelectric perovskite structure crystals. Journal of Physics Condensed Matter, 1998, 10, 9561-9580.	0.7	180
176	Investigation of the local superconducting properties in Ag-sheathed BSCCO tapes by STEM. Physica C: Superconductivity and Its Applications, 1998, 298, 1-9.	0.6	6
177	Core level electron energy-loss spectra of minerals: pre-edge fine structures at the oxygen K -edge. Physics and Chemistry of Minerals, 1998, 25, 494-498.	0.3	58
178	Growth and structure of internal Cu/Al2O3 and Cu/Ti/Al2O3 interfaces11Paper presented at Sympos. Synergistic Synthesis of Inorganic Materials, March 1996, Schloß Ringberg, Germany Acta Materialia, 1998, 46, 759-772.	3.8	61
179	Chemistry and bonding changes associated with the segregation of Bi to grain boundaries in Cu. Acta Materialia, 1998, 46, 481-490.	3.8	39
180	An NEXAFS investigation of the reduction and reoxidation of TiO2(001). Surface Science, 1998, 397, 237-250.	0.8	172
181	Electron-energy-loss spectroscopy studies of Cu-α-Al2O3interfaces grown by molecular beam epitaxy. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1998, 78, 439-465.	0.8	72
182	X-ray absorption and magnetic resonance spectroscopic studies of LixV6O13. Journal of Applied Physics, 1998, 83, 1247-1255.	1.1	33

#	Article	IF	Citations
183	Analytical transmission electron microscopy of hydrogen-induced degradation in ferroelectric Pb(Zr, Ti)O3 on a Pt electrode. Applied Physics Letters, 1998, 73, 1955-1957.	1.5	52
184	Simple model for relating EELS and XAS spectra of metals to changes in cohesive energy. Physical Review B, 1998, 58, 5989-5995.	1.1	25
185	Connections between the electron-energy-loss spectra, the local electronic structure, and the physical properties of a material: A study of nickel aluminum alloys. Physical Review B, 1998, 57, 8181-8202.	1.1	185
186	Experimental and theoretical investigations of EELS near-edge fine structure in TiAl with and without ternary addition of V, Cr, or Mn. Physical Review B, 1998, 57, 1585-1593.	1.1	5
187	Formation and interface structure of TiC particles in dispersion-strengthened Cu alloys. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1998, 77, 1531-1554.	0.8	9
188	On The Formation Of Diffusion Layer Between Cr Film And Glass. Microscopy and Microanalysis, 1999, 5, 166-167.	0.2	0
189	First principles calculation of chemical shifts in ELNES/NEXAFS of titanium oxides. Journal of Physics Condensed Matter, 1999, 11, 3217-3228.	0.7	62
190	Soft x-ray absorption spectroscopy study of electrochemically formed passive layers on AISI 304 and 316L stainless steels. Journal of Materials Research, 1999, 14, 763-770.	1.2	14
191	Bonding mechanisms in Î ³ -TiAl: Comparison between absorption near edge fine structures and theoretical predictions. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1999, 79, 2157-2172.	0.8	4
192	Processing and characterization of alumina thin films on chemically vapor deposited diamond substrates for producing adherent metallizations. Journal of Materials Research, 1999, 14, 565-577.	1.2	4
193	Electron-beam induced growth of Cu nanoparticles in silica glass matrix. Applied Physics Letters, 1999, 75, 3793-3795.	1.5	20
194	Ti–O coordination at a Pb(Zr,Ti)O3/Pt interface annealed in a hydrogen-containing ambient analyzed using spatially resolved electron energy-loss spectroscopy. Journal of Applied Physics, 1999, 85, 7874-7878.	1.1	11
195	Ab initiocalculation of near-edge structures in electron-energy-loss spectra for metal-oxide crystals. Physical Review B, 1999, 60, 14025-14034.	1.1	58
196	Electron states of YAG probed by energy-loss near-edge spectrometry and ab initio calculations. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1999, 79, 921-940.	0.6	22
197	Direct atomic-scale imaging of ceramic interfaces. Acta Materialia, 1999, 47, 4061-4068.	3.8	32
198	Electron microscopy: probing the atomic structure and chemistry of grain boundaries, interfaces and defects. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 260, 12-28.	2.6	41
199	Why changes in bond lengths and cohesion lead to core-level shifts in metals, and consequences for the spatial difference method. Ultramicroscopy, 1999, 78, 163-174.	0.8	53
200	Vacancy-induced electronic states in substoichiometric V2 â^'x Mo x O3 ±y thin films and powders—A soft X-ray emission study. Bulletin of Materials Science, 1999, 22, 981-986.	0.8	2

ARTICLE IF CITATIONS # New Amorphous Mixed Transition Metal Oxides and Their Li Derivatives: Â Synthesis, Characterization, 201 3.2 50 and Electrochemical Behavior. Chemistry of Materials, 1999, 11, 2948-2959. Electron energy loss spectroscopy studies of the amorphous to crystalline transition in FeF3. Journal of Applied Physics, 1999, 86, 2499-2504. 1.1 First direct evidence of size-dependent structural transition in nanosized nickel particles. 203 Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical 0.8 72 Properties, 1999, 79, 1021-1031. Analytical High-Resolution TEM Study on Au/TiO2 Catalysts. Materials Research Society Symposia 204 0.1 Proceedings, 1999, 589, 253. Interfacial Interaction Between Cr Thin Films and Oxide Glasses. Materials Research Society Symposia 205 0.1 2 Proceedings, 1999, 589, 377. Molybdenum x-ray emission spectroscopic study of vacancy-induced electronic states in V2O5-MoO3 thin films and powders. X-Ray Spectrometry, 2000, 29, 279-284. Electron Energy-Loss Near-Edge Structure Studies of a Cu/(11-20)?-Al2O3 Interface. Physica Status 207 0.7 33 Solidi (B): Basic Research, 2000, 222, 199-211. Tribologically transformed structure in fretting. Wear, 2000, 245, 39-52. 1.5 208 184 Study of the tribologically transformed structure created during fretting tests. Tribology 209 3.0 75 International, 2000, 33, 743-750. The Electronic Structure of Pristine and Doped (100) Tilt Grain Boundaries in SrTiO3. Journal of 1.2 Materials Science, 2000, 8, 199-208. Title is missing!. Catalysis Letters, 2000, 66, 215-220. 211 1.4 46 M¶ssbauer and ELNES spectroscopy of (Mg,Fe)(Si,Al)O3 perovskite: a highly oxidised component of the 1.2 143 lower mantle. Contributions To Mineralogy and Petrology, 2000, 138, 17-26. The structure and properties of sputter-deposited Co-Si alloy thin films. Journal of Physics Condensed 213 0.7 22 Matter, 2000, 12, 4075-4089. Localisation and Characterization by TEM and EELS of Man-ganese Species during Graft Copolymerization of Acrylic Acid onto Sawdust Using KMnO4 as Initiator. Holzforschung, 2000, 54, 214 553-556. Theoretical site- and symmetry-resolved density of states and experimental EELS near-edge spectra 215 1.1 76 ofAlB2andTiB2. Physical Review B, 2000, 61, 1786-1794. Observations of reaction zones at chromium/oxide glass interfaces. Journal of Applied Physics, 2000, 87, 3768-3776. Structural and chemical effects on EELSL3,2ionization edges in Niâ[°]basedintermetallic compounds. 217 1.1 40 Physical Review B, 2001, 64, . Electronic Structure Investigations of Metal / SrtiO3 Interfaces Using EELS. Microscopy and Microanalysis, 2001, 7, 304-305.

#	Article	IF	CITATIONS
219	Method of linearizing the 3d L3/L2 white line ratio as a function of magnetic moment. Ultramicroscopy, 2001, 88, 1-16.	0.8	35
220	ELNES investigations of the oxygen K-edge in spinels. Ultramicroscopy, 2001, 86, 273-288.	0.8	33
221	Valence electron energy loss study of Fe-doped SrTiO3 and a Σ13 boundary: electronic structure and dispersion forces. Ultramicroscopy, 2001, 86, 303-318.	0.8	61
222	Development of a quantitative energy filtering TEM method to study a reactive NiO/80Ni20Fe interface. Ultramicroscopy, 2001, 88, 99-110.	0.8	15
223	Electron energy-loss near-edge structure - a tool for the investigation of electronic structure on the nanometre scale. Journal of Microscopy, 2001, 203, 135-175.	0.8	175
224	Study of superconducting and non-superconducting (Cu,Cr)-1212 compounds by high-resolution TEM and electron energy loss spectroscopy. Physica C: Superconductivity and Its Applications, 2001, 357-360, 371-375.	0.6	1
225	Decomposition of MgF2 in the Transmission Electron Microscope. Journal of Solid State Chemistry, 2001, 157, 30-39.	1.4	6
226	Title is missing!. Topics in Catalysis, 2001, 15, 27-34.	1.3	80
227	Processing and characterization of hydroxyapatite coatings on titanium produced by magnetron sputtering. Journal of Materials Research, 2001, 16, 3238-3245.	1.2	71
228	Oxidation states of titanium in bulk barium titanates and in (100) fiber-textured (BaxSr1â^'x)Ti1+yO3+z thin films. Applied Physics Letters, 2001, 79, 3149-3151.	1.5	8
229	Atomic and electronic characterization of thea[100]dislocation core inSrTiO3. Physical Review B, 2002, 66, .	1.1	108
230	Absolute and Approximate Calculations of Electron-Energy-Loss Spectroscopy Edge Thresholds. Physical Review Letters, 2002, 89, 126404.	2.9	23
231	Electronic and atomic structure of a dissociated dislocation inSrTiO3. Physical Review B, 2002, 66, .	1.1	93
232	Electronic structure investigations of Ni and Cr films on (100)SrTiO ₃ substrates using electron energy-loss spectroscopy. International Journal of Materials Research, 2002, 93, 362-371.	0.8	18
233	Synthesis and properties of nearly single-shell nickel clusters in amorphous aluminium oxides. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2002, 82, 913-923.	0.8	4
234	Ionization edges: Some underlying physics and their use in electron microscopy. Advances in Imaging and Electron Physics, 2002, , 413-450.	0.1	3
235	Optical and Mossbauer Spectroscopy of Iron in Micas. Reviews in Mineralogy and Geochemistry, 2002, 46, 313-349.	2.2	25
236	Analytical UHV transmission electron microscopy studies of electronic structure changes between as-deposited Mn and Mn silicide on Si() surface. Surface Science, 2002, 507-510, 453-457.	0.8	17

#	Article	IF	CITATIONS
237	One-step synthesis of maghemite nanometric powders by ball-milling. Journal of Alloys and Compounds, 2002, 333, 302-307.	2.8	80
238	Difference in spin state and covalence between La1â^'Sr CoO3 and La2â^'Sr Li0.5Co0.5O4. Journal of Alloys and Compounds, 2002, 343, 5-13.	2.8	36
239	XAS spectra of Ce2[MnN3] at the Ce-M4,5, Ce-L3, Mn-L2,3 and N-K thresholds. Journal of Alloys and Compounds, 2002, 346, 129-133.	2.8	14
240	Application of statistical moment method to thermodynamic quantities of metals and alloys. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2002, 26, 15-32.	0.7	6
241	Electron energy loss spectroscopy techniques for the study of microbial chromium(VI) reduction. Journal of Microbiological Methods, 2002, 50, 39-54.	0.7	89
242	Direct atomic scale analysis of the distribution of Cu valence states in Cu/γ-Al2O3 catalysts. Applied Catalysis B: Environmental, 2002, 38, 271-281.	10.8	20
243	Synthesis and characterization of nano-sized nickel(II), copper(I) and zinc(II) oxide nanoparticles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 338, 70-75.	2.6	29
244	Investigation of grain boundaries in abnormal grain growth structure of TiO2-excess BaTiO3 by TEM and EELS analysis. Acta Materialia, 2002, 50, 2151-2162.	3.8	56
245	Mn and Fe K-edge XAS Spectra of Manganese and Iron Nitrido Compounds. European Journal of Inorganic Chemistry, 2003, 2003, 1632-1634.	1.0	15
246	Structural characterization of Fe(110) islands grown on α-Al2O3(0001). Thin Solid Films, 2003, 434, 228-238.	0.8	18
247	Electron energy-loss near-edge structures of 3d transition metal oxides recorded at high-energy resolution. Ultramicroscopy, 2003, 96, 469-480.	0.8	161
248	Successful application of spatial difference technique to electron energy-loss spectroscopy studies of Mo/SrTiO3 interfaces. Journal of Microscopy, 2003, 210, 94-101.	0.8	8
249	Study of changes in L32 EELS ionization edges upon formation of Ni-based intermetallic compounds. Journal of Microscopy, 2003, 210, 102-109.	0.8	15
250	Time-dependent density functional theory calculations of X-ray absorption. International Journal of Quantum Chemistry, 2003, 95, 487-492.	1.0	6
251	Effect of atomic magnetic moments on the relative intensity of the L \hat{l}^2 and L \hat{l}_{\pm} components in x-ray emission spectra of 3d transition metal oxides. Physics of the Solid State, 2003, 45, 1048-1055.	0.2	17
252	An Electron Energy-Loss Spectrometry Study of Charge Compensation in LiNi0.8Co0.2O2. Journal of Physical Chemistry B, 2003, 107, 2887-2891.	1.2	71
253	Polymorphism of Heptalithium Nitridovanadate(V) Li7[VN4]. Inorganic Chemistry, 2003, 42, 2538-2544.	1.9	34
254	Dynamic screening effects in x-ray absorption spectra. Physical Review B, 2003, 67, .	1.1	264

#	Article	IF	CITATIONS
255	Modulated and ordered defect structures in electrically degraded Ni–BaTiO3 multilayer ceramic capacitors. Journal of Applied Physics, 2003, 94, 5990-5996.	1.1	90
256	Synthesis and characterization of mixed-valence barium titanates. Philosophical Magazine, 2003, 83, 165-178.	0.7	17
257	Spatially resolved electron energy-loss spectroscopy of an interfacial structure at a Ti thin film Cu interconnect. Applied Physics Letters, 2003, 83, 686-688.	1.5	2
258	Fundamentals of high-energy electron-irradiation-induced modifications of silicate glasses. Physical Review B, 2003, 68, .	1.1	51
259	Thermal annealing and hydrogen exposure effects on cluster-assembled nanostructured carbon films embedded with transition metal nanoparticles. Physical Review B, 2003, 68, .	1.1	24
260	Characterization Investigation of β-FeSi2Semiconductor by In Situ Ultrahigh-Vacuum Transmission Electron Microscopy. Japanese Journal of Applied Physics, 2003, 42, 4667-4670.	0.8	6
261	Characterization of Microbially Fe(iii)-reduced Nontronite: Environmental Cell-transmission Electron Microscopy Study. Clays and Clay Minerals, 2003, 51, 382-389.	0.6	29
262	Measurements of electron densities in solids: a real-space view of electronic structure and bonding in inorganic crystals. Reports on Progress in Physics, 2004, 67, 2053-2103.	8.1	54
263	Electron density and implication for bonding in Cu. Physical Review B, 2004, 69, .	1.1	18
264	Effect of charge transfer onEELSintegrated cross sections inMnandTioxides. Physical Review B, 2004, 70, .	1.1	31
265	White lines andd-band occupancy for the3dtransition-metal oxides and lithium transition-metal oxides. Physical Review B, 2004, 69, .	1.1	93
266	EELS near-edge structure in the Laves-phase compoundsTiCr2andTiCo2: Theoretical and experimental studies. Physical Review B, 2004, 69, .	1.1	9
267	Oxygen nonstoichiometry and dielectric evolution of BaTiO3. Part II—insulation resistance degradation under applied dc bias. Journal of Applied Physics, 2004, 96, 7500-7508.	1.1	189
268	Mn Oxidation States in Ba _x Cs _y Mn _z Ti _{8-z} O ₁₆ . Materials Research Society Symposia Proceedings, 2004, 824, 219.	0.1	10
269	EELS study on BST thin film under electron beam irradiation. Science in China Series D: Earth Sciences, 2004, 47, 659.	0.9	2
270	Structural characterization of nano-sized calcium deficient apatite powders. Biomaterials, 2004, 25, 189-196.	5.7	172
271	Measuring the absolute position of EELS ionisation edges in a TEM. Ultramicroscopy, 2004, 99, 73-85.	0.8	45
272	A trial forin situquantitative TEM–EELS measurement related to the photoreaction process of TiO2films. Nanotechnology, 2004, 15, S349-S354.	1.3	6

#	Article	IF	CITATIONS
273	HRTEM and EELS Studies of L1 ₀ -Ordered FePt nano-Clusters on MgO Films Prepared Below 673 K. Materials Transactions, 2004, 45, 2012-2017.	0.4	10
274	Nanostructure of CoPtCr–SiO ₂ Granular Films for Magnetic Recording Media. Materials Transactions, 2005, 46, 1802-1806.	0.4	1
275	EELS in the TEM. Journal of Electron Spectroscopy and Related Phenomena, 2005, 143, 43-50.	0.8	66
276	Characterization of advanced gate stacks for Si CMOS by electron energy-loss spectroscopy in scanning transmission electron microscopy. Journal of Electron Spectroscopy and Related Phenomena, 2005, 143, 149-158.	0.8	26
277	Structure and spectroscopic properties of C–Ni and CNx–Ni nanocomposite films. Journal of Applied Physics, 2005, 98, 034313.	1.1	15
278	Ball-milling in liquid mediaApplications to the preparation of anodic materials for lithium-ion batteries. Progress in Materials Science, 2005, 50, 1-92.	16.0	112
279	Atomic-scale manipulation of potential barriers at SrTiO3 grain boundaries. Applied Physics Letters, 2005, 87, 121917.	1.5	25
280	Cation-disorder-enhanced magnetization in pulsed-laser-deposited CuFe2O4 films. Applied Physics Letters, 2005, 86, 252510.	1.5	39
281	Size-dependent properties of small deposited chromium clusters by x-ray absorption spectroscopy. Physical Review B, 2005, 72, .	1.1	22
282	Electron energy-loss spectrometry studies of bonding in nanoscale Ni–SiO2 multilayers. Applied Physics Letters, 2005, 87, 251903.	1.5	3
283	High-resolution electron energy-loss spectroscopy ofBaTiO3â^•SrTiO3multilayers. Physical Review B, 2005, 71, .	1.1	41
284	Low-lying unoccupied electronic states in3dtransition-metal fluorides probed by NEXAFS at theF1sthreshold. Physical Review B, 2005, 71, .	1.1	51
285	X-ray magnetic circular dichroism sum rule correction for the light transition metals. Philosophical Magazine, 2005, 85, 2895-2911.	0.7	52
286	Defect structure of the high-dielectric-constant perovskiteCaCu3Ti4O12. Physical Review B, 2005, 71, .	1.1	119
287	ANALYTICAL TRANSMISSION ELECTRON MICROSCOPY. Annual Review of Materials Research, 2005, 35, 239-314.	4.3	67
288	MATERIALS CHARACTERIZATION IN THE ABERRATION-CORRECTED SCANNING TRANSMISSION ELECTRON MICROSCOPE. Annual Review of Materials Research, 2005, 35, 539-569.	4.3	188
289	Energy-loss near-edge fine structures of iron nanoparticles. Micron, 2006, 37, 316-323.	1.1	24
290	Influence of finite size effects on exchange anisotropy in oxidized Co nanocluster assembled films. Physical Review B, 2006, 73, .	1.1	17

#	Article	IF	CITATIONS
291	Experimental Assessment of Structural Differences between Amorphous and Amorphized Matter. Chemistry of Materials, 2006, 18, 5351-5354.	3.2	7
292	X-ray Absorption Spectroscopy of Titanium Oxide by Time Dependent Density Functional Calculations. Journal of Physical Chemistry B, 2006, 110, 9899-9907.	1.2	48
293	Study of the order–disorder transition and martensitic transformation in a Cu–Al–Be alloy by EELS. Journal of Electron Spectroscopy and Related Phenomena, 2006, 151, 149-154.	0.8	5
294	Many-electron effect in the resonant L23-M23V Auger-electron spectrum of Ti metal. Journal of Electron Spectroscopy and Related Phenomena, 2006, 153, 30-36.	0.8	1
295	Epitaxy and bonding of Cu films on oxygen-terminated α-Al2O3(0001) surfaces. Acta Materialia, 2006, 54, 2685-2696.	3.8	25
296	Effect of local oxygen activity on Ni–BaTiO3 interfacial reactions. Acta Materialia, 2006, 54, 3513-3523.	3.8	63
297	Copper nanowires within the central channel of tobacco mosaic virus particles. Electrochimica Acta, 2006, 51, 6251-6257.	2.6	123
298	Structural and magnetic studies of Co thin films. Micron, 2006, 37, 478-485.	1.1	9
299	Interpretation of the postpeak in iron fluorides and oxides. Ultramicroscopy, 2006, 106, 925-932.	0.8	6
300	X-ray absorption near edge structure investigation of vanadium-doped ZnO thin films. Thin Solid Films, 2006, 515, 1377-1379.	0.8	17
301	Determination of chromium valence over the range Cr(0)–Cr(VI) by electron energy loss spectroscopy. Ultramicroscopy, 2006, 106, 561-573.	0.8	129
302	Oxidation states of Mn and Fe in various compound oxide systems. Micron, 2006, 37, 426-432.	1.1	248
303	TEM investigations of the structural evolution in a pearlitic steel deformed by high-pressure torsion. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 1963-1968.	1.1	96
304	Can near-edge structure of the Bi L3edge determine the formal valence states of Bi?. Journal of Physics Condensed Matter, 2006, 18, 8029-8036.	0.7	38
305	Spatially Resolved Energy Electron Loss Spectroscopy Studies of Iron Oxide Nanoparticles. Microscopy and Microanalysis, 2006, 12, 424-431.	0.2	23
306	Oxygen release and structural changes in TiO2 films during photocatalytic oxidation. Journal of Applied Physics, 2006, 99, 084908.	1.1	22
307	Comparison of theoretical and experimental dielectric functions: Electron energy-loss spectroscopy and density-functional calculations on skutterudites. Physical Review B, 2006, 74, .	1.1	28
308	Electron Energy Loss Spectroscopy (EELS) of Iron Fischer–Tropsch Catalysts. Microscopy and Microanalysis, 2006, 12, 124-134.	0.2	48

#	Article	IF	CITATIONS
309	High spatially resolved morphological, structural and spectroscopical studies on copper oxide nanocrystals. Nanotechnology, 2007, 18, 075705.	1.3	15
310	The effect of valence state and site geometry on Ti L3,2 and O K electron energy-loss spectra of TixOy phases. American Mineralogist, 2007, 92, 577-586.	0.9	265
311	Transition metald-band occupancy in skutterudites studied by electron energy-loss spectroscopy. Physical Review B, 2007, 75, .	1.1	10
312	Magnetic moment of Fe in oxide-free FePt nanoparticles. Physical Review B, 2007, 76, .	1.1	41
313	Investigations of Bonding in Skutterudites by Electron Energy-Loss Spectroscopy. Materials Research Society Symposia Proceedings, 2007, 1044, 1.	0.1	0
314	Mechanical and magnetic properties of Ni-doped metallic TaSi2nanowires. Nanotechnology, 2007, 18, 145604.	1.3	8
315	Combined ab-initio and N-K, Ti-L ₂ ,3, V-L ₂ ,3 electron energy-loss near edge structure studies for TiN and VN films. International Journal of Materials Research, 2007, 98, 1060-1065.	0.1	5
316	Ti EELS standards for identification of catalytic species in NaAlH4 hydrogen storage materials. Journal of Alloys and Compounds, 2007, 446-447, 255-259.	2.8	16
317	Valence Changes and Structural Distortions in "Charge Ordered―Manganites Quantified by Atomic-Scale Scanning Transmission Electron Microscopy. Physical Review Letters, 2007, 99, 237205.	2.9	17
318	Observation of electric-field induced Ni filament channels in polycrystalline NiOx film. Applied Physics Letters, 2007, 91, .	1.5	230
319	Hybridization, superexchange, and competing magnetoelastic interactions in TiOBr. Physical Review B, 2007, 76, .	1.1	8
320	EELS Spectroscopy of Iron Fluorides and FeFx/C Nanocomposite Electrodes Used in Li-Ion Batteries. Microscopy and Microanalysis, 2007, 13, 87-95.	0.2	76
321	Nonaqueous Synthesis of Manganese Oxide Nanoparticles, Structural Characterization, and Magnetic Properties. Journal of Physical Chemistry C, 2007, 111, 3614-3623.	1.5	120
322	Interfacial Strain: The Driving Force for Selective Orbital Occupancy in Manganite Thin Films. Advanced Functional Materials, 2007, 17, 3918-3925.	7.8	52
323	High-Temperature Resistance Anomaly at a Strontium Titanate Grain Boundary and Its Correlation with the Grain-Boundary Faceting–Defaceting Transition. Advanced Materials, 2007, 19, 391-395.	11.1	28
324	Investigation of vanadium–sodium silicate glasses using XANES spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2007, 154, 60-62.	0.8	6
325	Inner-shell photoelectron spectroscopy of size-selected Cu-clusters on Si. Journal of Electron Spectroscopy and Related Phenomena, 2007, 156-158, 124-127.	0.8	10
326	Alternative methods of identifying the oxidation of metallic nanoparticles embedded in a matrix. Micron, 2007, 38, 371-376.	1.1	10

#	Article	IF	CITATIONS
327	Determination of manganese valency in La1â^'xSrxMnO3 using ELNES in the (S)TEM. Micron, 2007, 38, 224-230.	1.1	36
328	The electronic structure and hydrogen gas-induced environmental embrittlement in Ni4Mo alloy. Scripta Materialia, 2007, 56, 1007-1010.	2.6	2
329	Valence state map of iron oxide thin film obtained from electron spectroscopy imaging series. Micron, 2007, 38, 354-361.	1.1	14
330	Probing the chemical reactivity of free titanium clusters by x-ray absorption spectroscopy. Applied Physics A: Materials Science and Processing, 2008, 92, 463-471.	1.1	12
331	Grain-boundary plane orientation dependence of electrical barriers at Σ5 boundaries in SrTiO3. Acta Materialia, 2008, 56, 4993-4997.	3.8	10
332	Study of the L2,3 edges of 3d transition metals by X-ray absorption spectroscopy. Thin Solid Films, 2008, 517, 1000-1004.	0.8	21
333	Comparison of the electronic structure of a thermoelectric skutterudite before and after adding rattlers: An electron energy loss study. Micron, 2008, 39, 685-689.	1.1	4
334	Chemical Solution-Deposited BaTiO3Thin Films on Ni Foils: Microstructure and Interfaces. Journal of the American Ceramic Society, 2008, 91, 1845-1850.	1.9	39
335	Chapter 9 Materials Applications of Aberration-Corrected Scanning Transmission Electron Microscopy. Advances in Imaging and Electron Physics, 2008, , 327-384.	0.1	19
336	Electronic Structure and Chemistry of Iron-Based Metal Oxide Nanostructured Materials: A NEXAFS Investigation of BiFeO ₃ , Bi ₂ Fe ₄ O ₉ , α-Fe ₂ O ₃ , γ-Fe ₂ O ₃ , and Fe/Fe ₃ O ₄ . Iournal of Physical Chemistry C. 2008, 112, 10359-10369.	1.5	84
337	Comparative study of the electronic structures of SrMO3(M = Ti, V, Mn, Fe, and Co; M = Zr, Mo, Ru, and) Tj ETQqC	0.0 rgBT	/Oyerlock 10
338	Dipole approximation in the <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/Math/Math/ML">display="inline"> <mml:mrow> <mml:msub> <mml:mi>L</mml:mi> <mml:mrow> <mml:mn> 2, excited spectra in <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">disAbjnition/bymulticonfiguration Hartree-Foots autoionization salculations for <mml:math <="" mml:math=""> transition</mml:math></mml:math></mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>	1.1	o> < mml:mn> O
339	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mmultiscripts><mml:mi mathvariant="normal">Sc<mml:mprescripts></mml:mprescripts><mml:none /><mml:mn>21</mml:mn></mml:none </mml:mi </mml:mmultiscripts> through <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mmultiscripts><mml:mi< td=""><td>1.1</td><td>1</td></mml:mi<></mml:mmultiscripts></mml:math 	1.1	1
340	mathvariant="normal">Ni <mml:mprescripts></mml:mprescripts> <mml:none /><mml:mn>27</mml:mn>Martensitic transformation of Ni2FeGaferromagnetic shape-memory alloy studied via transmission electron microscopy and electron energy-loss spectroscopy. Physical Review B, 2008, 77, . Electron energy-loss study of the electronic structure of atomic scale<mml:math< td=""><td>1.1</td><td>24</td></mml:math<></mml:none 	1.1	24
341	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:mi mathvariant="normal">Sr<mml:mi mathvariant="normal">Ti</mml:mi><mml:msub><mml:mi mathvariant="normal">O<mml:mn>3</mml:mn></mml:mi </mml:msub><mml:mtext>â^²</mml:mtext></mml:mi mathvariant="normal">Sr<mml:mi mathvariant="normal">Mn</mml:mi><mml:msub><mml:mi mathvariant="normal">Sr<mml:mi mathvariant="normal">Mn</mml:mi><mml:mi mathvariant="normal">Sr<mml:mi mathvariant="normal">Mn</mml:mi><mml:mi mathvariant="normal">Sr<mml:mi mathvariant="normal">Mn</mml:mi><mml:mi mathvariant="normal">Sr<mml:mi mathvariant="normal">Mn</mml:mi><mml:mi mathvariant="normal">Sr<mml:mi mathvariant="normal">Mn<mml:mi mathvariant="normal">Mn<mml:mi mathvariant="normal">Mn<mml:mi mathvariant="normal">Mn<mml:mi mi mi mi mi mi mi mi mi mi mi mi mi m</mml:mi </mml:mi </mml:mi </mml:mi </mml:mi </mml:mi </mml:mi </mml:mi </mml:mi </mml:mi </mml:msub></mml:mrow>	1.1	16
342	mathvariant="normal">O <mml:mn>3</mml:mn> <mml:mtext>â^'Re Conductive nichrome probe tips: fabrication, characterization and application as nanotools. Nanotechnology, 2009, 20, 395708.</mml:mtext>	1.3	11
343	Soft X-ray characterization technique for Li batteries under operating conditions. Journal of Synchrotron Radiation, 2009, 16, 610-615.	1.0	14
344	Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nature Materials, 2009, 8, 263-270.	13.3	368

#	Article	IF	CITATIONS
345	Experimental estimate of electron escape depth in Fe. Solid State Communications, 2009, 149, 384-386. ELNES study of chemical solution deposited <mml:math <="" altimg="si0036.gif" overflow="scroll" td=""><td>0.9</td><td>4</td></mml:math>	0.9	4
346	xmins:xocs= http://www.elsevier.com/xmi/xocs/dtd xmins:xs= http://www.w3.org/2001/XMLSchema xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	0.8	7
347	Zenon 5p–4d cascade emission upon 3d-photoionization. European Physical Journal: Special Topics, 2009, 169, 51-58.	1.2	9
348	Atomic-resolution imaging of oxidation states in manganites. Physical Review B, 2009, 79, .	1.1	274
349	Comparison of the Local Order in Highly Oriented Pyrolitic Graphite and Bundles of Single-Wall Carbon Nanotubes by Nanoscale Extended Energy Loss Spectra. Journal of Physical Chemistry C, 2009, 113, 4848-4855.	1.5	9
350	The origin of refractory minerals in comet 81P/Wild 2. Geochimica Et Cosmochimica Acta, 2009, 73, 7150-7161.	1.6	32
351	Atomic-resolution spectroscopic imaging: past, present and future. Journal of Electron Microscopy, 2009, 58, 87-97.	0.9	66
352	Electron energy loss spectroscopy and <i>ab initio</i> investigation of iron oxide nanomaterials grown by a hydrothermal process. Physical Review B, 2009, 79, .	1.1	56
353	EELS of Niobium and Stoichiometric Niobium-Oxide Phases—Part I: Plasmon and Near-Edges Fine Structure. Microscopy and Microanalysis, 2009, 15, 505-523.	0.2	60
354	Annealing effects on a high-k lanthanum oxide film on Si (001) analyzed by aberration-corrected transmission electron microscopy/scanning transmission electron microscopy and electron energy loss spectroscopy. Journal of Applied Physics, 2010, 107, .	1.1	11
355	Characterisation of hollow Russian doll microspheres. Journal of Materials Science, 2010, 45, 3697-3706.	1.7	14
356	Characterization of passive oxide film on a Ti–5%Ta–1.8%Nb alloy on exposure to severe oxidizing conditions. Materials Characterization, 2010, 61, 1326-1334.	1.9	17
357	Characterizing CA2 and CA6 using ELNES. Journal of Solid State Chemistry, 2010, 183, 1776-1784.	1.4	27
358	EELS study of the inverse martensitic transformation of 2H and 18R Cu–Al–Zn alloys. Physica B: Condensed Matter, 2010, 405, 57-60.	1.3	2
359	Electron-beam-induced reduction of Fe3+ in iron phosphate dihydrate, ferrihydrite, haemosiderin and ferritin as revealed by electron energy-loss spectroscopy. Ultramicroscopy, 2010, 110, 1020-1032.	0.8	50
360	Large-scale synthesis of n-type gallium nitride nanowires using Nil2-decorated carbon nanotubes as a reactant. Carbon, 2010, 48, 2401-2408.	5.4	2
361	Electrochemical Performance of Acid-Treated Nanostructured LiMn[sub 1.5]Ni[sub 0.5]O[sub 4â^î] Spinel at Elevated Temperature. Journal of the Electrochemical Society, 2010, 157, A305.	1.3	29
362	Interface Structures of La _{0.67} Sr _{0.33} MnO ₃ /SrTiO ₃ Superlattices Studied by TEM and EELS. Journal of Physical Chemistry C, 2010, 114, 13068-13070.	1.5	4

#	Article	IF	CITATIONS
363	Thickness dependence of the L2,3 branching ratio of Cr thin films. Journal of Alloys and Compounds, 2010, 508, 233-237.	2.8	8
364	Probing the electronic structure of carbon nanotubes by nanoscale spectroscopy. Nanoscale, 2010, 2, 1611.	2.8	19
365	Electrochemical and Structural Study of a Chemically Dealloyed PtCu Oxygen Reduction Catalyst. Journal of Physical Chemistry C, 2010, 114, 16309-16320.	1.5	118
366	Microwave Plasma Nitridation of SrTiO ₃ : A Quantitative EELS, TEM, and STEM-HAADF Analysis of the SrTiO _{3â^'<i>x</i>} N _{<i>y</i>} Growth and the Structural Evolution. Crystal Growth and Design, 2010, 10, 3562-3567.	1.4	6
367	Atomic-resolution spectroscopic imaging of oxide interfaces. Philosophical Magazine, 2010, 90, 4731-4749.	0.7	57
368	Influence of Cu nanoparticle size on the photo-electrochemical response from Cu–multiwall carbon nanotube composites. Nanotechnology, 2011, 22, 035701.	1.3	16
369	An x-ray absorption spectroscopic study of the electronic structure and bonding of rare-earth orthoferrites. Journal of Physics Condensed Matter, 2011, 23, 465502.	0.7	27
370	Quantitative Analysis of Energy-Loss Data. , 2011, , 231-291.		8
371	Physics of Electron Scattering. , 2011, , 111-229.		12
372	Application of Electron Energy-Loss Spectroscopy (EELS) and Energy-Filtered Transmission Electron Microscopy (EFTEM) to the Study of Mineral Transformation Associated with Microbial Fe-Reduction of Magnetite. Clays and Clay Minerals, 2011, 59, 176-188.	0.6	15
373	Analytical electron microscopy investigation of elemental composition and bonding structure at the Sb-doped Ni-fully-silicide/SiO2 interface. Journal of Applied Physics, 2011, 109, 063716.	1.1	4
374	Electron Microscopy of Cocatalyst Nanostructures on Semiconductor Photocatalysts. ChemCatChem, 2011, 3, 990-998.	1.8	7
375	Boron Compounds as Stabilizers of a Complex Microstructure in a Coâ€Bâ€based Catalyst for NaBH ₄ Hydrolysis. ChemCatChem, 2011, 3, 1305-1313.	1.8	78
376	The effect of oxidation on the surface-near lattice relaxation in FeNi nanoparticles. Journal of Nanoparticle Research, 2011, 13, 5935-5946.	0.8	12
377	Krypton irradiation damage in Nd-doped zirconolite and perovskite. Journal of Nuclear Materials, 2011, 415, 67-73.	1.3	16
378	The micro-structural studies of Ni-BaTiO3 nanocomposite films by TEM and EELS. Journal Wuhan University of Technology, Materials Science Edition, 2011, 26, 897-901.	0.4	2
379			
379	Fabrication of Source/Drain Electrodes for a-Si:H Thin-Film Transistors Using a Single Cu Alloy Target. Journal of Electronic Materials, 2011, 40, 2209-2213.	1.0	3

#	Article	IF	CITATIONS
381	Thickness and angular dependence of the Lâ€edge Xâ€ray absorption of nickel thin films. X-Ray Spectrometry, 2011, 40, 427-431.	0.9	12
382	The synthesis and characterization of carbon nanotubes grown by chemical vapor deposition using a stainless steel catalyst. Carbon, 2011, 49, 3307-3315.	5.4	77
383	Influence of strain on the electronic structure of the TbMnO3/SrTiO3 epitaxial interface. Applied Physics Letters, 2011, 99, .	1.5	9
384	Electron energy-loss spectroscopy study of metallic Nb and Nb oxides. Journal of Applied Physics, 2011, 110, .	1.1	32
385	Electroless synthesis of 3 nm wide alloy nanowires inside <i>Tobacco mosaic virus</i> . Nanotechnology, 2012, 23, 045603.	1.3	45
386	Electrical properties of the amorphous interfacial layer between Al electrodes and epitaxial NiO films. Applied Physics Letters, 2012, 100, 172101.	1.5	0
387	Spectroscopic imaging in electron microscopy. MRS Bulletin, 2012, 37, 13-18.	1.7	14
388	Hybridization and magnetism in small FePt alloy clusters. New Journal of Physics, 2012, 14, 123005.	1.2	7
389	Chromium Substitution Effect on the Magnetic Structure of Iron Oxides. Chinese Physics Letters, 2012, 29, 057502.	1.3	2
390	XANES and XPS investigations of the local structure and final-state effects in amorphous metal silicates: (ZrO ₂) _x (TiO ₂) _y (SiO ₂) _{1â^'xâ^'y} . Physical Chemistry Chemical Physics, 2012, 14, 205-217.	1.3	21
391	Seeing the atoms more clearly: STEM imaging from the Crewe era to today. Ultramicroscopy, 2012, 123, 28-37.	0.8	60
392	Heterogeneous formation of ferric oxide nanoparticles on chlorite surfaces studied by x-ray absorption spectromicroscopy (STXM). Chemical Geology, 2012, 329, 42-52.	1.4	11
393	Nature of the active sites for the total oxidation of toluene by CuOCeO2/Al2O3. Journal of Catalysis, 2012, 295, 91-103.	3.1	78
394	Interfacial Charge Transfer and Chemical Bonding in a Ni–LaNbO ₄ Cermet for Proton-Conducting Solid-Oxide Fuel Cell Anodes. Chemistry of Materials, 2012, 24, 4152-4159.	3.2	16
395	Spin-orbit coupling in iridium-based 5 <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>d</mml:mi></mml:math> compounds probed by x-ray absorption spectroscopy. Physical Review B, 2012, 86, .	1.1	187
396	Chemical Intercalation of Zerovalent Metals into 2D Layered Bi ₂ Se ₃ Nanoribbons. Journal of the American Chemical Society, 2012, 134, 13773-13779.	6.6	160
397	<i>In situ</i> transmission electron microscopy of light-induced photocatalytic reactions. Nanotechnology, 2012, 23, 075705.	1.3	53
398	Structural and magnetic properties of epitaxial Co2FeAl films grown on MgO substrates for different growth temperatures. Acta Materialia, 2012, 60, 6714-6719.	3.8	18

#	Article	IF	CITATIONS
399	New insights into the synergistic effect in bimetallic-boron catalysts for hydrogen generation: The Co–Ru–B system as a case study. Applied Catalysis B: Environmental, 2012, 128, 39-47.	10.8	40
400	Direct imaging of copper catalyst migration inside helical carbon nanofibers. Nanotechnology, 2012, 23, 035702.	1.3	12
401	CO2 hydrogenation on a metal hydride surface. Physical Chemistry Chemical Physics, 2012, 14, 5518.	1.3	37
402	Association of iron oligomeric species with natural organic matter: a combined EELS and Mössbauer investigation. Aquatic Sciences, 2012, 74, 769-779.	0.6	5
403	Charge-ordered spinel AlV2O4: High-energy-resolution EELS and computational studies. Physical Review B, 2012, 85, .	1.1	9
404	Morphological evolution between nanorods to nanosheets and room temperature ferromagnetism of Fe-doped ZnO nanostructures. CrystEngComm, 2012, 14, 4016.	1.3	86
405	High-Density Chemical Intercalation of Zero-Valent Copper into Bi ₂ Se ₃ Nanoribbons. Journal of the American Chemical Society, 2012, 134, 7584-7587.	6.6	152
406	Patterned self-assembled monolayers of alkanethiols on copper nanomembranes by submerged laser ablation. Applied Physics A: Materials Science and Processing, 2012, 107, 755-759.	1.1	4
407	Effect of the bias voltage on the structure of nc-CrC/a-C:H coatings with high carbon content. Surface and Coatings Technology, 2012, 206, 2877-2883.	2.2	29
408	Oxidation state and chemical shift investigation in transition metal oxides by EELS. Ultramicroscopy, 2012, 116, 24-33.	0.8	445
409	The iron L edges: Fe 2p X-ray absorption and electron energy loss spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2013, 187, 32-48.	0.8	118
410	Copper-oxide whisker growth on tin–copper alloy coatings caused by the corrosion of Cu6Sn5 intermetallics. Journal of Materials Science, 2013, 48, 8052-8059.	1.7	10
411	Lightâ€Induced Reduction of Cuprous Oxide in an Environmental Transmission Electron Microscope. ChemCatChem, 2013, 5, 2667-2672.	1.8	25
412	Evidence of surface cleaning during electric field assisted sintering. Scripta Materialia, 2013, 69, 769-772.	2.6	50
413	Investigation of the conversion mechanism of nanosized CoF2. Electrochimica Acta, 2013, 107, 301-312.	2.6	57
414	In situ forming, characterization, and transduction of nanowire memristors. Nanoscale, 2013, 5, 12310.	2.8	48
415	Design of Desintering in Tin Dioxide Nanoparticles. Chemistry of Materials, 2013, 25, 4262-4268.	3.2	16
416	Characterization of atomic structure of oxide films on carbon steel in simulated concrete pore solutions using EELS. Applied Surface Science, 2013, 274, 195-202.	3.1	82

#	Article	IF	CITATIONS
417	Reduction of nickel oxide particles by hydrogen studied in an environmental TEM. Journal of Materials Science, 2013, 48, 2893-2907.	1.7	122
418	Insights into the atomic and electronic structure triggered by ordered nitrogen vacancies in CrN. Physical Review B, 2013, 87, .	1.1	22
419	Study of atomic structure and electronic structure of an AA′3B4O12 double-perovskite CaCu3Ir4O12 using STEM imaging and EELS techniques. Ultramicroscopy, 2013, 127, 94-99.	0.8	10
420	Quasi in situ analytical TEM to investigate electrochemically induced microstructural changes in alloys: AA2024-T3 as an example. Corrosion Science, 2013, 69, 221-225.	3.0	31
421	Engineering nano-composite Li4Ti5O12 anodes via scanning electron-probe fabrication. Nano Energy, 2013, 2, 343-350.	8.2	40
422	Characterization of two phase distribution in electrochemically-lithiated spinel Li4Ti5O12 secondary particles by electron energy-loss spectroscopy. Journal of Power Sources, 2013, 237, 26-32.	4.0	60
423	Characterisation of Co@Fe3O4 core@shell nanoparticles using advanced electron microscopy. Nanoscale, 2013, 5, 5765.	2.8	49
424	Traces of Defects in the Electronic Structure of Porous Ni–Ti Alloys. Journal of Materials Science and Technology, 2013, 29, 344-348.	5.6	3
425	Gas sensing properties of novel CuO nanowire devices. Sensors and Actuators B: Chemical, 2013, 187, 50-57.	4.0	163
426	Direct measurement of local magnetic moments at grain boundaries in iron. Scripta Materialia, 2013, 68, 253-256.	2.6	20
427	Performances of an 80–200 kV microscope employing a cold-FEG and an aberration-corrected objective lens. Microscopy (Oxford, England), 2013, 62, 283-293.	0.7	41
428	Surface deformations as a necessary requirement for resistance switching at the surface of SrTiO3:N. Nanotechnology, 2013, 24, 475701.	1.3	3
429	Nanorobotic in situ characterization of nanowire memristors and "memsensing". , 2013, , .		0
430	Vanadium L2,3 XANES experiments and first-principles multielectron calculations: Impact of second-nearest neighboring cations on vanadium-bearing fresnoites. American Mineralogist, 2013, 98, 665-670.	0.9	8
431	The Origin of Long-Period Lattice Spacings Observed in Iron-Carbide Nanowires Encapsulated by Multiwall Carbon Nanotubes. Microscopy and Microanalysis, 2013, 19, 1298-1302.	0.2	15
432	Investigation of the oxidation states of Cu additive in colored borosilicate glasses by electron energy loss spectroscopy. Journal of Applied Physics, 2014, 116, .	1.1	25
433	Synthesis of Fe Nanoparticles Functionalized with Oleic Acid Synthesized by Inert Gas Condensation. Journal of Nanomaterials, 2014, 2014, 1-6.	1.5	11
434	On the generation of surface depressions in polishing polycrystalline diamond compacts. Journal Physics D: Applied Physics, 2014, 47, 125301.	1.3	4

#	Article	IF	CITATIONS
435	A combinatorial comparison of DC and high power impulse magnetron sputtered Cr2AlC. Surface and Coatings Technology, 2014, 259, 746-750.	2.2	13
436	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub><mml:mi mathvariant="normal">Sr<mml:mn>2</mml:mn></mml:mi </mml:msub> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">CrReO<mml:mn>6</mml:mn></mml:mi </mml:msub>thin films by</mml:math 	1.1	16
437	element-specific XAS and XMCD. Physical Review B, 2014, 89, . Investigation of thickness dependence on electronic structures of iron and nickel thin films by L-edge X-ray absorption spectroscopy. Vacuum, 2014, 99, 211-215.	1.6	8
438	Two-dimensional metamaterials for epitaxial heterostructures. Current Opinion in Solid State and Materials Science, 2014, 18, 46-52.	5.6	2
439	Oxidation mechanism of nickel particles studied in an environmental transmission electron microscope. Acta Materialia, 2014, 67, 362-372.	3.8	47
440	Effect of Element Diffusion Through Metallic Networks During Oxidation of Type 321 Stainless Steel. Journal of Materials Engineering and Performance, 2014, 23, 1247-1262.	1.2	27
441	General Strategy for Zero-Valent Intercalation into Two-Dimensional Layered Nanomaterials. Chemistry of Materials, 2014, 26, 2313-2317.	3.2	61
442	Single-step functionalization of vertically aligned MWCNTs with Cu and Ni by chemical reduction of copper and nickel acetyl acetonate in benzyl alcohol. Carbon, 2014, 73, 146-154.	5.4	8
443	Oxide Wizard: An EELS Application to Characterize the White Lines of Transition Metal Edges. Microscopy and Microanalysis, 2014, 20, 698-705.	0.2	38
444	On the stability of AuFe alloy nanoparticles. Nanotechnology, 2014, 25, 215703.	1.3	9
445	Exceptional electrochemical performance of porous TiO ₂ –carbon nanofibers for lithium ion battery anodes. Journal of Materials Chemistry A, 2014, 2, 3875-3880.	5.2	71
446	Novel hybrid nanocomposites of polyhedral Cu ₂ O nanoparticles–CuO nanowires with enhanced photoactivity. Physical Chemistry Chemical Physics, 2014, 16, 17487-17492.	1.3	17
447	Misfit strain driven cation inter-diffusion across an epitaxial multiferroic thin film interface. Journal of Applied Physics, 2014, 115, .	1.1	30
448	The effect of valence state and site geometry on Cr L3,2 electron energy-loss spectra of Cr-bearing oxidic compounds. Chemie Der Erde, 2014, 74, 497-505.	0.8	5
449	Understanding Li-storage mechanism and performance of MnFe2O4 by in situ TEM observation on its electrochemical process in nano lithium battery. Nano Energy, 2014, 8, 84-94.	8.2	97
450	Nickel/Iron Oxide Nanocrystals with a Nonequilibrium Phase: Controlling Size, Shape, and Composition. Chemistry of Materials, 2014, 26, 4796-4804.	3.2	34
451	Metallic Copper Colloids by Reductive Laser Ablation of Nonmetallic Copper Precursor Suspensions. Journal of Physical Chemistry A, 2014, 118, 8329-8337.	1.1	19
	Synthesis by molten salt method of the AFeO3 system (A=La, Gd) and its structural, vibrational and		

#	Article	IF	CITATIONS
453	Analysis of the local atomic structure of a surface using EELFS spectroscopy data: Possibilities and the prospects for development. Journal of Surface Investigation, 2015, 9, 1039-1043.	0.1	3
454	Analysis of the local atomic structure of manganese and its oxides by extended energy loss fine structure spectroscopy. Physics of the Solid State, 2015, 57, 1446-1455.	0.2	1
455	Acceptor defect-participating magnetic exchange in ZnO : Cu nanocrystalline film: defect structure evolution, Cu–N synergetic role and magnetic control. Journal of Materials Chemistry C, 2015, 3, 1330-1346.	2.7	28
456	Cu(II) Galvanic Reduction and Deposition onto Iron Nano- and Microparticles: Resulting Morphologies and Growth Mechanisms. Langmuir, 2015, 31, 789-798.	1.6	12
457	Electric-field-induced point defect redistribution in single-crystal TiO2– and effects on electrical transport. Acta Materialia, 2015, 86, 352-360.	3.8	39
458	Dual Element Intercalation into 2D Layered Bi ₂ Se ₃ Nanoribbons. Journal of the American Chemical Society, 2015, 137, 5431-5437.	6.6	56
459	Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy and Environmental Science, 2015, 8, 1404-1427.	15.6	1,628
460	Structural and magnetic properties of ferrihydrite nanoparticles. RSC Advances, 2015, 5, 39643-39650.	1.7	13
461	Probing carbonate in bone forming minerals on the nanometre scale. Acta Biomaterialia, 2015, 20, 129-139.	4.1	28
462	Single CuO nanowires decorated with size-selected Pd nanoparticles for CO sensing in humid atmosphere. Nanotechnology, 2015, 26, 175502.	1.3	49
463	Synthesis of Highly Fluorescent Copper Clusters Using Living Polymer Chains as Combined Reducing Agents and Ligands. ACS Nano, 2015, 9, 11886-11897.	7.3	53
464	Single-crystalline CuO nanowires for resistive random access memory applications. Applied Physics Letters, 2015, 106, .	1.5	19
465	Improved electrochemical properties of LiMn ₂ O ₄ with the Bi and La co-doping for lithium-ion batteries. RSC Advances, 2015, 5, 73315-73322.	1.7	24
466	Exploring the Single Atom Spin State by Electron Spectroscopy. Physical Review Letters, 2015, 115, 206803.	2.9	80
467	Quantitative use of electron energy-loss spectroscopy Mo-M2,3 edges for the study of molybdenum oxides. Ultramicroscopy, 2015, 149, 1-8.	0.8	60
468	Demonstration of Copper Coâ€Fired (Na, K)NbO ₃ Multilayer Structures for Piezoelectric Applications. Journal of the American Ceramic Society, 2016, 99, 2017-2023.	1.9	52
469	Revealing the Electrochemical Lithiation Routes of CuO Nanowires by inâ€Situ TEM. ChemElectroChem, 2016, 3, 1296-1300.	1.7	11
470	Oxidation-resistive copper nanoparticles: photoreduction synthesis and their oxidation state measurements by XAFS and HRTEM. Journal of Physics: Conference Series, 2016, 712, 012120.	0.3	1

#	Article	IF	CITATIONS
471	Dynamic in situ observation of voltage-driven repeatable magnetization reversal at room temperature. Scientific Reports, 2016, 6, 23696.	1.6	20
472	Excimer laser assisted re-oxidation of BaTiO3 thin films on Ni metal foils. Journal of Applied Physics, 2016, 119, .	1.1	6
473	Transmission electron microscope studies in the surface oxide on the La-containing AB2 metal hydride alloy. Journal of Alloys and Compounds, 2016, 672, 356-365.	2.8	14
474	Tuning the Activity of Oxygen in LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂ Battery Electrodes. ACS Applied Materials & Interfaces, 2016, 8, 27762-27771.	4.0	58
475	Probing the electrochemical behavior of {111} and {110} faceted hollow Cu ₂ O microspheres for lithium storage. RSC Advances, 2016, 6, 97129-97136.	1.7	13
476	Comparison of photoelectrochemical properties of TiO 2 Nanotubes and sol-gel. Electrochimica Acta, 2016, 213, 31-36.	2.6	27
477	EELS Study of Differential Diffusion of Fe and Co in Magnetized Silica Nanocomposites. Journal of Physical Chemistry C, 2016, 120, 25578-25587.	1.5	6
478	Epitaxial growth of rutile TiO2 thin films by oxidation of TiN/Si{100} heterostructure. Acta Materialia, 2016, 103, 502-511.	3.8	29
479	A simple UV-ozone surface treatment to enhance photocatalytic performance of TiO ₂ loaded polymer nanofiber membranes. RSC Advances, 2016, 6, 14751-14755.	1.7	9
480	Quantifying the growth of individual graphene layers by in situ environmental transmission electron microscopy. Carbon, 2016, 99, 261-266.	5.4	11
481	Bonding structure and morphology of chromium oxide films grown by pulsed-DC reactive magnetron sputter deposition. Journal of Alloys and Compounds, 2016, 672, 529-535.	2.8	17
482	Stability, bistability and instability of amorphous ZrO ₂ resistive memory devices. Journal Physics D: Applied Physics, 2016, 49, 095111.	1.3	48
483	Design and Epitaxial Growth of MoSe ₂ –NiSe Vertical Heteronanostructures with Electronic Modulation for Enhanced Hydrogen Evolution Reaction. Chemistry of Materials, 2016, 28, 1838-1846.	3.2	310
484	The Influence of Final-State Effects on XPS Spectra from First-Row Transition-Metals. Springer Series in Surface Sciences, 2016, , 217-262.	0.3	1
485	Probing the Origin of Interfacial Carriers in SrTiO ₃ –LaCrO ₃ Superlattices. Chemistry of Materials, 2017, 29, 1147-1155.	3.2	19
486	Ultrafast Elemental and Oxidation-State Mapping of Hematite by 4D Electron Microscopy. Journal of the American Chemical Society, 2017, 139, 4916-4922.	6.6	32
487	The magnetic characterization of Fe doped TiO 2 semiconducting oxide nanoparticles synthesized by sol–gel method. Physica B: Condensed Matter, 2017, 511, 89-98.	1.3	47
488	One-atom-thick 2D copper oxide clusters on graphene. Nanoscale, 2017, 9, 3980-3985.	2.8	32

#	Article	IF	CITATIONS
489	Investigation of the Structural and Electrochemical Properties of Mn ₂ Sb ₃ O ₆ Cl upon Reaction with Li Ions. Journal of Physical Chemistry C, 2017, 121, 5949-5958.	1.5	3
490	γ-Fe ₂ O ₃ @CNTs Anode Materials for Lithium Ion Batteries Investigated by Electron Energy Loss Spectroscopy. Chemistry of Materials, 2017, 29, 3499-3506.	3.2	73
491	Nanosized Conducting Filaments Formed by Atomic-Scale Defects in Redox-Based Resistive Switching Memories. Chemistry of Materials, 2017, 29, 3164-3173.	3.2	70
492	Atomic structure and chemistry of a[100] dislocation cores in La2/3Sr1/3MnO3 films. Micron, 2017, 96, 72-76.	1.1	4
493	Synthesis of Cu@ZnO core–shell nanoparticles by spark discharges in liquid nitrogen. Nano Structures Nano Objects, 2017, 10, 22-29.	1.9	26
494	Physical Confinement Promoting Formation of Cu ₂ O–Au Heterostructures with Au Nanoparticles Entrapped within Crystalline Cu ₂ O Nanorods. Chemistry of Materials, 2017, 29, 555-563.	3.2	20
495	Intercalating copper into layered TaS ₂ van der Waals gaps. RSC Advances, 2017, 7, 46699-46703.	1.7	7
496	Nature and Distribution of Stable Subsurface Oxygen in Copper Electrodes During Electrochemical CO ₂ Reduction. Journal of Physical Chemistry C, 2017, 121, 25003-25009.	1.5	98
497	Decoration of exfoliated black phosphorus with nickel nanoparticles and its application in catalysis. Chemical Communications, 2017, 53, 10946-10949.	2.2	55
498	State of the Surface of Antibacterial Copper in Phosphate Buffered Saline. Journal of the Electrochemical Society, 2017, 164, H734-H742.	1.3	14
499	Selective phase formation in substoichiometric Al-Cr-based oxides. Scripta Materialia, 2017, 139, 144-147.	2.6	13
500	Mapping grain boundary heterogeneity at the nanoscale in a positive temperature coefficient of resistivity ceramic. APL Materials, 2017, 5, 066105.	2.2	11
501	Binderless Solution Processed Zn Doped Co ₃ O ₄ Film on FTO for Rapid and Selective Nonâ€enzymatic Glucose Detection. Electroanalysis, 2017, 29, 578-586.	1.5	40
502	Electronic structure of metastable bcc Cu–Cr alloy thin films: Comparison of electron energy-loss spectroscopy and first-principles calculations. Ultramicroscopy, 2017, 178, 96-104.	0.8	8
503	Reduction reactions and densification during in situ TEM heating of iron oxide nanochains. Journal of Applied Physics, 2017, 122, 234303.	1.1	6
504	Oxygen vacancy-induced magnetic moment in edge-sharing CuO ₂ chains of Li ₂ CuO _{2â``<i>1`</i>} . New Journal of Physics, 2017, 19, 023026.	1.2	8
505	Analysis of Ti valence states in resistive switching regions of a rutile TiO _{2â^'} <i> _x </i> four-terminal memristive device. Japanese Journal of Applied Physics, 2018, 57, 06KB02.	0.8	9
506	Reticular Electronic Tuning of Porphyrin Active Sites in Covalent Organic Frameworks for Electrocatalytic Carbon Dioxide Reduction. Journal of the American Chemical Society, 2018, 140, 1116-1122.	6.6	457

#	Article	IF	CITATIONS
507	Synthesis of copper and zinc nanostructures by discharges in liquid nitrogen. Materials Chemistry and Physics, 2018, 207, 350-358.	2.0	12
508	Structure and Chemical Characterization at the Atomic Level of Reactions in Al/CuO Multilayers. ACS Applied Energy Materials, 2018, 1, 1762-1770.	2.5	48
509	The role of multipolarity in quantitative analysis of EELFS spectra. Journal of Electron Spectroscopy and Related Phenomena, 2018, 222, 15-23.	0.8	3
510	Direct View of Cr Atoms Doped in Anatase TiO2(001) Thin Film. Chinese Journal of Chemical Physics, 2018, 31, 71-76.	0.6	4
511	Atomic-scale mapping of interface reconstructions in multiferroic heterostructures. Applied Physics Reviews, 2018, 5, .	5.5	23
512	Local Structure and Point-Defect-Dependent Area-Selective Atomic Layer Deposition Approach for Facile Synthesis of p-Cu ₂ 0/n-ZnO Segmented Nanojunctions. ACS Applied Materials & Interfaces, 2018, 10, 37671-37678.	4.0	17
513	Facile Synthesis of a Terephthalic Acid-Based Organic Fluorophore with Strong and Color-Tunable Emission in Both Solution and Solid States for LED Applications. ACS Applied Materials & Interfaces, 2018, 10, 33390-33398.	4.0	19
514	Sulfur – induced embrittlement in high-purity, polycrystalline copper. Acta Materialia, 2018, 156, 64-75.	3.8	13
515	EELS at very high energy losses. Microscopy (Oxford, England), 2018, 67, i78-i85.	0.7	17
516	Rechargeability of aqueous sulfate Zn/MnO2 batteries enhanced by accessible Mn2+ ions. Energy Storage Materials, 2018, 15, 351-360.	9.5	211
517	Electrostatic fields control grain boundary structure in SrTiO3. Applied Physics Letters, 2018, 113, .	1.5	15
518	Electrochemical solid-state amorphization in the immiscible Cu-Li system. Science Bulletin, 2018, 63, 1208-1214.	4.3	8
519	Coordinated Nanoscale Compositional and Oxidation State Measurements of Lunar Spaceâ€Weathered Material. Journal of Geophysical Research E: Planets, 2018, 123, 2022-2037.	1.5	25
520	Lowâ€angle twist grain boundary in SrTiO ₃ fabricated by spark plasma sintering techniques. Journal of the American Ceramic Society, 2019, 102, 578-586.	1.9	4
521	Template free mild hydrothermal synthesis of core–shell Cu ₂ O(Cu)@CuO visible light photocatalysts for <i>N</i> -acetyl- <i>para</i> -aminophenol degradation. Journal of Materials Chemistry A, 2019, 7, 20767-20777.	5.2	46
522	The progress of SPP oxidation in zircaloy-4 and its relation to corrosion and hydrogen pickup. Corrosion Science, 2019, 158, 108072.	3.0	7
523	Gate Tuning of Synaptic Functions Based on Oxygen Vacancy Distribution Control in Four-Terminal TiO2â^'x Memristive Devices. Scientific Reports, 2019, 9, 10013.	1.6	10
524	Efficient vapor-liquid-solid synthesis of copper doped zinc oxide (Cu:ZnO) nanonails with highly homogeneous dopant distribution. Materials Science in Semiconductor Processing, 2019, 101, 238-246.	1.9	9

#	Article	IF	CITATIONS
525	Opto-electronic properties of anodized TiO2 nanotube arrays investigated using electron energy loss spectroscopy. Surfaces and Interfaces, 2019, 17, 100347.	1.5	4
526	Phase stability and electronic structure of iridium metal at the megabar range. Scientific Reports, 2019, 9, 8940.	1.6	17
527	Phase growth analysis of sputtered TiO ₂ thin films at low oxygen partial pressures using XANES and XRR. Materials Research Express, 2019, 6, 116449.	0.8	15
528	Atomic Scale Near-Edge Structures of a Structurally Abrupt Ni-SrTiO3 Interface. Microscopy and Microanalysis, 2019, 25, 664-665.	0.2	Ο
529	Dynamic visualization of the phase transformation path in LiFePO ₄ during delithiation. Nanoscale, 2019, 11, 17557-17562.	2.8	12
530	Extreme biomimetics: Preservation of molecular detail in centimeter-scale samples of biological meshes laid down by sponges. Science Advances, 2019, 5, eaax2805.	4.7	53
531	Nitrogen plasma treatment of ZnO and TiO2 nanowire arrays for polymer photovoltaic applications. Surfaces and Interfaces, 2019, 17, 100382.	1.5	7
532	Fingerprints of native defects in monolayer PbTe. Nanoscale Advances, 2019, 1, 513-521.	2.2	Ο
533	Electron probe microanalysis of Fe2+/ΣFe ratios in calcic and sodic-calcic amphibole and biotite using the flank method. Chemical Geology, 2019, 509, 152-162.	1.4	14
534	Evolution of element-specific electronic structures in alkaline titanates. AIP Advances, 2019, 9, 065213.	0.6	4
534 535	Evolution of element-specific electronic structures in alkaline titanates. AIP Advances, 2019, 9, 065213. Structural properties of ultrathin SrO film deposited on SrTiO3. Science and Technology of Advanced Materials, 2019, 20, 456-463.	0.6 2.8	4
	Structural properties of ultrathin SrO film deposited on SrTiO3. Science and Technology of Advanced		
535	Structural properties of ultrathin SrO film deposited on SrTiO3. Science and Technology of Advanced Materials, 2019, 20, 456-463. Electron energy loss spectroscopy in the electron microscope. Advances in Imaging and Electron	2.8	10
535 536	Structural properties of ultrathin SrO film deposited on SrTiO3. Science and Technology of Advanced Materials, 2019, 20, 456-463. Electron energy loss spectroscopy in the electron microscope. Advances in Imaging and Electron Physics, 2019, , 187-304. Quantification of Charge Transfer at the Interfaces of Oxide Thin Films. Journal of Physical Chemistry	2.8 0.1	10
535 536 537	Structural properties of ultrathin SrO film deposited on SrTiO3. Science and Technology of Advanced Materials, 2019, 20, 456-463. Electron energy loss spectroscopy in the electron microscope. Advances in Imaging and Electron Physics, 2019, 187-304. Quantification of Charge Transfer at the Interfaces of Oxide Thin Films. Journal of Physical Chemistry A, 2019, 123, 4632-4637. Atomistic insight into ordered defect superstructures at novel grain boundaries in CuO nanosheets:	2.8 0.1 1.1	10 10 5
535 536 537 538	Structural properties of ultrathin SrO film deposited on SrTiO3. Science and Technology of Advanced Materials, 2019, 20, 456-463. Electron energy loss spectroscopy in the electron microscope. Advances in Imaging and Electron Physics, 2019, 187-304. Quantification of Charge Transfer at the Interfaces of Oxide Thin Films. Journal of Physical Chemistry A, 2019, 123, 4632-4637. Atomistic insight into ordered defect superstructures at novel grain boundaries in CuO nanosheets: From structures to electronic properties. Nano Research, 2019, 12, 1099-1104. Recent Advances on Carrier and Exciton Self-Trapping in Strontium Titanate: Understanding the	2.8 0.1 1.1 5.8	10 10 5 6
535 536 537 538 539	Structural properties of ultrathin SrO film deposited on SrTiO3. Science and Technology of Advanced Materials, 2019, 20, 456-463. Electron energy loss spectroscopy in the electron microscope. Advances in Imaging and Electron Physics, 2019, , 187-304. Quantification of Charge Transfer at the Interfaces of Oxide Thin Films. Journal of Physical Chemistry A, 2019, 123, 4632-4637. Atomistic insight into ordered defect superstructures at novel grain boundaries in CuO nanosheets: From structures to electronic properties. Nano Research, 2019, 12, 1099-1104. Recent Advances on Carrier and Exciton Self-Trapping in Strontium Titanate: Understanding the Luminescence Emissions. Crystals, 2019, 9, 95. STEM-EELS identification of TIOXNY, TiN, Ti2N and O, N dissolution in the Ti2642S alloy oxidized in	2.8 0.1 1.1 5.8 1.0	10 10 5 6 32

#	Article	IF	CITATIONS
543	Defectâ€Induced Magnetism in Nonmagnetic Oxides: Basic Principles, Experimental Evidence, and Possible Devices with ZnO and TiO ₂ . Physica Status Solidi (B): Basic Research, 2020, 257, 1900623.	0.7	26
544	Study on the Ti K, L _{2,3} , and M Edges of SrTiO ₃ and PbTiO ₃ . Journal of Physical Chemistry A, 2020, 124, 322-327.	1.1	3
545	Stabilization of metal(II)oxides on the nanoscale. Materials Research Letters, 2020, 8, 41-47.	4.1	0
546	Nickel Impurities in the Solid-Electrolyte Interphase of Lithium-Metal Anodes Revealed by Cryogenic Electron Microscopy. Cell Reports Physical Science, 2020, 1, 100188.	2.8	22
547	Discovery of Realâ€6pace Topological Ferroelectricity in Metallic Transition Metal Phosphides. Advanced Materials, 2020, 32, e2003479.	11.1	13
548	Intercalation of Two-dimensional Layered Materials. Chemical Research in Chinese Universities, 2020, 36, 584-596.	1.3	21
549	Atomically dispersed Ni in cadmium-zinc sulfide quantum dots for high-performance visible-light photocatalytic hydrogen production. Science Advances, 2020, 6, eaaz8447.	4.7	83
550	Confined Fe–Cu Clusters as Subâ€Nanometer Reactors for Efficiently Regulating the Electrochemical Nitrogen Reduction Reaction. Advanced Materials, 2020, 32, e2004382.	11.1	152
551	Electronic structure of bulk and two-dimensional SrTiO3: DFT calculation with GGA + U methods. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	7
552	Modified multiferroic behavior: A case study of NdFeO3-SrTiO3 composite. AIP Conference Proceedings, 2020, , .	0.3	1
553	Degenerated TiO ₂ Semiconductor Modified with Ni and Zn as Efficient Photocatalysts for the Water Splitting Reaction. ChemCatChem, 2020, 12, 4642-4651.	1.8	11
554	How photocorrosion can trick you: a detailed study on low-bandgap Li doped CuO photocathodes for solar hydrogen production. Nanoscale, 2020, 12, 7766-7775.	2.8	18
555	First-principles-based calculation of branching ratio for 5d, 4d, and 3dtransition metal systems. Journal of Physics Condensed Matter, 2020, 32, 245501.	0.7	2
556	Identifying the catalyst chemical state and adsorbed species during methanol conversion on copper using ambient pressure X-ray spectroscopies. Physical Chemistry Chemical Physics, 2020, 22, 18806-18814.	1.3	9
557	Highly Active Rutile TiO ₂ Nanocrystalline Photocatalysts. ACS Applied Materials & Interfaces, 2020, 12, 33058-33068.	4.0	46
558	Correction of EELS dispersion non-uniformities for improved chemical shift analysis. Ultramicroscopy, 2020, 217, 113069.	0.8	4
559	Stabilization of a nanoporous NiCu dilute alloy catalyst for non-oxidative ethanol dehydrogenation. Catalysis Science and Technology, 2020, 10, 5207-5217.	2.1	17
560	Integration of Gold Nanoparticles to Modulate the Ignitability of Nanothermite Films. ACS Applied Nano Materials, 2020, 3, 2562-2572.	2.4	22

#	Article	IF	CITATIONS
561	Titanium 3d ferromagnetism with perpendicular anisotropy in defective anatase. Physical Review B, 2020, 101, .	1.1	10
562	Degradation mechanism of Ti-6Al-2Sn-4Zr-2Mo-Si alloy exposed to solid NaCl deposit at high temperature. Corrosion Science, 2020, 172, 108611.	3.0	23
563	Chemical interaction and electronic structure in a compositionally complex alloy: A case study by means of X-ray absorption and X-ray photoelectron spectroscopy. Journal of Alloys and Compounds, 2021, 857, 157597.	2.8	9
564	Interstitial carbon induced FCC-Ti exhibiting ultrahigh strength in a Ti37Nb28Mo28-C7 complex concentrated alloy. Acta Materialia, 2021, 203, 116456.	3.8	30
565	Different Oxygen Desorption Durabilities of Lithium Titanium Oxides as Confirmed by Transmission Electron Energy-Loss Spectroscopy Analysis of Li ₄ Ti ₅ O ₁₂ and β-Li ₂ TiO ₃ Biphase Specimens. ACS Applied Energy Materials, 2021, 4, 1377-1386.	2.5	6
566	Detailed characterization of the Ti-O based thin films obtained by cathodic arc evaporation. Materials Protection, 2021, 62, 41-50.	0.1	0
567	Probing electronic structure in berkelium and californium via an electron microscopy nanosampling approach. Nature Communications, 2021, 12, 948.	5.8	7
568	Polyhedron and Charge Ordering in Interfacial Reconstruction of a Hexagonal Ferrite/Sapphire Heterostructure. ACS Applied Materials & Interfaces, 2021, 13, 11489-11496.	4.0	2
569	TEM and EELS characterization of Ni–Fe layered double hydroxide decompositions caused by electron beam irradiation. Npj 2D Materials and Applications, 2021, 5, .	3.9	8
570	Determining oxidation states of transition metals in molten salt corrosion using electron energy loss spectroscopy. Scripta Materialia, 2021, 197, 113790.	2.6	15
571	Leakage current characteristics and DC resistance degradation mechanisms in Nb doped PZT films. Journal of Applied Physics, 2021, 129, .	1.1	8
572	Efficient Nitrogen Fixation to Ammonia through Integration of Plasma Oxidation with Electrocatalytic Reduction. Angewandte Chemie - International Edition, 2021, 60, 14131-14137.	7.2	190
573	High-temperature solar-selective coatings based on Cr(Al)N. Part 1: Microstructure and optical properties of CrNy and Cr1-xAlxNy films prepared by DC/HiPIMS. Solar Energy Materials and Solar Cells, 2021, 223, 110951.	3.0	4
574	Efficient Nitrogen Fixation to Ammonia through Integration of Plasma Oxidation with Electrocatalytic Reduction. Angewandte Chemie, 2021, 133, 14250-14256.	1.6	44
575	Thermally stimulated depolarization current measurements on degraded lead zirconate titanate films. Journal of the American Ceramic Society, 2021, 104, 5270-5280.	1.9	10
576	Electronic Properties of Ti Sites in Ziegler–Natta Catalysts. ACS Catalysis, 2021, 11, 9949-9961.	5.5	32
577	The oxidation state of Ti in hibonite at the atomic scale. Microscopy and Microanalysis, 2021, 27, 1184-1187.	0.2	0
578	Oxidation Behavior of InAlN during Rapid Thermal Annealing. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100304.	0.8	2

#	Article	IF	CITATIONS
579	Metal-semiconductor 1T/2H-MoS2 by a heteroatom-doping strategy for enhanced electrocatalytic hydrogen evolution. Catalysis Communications, 2021, 156, 106325.	1.6	21
580	Impact of vacuum on the resistive switching in HfO2-based conductive-bridge RAM with highly-doped silicon bottom electrode. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 271, 115267.	1.7	7
581	Correlating point defects with mechanical properties in nanocrystalline TiN thin films. Materials and Design, 2021, 207, 109844.	3.3	18
582	Anodic coulometry of zero-valent iron nanoparticles. Journal of Electroanalytical Chemistry, 2021, 896, 115331.	1.9	3
584	Inner-Shell Ionization. Springer Series in Optical Sciences, 1995, , 225-268.	0.5	17
585	Extended Energy Loss Fine Structure (EELFS) Technique: Bulk and Surface Investigation. Springer Series in Chemical Physics, 1983, , 382-390.	0.2	1
586	Partial Valence Densities-of-States of TiO2 and TiO2-x from Resonant Photoemission and Photoelectron Diffraction. Springer Series in Surface Sciences, 1993, , 91-100.	0.3	4
587	Atomically Dispersed Ni/Î \pm -MoC Catalyst for Hydrogen Production from Methanol/Water. Journal of the American Chemical Society, 2021, 143, 309-317.	6.6	168
588	Synthesis and properties of nearly single-shell nickel clusters in amorphous aluminium oxides. , 0, .		3
589	The Nature of Co in Synthetic Co-substituted Goethites. Clays and Clay Minerals, 2004, 52, 760-766.	0.6	21
590	Investigation of the NO reduction by CO reaction over oxidized and reduced NiO _{<i>x</i>} /CeO ₂ catalysts. Catalysis Science and Technology, 2021, 11, 7850-7865.	2.1	13
591	Heterogeneous Catalysts. , 2008, , 1491-1504.		0
592	Hybridization, Crystal Anisotropy and Magnetism in Ce Compounds and Core X-Ray Absorption. Progress of Theoretical Physics Supplement, 2013, 101, 303-315.	0.2	3
593	Reflection Extended Energy Loss Fine Structures Above Ti L2,3 Edge: A Comparison with EXAFS Results. Springer Proceedings in Physics, 1984, , 487-489.	0.1	0
594	A Condensed Matter View of Giant Resonance Phenomena. NATO ASI Series Series B: Physics, 1987, , 321-337.	0.2	0
595	Electron-Specimen Interactions. Springer Series in Optical Sciences, 1989, , 136-191.	0.5	0
596	Electronic Structure of Cu-Pd Alloys. Proceedings Annual Meeting Electron Microscopy Society of America, 1990, 48, 38-39.	0.0	0
597	Electronic structure of Cr clusters on graphite. , 1991, , 837-840.		0

#	Article	IF	CITATIONS
598	Nickel L2,3 core energy loss studies in NiSi2. Proceedings Annual Meeting Electron Microscopy Society of America, 1992, 50, 1358-1359.	0.0	0
599	Electron-Specimen Interactions. Springer Series in Optical Sciences, 1993, , 136-191.	0.5	0
600	EELS study of bulk Co and CoSi2. Proceedings Annual Meeting Electron Microscopy Society of America, 1993, 51, 572-573.	0.0	0
602	Structure and Composition of Interfaces in Ceramics and Ceramic Composites. , 1998, , 1-12.		0
604	Electron Energy Loss Spectroscopy (EELS) Application to Mineral Formation. Journal of the Mineralogical Society of Korea, 2016, 29, 73-78.	0.2	2
605	Atomic scale crystal field mapping of polar vortices in oxide superlattices. Nature Communications, 2021, 12, 6273.	5.8	13
606	WhatEELS. A python-based interactive software solution for ELNES analysis combining clustering and NLLS. Ultramicroscopy, 2022, 232, 113403.	0.8	3
607	Electron energy-loss spectroscopy and energy-filtered transmission electron microscopy. , 0, , 57-110.		1
608	Site symmetry effects in the EELS fine structure of Be ₂ C. Proceedings Annual Meeting Electron Microscopy Society of America, 1984, 42, 564-565.	0.0	0
609	Electron energy loss spectroscopy of nanometer-sized Cr crystallites in MgO single crystals. Proceedings Annual Meeting Electron Microscopy Society of America, 1989, 47, 396-397.	0.0	0
610	Mechanistic Insight and Local Structure Evolution of NiPS ₃ upon Electrochemical Lithiation. ACS Applied Materials & Interfaces, 2022, 14, 3980-3990.	4.0	9
611	Increasing oxygen vacancies in CeO ₂ nanocrystals by Ni doping and reduced graphene oxide decoration towards electrocatalytic hydrogen evolution. CrystEngComm, 2022, 24, 3369-3379.	1.3	9
612	Analytical technique for self-absorption structure of iron <i>L</i> -emission spectra obtained by soft X-ray emission spectrometer. Microscopy (Oxford, England), 2022, 71, 169-174.	0.7	1
613	Electrochemical CO2 reduction to ethylene by ultrathin CuO nanoplate arrays. Nature Communications, 2022, 13, 1877.	5.8	172
614	Influence of particle size on surface oxide of 316L stainless steel powders for hot isostatic pressing. Materialia, 2022, 22, 101405.	1.3	9
615	Revealing the structural and chemical properties of copper-based nanoparticles released from copper treated wood. RSC Advances, 2022, 12, 11391-11401.	1.7	4
617	High-resolution transmission electron microscopy and spectroscopy of epitaxial metal oxides. , 2022, , 369-398.		1
618	Surface microstructures of lunar soil returned by Chang'e-5 mission reveal an intermediate stage in space weathering process. Science Bulletin, 2022, 67, 1696-1701.	4.3	5

-			_	
Сіт	ATI	ON	REP	ODT
	АП		ILEP!	UKI

#	Article	IF	CITATIONS
619	XANES and XRR study on phase evolution of TiO2 films developed using HiPIMS. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 283, 115827.	1.7	1
620	Revealing the complex lithiation pathways and kinetics of core-shell NiO@CuO electrode. Energy Storage Materials, 2022, 51, 11-18.	9.5	11
621	An Oxygen Vacancy Memristor Ruled by Electron Correlations. Advanced Science, 2022, 9, .	5.6	5
622	Influence of process parameters on energetic properties of sputter-deposited Al/CuO reactive multilayers. Nanotechnology, 2022, 33, 465704.	1.3	4
623	Copper-Nanoparticle-Coated Fabrics for Rapid and Sustained Antibacterial Activity Applications. ACS Applied Nano Materials, 2022, 5, 12876-12886.	2.4	11
624	Trigonal distortion in zigzag-antiferromagnet iron phosphorus trisulfide. Physical Review B, 2022, 106, .	1.1	3
625	In Situ TEM under Optical Excitation for Catalysis Research. Topics in Current Chemistry, 2022, 380, .	3.0	4
626	Structure, Oxygen Content and Electric Properties of Titanium Nitride Electrodes in TiNx/La:HfO2/TiNx Stacks Grown by PEALD on SiO2/Si. Nanomaterials, 2022, 12, 3608.	1.9	2
627	One-Step Formation of Plasmonic Cu Nanodomains in p-Type Cu ₂ 0 Matrix Films for Enhanced Photoconversion of n-ZnO/p-Cu ₂ 0 Heterojunctions. ACS Applied Electronic Materials, 2022, 4, 5527-5537.	2.0	2
628	Cu ₂ 0/Reduced Graphene Oxide Nanocomposites for Electrocatalytic Overall Water Splitting. ACS Applied Nano Materials, 2022, 5, 17271-17280.	2.4	15
629	Vanadium Electronic Configuration Determination From L2,3 Transition in V-oxide Compounds and Roscoelite. Microscopy and Microanalysis, 2023, 29, 459-469.	0.2	2
630	Selfâ€Adaptive Electronic Structure of Amphoteric Conjugated Ligandâ€Modified 3 d Metalâ^'C ₃ N ₄ Smart Electrocatalyst by pH Selfâ€Response Realizing Electrocatalytic Selfâ€Adjustment. ChemSusChem, 2023, 16, .	3.6	2
631	Unusual Mn oxidation state distribution in the vicinity of the tensile-strained interface between CaMnO _{3â^îl´} and La _{0.7} Ca _{0.3} MnO ₃ layers. APL Materials, 2023, 11, 041106.	2.2	1
632	Atomic-scale insights into the interfacial charge transfer in a NiO/CeO2 heterostructure for electrocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2023, 643, 282-291.	5.0	10
633	Synthesis of functional nitride membranes using sacrificial water-soluble BaO layers. Journal of Applied Physics, 2023, 133, .	1.1	1
634	Textural, Microstructural and Chemical Characterization of Ferritic Stainless Steel Affected by the Gold Dust Defect. Materials, 2023, 16, 1825.	1.3	3
635	Deciphering Structural Origins of Highly Reversible Lithium Storage in High Entropy Oxides with In Situ Transmission Electron Microscopy. Advanced Materials, 2023, 35, .	11.1	22