Mantle plumes from ancient oceanic crust

Earth and Planetary Science Letters 57, 421-436 DOI: 10.1016/0012-821x(82)90161-3

Citation Report

#	Article	IF	CITATIONS
3	The Yellowstone "hot spot―track results from migrating basin-range extension. Special Paper of the Geological Society of America, 2015, , 215-238.	0.5	4
4	Phase Transformations and Differentiation in Subducted Lithosphere: Implications for Mantle Dynamics, Basalt Petrogenesis, and Crustal Evolution. Journal of Geology, 1982, 90, 611-643.	1.4	415
5	Diapirism of depleted peridotite — a model for the origin of hot spots. Physics of the Earth and Planetary Interiors, 1982, 29, 148-160.	1.9	32
6	Modes of mantle convection and the removal of heat from the Earth's interior. Journal of Geophysical Research, 1982, 87, 4682-4696.	3.3	134
7	Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution. Nature, 1982, 296, 821-825.	27.8	663
8	Crust to crust, basalt to basalt. Nature, 1982, 297, 281-282.	27.8	2
9	Nd, Sr and Pb isotopic systematics in a three-component mantle: a new perspective. Nature, 1982, 298, 519-523.	27.8	276
10	Nd and Sr isotopes in kimberlites and lamproites from Western Australia: an enriched mantle origin. Nature, 1983, 302, 400-403.	27.8	177
11	Palaeocontinental configurations and geoid anomalies. Nature, 1983, 303, 513-516.	27.8	12
12	Rare-earth elements and uranium in high-temperature solutions from East Pacific Rise hydrothermal vent field (13 ŰN). Nature, 1983, 303, 795-797.	27.8	471
13	Pb, Sr, Nd and Hf isotopic evidence of multiple sources for Oahu, Hawaii basalts. Nature, 1983, 304, 25-29.	27.8	203
14	Pb, Sr and Nd isotopic evidence for sources of southern African Cretaceous kimberlites. Nature, 1983, 304, 51-54.	27.8	467
15	Mantle plume noble gas component in glassy basalts from Reykjanes Ridge. Nature, 1983, 305, 403-407.	27.8	31
16	K, U and Th in mid-ocean ridge basalt glasses and heat production, K/U and K/Rb in the mantle. Nature, 1983, 306, 431-436.	27.8	390
17	Free convective boundary layers in variable-viscosity fluids by the method of local nonsimilarity: Application to plumes in the Earth's mantle. Il Nuovo Cimento Della Società Italiana Di Fisica C, 1983, 6, 473-504.	0.2	0
18	The transition from alkali basalts to kimberlites: Isotope and trace element evidence from melilitites. Contributions To Mineralogy and Petrology, 1983, 82, 176-186.	3.1	119
19	Convective thinning of the lithosphere: A mechanism for rifting and mid-plate volcanism on Earth, Venus, and Mars. Tectonophysics, 1983, 94, 67-90.	2.2	52
20	Evolution of depleted mantle: The lead perspective. Geochimica Et Cosmochimica Acta, 1983, 47, 1191-1197.	3.9	73

#	Article	IF	CITATIONS
21	Importance of the Lu-Hf isotopic system in studies of planetary chronology and chemical evolution. Geochimica Et Cosmochimica Acta, 1983, 47, 81-91.	3.9	296
22	Isotopic and incompatible element constraints on the genesis of island arc volcanics from Cold Bay and Amak Island, Aleutians, and implications for mantle structure. Geochimica Et Cosmochimica Acta, 1983, 47, 2015-2030.	3.9	341
23	Alteration of basaltic glass: Mechanisms and significance for the oceanic crust-seawater budget. Geochimica Et Cosmochimica Acta, 1983, 47, 337-350.	3.9	429
24	Geochemical evolution of the crust and mantle. Reviews of Geophysics, 1983, 21, 1347-1358.	23.0	12
25	Petrological evolution of the crust and mantle. Reviews of Geophysics, 1983, 21, 1358-1372.	23.0	6
26	New developments in magmatic processes. Reviews of Geophysics, 1983, 21, 1372-1384.	23.0	3
27	Convection. Reviews of Geophysics, 1983, 21, 1511-1520.	23.0	7
28	The modern geoid and ancient plate boundaries. Earth and Planetary Science Letters, 1983, 62, 314-320.	4.4	102
29	Thermal anomalies and magmatism due to lithospheric doubling and shifting. Earth and Planetary Science Letters, 1983, 65, 322-330.	4.4	54
30	Boninite petrogenesis: Chemical and Nd-Sr isotopic constraints. Earth and Planetary Science Letters, 1983, 65, 75-89.	4.4	192
31	Convection in a twoâ€layer mantle with a strongly temperatureâ€dependent viscosity. Journal of Geophysical Research, 1983, 88, 6403-6414.	3.3	30
32	Geochemistry, Mineralogy and Petrogenesis of Lavas Erupted along the Southwest Indian Ridge Between the Bouvet Triple Junction and 11 Degrees East. Journal of Petrology, 1983, 24, 267-318.	2.8	329
33	Patterns of Change in Earth Evolution. , 1984, , .		15
34	Large mantle heterogeneity beneath French Polynesia. Nature, 1984, 307, 536-538.	27.8	153
35	A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature, 1984, 309, 753-757.	27.8	2,275
36	Mantle enrichment processes. Nature, 1984, 311, 331-335.	27.8	243
37	Geochemistry of Kauai volcanics and a mixing model for the origin of Hawaiian alkali basalts. Contributions To Mineralogy and Petrology, 1984, 87, 109-119.	3.1	66
38	Rift-zone magmatism: Petrology of basaltic rocks transitional from CFB to MORB, southeastern Brazil margin. Contributions To Mineralogy and Petrology, 1984, 88, 307-321.	3.1	71

ARTICLE IF CITATIONS # Case studies on the origin of basalt: III. Petrogenesis of the Mauna Ulu eruption, Kilauea, 1969?1971. 39 3.1 128 Contributions To Mineralogy and Petrology, 1984, 88, 24-35. Origin of Hawaiian tholeiite: A metasomatic model. Journal of Geophysical Research, 1984, 89, 3233-3252. 3.3 Tapping of magmas from ubiquitous mantle heterogeneities: An alternative to mantle plumes?. Journal 41 3.3 187 of Geophysical Research, 1984, 89, 10029-10041. Luâ€Hf and Smâ€Nd evolution in lunar mare basalts. Journal of Geophysical Research, 1984, 89, B459. Convective mixing and the fine structure of mantle heterogeneity. Physics of the Earth and Planetary 43 1.9 58 Interiors, 1984, 36, 291-304. Evolution, growth and stabilization of the Precambrian lithosphere. Physics and Chemistry of the Earth, 1984, 15, 69-106. 0.3 Isotope and trace element geochemistry of young Pacific seamounts: implications for the scale of 45 4.4 446 upper mantle heterogeneity. Earth and Planetary Science Letters, 1984, 70, 175-195. He diffusion in olivine. Earth and Planetary Science Letters, 1984, 70, 297-302. 46 4.4 The geochemistry of oceanic basalts in the vicinity of transform faults: Observations and 47 4.4 145 implications. Earth and Planetary Science Letters, 1984, 69, 107-127. HfNdSr isotopes and incompatible element abundances in island arcs: implications for magma origins 4.4 and crust-mantle evolution. Earth and Planetary Science Letters, 1984, 67, 167-185. Hafnium/rare earth element fractionation in the sedimentary system and crustal recycling into the 49 336 4.4 Earth's mantle. Earth and Planetary Science Letters, 1984, 69, 365-378. Emplacement and metamorphism of Archaean mafic volcanics at Kambalda, Western 3.9 38 Australia—geochemical and isotopic constraints. Geochimica Et Cosmochimica Acta, 1984, 48, 1305-1318. Isotopic constraints on Columbia River flood basalt genesis and the nature of the subcontinental 51 3.9 200 mantle. Geochimica Et Cosmochimica Acta, 1984, 48, 2357-2372. Ndî—,Sr isotope and REE geochemistry of alkali basalts from the Massif Central, France. Geochimica Et Cosmochimica Acta, 1984, 48, 93-110. 99 Geophysical and isotopic constraints on mantle convection: An interim synthesis. Journal of 53 3.3 168 Geophysical Research, 1984, 89, 6017-6040. Petrology of Serra Geral (Parani; $\frac{1}{2}$) continental flood basalts, southern Brazil: crustal contamination, 54 source material, and South Atlantic magmatism. Contributions To Mineralogy and Petrology, 1985, 91, 3.1 54-65. Petrology and geochemistry of Rodrigues Island, Indian Ocean. Contributions To Mineralogy and 55 3.141 Petrology, 1985, 89, 90-101. Formation and growth of deep mantle plumes. Geophysical Journal International, 1985, 80, 241-255. 2.4 24

#	Article	IF	CITATIONS
57	The destruction of geochemical heterogeneities by differential fluid motions during mantle convection. Geophysical Journal International, 1985, 82, 163-206.	2.4	126
58	Isotopenzusammensetzungen von Strontium und Neodym als Kennzeichen von Erdmantelmaterial. Isotopes in Environmental and Health Studies, 1985, 21, 165-169.	0.2	0
59	Simple parametric models of crustal growth. Journal of Geodynamics, 1985, 3, 105-135.	1.6	18
60	Geochemistry, Mineralogy and Magmatic Evolution of the Basaltic and Trachytic Lavas from Gough Island, South Atlantic. Journal of Petrology, 1985, 26, 149-186.	2.8	147
61	A xenolith-derived geotherm for southeastern australia and its geophysical implications. Tectonophysics, 1985, 111, 41-63.	2.2	230
62	Island arc processes relevant to crustal and mantle evolution. Tectonophysics, 1985, 112, 1-15.	2.2	23
63	Mantle dynamics and basalt petrogenesis. Tectonophysics, 1985, 112, 17-34.	2.2	16
64	Pb isotope evolution in the Earth: A proposal. Geophysical Research Letters, 1985, 12, 741-744.	4.0	9
65	A Sr-Nd isotope and REE study of late Triassic dolerites from the Pyrenees (France) and the Messejana Dyke (Spain and Portugal). Earth and Planetary Science Letters, 1985, 73, 81-90.	4.4	67
66	Peridotite composition from the North Atlantic: regional and tectonic variations and implications for partial melting. Earth and Planetary Science Letters, 1985, 73, 91-104.	4.4	229
67	The Cameroon line, West Africa, and its bearing on the origin of oceanic and continental alkali basalt. Earth and Planetary Science Letters, 1985, 72, 23-38.	4.4	465
68	The differing effects of compositional and thermal buoyancies on the evolution of mantle diapirs. Physics of the Earth and Planetary Interiors, 1986, 43, 261-273.	1.9	65
69	New noble-gas data on glass samples from Loihi Seamount and Hualalai and on dunite samples from Loihi and RA©union Island. Chemical Geology, 1986, 56, 193-205.	3.3	103
70	Nb in hawaiian magmas: Constraints on source composition and evolution. Chemical Geology, 1986, 57, 17-30.	3.3	82
71	The role of crustal contamination in the potassic suite of the Karisimbi Volcano (Virunga, African Rift) Tj ETQq0 0	0 rggBT /O	verlock 10 Tf
72	Dynamics of mantle thermals with constant buoyancy or anomalous internal heating. Earth and Planetary Science Letters, 1986, 78, 435-446.	4.4	54
73	Hf isotope ratios of marine sediments and Mn nodules: evidence for a mantle source of Hf in seawater. Earth and Planetary Science Letters, 1986, 79, 46-54.	4.4	96

74	Oxygen- and strontium-isotopic investigations of subduction zone volcanism: the case of the Volcano Arc and the Marianas Island Arc. Earth and Planetary Science Letters, 1986, 76, 312-320.	4.4	81	1
----	---	-----	----	---

,,		15	Circination
#	ARTICLE Siderophile and chalcophile element abundances in oceanic basalts, Pb isotope evolution and growth	IF	CITATIONS
75	of the Earth's core. Earth and Planetary Science Letters, 1986, 80, 299-313.	4.4	302
76	Helium and hydrogen isotopes in ocean-ridge basalts north and south of Iceland. Earth and Planetary Science Letters, 1986, 78, 1-17.	4.4	179
77	Coupled trace element and isotope enrichment in the Cook-Austral-Samoa Islands, Southwest Pacific. Earth and Planetary Science Letters, 1986, 79, 270-280.	4.4	239
78	The U-Th-Pb systematics in hot springs on the East Pacific Rise at 21°N and Guaymas Basin. Geochimica Et Cosmochimica Acta, 1986, 50, 2467-2479.	3.9	162
79	Source component mixing in the regions of arc magma generation. Journal of Geophysical Research, 1986, 91, 5913-5926.	3.3	306
80	Sediment subduction and magma genesis in the Lesser Antilles: Isotopic and trace element constraints. Journal of Geophysical Research, 1986, 91, 5927-5941.	3.3	346
81	Multiple sources for basaltic arc rocks from the southern volcanic zone of the Andes (34°–41°S): Trace element and isotopic evidence for contributions from subducted oceanic crust, mantle, and continental crust. Journal of Geophysical Research, 1986, 91, 5963-5983.	3.3	334
82	Mixing in numerical models of mantle convection incorporating plate kinematics. Journal of Geophysical Research, 1986, 91, 6375-6395.	3.3	126
83	Constraints on the origin of Hawaiian lavas. Journal of Geophysical Research, 1986, 91, 9383-9393.	3.3	29
84	Hydrothermal alteration of a 1 km section through the upper oceanic crust, Deep Sea Drilling Project Hole 504B: Mineralogy, chemistry and evolution of seawaterâ€basalt interactions. Journal of Geophysical Research, 1986, 91, 10309-10335.	3.3	505
85	The effects of chemical density differences on convective mixing in the Earth's mantle. Journal of Geophysical Research, 1986, 91, 11407-11419.	3.3	66
86	Geochemical correlation between southern African kimberlites and South Atlantic hotspots. Nature, 1986, 324, 243-245.	27.8	155
87	Constraints on processes affecting the origin of oceanic crust: Geochemical evidence from the 0–35 M. Y. age basalts, between 30°N and 40°N, MAR. Journal of Geodynamics, 1986, 5, 49-78.	1.6	5
88	Interaction of mantle dregs with convection: Lateral heterogeneity at the coreâ€mantle boundary. Geophysical Research Letters, 1986, 13, 1517-1520.	4.0	92
89	Isotopic modeling of the evolution of the mantle and crust. Reviews of Geophysics, 1986, 24, 311-328.	23.0	26
90	Origin of the Earth's moon: Constraints from alkali volatile trace elements. Geochimica Et Cosmochimica Acta, 1986, 50, 91-98.	3.9	41
91	Pb, Sr, Nd, and Hf isotopic constraints on the origin of Hawaiian basalts and evidence for a unique mantle source. Geochimica Et Cosmochimica Acta, 1986, 50, 2303-2319.	3.9	176
92	Sediment incorporation in island-arc magmas: Inferences from 10Be. Geochimica Et Cosmochimica Acta, 1986, 50, 535-550.	3.9	330

#	Article	IF	CITATIONS
93	The origins of ultrapotassic rocks as inferred from Sr, Nd and Pb isotopes. Geochimica Et Cosmochimica Acta, 1986, 50, 231-245.	3.9	261
94	Comment on "isotopic and incompatible element constraints on the genesis of island arc volcanics from Cold Bay and Amak Island, Aleutians, and implications for mantle structure―by J. D. Morris and S. R. Hart. Geochimica Et Cosmochimica Acta, 1986, 50, 477-481.	3.9	42
95	Isotopic and incompatible element constraints on the genesis of island arc volcanics from Cold Bay and Amak Island, Aleutians, and implications for mantle structure: Reply to a Critical Comment by M. R. Perfit and R. W. Kay. Geochimica Et Cosmochimica Acta, 1986, 50, 483-487.	3.9	19
96	Ocean crust vein mineral deposition: Rb/Sr ages, U-Th-Pb geochemistry, and duration of circulation at DSDP sites 261, 462 and 516. Geochimica Et Cosmochimica Acta, 1986, 50, 2751-2761.	3.9	44
97	A possible new Sr-Nd-Pb mantle array and consequences for mantle mixing. Geochimica Et Cosmochimica Acta, 1986, 50, 1551-1557.	3.9	240
98	Mantle heterogeneity beneath the Nazca plate: San Felix and Juan Fernandez islands. Nature, 1986, 322, 165-169.	27.8	59
99	Evidence from the Parana of south Brazil for a continental contribution to Dupal basalts. Nature, 1986, 322, 356-359.	27.8	275
100	Implications of a two-component marble-cake mantle. Nature, 1986, 323, 123-127.	27.8	692
101	Nb and Pb in oceanic basalts: new constraints on mantle evolution. Earth and Planetary Science Letters, 1986, 79, 33-45.	4.4	1,459
102	Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 1986, 14, 493-571.	11.0	4,040
102 103	Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 1986, 14, 493-571. Alkaline rocks and their inclusions: a window on the Earth's interior. Geological Society Special Publication, 1987, 30, 15-27.	11.0 1.3	4,040 26
	Alkaline rocks and their inclusions: a window on the Earth's interior. Geological Society Special		
103	Alkaline rocks and their inclusions: a window on the Earth's interior. Geological Society Special Publication, 1987, 30, 15-27. Petrochemistry of late Palaeozoic alkali lamprophyre dykes from N Scotland. Transactions of the	1.3	26
103 104	Alkaline rocks and their inclusions: a window on the Earth's interior. Geological Society Special Publication, 1987, 30, 15-27. Petrochemistry of late Palaeozoic alkali lamprophyre dykes from N Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1987, 77, 267-277.	1.3 0.7	26 12
103 104 105	Alkaline rocks and their inclusions: a window on the Earth's interior. Geological Society Special Publication, 1987, 30, 15-27. Petrochemistry of late Palaeozoic alkali lamprophyre dykes from N Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1987, 77, 267-277. Deep subduction and mantle heterogeneities. Tectonophysics, 1987, 134, 263-272. Local and regional heterogeneity in MORB from the Mid-Atlantic Ridge between 54.5°S and 51°S:	1.3 0.7 2.2	26 12 4
103 104 105 106	Alkaline rocks and their inclusions: a window on the Earth's interior. Geological Society Special Publication, 1987, 30, 15-27. Petrochemistry of late Palaeozoic alkali lamprophyre dykes from N Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1987, 77, 267-277. Deep subduction and mantle heterogeneities. Tectonophysics, 1987, 134, 263-272. Local and regional heterogeneity in MORB from the Mid-Atlantic Ridge between 54.5ŰS and 51ŰS: Evidence for geochemical enrichment. Geochimica Et Cosmochimica Acta, 1987, 51, 541-555.	1.3 0.7 2.2 3.9	26 12 4 83
103 104 105 106	Alkaline rocks and their inclusions: a window on the Earth's interior. Geological Society Special Publication, 1987, 30, 15-27. Petrochemistry of late Palaeozoic alkali lamprophyre dykes from N Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1987, 77, 267-277. Deep subduction and mantle heterogeneities. Tectonophysics, 1987, 134, 263-272. Local and regional heterogeneity in MORB from the Mid-Atlantic Ridge between 54.5ŰS and 51ŰS: Evidence for geochemical enrichment. Geochimica Et Cosmochimica Acta, 1987, 51, 541-555. Geochemical evolution of the crust and mantle. Reviews of Geophysics, 1987, 25, 1011-1020.	1.3 0.7 2.2 3.9 23.0	26 12 4 83 16

		CITATION RE	PORT	
#	Article		IF	CITATIONS
111	Isotopic geochemistry of Fernando de Noronha. Earth and Planetary Science Letters, 1	987, 85, 129-144.	4.4	60
112	The spread of subducted lithospheric material along the mid-mantle boundary. Earth an Science Letters, 1987, 85, 241-247.	nd Planetary	4.4	26
113	Isotopic evolution of lavas from Haleakala Crater, Hawaii. Earth and Planetary Science I 84, 211-225.	Letters, 1987,	4.4	64
114	Origin of basalts from the Marquesas Archipelago (south central Pacific Ocean): isotop element constraints. Earth and Planetary Science Letters, 1987, 82, 145-152.	e and trace	4.4	67
115	The O, Sr, Nd and Pb isotope geochemistry of MORB. Chemical Geology, 1987, 62, 157	7-176.	3.3	594
116	Geochemical evolution of the New England seamount chain: Isotopic and trace-elemer Chemical Geology, 1987, 64, 35-54.	it constraints.	3.3	53
117	lsotope geochemistry of Pacific Midâ€Ocean Ridge Basalt. Journal of Geophysical Rese 4881-4893.	arch, 1987, 92,	3.3	355
118	Role of asthenosphere and lithosphere in the genesis of Late Cenozoic basaltic rocks for Grande Rift and adjacent regions of the southwestern United States. Journal of Geophy 1987, 92, 9193-9213.	om the Rio ysical Research,	3.3	195
119	Noritic dykes of southern West Greenland: early Proterozoic boninitic magmatism. Con Mineralogy and Petrology, 1987, 97, 169-182.	ntributions To	3.1	63
120	Stable isotope relations in an open magma system, Laacher See, Eifel (FRG). Contribut Mineralogy and Petrology, 1987, 95, 343-349.	ions To	3.1	23
121	A lead isotope study of the northeastern Ivrea zone and the adjoining Ceneri zone (N-I for a contaminated subcontinental mantle. Contributions To Mineralogy and Petrology	taly): evidence 1, 1987, 97, 19-30.	3.1	52
122	The Core-Mantle Boundary. Annual Review of Earth and Planetary Sciences, 1987, 15, 2	25-46.	11.0	124
123	Cerium isotope geochemistry of ocean island basalts. Nature, 1987, 326, 283-284.		27.8	29
124	The latest on… Oceanic basalts. Geology Today, 1987, 3, 24-26.		0.9	0
125	Recycling of the continental crust. Pure and Applied Geophysics, 1988, 128, 683-724.		1.9	60
126	He, Pb, Sr and Nd isotope constraints on magma genesis and mantle heterogeneity be Pacific seamounts. Contributions To Mineralogy and Petrology, 1988, 99, 446-463.	neath young	3.1	134
127	Trace element evidence for the origin of ocean island basalts: an example from the Aus (French Polynesia). Contributions To Mineralogy and Petrology, 1988, 98, 293-302.	tral Islands	3.1	64
128	Fate of subducted lithosphere. Nature, 1988, 331, 113-114.		27.8	5

#	Article	IF	Citations
129	Nature of the 650–km seismic discontinuity: implications for mantle dynamics and differentiation. Nature, 1988, 331, 131-136.	27.8	295
130	Plume-asthenosphere mixing beneath the Galapagos archipelago. Nature, 1988, 333, 657-660.	27.8	102
131	Numerical simulations of thermal-chemical instabilities at the core–mantle boundary. Nature, 1988, 334, 237-240.	27.8	157
132	Geochemistry of Mesozoic alkaline lamprophyres and related rocks from the Tamazert massif, High Atlas (Morocco). Lithos, 1988, 22, 43-58.	1.4	41
133	Magma genesis, plate tectonics, and chemical differentiation of the Earth. Reviews of Geophysics, 1988, 26, 370-404.	23.0	120
134	Pb, Sr, and Nd isotopic compositions of a suite of Late Archean, igneous rocks, eastern Beartooth Mountains: implications for crust-mantle evolution. Earth and Planetary Science Letters, 1988, 87, 59-72.	4.4	155
135	Open-system O-isotope behaviour and trace element enrichment in the sub-Eifel mantle. Earth and Planetary Science Letters, 1988, 89, 273-287.	4.4	72
136	Mantle heterogeneities: a combined isotope and trace element approach and evidence for recycled continental crust materials in some OIB sources. Earth and Planetary Science Letters, 1988, 89, 299-315.	4.4	55
137	Heterogeneous mantle domains: signatures, genesis and mixing chronologies. Earth and Planetary Science Letters, 1988, 90, 273-296.	4.4	834
138	Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 1988, 90, 297-314.	4.4	2,891
139	Viscous entrainment by sinking plumes. Earth and Planetary Science Letters, 1988, 90, 467-477.	4.4	16
140	Stored mafic/ultramafic crust and early Archean mantle depletion. Earth and Planetary Science Letters, 1988, 91, 66-72.	4.4	152
141	Cenozoic Basaltic Rocks in Eastern China. Petrology and Structural Geology, 1988, , 311-330.	0.5	30
142	Geochemical and isotopic systematics in carbonatites and implications for the evolution of ocean-island sources. Geochimica Et Cosmochimica Acta, 1988, 52, 1-17.	3.9	462
143	Mantle metasomatism beneath western Victoria, Australia: II. Isotopic geochemistry of Cr-diopside Iherzolites and Al-augite pyroxenites. Geochimica Et Cosmochimica Acta, 1988, 52, 449-459.	3.9	138
144	Pb, Nd, and Sr isotopic evidence for a multicomponent source for rocks of Cook-Austral Islands and heterogeneities of mantle plumes. Geochimica Et Cosmochimica Acta, 1988, 52, 2909-2924.	3.9	119
145	Magma sources of the Cape Verdes archipelago: Isotopic and trace element constraints. Geochimica Et Cosmochimica Acta, 1988, 52, 2979-2992.	3.9	146
146	Crustal recycling and the Aleutian arc. Geochimica Et Cosmochimica Acta, 1988, 52, 1351-1359.	3.9	112

#	Article	IF	CITATIONS
147	Crustal accretion and tectonic setting of the Troodos ophiolite, Cyprus. Tectonophysics, 1988, 147, 221-245.	2.2	21
148	A mantle heterogeneity in the Southwest Pacific. Tectonophysics, 1988, 156, 145-165.	2.2	1
149	Chapter 79 The significance of the rare earths in geochemistry and cosmochemistry. Fundamental Theories of Physics, 1988, 11, 485-578.	0.3	62
150	Trace Element and Isotopic Variations in Scottish and Irish Dinantian Volcanism: Evidence for an OIB-like Mantle Source. Journal of Petrology, 1988, 29, 413-443.	2.8	37
151	Relationships between mineralogical, chemical, and isotopic properties of some North American kimberlites. Journal of Geophysical Research, 1988, 93, 7643-7671.	3.3	45
152	Isotopically depleted, alkalic lavas from Bowie Seamount, northeast Pacific Ocean. Canadian Journal of Earth Sciences, 1988, 25, 1708-1716.	1.3	15
153	Deep Slabs, Geochemical Heterogeneity, and the Large-Scale Structure of Mantle Convection: Investigation of an Enduring Paradox. Annual Review of Earth and Planetary Sciences, 1988, 16, 477-541.	11.0	267
154	Post-subduction alkaline volcanism along the Antarctic Peninsula. Journal of the Geological Society, 1988, 145, 985-998.	2.1	67
155	Chapter 2. RADIOGENIC ISOTOPE GEOCHEMISTRY OF RARE EARTH ELEMENTS. , 1989, , 25-44.		4
156	Subcritical double-diffusive convection at infinite Prandtl number. Geophysical and Astrophysical Fluid Dynamics, 1989, 47, 199-224.	1.2	34
157	Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society Special Publication, 1989, 42, 313-345.	1.3	13,979
158	Chemical alteration of the oceanic crust. Geologische Rundschau: Zeitschrift Fur Allgemeine Geologie, 1989, 78, 731-740.	1.3	11
159	Isotopic Characterization and Identification of Recycled Components. , 1989, , 15-28.		48
160	Geochemical Evidence for Crust-To-Mantle Recycling in Subduction Zones. , 1989, , 43-58.		7
161	Recycled Continental Crustal Components in Aleutian arc Magmas: Implications for Crustal Growth and Mantle Heterogeneity. , 1989, , 145-161.		8
162	Mantle Convection with Active Chemical Heterogeneities. , 1989, , 183-189.		0
163	Intra-Mantle Fractionation vs. Lithosphere Recycling: Evidence from the Sub-Continental Mantle. , 1989, , 227-237.		1
164	On the separation of relatively buoyant components from subducted lithosphere. Geophysical Research Letters, 1989, 16, 831-834.	4.0	40

#	Article	IF	CITATIONS
165	A negative Ce anomaly in a peridotite xenolith: Evidence for crustal recycling into the mantle or mantle metasomatism?. Geochimica Et Cosmochimica Acta, 1989, 53, 1035-1040.	3.9	77
166	Caledonian ages in Variscan rocks: Rb-Sr and Sm-Nd isotopic variations in dioritic intrusives from the northwestern Bohemian Massif, West Germany. Tectonophysics, 1989, 157, 179-194.	2.2	23
167	A combined chemical and Pb-Sr-Nd isotope study of the Azores and Cape Verde hot-spots: the geodynamic implications. Geological Society Special Publication, 1989, 42, 231-255.	1.3	59
168	Characterization of the St Helena magma source. Geological Society Special Publication, 1989, 42, 257-276.	1.3	99
169	The core shadow zone boundary and lateral variations of the P velocity structure of the lowermost mantle. Physics of the Earth and Planetary Interiors, 1989, 54, 64-81.	1.9	34
170	The geochemistry of marine sediments, island arc magma genesis, and crust-mantle recycling. Earth and Planetary Science Letters, 1989, 94, 1-21.	4.4	697
171	Mixing by time-dependent convection. Earth and Planetary Science Letters, 1989, 95, 382-394.	4.4	97
172	Ancient seafloor signals in Pitcairn Island lavas and evidence for large amplitude, small length-scale mantle heterogeneities. Earth and Planetary Science Letters, 1989, 94, 257-273.	4.4	132
173	Subducted and recycled lithosphere as the mantle source of ocean island basalts from southern Polynesia, central Pacific. Chemical Geology, 1989, 77, 1-18.	3.3	70
174	Geochemistry of the Mariana arc (western Pacific): Source composition and processes. Chemical Geology, 1989, 76, 1-24.	3.3	230
175	Chemical geodynamics in a back arc region around the Sea of Japan: Implications for the genesis of alkaline basalts in Japan, Korea, and China. Journal of Geophysical Research, 1989, 94, 4634-4654.	3.3	128
176	Spinelâ€lherzoliteâ€bearing quaternary volcanic centers in San Luis PotosÃ, Mexico: 2. SR and ND Isotopic Systematics. Journal of Geophysical Research, 1989, 94, 7941-7951.	3.3	67
177	Dynamical and chemical effects of melting a heterogeneous source. Journal of Geophysical Research, 1989, 94, 12499-12510.	3.3	22
178	Trace-element fractionation in plumes and the origin of HIMU mantle beneath the Cameroon line. Nature, 1990, 347, 523-528.	27.8	179
179	The endmember stew. Nature, 1990, 348, 17-18.	27.8	1
180	Extreme isotopic variations in Heard Island lavas and the nature of mantle reservoirs. Nature, 1990, 348, 59-62.	27.8	89
181	Diffusion gradients in an eclogite xenolith from the Roberts Victor kimberlite pipe: (2) kinetics and implications for petrogenesis. Contributions To Mineralogy and Petrology, 1990, 105, 637-649.	3.1	34
182	The large-scale structure of convection in the Earth's mantle. Nature, 1990, 344, 209-215.	27.8	119

#	Article	IF	CITATIONS
183	Mesozoic magmatic activity in the North Sea Basin: implications for stretching history. Geological Society Special Publication, 1990, 55, 207-227.	1.3	18
186	Chemical geodynamics in the back-arc region of Japan based on the trace element and Srî—,Nd isotopic compositions. Tectonophysics, 1990, 174, 207-233.	2.2	82
187	Lower mantle velocity inhomogeneity observed at GRF array. Geophysical Research Letters, 1990, 17, 187-190.	4.0	23
188	Geochemical evolution of Pliocene-Recent post-subduction alkalic basalts from Seal Nunataks, Antarctic Peninsula. Journal of Volcanology and Geothermal Research, 1990, 40, 149-167.	2.1	50
189	Isotopic patterns in silicic ignimbrites and lava flows of the Mogan and lower Fataga Formations, Gran Canaria, Canary Islands: temporal changes in mantle source composition. Earth and Planetary Science Letters, 1990, 96, 319-335.	4.4	53
190	Mantle convection with moving heat-source anomalies: geophysical and geochemical implications. Earth and Planetary Science Letters, 1990, 96, 349-366.	4.4	19
191	Development of continental lithospheric mantle as reflected in the chemistry of the Mesozoic Appalachian Tholeiites, U.S.A Earth and Planetary Science Letters, 1990, 97, 316-331.	4.4	81
192	Implications of mantle plume structure for the evolution of flood basalts. Earth and Planetary Science Letters, 1990, 99, 79-93.	4.4	1,091
193	Mantle plumes, mantle stirring and hotspot chemistry. Earth and Planetary Science Letters, 1990, 99, 94-109.	4.4	122
194	Eclogites with oceanic crustal and mantle signatures from the Bellsbank kimberlite, South Africa, part 2: Sr, Nd, and O isotope geochemistry. Earth and Planetary Science Letters, 1990, 99, 362-379.	4.4	100
195	Tectonic cycles in southern Africa. Earth-Science Reviews, 1990, 28, 321-364.	9.1	15
196	MORB alteration: Rare-earth element/non-rare-earth hygromagmaphile element fractionation. Chemical Geology, 1990, 82, 1-14.	3.3	175
197	Slab-mantle interactions. Chemical Geology, 1990, 82, 187-207.	3.3	257
198	Pb isotope data from late Proterozoic subduction-related rocks: Implications for crust-mantle evolution. Chemical Geology, 1990, 83, 165-181.	3.3	21
199	Isotopic evidence for crust-mantle evolution with emphasis on the Canadian Shield. Chemical Geology, 1990, 83, 149-163.	3.3	39
200	Active submarine volcanism on the society hotspot swell (west Pacific): A geochemical study. Journal of Geophysical Research, 1990, 95, 5049-5066.	3.3	107
201	Multiple phase analysis of the shear velocity structure in the D″ region beneath Alaska. Journal of Geophysical Research, 1990, 95, 17385-17402.	3.3	121
202	Olivine analcimite in the Cascade Range of Oregon. Journal of Geophysical Research, 1990, 95, 19639-19649.	3.3	3

#	Article	IF	CITATIONS
203	Eruption rates and isotopic systematics of ocean islands: further evidence for small-scale heterogeneity in the upper mantle. Tectonophysics, 1990, 172, 273-289.	2.2	16
205	Evidence from Muriah, Indonesia, for the Interplay of Supra-Subduction Zone and Intraplate Processes in the Genesis of Potassic Alkaline Magmas. Journal of Petrology, 1991, 32, 555-592.	2.8	103
206	Pb isotopic systematics of alkaline volcanic rocks and carbonatites from the Kaiserstuhl, Upper Rhine rift valley, F.R.G Chemical Geology, 1991, 93, 231-243.	3.3	27
207	The longevity of the South Pacific isotopic and thermal anomaly. Earth and Planetary Science Letters, 1991, 102, 24-44.	4.4	173
208	SrNdPb isotopic evolution of Gran Canaria: Evidence for shallow enriched mantle beneath the Canary Islands. Earth and Planetary Science Letters, 1991, 106, 44-63.	4.4	188
209	Origin of Nauru Basin igneous complex: Sr, Nd and Pb isotope and REE constraints. Earth and Planetary Science Letters, 1991, 103, 200-213.	4.4	57
210	The isotopic composition of postshield lavas from Mauna Kea volcano, Hawaii. Earth and Planetary Science Letters, 1991, 103, 339-353.	4.4	41
211	Evolution of Hawaiian basalts: a hotspot melting model. Earth and Planetary Science Letters, 1991, 104, 151-165.	4.4	55
212	The origin of ocean island basalt end-member compositions: trace element and isotopic constraints. Earth and Planetary Science Letters, 1991, 104, 381-397.	4.4	1,006
213	Experiments on the interaction of thermal convection and compositional layering at the base of the mantle. Journal of Geophysical Research, 1991, 96, 4347-4354.	3.3	93
214	Isotopic and trace element constraints on the composition and evolution of the lithosphere beneath the southwestern United States. Journal of Geophysical Research, 1991, 96, 13713-13735.	3.3	159
215	Mantle layering from <i>ScS</i> reverberations: 4. The lower mantle and coreâ€mantle boundary. Journal of Geophysical Research, 1991, 96, 19811-19824.	3.3	42
216	DUPAL anomaly in the Sea of Japan: Pb, Nd, and Sr isotopic variations at the eastern Eurasian continental margin. Geochimica Et Cosmochimica Acta, 1991, 55, 3697-3708.	3.9	120
217	Phase transformations and their bearing on the constitution and dynamics of the mantle. Geochimica Et Cosmochimica Acta, 1991, 55, 2083-2110.	3.9	470
218	Rb/Cs fractionation: A link between granulite metamorphism and the S-process. Geochimica Et Cosmochimica Acta, 1991, 55, 2379-2383.	3.9	49
219	Osmium isotopic characteristics of mantle-derived rocks. Geochimica Et Cosmochimica Acta, 1991, 55, 1421-1434.	3.9	214
220	Convection and mixing in the oceans and the Earth. Physics of Fluids A, Fluid Dynamics, 1991, 3, 1218-1232.	1.6	6
221	Fluxes and excess temperatures of mantle plumes inferred from their interaction with migrating mid-ocean ridges. Nature, 1991, 352, 397-403.	27.8	371

#	Article	IF	CITATIONS
222	Mantle yields its secrets. Nature, 1991, 353, 500-500.	27.8	3
223	Mantle Convection. Journal of Geology, 1992, 100, 151-206.	1.4	360

4.4

3.1

274

Isotopic Variations of the Mantle. Approach to Mantle Evolution.. Journal of Geography (Chigaku) Tj ETQq0 0 0 rgBT/Qverlock 10 Tf 50 224 Mantle Plumes and Entrainment: Isotopic Evidence. Science, 1992, 256, 517-520. 891 Potassium, rubidium, and cesium in the Earth and Moon and the evolution of the mantle of the Earth. 226 3.9 398 Geochimica Et Cosmochimica Acta, 1992, 56, 1001-1012. Water in Earth's Mantle: The Role of Nominally Anhydrous Minerals. Science, 1992, 255, 1391-1397. 12.6 Zr/hf fractionation in intraplate basaltic rocks: Carbonate metasomatism in the mantle source. 228 3.9 220 Geochimica Et Cosmochimica Acta, 1992, 56, 2417-2423. Mantle: More HIMU in the future?. Geochimica Et Cosmochimica Acta, 1992, 56, 4295-4299. 229 3.9 34 Ndâ€Srâ€Pb isotopic variations along the Gulf of Aden: Evidence for Afar Mantle Plumeâ€Continental 230 3.3 229 Lithosphere Interaction. Journal of Geophysical Research, 1992, 97, 10927-10966. The structure of the coreâ€mantle boundary from diffracted waves. Journal of Geophysical Research, 3.3 1992, 97, 8749-8764. Resolving an isotopic boundary within the Australian-Antarctic discordance. Earth and Planetary 232 4.491 Science Letters, 1992, 112, 161-178. himu-em: The French Polynesian connection. Earth and Planetary Science Letters, 1992, 110, 99-119. 4.4 589 Helium isotope geochemistry of some volcanic rocks from Saint Helena. Earth and Planetary Science 234 4.4 136 Letters, 1992, 110, 121-131. Temporal Sr-, Nd- and Pb-isotopic variations in the Siberian flood basalts: Implications for the plume-source characteristics. Earth and Planetary Science Letters, 1992, 113, 365-381. 4.4 134 Osmium isotopic compositions from oceanic basalts. Earth and Planetary Science Letters, 1992, 111, 236 4.4 85 59-68. Binary mixing of enriched and undegassed (primitive?) mantle components (He, Sr, Nd, Pb) in Samoan lavas. Earth and Planetary Science Letters, 1992, 111, 183-199.

238	Rare gases in Samoan xenoliths. Earth and Planetary Science Letters, 1992, 113, 129-144.	4.4	255
000	An enriched mantle source for potassic basanites: evidence from Karisimbi volcano, Virunga volcanic	0.1	00

ARTICLE IF CITATIONS # Surviving subduction. Nature, 1992, 358, 714-715. 240 27.8 3 Lead isotope evidence for young trace element enrichment in the oceanic upper mantle. Nature, 1992, 241 27.8 359, 623-627. Geoid anomalies and dynamic topography from convection in cylindrical geometry: applications to 242 2.4 44 mantle plumes on Earth and Venus. Geophysical Journal International, 1992, 108, 198-214. Mixing in the Mantle. Annual Review of Earth and Planetary Sciences, 1992, 20, 365-388. Oceanic islands and the mantle: historical perspectives. Journal of Volcanology and Geothermal 244 2.1 0 Research, 1992, 50, 17-32. Young formation age of a mantle plume source. Nature, 1993, 362, 715-721. 27.8 246 Isotopes and a smoking gun. Nature, 1993, 362, 791-792. 27.8 4 Oxygen isotope evidence for recycled crust in the source of EM-type ocean island basalts. Nature, 1993, 362, 809-813. 27.8 248 Solid carbon dioxide in a natural diamond. Nature, 1993, 365, 42-44. 27.8 147 249 The Core-Mantle Boundary. Scientific American, 1993, 268, 48-55. 1.0 34 Geochemical studies of Tahiti, Teahitia and Mehetia, Society Island chain. Journal of Volcanology and 250 2.1 36 Geothermal Research, 1993, 55, 155-184. The evolution of the mantle's chemical structure. Lithos, 1993, 30, 389-399. 1.4 ReOs isotope systematics of HIMU and EMII oceanic island basalts from the south Pacific Ocean. Earth 252 4.4 434 and Planetary Science Letters, 1993, 114, 353-371. Geochemistry of the Pitcairn seamounts, I: source character and temporal trends. Earth and Planetary 4.4 124 Science Letters, 1993, 116, 81-99. The role of subducted slabs in an evolving Earth. Earth and Planetary Science Letters, 1993, 115, 89-100. 254 4.4 87 238U/204Pb in MORB and open system evolution of the depleted mantle. Earth and Planetary Science 4.4 Letters, 1993, 115, 211-226. The Pb isotopic evolution of the Earth: inferences from river water suspended loads. Earth and 256 4.4 117 Planetary Science Letters, 1993, 115, 245-256. Os isotope systematics in ocean island basalts. Earth and Planetary Science Letters, 1993, 120, 149-167. 4.4

	CITATION RE	PORT	
#	Article	IF	CITATIONS
258	Geodynamics and mantle flow: an alternative earth model. Earth-Science Reviews, 1993, 33, 153-337.	9.1	8
259	Helium-3 from the Mantle: Primordial Signal or Cosmic Dust?. Science, 1993, 261, 170-176.	12.6	110
260	Mantle Plume Helium in Submarine Basalts from the Galapagos Platform. Science, 1993, 262, 2023-2026.	12.6	108
261	Late Silurian – Early Devonian rifting during dextral transpression in the southern Gaspé Peninsula (Quebec): petrogenesis of volcanic rocks. Canadian Journal of Earth Sciences, 1993, 30, 2283-2294.	1.3	33
262	The density jump across the ICB and constraints on Pâ€reflector in the D' layer from observation of the 1992 Chinese Nuclear Explosion. Geophysical Research Letters, 1993, 20, 2195-2198.	4.0	10
263	Geochemical signatures of oceanic and continental basalts: a key to mantle dynamics?. Journal of the Geological Society, 1993, 150, 977-990.	2.1	57
264	Trace element and isotopic geochemistry of Cenozoic alkali basaltic lavas from Atakor (Central) Tj ETQq0 0 0 rgB	T /Overloc 1.0	k 10 Tf 50 50
265	Chaotic Mixing in the Earth's Mantle. Advances in Geophysics, 1993, , 1-33.	2.8	6
266	Redox Equilibria in Alkaline Lavas from Trindade Island, Brazil. International Geology Review, 1994, 36, 473-483.	2.1	11
267	Geochemical variations in lavas from Kahoolawe volcano, Hawaii: evidence for open system evolution of plume-derived magmas. Contributions To Mineralogy and Petrology, 1994, 116, 62-77.	3.1	41
268	Petrology and Srî—,Nd isotopic systems of the basalts and rhyolites, Loei, Thailand. Journal of Southeast Asian Earth Sciences, 1994, 9, 167-180.	0.2	51
269	Cerium/lead and lead isotope ratios in arc magmas and the enrichment of lead in the continents. Nature, 1994, 368, 514-520.	27.8	344
270	Mantle plumes and episodic crustal growth. Nature, 1994, 372, 63-68.	27.8	456
271	Mineral chemistry and density of subducted basaltic crust at lower-mantle pressures. Nature, 1994, 372, 767-769.	27.8	167
272	Large cold anomalies in the deep mantle and mantle instability in the Cretaceous. Terra Nova, 1994, 6, 238-245.	2.1	14
273	ratios of mid-ocean ridge basalts and abyssal peridotites. Geochimica Et Cosmochimica Acta, 1994, 58, 5043-5054.	3.9	162
274	New He, Nd, Pb, and Sr isotopic constraints on the constitution of the Hawaiian plume: Results from Koolau Volcano, Oahu, Hawaii, USA. Geochimica Et Cosmochimica Acta, 1994, 58, 1431-1440.	3.9	134
275	Compositional vs. thermal buoyancy and the evolution of subducted lithosphere. Geophysical Research Letters, 1994, 21, 141-144.	4.0	64

#	Article	IF	CITATIONS
276	Segregation of subducted oceanic crust in the convecting mantle. Journal of Geophysical Research, 1994, 99, 19867-19884.	3.3	477
277	Mechanisms of Earth differentiation: Consequences for the chemical structure of the mantle. Reviews of Geophysics, 1994, 32, 337.	23.0	64
278	Trace element geochemistry of orogenic igneous rocks and crustal growth models. Journal of the Geological Society, 1994, 151, 855-868.	2.1	299
279	Hydrothermal lead transfer from mantle to continental crust: the role of metalliferous sediments. Earth and Planetary Science Letters, 1994, 125, 129-142.	4.4	77
280	Major- and trace-element compositions of Cenozoic basalts in eastern China: Petrogenesis and mantle source. Chemical Geology, 1994, 114, 19-42.	3.3	137
281	Role of the transition zone and 660 km discontinuity in mantle dynamics. Physics of the Earth and Planetary Interiors, 1994, 86, 5-24.	1.9	86
282	Effects of chemical fractionation of heat-producing elements on mantle evolution inferred from a numerical model of coupled magmatism-mantle convection system. Physics of the Earth and Planetary Interiors, 1994, 83, 101-127.	1.9	16
283	Subduction dynamics: From the trench to the coreâ€mantle boundary. Reviews of Geophysics, 1995, 33, 401-412.	23.0	5
284	Interaction of Chemically Stratified Subducted Oceanic Lithosphere with the 660 km Discontinuity Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 1995, 71, 203-207.	3.8	6
285	Geochemical characteristics of lava-field basalts from eastern Australia and inferred sources: Connections with the subcontinental lithospheric mantle?. Contributions To Mineralogy and Petrology, 1995, 121, 148-170.	3.1	99
286	Melting of metasomatized subcontinental lithosphere: undersaturated mafic lavas from Rungwe, Tanzania. Contributions To Mineralogy and Petrology, 1995, 122, 97-115.	3.1	87
287	Pb-Sr-Nd isotopic compositions and trace element geochemistry of megacrysts and melilitites from the Tertiary Urach volcanic field: source composition of small volume melts under SW Germany. Contributions To Mineralogy and Petrology, 1995, 122, 322-335.	3.1	144
288	Mixing of magmas from enriched and depleted mantle sources in the northeast Pacific: West Valley segment, Juan de Fuca Ridge. Contributions To Mineralogy and Petrology, 1995, 120, 337-357.	3.1	56
289	Oxygen isotope heterogeneity of the mantle deduced from global 18O systematics of basalts from different geotectonic settings. Contributions To Mineralogy and Petrology, 1995, 120, 95-114.	3.1	258
290	Oxygen isotope evidence against bulk recycled sediment in the mantle sources of Pitcairn Island lavas. Nature, 1995, 377, 138-141.	27.8	124
291	Mantle plume origin for the Bushveld and Ventersdorp magmatic provinces. Journal of African Earth Sciences, 1995, 21, 571-577.	2.0	87
292	New evidence for the production of EM-type ocean island basalts and large volumes of volcaniclastites during the early history of the Manihiki Plateau. Marine Geology, 1995, 122, 181-205.	2.1	18
293	Meimechites: highly magnesian lithosphere-contaminated alkaline magmas from deep subcontinental mantle. Lithos, 1995, 34, 41-59.	1.4	88

#	Article	IF	CITATIONS
294	Iron- and LREE-enriched mantle source for early Proterozoic intraplate magmatism as exemplified by the Pechenga ferropicrites, Kola Peninsula, Russia. Lithos, 1995, 34, 107-125.	1.4	75
295	Generation of the Pb isotopic characteristics of the Iceland plume. Journal of the Geological Society, 1995, 152, 991-996.	2.1	61
296	Experimental petrology of upper mantle materials, processes and products. Journal of Geodynamics, 1995, 20, 429-468.	1.6	67
297	Isotopic inferences on the chemical structure of the mantle. Journal of Geodynamics, 1995, 20, 365-386.	1.6	37
298	Geochemical characteristics and origin of the Jacupiranga carbonatites, Brazil. Chemical Geology, 1995, 119, 79-99.	3.3	59
299	Hydration and dehydration of oceanic crust controls Pb evolution in the mantle. Chemical Geology, 1995, 126, 65-75.	3.3	118
300	The impact of subduction-zone metamorphism on mantle-ocean chemical cycling. Chemical Geology, 1995, 126, 191-218.	3.3	167
301	Differences between oceanic basalts by multitrace element ratio topology. Earth and Planetary Science Letters, 1995, 129, 1-12.	4.4	45
302	1870s/1860s in oceanic island basalts: tracing oceanic crust recycling in the mantle. Earth and Planetary Science Letters, 1995, 129, 145-161.	4.4	171
303	Enrichment of the continental lithosphere by OIB melts: Isotopic evidence from the volcanic province of northern Tanzania. Earth and Planetary Science Letters, 1995, 130, 109-126.	4.4	96
304	Regionally distinctive sources of depleted MORB: Evidence from trace elements and H2O. Earth and Planetary Science Letters, 1995, 131, 301-320.	4.4	367
305	Processes of mantle enrichment and magmatic differentiation in the eastern Snake River Plain: Th isotope evidence. Earth and Planetary Science Letters, 1995, 131, 239-254.	4.4	35
306	Os isotope systematics of La Palma, Canary Islands: Evidence for recycled crust in the mantle source of HIMU ocean islands. Earth and Planetary Science Letters, 1995, 133, 397-410.	4.4	121
307	The island of Pantelleria: A case for the development of DMM-HIMU isotopic compositions in a long-lived extensional setting. Earth and Planetary Science Letters, 1995, 136, 167-182.	4.4	53
308	High-Ti and low-Ti mafic potassic magmas: Key to plume-lithosphere interactions and continental flood-basalt genesis. Earth and Planetary Science Letters, 1995, 136, 149-165.	4.4	163
309	Thermal and chemical convection in planetary mantles. Journal of Geophysical Research, 1995, 100, 497-520.	3.3	24
310	The core-mantle boundary region. Journal of Geophysical Research, 1995, 100, 6397-6420.	3.3	149
311	Lithosphere, asthenosphere, and perisphere. Reviews of Geophysics, 1995, 33, 125.	23.0	227

#	Article	IF	CITATIONS
312	Strontium, neodymium, and lead isotopic and trace-element signatures of the East indonesian sediments: provenance and implications for banda arc magma genesis. Geochimica Et Cosmochimica Acta, 1995, 59, 2573-2598.	3.9	118
313	Mineral-aqueous fluid partitioning of trace elements at 900°C and 2.0 GPa: Constraints on the trace element chemistry of mantle and deep crustal fluids. Geochimica Et Cosmochimica Acta, 1995, 59, 3331-3350.	3.9	591
314	Observational hints for a plume-fed, suboceanic asthenosphere and its role in mantle convection. Journal of Geophysical Research, 1995, 100, 12753-12767.	3.3	144
315	Enriched Asthenosphere and Depleted Plumes. International Geology Review, 1996, 38, 1-21.	2.1	30
316	Mapping S-velocity heterogeneities in the D″ region, from SmKS differential travel times. Physics of the Earth and Planetary Interiors, 1996, 94, 1-21.	1.9	35
317	The dynamics of off-axis plume-ridge interaction in the uppermost mantle. Earth and Planetary Science Letters, 1996, 137, 29-43.	4.4	67
318	Erratum to "High-Ti and low-Ti mafic potassic magmas: Key to plume—lithosphere interactions and continental flood-basalt genesis―[Earth Planet. Sci. Lett. 136 (1995) 149–165]. Earth and Planetary Science Letters, 1996, 141, 325-341.	4.4	70
319	Early evolution of the Earth and Moon: new constraints from Hf-W isotope geochemistry. Earth and Planetary Science Letters, 1996, 142, 75-89.	4.4	115
320	Os isotope systematics in the Azores: implications for mantle plume sources. Earth and Planetary Science Letters, 1996, 142, 451-465.	4.4	163
321	Resolving lithospheric and sub-lithospheric contributions to helium isotope variations in basalts from the southwestern US. Earth and Planetary Science Letters, 1996, 144, 213-222.	4.4	71
322	The boron systematics of intraplate lavas: Implications for crust and mantle evolution. Geochimica Et Cosmochimica Acta, 1996, 60, 415-422.	3.9	101
323	The role of hydrothermal fluids in the production of subduction zone magmas: Evidence from siderophile and chalcophile trace elements and boron. Geochimica Et Cosmochimica Acta, 1996, 60, 587-611.	3.9	270
324	Evidence for 182Hf in the early Solar System and constraints on the timescale of terrestrial accretion and core formation. Geochimica Et Cosmochimica Acta, 1996, 60, 1131-1153.	3.9	200
325	Oxygen isotope ratios in olivine from the Hawaii Scientific Drilling Project. Journal of Geophysical Research, 1996, 101, 11807-11813.	3.3	59
326	Osmium isotope systematics of drilled lavas from Mauna Loa, Hawaii. Journal of Geophysical Research, 1996, 101, 11793-11806.	3.3	182
327	High-frequency isotopic variations in the Mauna Kea tholeiitic basalt sequence: Melt zone dispersivity and chromatography. Journal of Geophysical Research, 1996, 101, 11855-11864.	3.3	46
328	Isotopic evolution of Mauna Kea volcano: Results from the initial phase of the Hawaii Scientific Drilling Project. Journal of Geophysical Research, 1996, 101, 11769-11780.	3.3	127
329	Introduction to Special Section: Hawaii Scientific Drilling Project. Journal of Geophysical Research, 1996, 101, 11593-11598.	3.3	50

#	Article	IF	CITATIONS
330	Oxygen isotope constraints on the sources of Hawaiian volcanism. Earth and Planetary Science Letters, 1996, 144, 453-467.	4.4	202
331	Correlated He and Sr isotope ratios in South Atlantic near-ridge seamounts and implications for mantle dynamics. Earth and Planetary Science Letters, 1996, 144, 491-503.	4.4	39
332	Lead and Helium Isotope Evidence from Oceanic Basalts for a Common Deep Source of Mantle Plumes. Science, 1996, 272, 991-995.	12.6	426
333	Distribution of boron, lithium and beryllium in ocean island basalts from French Polynesia: implications for the B/Be and Li/Be ratios as tracers of subducted components. Mineralogical Magazine, 1996, 60, 563-580.	1.4	18
334	Extreme HIMU in an oceanic setting: the geochemistry of Mangaia Island (Polynesia), and temporal evolution of the Cook—Austral hotspot. Journal of Volcanology and Geothermal Research, 1996, 72, 1-19.	2.1	161
335	Geochemistry and mineralogy of alkali basalts from Tropic Seamount, Central Atlantic Ocean. Marine Geology, 1996, 136, 1-19.	2.1	12
336	Rust marks second-hand crust. Nature, 1996, 382, 403-404.	27.8	1
337	A Composite Diapir Model for Extensive Basaltic Volcanism. Magmas from Subducted Oceanic Crust Entrained within Mantle Plumes Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 1997, 73, 201-204.	3.8	17
338	Genesis of flood basalts from eclogite-bearing mantle plumes. Journal of Geophysical Research, 1997, 102, 20179-20197.	3.3	152
339	Oxygen isotope variations in ocean island basalt phenocrysts. Geochimica Et Cosmochimica Acta, 1997, 61, 2281-2293.	3.9	223
340	The petrogenesis and platinum-group element geochemistry of the Newer Volcanic Province, Victoria, Australia. Chemical Geology, 1997, 136, 181-204.	3.3	102
341	Two terrestrial lead isotope paradoxes, forward transport modelling, core formation and the history of the continental crust. Chemical Geology, 1997, 139, 75-110.	3.3	344
342	Hafnium isotopic studies of the Cameroon line and new HIMU paradoxes. Chemical Geology, 1997, 139, 111-124.	3.3	76
343	Uî—,Th isotope disequilibria and ocean island basalt generation in the Azores. Chemical Geology, 1997, 139, 145-164.	3.3	136
344	Pb isotopic and elemental evidence for OIB derivation from young HIMU mantle. Chemical Geology, 1997, 139, 51-74.	3.3	128
345	Fractionation of U and Th during mantle melting: a reprise. Chemical Geology, 1997, 139, 165-183.	3.3	85
346	Rhenium abundances and systematics in oceanic basalts. Chemical Geology, 1997, 139, 185-205.	3.3	176
347	Hobbs Coast Cenozoic volcanism: Implications for the West Antarctic rift system. Chemical Geology, 1997, 139, 223-248.	3.3	100

#	Article	IF	CITATIONS
348	Recycled ocean crust and sediment in Indian Ocean MORB. Earth and Planetary Science Letters, 1997, 147, 93-106.	4.4	367
349	Trace element transport during dehydration processes in the subducted oceanic crust: 1. Experiments and implications for the origin of ocean island basalts. Earth and Planetary Science Letters, 1997, 148, 193-205.	4.4	509
350	Trace element evidence from seamounts for recycled oceanic crust in the Eastern Pacific mantle. Earth and Planetary Science Letters, 1997, 148, 471-483.	4.4	369
351	Osmium-strontium-neodymium-lead isotopic covariations in mid-ocean ridge basalt glasses and the heterogeneity of the upper mantle. Earth and Planetary Science Letters, 1997, 150, 363-379.	4.4	223
352	On the separation of crustal component from subducted oceanic lithosphere near the 660 km discontinuity. Physics of the Earth and Planetary Interiors, 1997, 99, 103-111.	1.9	88
353	How stratified is mantle convection?. Journal of Geophysical Research, 1997, 102, 7625-7646.	3.3	26
354	Geochemistry of Mesozoic Pacific mid-ocean ridge basalt: Constraints on melt generation and the evolution of the Pacific upper mantle. Journal of Geophysical Research, 1997, 102, 5207-5229.	3.3	71
355	High μ (HIMU) ocean island basalts in southern Polynesia: New evidence for whole mantle scale recycling of subducted oceanic crust. Journal of Geophysical Research, 1997, 102, 8085-8103.	3.3	114
356	Sources of ocean island basalts: A review of the osmium isotope evidence. Physica A: Statistical Mechanics and Its Applications, 1997, 244, 484-496.	2.6	23
357	The uniform and low 3He/4He ratios of HIMU basalts as evidence for their origin as recycled materials. Nature, 1997, 390, 273-276.	27.8	131
358	Mantle geochemistry: the message from oceanic volcanism. Nature, 1997, 385, 219-229.	27.8	2,343
359	Spinel peridotite xenoliths from the Atsagin-Dush volcano, Dariganga lava plateau, Mongolia: a record of partial melting and cryptic metasomatism in the upper mantle. Contributions To Mineralogy and Petrology, 1997, 126, 345-364.	3.1	109
360	Petrogenesis and source characteristics of metatholeiites from the Archean Ramagiri schist belt, eastern part of Dharwar craton, India. Contributions To Mineralogy and Petrology, 1997, 129, 87-104.	3.1	20
361	NOBLE GASES IN THE EARTH'S MANTLE. Annual Review of Earth and Planetary Sciences, 1998, 26, 189-218.	11.0	199
362	The core–mantle boundary layer and deep Earth dynamics. Nature, 1998, 392, 461-468.	27.8	374
363	The evolution of the lithospheric mantle along the N. African Plate: geochemical and isotopic evidence from the tholeiitic and alkaline volcanic rocks of the Hyblean plateau, Italy. Contributions To Mineralogy and Petrology, 1998, 131, 307-322.	3.1	63
364	Two mantle sources, two plumbing systems: tholeiitic and alkaline magmatism of the Maymecha River basin, Siberian flood volcanic province. Contributions To Mineralogy and Petrology, 1998, 133, 297-313.	3.1	145
365	Melting study of an alkali basalt JB-1 up to 12.5 GPa: behavior of potassium in the deep mantle. Physics of the Earth and Planetary Interiors, 1998, 107, 119-130.	1.9	61

#	Article	IF	Citations
366	The role of aqueous fluids in the slab-to-mantle transfer of boron, beryllium, and lithium during subduction: experiments and models. Geochimica Et Cosmochimica Acta, 1998, 62, 3337-3347.	3.9	220
367	The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology, 1998, 145, 325-394.	3.3	3,091
368	Thermal and rare gas evolution of the mantle. Chemical Geology, 1998, 145, 431-445.	3.3	32
369	Hf isotope constraints on mantle evolution. Chemical Geology, 1998, 145, 447-460.	3.3	291
370	Melting experiments on homogeneous mixtures of peridotite and basalt: application to the genesis of ocean island basalts. Earth and Planetary Science Letters, 1998, 162, 45-61.	4.4	239
371	Origin of the Columbia River basalts: melting model of a heterogeneous plume head. Earth and Planetary Science Letters, 1998, 162, 63-80.	4.4	177
372	Across-arc variation of Li isotopes in lavas and implications for crust/mantle recycling at subduction zones. Earth and Planetary Science Letters, 1998, 163, 167-174.	4.4	219
373	U–Th–Pa–Ra systematics for the Grande Comore volcanics: melting processes in an upwelling plume. Earth and Planetary Science Letters, 1998, 164, 119-133.	4.4	68
374	Osmium-isotope variations in Hawaiian lavas: evidence for recycled oceanic lithosphere in the Hawaiian plume. Earth and Planetary Science Letters, 1998, 164, 483-496.	4.4	343
375	Ascending subducted oceanic crust entrained within mantle plumes. Geophysical Research Letters, 1998, 25, 1561-1564.	4.0	24
376	Magnetotelluric imaging of the Society Islands hotspot. Journal of Geophysical Research, 1998, 103, 30287-30309.	3.3	94
377	Geochemistry of Jurassic Oceanic Crust beneath Gran Canaria (Canary Islands): Implications for Crustal Recycling and Assimilation. Journal of Petrology, 1998, 39, 859-880.	2.8	106
378	Elemental and isotopic (Sr, Nd, and Pb) characteristics of Madeira Island basalts: evidence for a composite HIMU - EM I plume fertilizing lithosphere. Canadian Journal of Earth Sciences, 1998, 35, 980-997.	1.3	31
379	Composition of the Silicate Earth: Implications for Accretion and Core Formation. , 0, , 3-126.		27
380	Understanding Mantle Dynamics through Mathematical Models and Laboratory Experiments. , 0, , 191-227.		2
381	Plates, Plumes, Mantle Convection, and Mantle Evolution. , 0, , 228-258.		10
382	The Mantle's Chemical Structure: Insights from the Melting Products of Mantle Plumes. , 0, , 259-310.		13
383	Geochemistry and petrogenesis of Jeungok basalts in mid-Korean peninsula Journal of Mineralogy, Petrology and Economic Geology, 1999, 94, 222-240.	0.1	5

#	Article	IF	CITATIONS
384	Unmixing Hawaiian cocktails. Nature, 1999, 399, 733-734.	27.8	8
385	A bigger Hockney. Nature, 1999, 399, 734-734.	27.8	51
386	DNA damage enables p73. Nature, 1999, 399, 735-737.	27.8	57
387	Central European Cenozoic plume volcanism with OIB characteristics and indications of a lower mantle source. Contributions To Mineralogy and Petrology, 1999, 136, 225-239.	3.1	77
388	The planet beyond the plume hypothesis. Earth-Science Reviews, 1999, 48, 135-182.	9.1	74
389	Os Isotope Systematics in the Canary Islands and Madeira: Lithospheric Contamination and Mantle Plume Signatures. Journal of Petrology, 1999, 40, 279-296.	2.8	141
390	MANTLE CONVECTION:A Thermal Balancing Act. Science, 1999, 283, 1652-1653.	12.6	6
391	Compositional Stratification in the Deep Mantle. Science, 1999, 283, 1881-1884.	12.6	743
392	Hf Isotope Evidence for Pelagic Sediments in the Source of Hawaiian Basalts. Science, 1999, 285, 879-882.	12.6	269
393	Geochemical diversity in oceanic komatiites and basalts from the late Archean Wawa greenstone belts, Superior Province, Canada: trace element and Nd isotope evidence for a heterogeneous mantle. Precambrian Research, 1999, 94, 139-173.	2.7	173
394	Hotspot distribution, gravity, mantle tomography: evidence for plumes. Journal of Geodynamics, 1999, 27, 585-608.	1.6	12
395	Plume related alkaline magmatism in central Africa—the Meidob Hills (W Sudan). Chemical Geology, 1999, 157, 27-47.	3.3	50
396	Geophysically constrained mantle mass flows and the 40Ar budget: a degassed lower mantle?. Earth and Planetary Science Letters, 1999, 166, 149-162.	4.4	60
397	Variability of Nb/U and Th/La in 3.0 to 2.7 Ga Superior Province ocean plateau basalts: implications for the timing of continental growth and lithosphere recycling. Earth and Planetary Science Letters, 1999, 168, 101-115.	4.4	73
398	Relationships between Lu–Hf and Sm–Nd isotopic systems in the global sedimentary system. Earth and Planetary Science Letters, 1999, 168, 79-99.	4.4	936
399	Rhenium–osmium isotopic investigation of Java subduction zone lavas. Earth and Planetary Science Letters, 1999, 168, 65-77.	4.4	66
400	Helium and lead isotope geochemistry of the Azores Archipelago. Earth and Planetary Science Letters, 1999, 169, 189-205.	4.4	127
401	Two-stage melting and the geochemical evolution of the mantle: a recipe for mantle plum-pudding. Earth and Planetary Science Letters, 1999, 170, 215-239.	4.4	179

#	Article	IF	CITATIONS
402	Geochemical observations and one layer mantle convection. Earth and Planetary Science Letters, 1999, 174, 125-137.	4.4	133
403	Flood basalts and large igneous provinces from deep mantle plumes: fact, fiction, and fallacy. Tectonophysics, 1999, 311, 1-29.	2.2	84
404	Noble gas study of HIMU and EM ocean island basalts in the Polynesian region. Geochimica Et Cosmochimica Acta, 1999, 63, 1181-1201.	3.9	42
405	The Nd and Hf isotopic evolution of the mantle through the Archean. results from the Isua supracrustals, West Greenland, and from the Birimian terranes of West Africa. Geochimica Et Cosmochimica Acta, 1999, 63, 3901-3914.	3.9	140
406	The fingerprint of seawater circulation in a 500-meter section of ocean crust gabbros. Geochimica Et Cosmochimica Acta, 1999, 63, 4059-4080.	3.9	255
407	Origin of enriched-type mid-ocean ridge basalt at ridges far from mantle plumes: The East Pacific Rise at 11°20′N. Journal of Geophysical Research, 1999, 104, 7067-7087.	3.3	220
408	Melting depths and mantle heterogeneity beneath Hawaii and the East Pacific Rise: Constraints from Na/Ti and rare earth element ratios. Journal of Geophysical Research, 1999, 104, 2817-2829.	3.3	88
409	Isotope geochemistry of the Darwin Rise seamounts and the nature of long-term mantle dynamics beneath the south central Pacific. Journal of Geophysical Research, 1999, 104, 10571-10589.	3.3	41
410	Numerical evaluation of mantle plume spacing, size, flow rates, and unsteadiness. Journal of Geophysical Research, 1999, 104, 7377-7387.	3.3	6
411	Age constraints on crustal recycling to the mantle beneath the southern Chile Ridge: He-Pb-Sr-Nd isotope systematics. Journal of Geophysical Research, 1999, 104, 5097-5114.	3.3	32
412	Noble gases in the Cameroon line and the He, Ne, and Ar isotopic compositions of high μ (HIMU) mantle. Journal of Geophysical Research, 1999, 104, 29509-29527.	3.3	86
413	Superplume Project: Towards a new view of whole Earth dynamics. Earth, Planets and Space, 1999, 51, i-v.	2.5	22
414	Pb, Nd, and Sr isotopic constraints on the origin of Miocene basaltic rocks from northeast Hokkaido, Japan: Implications for opening of the Kurile back-arc basin. Island Arc, 2000, 9, 161-172.	1.1	36
415	Oxygen-isotope evidence for recycled crust in the sources of mid-ocean-ridge basalts. Nature, 2000, 403, 530-534.	27.8	214
416	Quality of the fossil record through time. Nature, 2000, 403, 534-537.	27.8	187
417	Recycled oceanic crust observed in â€ ⁻ ghost plagioclase' within the source of Mauna Loa lavas. Nature, 2000, 404, 986-990.	27.8	366
418	Srâ€Ndâ€Pb isotope ratios, geochemical compositions, and ⁴⁰ Ar/ ³⁹ Ar data of lavas from San Felix Island (Southeast Pacific): Implications for magma genesis and sources. Terra Nova, 2000, 12, 90-96.	2.1	10
419	Petrogenetic evolution of late Cenozoic, post-collision volcanism in western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 2000, 102, 67-95.	2.1	890

ARTICLE IF CITATIONS # The Canary Islands origin: a unifying model. Journal of Volcanology and Geothermal Research, 2000, 420 2.1 189 103, 1-26. The Lesser Antilles volcanic chain: a study in arc magmatism. Earth-Science Reviews, 2000, 49, 1-76. 421 9.1 297 The subducted slab of Yangtze continental block beneath the Tethyan orogen in western Yunnan. 422 1.7 59 Science Bulletin, 2000, 45, 466-472. Experimental study of the phase and melting relations of homogeneous basalt $\hat{a} \in \mathbb{W} + \hat{a} \in \mathbb{W}$ peridotite mixtures and implications for the petrogenesis of flood basalts. Contributions To Mineralogy and Petrology, 3.1 2000, 139, 326-338. Major Element Records of Variable Plume Involvement in the North Atlantic Province Tertiary Flood 424 2.8 16 Basalts. Journal of Petrology, 2000, 41, 1155-1176. Igneous Petrogenesis., 2000, , . Platinum-group elements and Os isotopic characteristics of the lower oceanic crust. Chemical 426 3.3 38 Geology, 2000, 168, 113-122. Trace element fractionation during dehydration of eclogites from high-pressure terranes and the 427 3.3 238 implications for element fluxes in subduction zones. Chemical Geology, 2000, 163, 65-99. 238U–230Th disequilibria and mantle melting processes: a discussion. Chemical Geology, 2000, 162, 428 3.3 22 95-104. Geochemistry of late Cenozoic basaltic volcanism in Northland and Coromandel, New Zealand: 429 3.3 implications for mantle enrichment processes. Chemical Geology, 2000, 164, 219-238. Geochemistry of Late Cenozoic basalts from the Crary Mountains: characterization of mantle sources 430 77 3.3 in Marie Byrd Land, Antarctica. Chemical Geology, 2000, 165, 215-241. Re–Os fractionation in eclogites and blueschists and the implications for recycling of oceanic crust 4.4 124 into the mantle. Earth and Planetary Science Letters, 2000, 177, 287-300. Mapping olivine composition in the lithospheric mantle. Earth and Planetary Science Letters, 2000, 182, 432 4.4 129 223-235. The 72 Ma geochemical evolution of the Madeira hotspot (eastern North Atlantic): recycling of 4.4 Paleozoic (ã‰\$00 Ma) oceanic lithosphere. Earth and Planetary Science Letters, 2000, 183, 73-92. Calcium-rich melt inclusions in Cr-spinels from Borgarhraun, northern Iceland. Earth and Planetary 434 44 4.4 Science Letters, 2000, 183, 15-26. Large volume recycling of oceanic lithosphere over short time scales: geochemical constraints from 4.4 140 the Caribbean Large Igneous Province. Earth and Planetary Science Letters, 2000, 174, 247-263. Archean greenstone belt magmatism and the continental growthâ€"mantle evolution connection: 436 constraints from Th–U–Nb–LREE systematics of the 2.7 Ga Wawa subprovince, Superior Province, 4.4 145 Canada. Earth and Planetary Science Letters, 2000, 175, 41-54. Deep mantle plume osmium isotope signature from West Greenland Tertiary picrites. Earth and 4.4 Planetary Science Letters, 2000, 175, 105-118.

#	Article	IF	CITATIONS
438	Platinum group elements in Kostomuksha komatiites and basalts: implications for oceanic crust recycling and core-mantle interaction. Geochimica Et Cosmochimica Acta, 2000, 64, 4227-4242.	3.9	138
439	Sr–Nd–Pb isotope and trace-element geochemistry evidence for a young HIMU source and assimilation at Tenerife (Canary Island). Journal of Volcanology and Geothermal Research, 2000, 103, 299-312.	2.1	39
440	Cadmium, indium, tin, tellurium, and sulfur in oceanic basalts: Implications for chalcophile element fractionation in the Earth. Journal of Geophysical Research, 2000, 105, 18927-18948.	3.3	130
441	Constraints on HIMU and EM by Sr and Nd isotopes re-examined. Earth, Planets and Space, 2000, 52, 61-70.	2.5	25
442	Melting of a complete section of recycled oceanic crust: Trace element and Pb isotopic evidence from Iceland. Geochemistry, Geophysics, Geosystems, 2000, 1, n/a-n/a.	2.5	168
443	Box modeling the chemical evolution of geophysical systems: Case study of the Earth's mantle. Geophysical Research Letters, 2000, 27, 1579-1582.	4.0	15
444	Search for a deep-mantle component in mafic lavas using a Nb—Y—Zr plot. Canadian Journal of Earth Sciences, 2001, 38, 813-824.	1.3	37
445	Mixing properties in the Earth's mantle: Effects of the viscosity stratification and of oceanic crust segregation. Geochemistry, Geophysics, Geosystems, 2001, 2, n/a-n/a.	2.5	33
446	High field strength element/rare earth element fractionation during partial melting in the presence of garnet: Implications for identification of mantle heterogeneities. Geochemistry, Geophysics, Geosystems, 2001, 2, n/a-n/a.	2.5	114
447	Hf isotope geochemistry of the Galapagos Islands. Geochemistry, Geophysics, Geosystems, 2001, 2, n/a-n/a.	2.5	59
448	Mantle plumes and flood basalts: Enhanced melting from plume ascent and an eclogite component. Journal of Geophysical Research, 2001, 106, 2047-2059.	3.3	58
449	Thorium-uranium systematics require layered mantle convection. Journal of Geophysical Research, 2001, 106, 4265-4276.	3.3	62
450	Effects of recycled materials involved in a mantle source beneath the southwest Japan arc region: evidence from noble gas, Sr, and Nd isotopic systematics. Chemical Geology, 2001, 175, 509-522.	3.3	26
451	Subducted oceanic lithosphere and the origin of the â€~high μ' basalt helium isotopic signature. Earth and Planetary Science Letters, 2001, 189, 49-57.	4.4	69
452	238U–230Th–226Ra fractionation in historical lavas from the Azores: long-lived source heterogeneity vs. metasomatism fingerprints. Chemical Geology, 2001, 176, 295-310.	3.3	38
453	187 Os-enriched domain in an Archean mantle plume: evidence from 2.8 Ga komatiites of the Kostomuksha greenstone belt, NW Baltic Shield. Earth and Planetary Science Letters, 2001, 186, 513-526.	4.4	45
454	Correlated Os–Pb–Nd–Sr isotopes in the Austral–Cook chain basalts: the nature of mantle components in plume sources. Earth and Planetary Science Letters, 2001, 186, 527-537.	4.4	62
455	Radiogenic ingrowth in systems with multiple reservoirs: applications to the differentiation of the mantle–crust system. Earth and Planetary Science Letters, 2001, 189, 59-73.	4.4	38

	CITATION R	EPORT	
#	Article	IF	Citations
456	Osmium–oxygen isotopic evidence for a recycled and strongly depleted component in the Iceland mantle plume. Earth and Planetary Science Letters, 2001, 194, 259-275.	4.4	99
457	Boron isotope geochemistry of metasedimentary rocks and tourmalines in a subduction zone metamorphic suite. Physics of the Earth and Planetary Interiors, 2001, 127, 233-252.	1.9	124
458	Enriched component of the proto-Icelandic mantle plume revealed in alkaline Tertiary lavas from East Greenland. Geology, 2001, 29, 859.	4.4	13
459	The Earth's mantle. Nature, 2001, 412, 501-507.	27.8	307
460	Evidence for a plate tectonics debate. Earth-Science Reviews, 2001, 55, 235-336.	9.1	7
461	Geochemical evidence for arc-type volcanism in the Aegean Sea: the blueschist unit of Siphnos, Cyclades (Greece). Lithos, 2001, 57, 263-289.	1.4	25
462	Petrologic and geochemical constraints on the petrogenesis of Permian–Triassic Emeishan flood basalts in southwestern China. Lithos, 2001, 58, 145-168.	1.4	785
463	Petrogenesis of Corundum-Bearing Mafic Rock in the Horoman Peridotite Complex, Japan. Journal of Petrology, 2001, 42, 1279-1299.	2.8	47
464	Petrogenesis of Olivine-phyric Basalts from the Aphanasey Nikitin Rise: Evidence for Contamination by Cratonic Lower Continental Crust. Journal of Petrology, 2001, 42, 277-319.	2.8	50
465	Diamonds from the asthenosphere and the transition zone. European Journal of Mineralogy, 2001, 13, 883-892.	1.3	125
466	Oxygen Isotope Variations of Basaltic Lavas and Upper Mantle Rocks. Reviews in Mineralogy and Geochemistry, 2001, 43, 319-364.	4.8	573
467	A Chemical and Multi-Isotope Study of the Western Cape Olivine Melilitite Province, South Africa: Implications for the Sources of Kimberlites and the Origin of the HIMU Signature in Africa. Journal of Petrology, 2002, 43, 2339-2370.	2.8	94
468	Kistufell: Primitive Melt from the Iceland Mantle Plume. Journal of Petrology, 2002, 43, 345-373.	2.8	90
469	Geochemistry and isotopic systematics of Cenozoic alkaline volcanic rocks in Korea and NE China. Neues Jahrbuch Fur Mineralogie, Abhandlungen, 2002, 177, 213-240.	0.3	6
470	Hf Isotope Evidence for a Miocene Change in the Kerguelen Mantle Plume Composition. Journal of Petrology, 2002, 43, 1327-1339.	2.8	27
471	Constraints on Melt Movement Beneath the East Pacific Rise From 230Th-238U Disequilibrium. Science, 2002, 295, 107-110.	12.6	36
472	Geochemical evolution of Koolau Volcano, Hawaii. Geophysical Monograph Series, 2002, , 311-332.	0.1	31
473	Trace of the Kerguelen mantle plume: Evidence from seamounts between the Kerguelen Archipelago and Heard Island, Indian Ocean. Geochemistry, Geophysics, Geosystems, 2002, 3, 1-27.	2.5	56

#	Article	IF	CITATIONS
474	The evolution of mantle mixing. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2002, 360, 2411-2431.	3.4	35
475	Effects of depth-dependent viscosity and plate motions on maintaining a relatively uniform mid-ocean ridge basalt reservoir in whole mantle flow. Journal of Geophysical Research, 2002, 107, ETG 5-1.	3.3	25
476	Upwelling of deep mantle material through a plate window: Evidence from the geochemistry of Italian basaltic volcanics. Journal of Geophysical Research, 2002, 107, ECV 7-1-ECV 7-19.	3.3	130
477	Pervasive mantle plume head heterogeneity: Evidence from the late Cretaceous Caribbean-Colombian oceanic plateau. Journal of Geophysical Research, 2002, 107, ECV 2-1-ECV 2-13.	3.3	79
478	Hafnium isotopes in basalts from the southern Mid-Atlantic Ridge from 40°S to 55°S: Discovery and Shona plume-ridge interactions and the role of recycled sediments. Geochemistry, Geophysics, Geosystems, 2002, 3, 1-25.	2.5	37
479	Mantle dynamics, element recycling, and magma genesis beneath the Kermadec Arc-Havre Trough. Geochemistry, Geophysics, Geosystems, 2002, 3, 1-22.	2.5	78
480	Noble Gas Isotope Geochemistry of Mid-Ocean Ridge and Ocean Island Basalts: Characterization of Mantle Source Reservoirs. Reviews in Mineralogy and Geochemistry, 2002, 47, 247-317.	4.8	497
481	Storage and Transport of Noble Gases in the Subcontinental Lithosphere. Reviews in Mineralogy and Geochemistry, 2002, 47, 371-409.	4.8	84
482	Implications of Nb/U, Th/U and Sm/Nd in plume magmas for the relationship between continental and oceanic crust formation and the development of the depleted mantle. Geochimica Et Cosmochimica Acta, 2002, 66, 1651-1661.	3.9	76
483	Subsolidus and melting phase relations of basaltic composition in the uppermostlower mantle. Geochimica Et Cosmochimica Acta, 2002, 66, 2099-2108.	3.9	175
484	Experimental constraints on major and trace element partitioning during partial melting of eclogite. Geochimica Et Cosmochimica Acta, 2002, 66, 3109-3123.	3.9	391
485	Stirring geochemistry in mantle convection models with stiff plates and slabs. Geochimica Et Cosmochimica Acta, 2002, 66, 3125-3142.	3.9	117
486	Rapid and highly reproducible analysis of rare earth elements by multiple collector inductively coupled plasma mass spectrometry. Geochimica Et Cosmochimica Acta, 2002, 66, 3635-3646.	3.9	80
487	Mixing and deformations in mantle plumes. Earth and Planetary Science Letters, 2002, 196, 1-15.	4.4	123
488	The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot. Earth and Planetary Science Letters, 2002, 196, 197-212.	4.4	274
489	Geochemistry of near-EPR seamounts: importance of source vs. process and the origin of enriched mantle component. Earth and Planetary Science Letters, 2002, 199, 327-345.	4.4	230
490	Is the Iceland hot spot also wet? Evidence from the water contents of undegassed submarine and subglacial pillow basalts. Earth and Planetary Science Letters, 2002, 202, 77-87.	4.4	144
491	Chlorine–potassium variations in melt inclusions from Raivavae and Rapa, Austral Islands: constraints on chlorine recycling in the mantle and evidence for brine-induced melting of oceanic crust. Earth and Planetary Science Letters, 2002, 202, 525-540.	4.4	104

#	Article	IF	CITATIONS
492	D/H ratios in basalt glasses from the Salas y Gomez mantle plume interacting with the East Pacific Rise: Water from old D-rich recycled crust or primordial water from the lower mantle?. Geochemistry, Geophysics, Geosystems, 2002, 3, 1-26.	2.5	40
493	Slabs in the lower mantle and their modulation of plume formation. Geochemistry, Geophysics, Geosystems, 2002, 3, 1-24.	2.5	133
494	Temporal-compositional trends in intraplate basalt eruptions: Implications for mantle heterogeneity and melting processes. Geochemistry, Geophysics, Geosystems, 2002, 3, 1-30.	2.5	71
495	Geochemistry and Tectonic Framework of Proterozoic Mafic Metavolcanics of Aravalli-Delhi Orogen, NW India. Chemie Der Erde, 2002, 62, 123-144.	2.0	8
496	10. Storage and Transport of Noble Gases in the Subcontinental Lithosphere. , 2002, , 371-410.		5
497	Geochemistry and petrology of lavas from the submarine flanks of Réunion Island (western Indian) Tj ETQq1 1 153-184.	0.784314 1.1	rgBT /Overlo 44
498	Composition and evolution of submarine volcanic rocks from the central and western Canary Islands. International Journal of Earth Sciences, 2002, 91, 562-582.	1.8	48
499	Os isotopes in mantle xenoliths from the Eifel volcanic field and the Vogelsberg (Germany): age constraints on the lithospheric mantle. Contributions To Mineralogy and Petrology, 2002, 143, 694-705.	3.1	36
500	Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate. Contributions To Mineralogy and Petrology, 2002, 142, 520-542.	3.1	390
501	Through the wringer. Nature, 2002, 420, 366-367.	27.8	3
502	The importance of being erroneous. Nature, 2002, 420, 367-369.	27.8	70
503	Zoned mantle convection. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2002, 360, 2569-2592.	3.4	92
504	Mantle plume, large igneous province and continental breakup. Acta Seismologica Sinica, 2003, 16, 330-339.	0.2	3
505	Contrasting Archean and Proterozoic lithospheric mantle: isotopic evidence from the Shonkin Sag sill (Montana). Contributions To Mineralogy and Petrology, 2003, 145, 169-181.	3.1	14
506	Further discussion of mantle plumes Astronomy and Geophysics, 2003, 44, 2.08-2.09.	0.2	1
507	Just add water. Nature, 2003, 425, 24-25.	27.8	6
508	Fate of the subducted Farallon plate inferred from eclogite xenoliths in the Colorado Plateau. Geology, 2003, 31, 589.	4.4	114
509	The subduction factory: its role in the evolution of the Earth's crust and mantle. Geological Society Special Publication, 2003, 219, 55-80.	1.3	113

#	Article	IF	CITATIONS
510	Geochemistry of hydrothermally altered oceanic crust: DSDP/ODP Hole 504B - Implications for seawater-crust exchange budgets and Sr- and Pb-isotopic evolution of the mantle. Geochemistry, Geophysics, Geosystems, 2003, 4, .	2.5	143
511	Does depleted mantle form an intrinsic part of the Iceland plume?. Geochemistry, Geophysics, Geosystems, 2003, 4, .	2.5	111
512	Composition of altered oceanic crust at ODP Sites 801 and 1149. Geochemistry, Geophysics, Geosystems, 2003, 4, n/a-n/a.	2.5	422
513	Hf isotope constraints on mantle sources and shallow-level contaminants during Kerguelen hot spot activity since â^1⁄4120 Ma. Geochemistry, Geophysics, Geosystems, 2003, 4, .	2.5	62
514	Origin of ocean island basalts: A new perspective from petrology, geochemistry, and mineral physics considerations. Journal of Geophysical Research, 2003, 108, .	3.3	304
515	Observational and theoretical studies of the dynamics of mantle plume–mid-ocean ridge interaction. Reviews of Geophysics, 2003, 41, .	23.0	139
516	Short-lived and discontinuous intraplate volcanism in the South Pacific: Hot spots or extensional volcanism?. Geochemistry, Geophysics, Geosystems, 2003, 4, .	2.5	194
517	Correction to "Geochemistry of hydrothermally altered oceanic crust: DSDP/ODP Hole 504B - Implications for seawater-crust exchange budgets and Sr- and Pb-isotopic evolution of the mantle― Geochemistry, Geophysics, Geosystems, 2003, 4, n/a-n/a.	2.5	27
518	Seismic evidence for accumulated oceanic crust above the 660-km discontinuity beneath southern Africa. Geophysical Research Letters, 2003, 30, .	4.0	44
519	Isotope and trace element variations in lavas from Raivavae and Rapa, Cook–Austral islands: constraints on the nature of HIMU- and EM-mantle and the origin of mid-plate volcanism in French Polynesia. Chemical Geology, 2003, 202, 115-138.	3.3	106
520	Partial melting experiments on a MORB-like pyroxenite between 2 and 3 GPa: Constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate. Journal of Geophysical Research, 2003, 108, .	3.3	268
521	Theistareykir revisited. Geochemistry, Geophysics, Geosystems, 2003, 4, .	2.5	142
522	Recycling oceanic crust: Quantitative constraints. Geochemistry, Geophysics, Geosystems, 2003, 4, .	2.5	389
523	Closed-system geochemical recycling of crustal materials in alpine-type peridotite. Geochimica Et Cosmochimica Acta, 2003, 67, 303-310.	3.9	36
524	Pb-Sr-He isotope and trace element geochemistry of the Cape Verde Archipelago. Geochimica Et Cosmochimica Acta, 2003, 67, 3717-3733.	3.9	123
525	Oxygen isotope signatures in olivines from São Miguel (Azores) basalts: implications for crustal and mantle processes. Chemical Geology, 2003, 193, 237-255.	3.3	49
526	Extremely light Li in orogenic eclogites: The role of isotope fractionation during dehydration in subducted oceanic crust. Earth and Planetary Science Letters, 2003, 208, 279-290.	4.4	232
527	Nanocrystalline diamond from the Earth's mantle underneath Hawaii. Earth and Planetary Science Letters, 2003, 211, 357-369.	4.4	67

#	Article	IF	Citations
528	High-pressure partial melting of garnet pyroxenite: possible mafic lithologies in the source of ocean island basalts. Earth and Planetary Science Letters, 2003, 216, 603-617.	4.4	378
529	He and Ne isotopes in oceanic crust: implications for noble gas recycling in the mantle. Earth and Planetary Science Letters, 2003, 216, 635-643.	4.4	43
530	Critical evaluation of Re–Os and Pt–Os isotopic evidence on the origin of intraplate volcanism. Journal of Geodynamics, 2003, 36, 469-484.	1.6	38
531	Intra-oceanic subduction systems: introduction. Geological Society Special Publication, 2003, 219, 1-17.	1.3	50
532	Lithosphere structure and evolution in southeastern Australia. , 2003, , .		8
533	Heading in the right direction. Astronomy and Geophysics, 2003, 44, 2.9-2.9.	0.2	0
534	Anhydrous Partial Melting Experiments on MORB-like Eclogite: Phase Relations, Phase Compositions and Mineral-Melt Partitioning of Major Elements at 2-3 GPa. Journal of Petrology, 2003, 44, 2173-2201.	2.8	361
535	Constraints on continental growth models from Nb/U ratios in the 3.5 Ga Barberton and other Archaean basalt-komatiite suites. Numerische Mathematik, 2003, 303, 319-351.	1.4	80
536	Geochemistry of Lavas from the Emperor Seamounts, and the Geochemical Evolution of Hawaiian Magmatism from 85 to 42 Ma. Journal of Petrology, 2003, 44, 113-140.	2.8	187
537	7. The Stable-Chlorine Isotope Compositions of Natural and Anthropogenic Materials. , 2004, , 231-254.		4
538	Geochemical and Isotopic Heterogeneities along an Island Arc-Spreading Ridge Intersection: Evidence from the Lewis Hills, Bay of Islands Ophiolite, Newfoundland. Journal of Petrology, 2004, 45, 635-668.	2.8	43
539	Origin and evolution of magmas on the Ontong Java Plateau. Geological Society Special Publication, 2004, 229, 151-178.	1.3	131
540	Helium isotope signature of lithospheric mantle xenoliths from the Permo-Carboniferous magmatic province in Scotland — no evidence for a lower-mantle plume. Geological Society Special Publication, 2004, 223, 243-258.	1.3	8
541	Chapter 15 Transport properties in deep depths and related condensed-matter phenomena. Developments in Geochemistry, 2004, 9, 1041-1203.	0.1	0
542	Petrogenesis of Tertiary Continental Intra-plate Lavas from the Westerwald Region, Germany. Journal of Petrology, 2004, 45, 883-905.	2.8	65
543	Geochemical Constraints on the Role of Oceanic Lithosphere in Intra-Volcano Heterogeneity at West Maui, Hawaii. Journal of Petrology, 2004, 45, 1663-1687.	2.8	44
544	Silicate and oxide inclusion characteristics and infra-red absorption analysis of diamonds from the Klipspringer kimberlites, South Africa. South African Journal of Geology, 2004, 107, 131-146.	1.2	7
545	Fossil embryos from the Middle and Late Cambrian period of Hunan, south China. Nature, 2004, 427, 237-240.	27.8	154

#	Article	IF	CITATIONS
546	Tungsten isotope evidence that mantle plumes contain no contribution from the Earth's core. Nature, 2004, 427, 234-237.	27.8	121
547	Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5�CPa: implications for petrogenesis of carbonatites. Contributions To Mineralogy and Petrology, 2004, 146, 606-619.	3.1	277
548	Scientific drilling reveals geochemical heterogeneity within the Ko?olau shield, Hawai?i. Contributions To Mineralogy and Petrology, 2004, 147, 162-188.	3.1	52
549	A hydrous melting and fractionation model for mid-ocean ridge basalts: Application to the Mid-Atlantic Ridge near the Azores. Geochemistry, Geophysics, Geosystems, 2004, 5, n/a-n/a.	2.5	281
550	Numerical investigation of layered convection in a three-dimensional shell with application to planetary mantles. Geochemistry, Geophysics, Geosystems, 2004, 5, n/a-n/a.	2.5	26
551	Recycled metasomatized lithosphere as the origin of the Enriched Mantle II (EM2) end-member: Evidence from the Samoan Volcanic Chain. Geochemistry, Geophysics, Geosystems, 2004, 5, n/a-n/a.	2.5	350
552	LINKS BETWEEN LONG-LIVED HOT SPOTS, MANTLE PLUMES, Dâ€3, AND PLATE TECTONICS. Reviews of Geophysics, 2004, 42, .	23.0	159
553	Role of recycled oceanic crust in the potassium and argon budget of the Earth: Toward a resolution of the "missing argon―problem. Geochemistry, Geophysics, Geosystems, 2004, 5, n/a-n/a.	2.5	60
554	Structure and dynamics of sheared mantle plumes. Geochemistry, Geophysics, Geosystems, 2004, 5, n/a-n/a.	2.5	60
555	Evolution of U-Pb and Sm-Nd systems in numerical models of mantle convection and plate tectonics. Journal of Geophysical Research, 2004, 109, .	3.3	138
556	Mantle Plumes are NOT From Ancient Oceanic Crust. , 2004, , 239-252.		2
557	Oceanic Hotspots. , 2004, , .		4
558	High-pressure Partial Melting of Mafic Lithologies in the Mantle. Journal of Petrology, 2004, 45, 2407-2422.	2.8	227
559	The Stable-Chlorine Isotope Compositions of Natural and Anthropogenic Materials. Reviews in Mineralogy and Geochemistry, 2004, 55, 231-254.	4.8	32
560	Lead isotopic systematics of major river sediments: a new estimate of the Pb isotopic composition of the Upper Continental Crust. Chemical Geology, 2004, 203, 75-90.	3.3	160
561	Lithium abundance and lithium isotope variations in mantle sources: insights from intraplate volcanic rocks from Ross Island and Marie Byrd Land (Antarctica) and other oceanic islands. Chemical Geology, 2004, 212, 125-142.	3.3	84
562	Lithium, boron, and lead isotope systematics of glass inclusions in olivines from Hawaiian lavas: evidence for recycled components in the Hawaiian plume. Chemical Geology, 2004, 212, 143-161.	3.3	89
563	Source enrichment processes responsible for isotopic anomalies in oceanic island basalts. Geochimica Et Cosmochimica Acta, 2004, 68, 2699-2724.	3.9	56

#	Article	IF	CITATIONS
564	Nature of the depleted upper mantle beneath the Atlantic: evidence from Hf isotopes in normal mid-ocean ridge basalts from 79°N to 55°S. Earth and Planetary Science Letters, 2004, 225, 89-103.	4.4	53
565	Origin of enriched ocean ridge basalts and implications for mantle dynamics. Earth and Planetary Science Letters, 2004, 226, 347-366.	4.4	332
566	Rare gas systematics and the origin of oceanic islands: the key role of entrainment at the 670 km boundary layer. Earth and Planetary Science Letters, 2004, 228, 85-92.	4.4	32
567	Influences of dissipation and rheology on mantle plumes coming from the Dâ€3-layer. Physics of the Earth and Planetary Interiors, 2004, 146, 139-145.	1.9	14
568	Lead isotopic compositions in olivine-hosted melt inclusions from HIMU basalts and possible link to sulfide components. Physics of the Earth and Planetary Interiors, 2004, 146, 231-242.	1.9	34
569	Density of MORB eclogite in the upper mantle. Physics of the Earth and Planetary Interiors, 2004, 143-144, 129-143.	1.9	106
570	Partial melting in a thermo-chemical boundary layer at the base of the mantle. Physics of the Earth and Planetary Interiors, 2004, 146, 441-467.	1.9	182
571	Composition of the depleted mantle. Geochemistry, Geophysics, Geosystems, 2004, 5, n/a-n/a.	2.5	1,377
572	Coupled 186Os–187Os enrichments in the Earth's mantle – core–mantle interaction or recycling of ferromanganese crusts and nodules?. Earth and Planetary Science Letters, 2004, 220, 277-286.	4.4	52
573	Characteristics of the mantle source region of sodium lamprophyres and petrogenetic tectonic setting in northeastern Hunan, China. Science in China Series D: Earth Sciences, 2004, 47, 559-569.	0.9	4
574	Core-mantle boundary structures and processes. Geophysical Monograph Series, 2004, , 25-41.	0.1	45
575	CORE MANTLE CHEMICAL ISSUES. Canadian Mineralogist, 2005, 43, 1553-1564.	1.0	13
576	Petrogenesis of the Neopro-terozoic bimodal volcanic rocks along the western margin of the Yangtze Block: New constraints from Hf isotopes and Fe/Mn ratios. Science Bulletin, 2005, 50, 2481.	1.7	179
577	An olivine-free mantle source of Hawaiian shield basalts. Nature, 2005, 434, 590-597.	27.8	942
578	Evolution of helium isotopes in the Earth's mantle. Nature, 2005, 436, 1107-1112.	27.8	164
579	Were the Deccan Flood Basalts Derived in Part from Ancient Oceanic Crust Within the Indian Continental Lithosphere?. Condwana Research, 2005, 8, 109-127.	6.0	53
580	Application of the Pt–Re–Os isotopic systems to mantle geochemistry and geochronology. Lithos, 2005, 82, 249-272.	1.4	131
581	Isotope geochemistry of oceanic volcanics. , 2005, , 136-173.		Ο

ARTICLE IF CITATIONS Genesis of the Iceland melt anomaly by plate tectonic processes., 2005,,. 16 582 The deep mantle thermo-chemical boundary layer: The putative mantle plume source., 2005, , . Geochemistry of the Early Paleozoic Baiyin Volcanic Rocks (NW China): Implications for the Tectonic 584 1.4 96 Evolution of the North Qilian Orogenic Belt. Journal of Geology, 2005, 113, 83-94. NE Atlantic break-up: a re-examination of the Iceland mantle plume model and the Atlantic–Arctic linkage. Petroleum Geology Conference Proceedings, 2005, 6, 739-754. Subduction cycling of U, Th, and Pb. Earth and Planetary Science Letters, 2005, 234, 369-383. 586 4.4 161 Boron isotopic constraints on the source of Hawaiian shield lavas. Geochimica Et Cosmochimica Acta, 2005, 69, 3385-3399 588 Flow and melting of a heterogeneous mantle. Earth and Planetary Science Letters, 2005, 230, 47-63. 4.4 95 The debate over core–mantle interaction. Earth and Planetary Science Letters, 2005, 232, 211-225. 4.4 169 Grand Comore Island: A well-constrained "low 3He/4He―mantle plume. Earth and Planetary Science 590 4.4 55 Letters, 2005, 233, 391-409. The metasomatic alternative for ocean island basalt chemical heterogeneity. Earth and Planetary 4.4 Science Letters, 2005, 236, 148-166. Early crust on top of the Earth's core. Physics of the Earth and Planetary Interiors, 2005, 148, 109-130. 592 1.9 176 Isotope systematics of noble gases in the Earth's mantle: possible sources of primordial isotopes and implications for mantle structure. Physics of the Earth and Planetary Interiors, 2005, 148, 13-38. Phase relations in hydrous MORB at 18–28GPa: implications for heterogeneity of the lower mantle. 594 1.9 141 Physics of the Earth and Planetary Interiors, 2005, 150, 239-263. Geochemical structure of the Hawaiian plume: Sr, Nd, and Os isotopes in the 2.8 km HSDP-2 section of 2.5 Mauna Kea volcano. Geochemistry, Geophysics, Geosystems, 2005, 6, n/a-n/a. 596 FOZO, HIMU, and the rest of the mantle zoo. Geochemistry, Geophysics, Geosystems, 2005, 6, n/a-n/a. 2.5512 Geochemistry of Mauritius and the origin of rejuvenescent volcanism on oceanic island volcanoes. Geochemistry, Geophysics, Geosystems, 2005, 6, . A search for142Nd evidence of primordial mantle heterogeneities in plume basalts. Geophysical 598 4.0 11 Research Letters, 2005, 32, n/a-n/a. Mantle potential temperatures at Hawaii, Iceland, and the mid-ocean ridge system, as inferred from 599 olivine phenocrysts: Evidence for thermally driven mantle plumes. Geochemistry, Geophysics, Geosystems, 2005, 6, n/a-n/a.

		15	Cizizionio
#	ARTICLE New insights into the origin and distribution of the DUPAL isotope anomaly in the Indian Ocean mantle	IF	CITATIONS
600	from MORB of the Southwest Indian Ridge. Geochemistry, Geophysics, Geosystems, 2005, 6, n/a-n/a.	2.5	112
601	Heterogeneity of a Plume Axis: Bulk-Rock Geochemical Evidence from Picrites and Basalts in the Emei Large Igneous Province, Southwest China. International Geology Review, 2006, 48, 1087-1112.	2.1	16
602	Tertiary-Quaternary subduction processes and related magmatism in the Alpine-Mediterranean region. Geological Society Memoir, 2006, 32, 167-190.	1.7	44
603	Trace element composition of mantle end-members: Implications for recycling of oceanic and upper and lower continental crust. Geochemistry, Geophysics, Geosystems, 2006, 7, n/a-n/a.	2.5	416
604	Dynamics of thermochemical plumes: 1. Plume formation and entrainment of a dense layer. Geochemistry, Geophysics, Geosystems, 2006, 7, n/a-n/a.	2.5	76
605	Origin of MORB enrichment and relative trace element compatibilities along the Mid-Atlantic Ridge between 10° and 24°N. Geochemistry, Geophysics, Geosystems, 2006, 7, n/a-n/a.	2.5	72
606	Chemical systematics and hydrous melting of the mantle in back-arc basins. Geophysical Monograph Series, 2006, , 87-146.	0.1	79
607	Geochemical component relationships in MORB from the Mid-Atlantic Ridge, 22–35°N. Earth and Planetary Science Letters, 2006, 241, 844-862.	4.4	65
608	Gravitational depletion of the early Earth's upper mantle and the viability of early plate tectonics. Earth and Planetary Science Letters, 2006, 243, 376-382.	4.4	92
609	Th/U and other geochemical evidence for the Réunion plume sampling a less differentiated mantle domain. Earth and Planetary Science Letters, 2006, 248, 379-393.	4.4	33
610	Geochemistry of basalt from the Ayu Trough, equatorial western Pacific. Earth and Planetary Science Letters, 2006, 248, 700-714.	4.4	12
611	Major, trace element and Nd–Sr–Pb–O–He–Ar isotope signatures of shield stage lavas from the central and western Canary Islands: Insights into mantle and crustal processes. Chemical Geology, 2006, 233, 75-112.	3.3	101
612	A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle. Geochimica Et Cosmochimica Acta, 2006, 70, 1188-1214.	3.9	670
613	Influence of a basal thermal anomaly on mantle convection. Physics of the Earth and Planetary Interiors, 2006, 157, 208-222.	1.9	3
614	Heterogeneity in the mantle—its creation, evolution and destruction. Tectonophysics, 2006, 416, 23-31.	2.2	19
615	Mixing times in the mantle of the early Earth derived from 2-D and 3-D numerical simulations of convection. Geophysical Research Letters, 2006, 33, .	4.0	50
616	Small-scale seismic heterogeneity and mantle structure. Astronomy and Geophysics, 2006, 47, 1.20-1.26.	0.2	3
617	Thallium isotopic evidence for ferromanganese sediments in the mantle source of Hawaiian basalts. Nature, 2006, 439, 314-317.	27.8	106

	CITATION	Report	
			2
#	Article	IF	CITATIONS
618	Effect of lateral viscosity variations in the core-mantle boundary region on predictions of the long-wavelength geoid. Studia Geophysica Et Geodaetica, 2006, 50, 217-232.	0.5	38
619	Signatures of rift environment in the production of garnet-amphibolites and eclogites from Tso-Morari region, Ladakh, India: A geochemical study. Gondwana Research, 2006, 9, 512-523.	6.0	20
620	Lithospheric contributions to high-MgO basanites from the Cumbre Vieja Volcano, La Palma, Canary Islands and evidence for temporal variation in plume influence. Journal of Volcanology and Geothermal Research, 2006, 149, 213-239.	2.1	29
621	Native gold and native copper grains enclosed by olivine phenocrysts in a picrite lava of the Emeishan large igneous province, SW China. American Mineralogist, 2006, 91, 1178-1183.	1.9	42
622	Combined Trace Element and Pb-Nd-Sr-O Isotope Evidence for Recycled Oceanic Crust (Upper and) Tj ETQqO	0 0 rgBT /Ove 2.8	erlock 10 Tf 50
623	Mineralogy of the Earth – Trace Elements and Hydrogen in the Earth's Transition Zone and Lower Mantle. , 2007, , 63-89.		1
624	The OIB paradox. , 2007, , 387-412.		55
625	Phantom plumes in Europe and the circum-Mediterranean region. , 2007, , 723-745.		22
626	Thermal Evolution of the Mantle. , 2007, , 197-216.		13
627	The "plate―model for the genesis of melting anomalies. , 2007, , 1-28.		59
628	The eclogite engine: Chemical geodynamics as a Galileo thermometer. , 2007, , 47-64.		25
629	Phase Relations and Melting of Anhydrous K-bearing Eclogite from 1200 to 1600ÂC and 3 to 5 GPa. Journal of Petrology, 2007, 49, 771-795.	2.8	159
630	Mantle Geochemical Geodynamics. , 2007, , 437-505.		10
691	Do We Really Need Mantle Components to Define Mantle Composition?. Journal of Petrology, 2007, 48,	9.0	55

632Review of the Lithium Isotope System as a Geochemical Tracer. International Geology Review, 2007, 49,
374-388.2.160633Water and Magma. Journal of Geography (Chigaku Zasshi), 2007, 116, 133-153.0.32

634 Study of the Mantle Mixing Driven by Plate Motions. Chinese Journal of Geophysics, 2007, 50, 1213-1222. 0.2 1

635Can large increases in viscosity and thermal conductivity preserve large-scale heterogeneity in the
mantle?. Physics of the Earth and Planetary Interiors, 2007, 161, 86-102.1.916

# 636	ARTICLE Hotspot Volcanoes and Large Igneous Provinces. , 2007, , 259-288.	IF	CITATIONS
637	Rhenium–osmium isotope and elemental behaviour during subduction of oceanic crust and the implications for mantle recycling. Earth and Planetary Science Letters, 2007, 253, 211-225.	4.4	66
638	Ancient recycled mantle lithosphere in the Hawaiian plume: Osmium–Hafnium isotopic evidence from peridotite mantle xenoliths. Earth and Planetary Science Letters, 2007, 257, 259-273.	4.4	137
639	Alteration of submarine basaltic glass from the Ontong Java Plateau: A STXM and TEM study. Earth and Planetary Science Letters, 2007, 260, 187-200.	4.4	97
640	Origin and temporal evolution of Koʻolau Volcano, Hawaiʻi: Inferences from isotope data on the Koʻolau Scientific Drilling Project (KSDP), the Honolulu Volcanics and ODP Site 843. Earth and Planetary Science Letters, 2007, 261, 65-83.	4.4	77
641	Modeling lead isotopic heterogeneity in mid-ocean ridge basalts. Earth and Planetary Science Letters, 2007, 262, 328-342.	4.4	35
642	Constraints on the origin of the 129Xe on Earth using the tellurium double beta decay. Earth and Planetary Science Letters, 2007, 264, 114-122.	4.4	3
643	TiO2 enrichment in ocean island basalts. Earth and Planetary Science Letters, 2007, 263, 388-403.	4.4	222
644	Thallium isotopes in Iceland and Azores lavas — Implications for the role of altered crust and mantle geochemistry. Earth and Planetary Science Letters, 2007, 264, 332-345.	4.4	58
645	Testing the plume theory. Chemical Geology, 2007, 241, 153-176.	3.3	263
646	Trace-element composition of Fe-rich residual liquids formed by fractional crystallization: Implications for the Hadean magma ocean. Geochimica Et Cosmochimica Acta, 2007, 71, 3601-3615.	3.9	17
648	Origin of Icelandic basalts: A review of their petrology and geochemistry. Journal of Geodynamics, 2007, 43, 87-100.	1.6	50
649	Orogenic, Ophiolitic, and Abyssal Peridotites. , 2007, , 1-73.		16
650	Hot Spots and Melting Anomalies. , 2007, , 371-435.		19
651	Stirring in three-dimensional mantle convection models and implications for geochemistry: Passive tracers. Geochemistry, Geophysics, Geosystems, 2007, 8, n/a-n/a.	2.5	19
652	Hafnium, neodymium, and strontium isotope and parent-daughter element systematics in basalts from the plume-ridge interaction system of the Salas y Gomez Seamount Chain and Easter Microplate. Geochemistry, Geophysics, Geosystems, 2007, 8, n/a-n/a.	2.5	26
653	Compressible thermochemical convection and application to lower mantle structures. Journal of Geophysical Research, 2007, 112, .	3.3	72
654	Superplumes, plates, and mantle magmatism in two-dimensional numerical models. Journal of Geophysical Research, 2007, 112, .	3.3	30

#	Article	IF	CITATIONS
655	Deep storage of oceanic crust in a vigorously convecting mantle. Journal of Geophysical Research, 2007, 112, .	3.3	77
656	Stirring in threeâ€dimensional mantle convection models and implications for geochemistry: 2. Heavy tracers. Geochemistry, Geophysics, Geosystems, 2007, 8, .	2.5	18
657	Geochemical processing in a threeâ€dimensional regional spherical shell model of mantle convection. Geochemistry, Geophysics, Geosystems, 2007, 8, .	2.5	15
658	Methods for thermochemical convection in Earth's mantle with forceâ€balanced plates. Geochemistry, Geophysics, Geosystems, 2007, 8, .	2.5	20
659	Sampling Mantle Heterogeneity through Oceanic Basalts: Isotopes and Trace Elements. , 2007, , 1-44.		106
660	Geochemistry of hydrothermally altered basaltic rocks from the Southwest Indian Ridge near the Rodriguez Triple Junction. Marine Geology, 2007, 239, 125-141.	2.1	46
661	Volatiles in basaltic magmas of ocean islands and their mantle sources: I. Melt compositions deduced from melt inclusions and glasses in the rocks. Geochemistry International, 2007, 45, 105-122.	0.7	13
662	Helium isotopic evidence for episodic mantle melting and crustal growth. Nature, 2007, 446, 900-903.	27.8	95
663	The return of subducted continental crust in Samoan lavas. Nature, 2007, 448, 684-687.	27.8	280
664	Boundary-layer model of mantle plumes with thermal and chemical diffusion and buoyancy. Geophysical Journal International, 2007, 104, 433-440.	2.4	10
665	Compositional diversity among primitive lavas of Mauritius, Indian Ocean: Implications for mantle sources. Journal of Volcanology and Geothermal Research, 2007, 164, 76-94.	2.1	19
666	Sr-Nd-Pb isotopes of the Early Paleozoic mafic-ultramafic dykes and basalts from South Qinling belt and their implications for mantle composition. Science in China Series D: Earth Sciences, 2007, 50, 1293-1301.	0.9	54
667	Geochemistry and spatial distribution of OIB and MORB in A'nyemaqen ophiolite zone: Evidence of Majixueshan ancient ridge-centered hotspot. Science in China Series D: Earth Sciences, 2007, 50, 197-208.	0.9	19
668	Genesis of the Madang Cenozoic sodic alkaline basalt in the eastern margin of the Tibetan Plateau and its continental dynamic implications. Science in China Series D: Earth Sciences, 2007, 50, 314-321.	0.9	2
669	Geochemistry of East African Rift basalts: An overview. Journal of African Earth Sciences, 2007, 48, 147-160.	2.0	139
670	Mantle convection: A review. Fluid Dynamics Research, 2008, 40, 379-398.	1.3	31
671	Composition of the Earth's interior: the importance of early events. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 4077-4103.	3.4	66
672	Geochemical evolution of intraplate magmatism in the Paleo-Asian Ocean from the Late Neoproterozoic to the Early Cambrian. Petrology, 2008, 16, 492-511.	0.9	30

#	Article	IF	CITATIONS
673	Role of recycled oceanic basalt and sediment in generating the Hf–Nd mantleÂarray. Nature Geoscience, 2008, 1, 64-67.	12.9	587
674	Meteoritic spur to life?. Nature Geoscience, 2008, 1, 18-19.	12.9	4
675	The ups and downs of sediments. Nature Geoscience, 2008, 1, 17-18.	12.9	9
676	The origin of cratonic diamonds — Constraints from mineral inclusions. Ore Geology Reviews, 2008, 34, 5-32.	2.7	448
677	Outokumpu revisited: New mineral deposit model for the mantle peridotite-associated Cu–Co–Zn–Ni–Ag–Au sulphide deposits. Ore Geology Reviews, 2008, 33, 559-617.	2.7	82
678	Assimilation of lower to middle crust by high alumina basalt magma as an explanation for the origin of medium-K volcanic rocks in southern Kyushu, Japan. Lithos, 2008, 105, 51-62.	1.4	8
679	Jurassic dikes of Vestfjella, western Dronning Maud Land, Antarctica: Geochemical tracing of ferropicrite sources. Lithos, 2008, 105, 347-364.	1.4	45
680	Origin of sapphirine-bearing garnet-orthopyroxene granulites: possible hydrothermally altered ocean floor. Polar Science, 2008, 2, 87-107.	1.2	8
681	Globally elevated titanium, tantalum, and niobium (TITAN) in ocean island basalts with high ³ He/ ⁴ He. Geochemistry, Geophysics, Geosystems, 2008, 9, .	2.5	73
682	Strontium isotope constraints on fluid flow in the sheeted dike complex of fast spreading crust: Pervasive fluid flow at Pito Deep. Geochemistry, Geophysics, Geosystems, 2008, 9, .	2.5	32
683	Rethinking geochemical feature of the Afar and Kenya mantle plumes and geodynamic implications. Journal of Geophysical Research, 2008, 113, .	3.3	28
684	Suya Taco and Sol de Mayo mafic complexes from eastern Sierras Pampeanas, Argentina: Evidence for the emplacement of primitive OIB-like magmas into deep crustal levels at a late stage of the Pampean orogeny. Journal of South American Earth Sciences, 2008, 26, 172-187.	1.4	21
685	Controls on entrainment of a dense chemical layer by thermal plumes. Physics of the Earth and Planetary Interiors, 2008, 166, 175-187.	1.9	5
686	Ce anomalies in Gough Island lavas — Trace element characteristics of a recycled sediment component. Earth and Planetary Science Letters, 2008, 265, 475-486.	4.4	84
687	Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth and Planetary Science Letters, 2008, 270, 41-53.	4.4	412
688	A model for rutile saturation in silicate melts with applications to eclogite partial melting in subduction zones and mantle plumes. Earth and Planetary Science Letters, 2008, 272, 720-729.	4.4	68
689	One hundred million years of mantle geochemical history suggest the retiring of mantle plumes is premature. Earth and Planetary Science Letters, 2008, 275, 285-295.	4.4	55
690	A multiple-system study of the geochemical evolution of the mantle with force-balanced plates and thermochemical effects. Earth and Planetary Science Letters, 2008, 276, 1-13.	4.4	97

#	Article	IF	CITATIONS
691	Episodic layering of the early mantle by the †basalt barrier' mechanism. Earth and Planetary Science Letters, 2008, 275, 382-392.	4.4	80
692	Re–Os isotopic compositions of picrites from the Emeishan flood basalt province, China. Earth and Planetary Science Letters, 2008, 276, 30-39.	4.4	94
693	Compositions of HIMU, EM1, and EM2 from global trends between radiogenic isotopes and major elements in ocean island basalts. Earth and Planetary Science Letters, 2008, 276, 175-186.	4.4	256
694	Constancy of Nb/U in the mantle revisited. Geochimica Et Cosmochimica Acta, 2008, 72, 3542-3549.	3.9	90
695	A review of the isotopic and trace element evidence for mantle and crustal processes in the Hadean and Archean: Implications for the onset of plate tectonic subduction. , 2008, , 1-29.		64
696	Origin of Pyroxenite-Peridotite Veined Mantle by Refertilization Reactions: Evidence from the Ronda Peridotite (Southern Spain). Journal of Petrology, 2008, 49, 999-1025.	2.8	180
697	A Quantitative Link Between Recycling and Osmium Isotopes. Science, 2008, 321, 536-536.	12.6	57
698	Geochemistry of Sainte-Marguerite volcanic rocks: implications for the evolution of Silurian–Devonian volcanism in the Gaspé Peninsula. Canadian Journal of Earth Sciences, 2008, 45, 15-29.	1.3	4
699	Suprasubduction-zone ophiolites: Is there really an ophiolite conundrum?. , 2008, , 191-222.		80
700	The Origin of Alkaline Lavas. Science, 2008, 320, 883-884.	12.6	71
700 701	The Origin of Alkaline Lavas. Science, 2008, 320, 883-884. On the degassing state and the chemical structure of the Earth's interior inferred from noble gas isotopes-Past and recent views. Geochemical Journal, 2008, 42, 3-20.	12.6 1.0	71 4
	On the degassing state and the chemical structure of the Earth's interior inferred from noble gas		
701	On the degassing state and the chemical structure of the Earth's interior inferred from noble gas isotopes-Past and recent views. Geochemical Journal, 2008, 42, 3-20. Elemental Mobilizations during Hydrothermal Alteration of Oceanic Lithosphere. Journal of	1.0	4
701 702	On the degassing state and the chemical structure of the Earth's interior inferred from noble gas isotopes-Past and recent views. Geochemical Journal, 2008, 42, 3-20. Elemental Mobilizations during Hydrothermal Alteration of Oceanic Lithosphere. Journal of Geography (Chigaku Zasshi), 2008, 117, 220-252. Geochemistry and petrogenesis of post-collisional ultrapotassic syenites and granites from southernmost Brazil: the Piquiri Syenite Massif. Anais Da Academia Brasileira De Ciencias, 2008, 80,	1.0 0.3	4
701 702 704	On the degassing state and the chemical structure of the Earth's interior inferred from noble gas isotopes-Past and recent views. Geochemical Journal, 2008, 42, 3-20. Elemental Mobilizations during Hydrothermal Alteration of Oceanic Lithosphere. Journal of Geography (Chigaku Zasshi), 2008, 117, 220-252. Geochemistry and petrogenesis of post-collisional ultrapotassic syenites and granites from southernmost Brazil: the Piquiri Syenite Massif. Anais Da Academia Brasileira De Ciencias, 2008, 80, 353-371. Geochemical Evolution of Intraplate Volcanism at Banks Peninsula, New Zealand: Interaction Between	1.0 0.3 0.8	4 3 35
701 702 704 705	On the degassing state and the chemical structure of the Earth's interior inferred from noble gas isotopes-Past and recent views. Geochemical Journal, 2008, 42, 3-20. Elemental Mobilizations during Hydrothermal Alteration of Oceanic Lithosphere. Journal of Geography (Chigaku Zasshi), 2008, 117, 220-252. Geochemistry and petrogenesis of post-collisional ultrapotassic syenites and granites from southernmost Brazil: the Piquiri Syenite Massif. Anais Da Academia Brasileira De Ciencias, 2008, 80, 353-371. Geochemical Evolution of Intraplate Volcanism at Banks Peninsula, New Zealand: Interaction Between Asthenospheric and Lithospheric Melts. Journal of Petrology, 2009, 50, 989-1023. MORB mantle hosts the missing Eu (Sr, Nb, Ta and Ti) in the continental crust: New perspectives on crustal growth, crust–mantle differentiation and chemical structure of oceanic upper mantle.	1.0 0.3 0.8 2.8	4 3 35 74
701 702 704 705 706	On the degassing state and the chemical structure of the Earth's interior inferred from noble gas isotopes-Past and recent views. Geochemical Journal, 2008, 42, 3-20. Elemental Mobilizations during Hydrothermal Alteration of Oceanic Lithosphere. Journal of Geography (Chigaku Zasshi), 2008, 117, 220-252. Geochemistry and petrogenesis of post-collisional ultrapotassic syenites and granites from southernmost Brazil: the Piquiri Syenite Massif. Anais Da Academia Brasileira De Ciencias, 2008, 80, 353-371. Geochemical Evolution of Intraplate Volcanism at Banks Peninsula, New Zealand: Interaction Between Asthenospheric and Lithospheric Melts. Journal of Petrology, 2009, 50, 989-1023. MORB mantle hosts the missing Eu (Sr, Nb, Ta and Ti) in the continental crust: New perspectives on crustal growth, crust&f"mantle differentiation and chemical structure of oceanic upper mantle. Lithos, 2009, 112, 1-17.	1.0 0.3 0.8 2.8 1.4	4 3 35 74 167

#	Article	IF	CITATIONS
710	Pyroxenite-rich mantle formed by recycled oceanic lithosphere: Oxygen-osmium isotope evidence from Canary Island lavas. Geology, 2009, 37, 555-558.	4.4	116
711	Petrology of the parental melts and mantle sources of Siberian trap magmatism. Petrology, 2009, 17, 253-286.	0.9	112
712	Deccan plume, lithosphere rifting, and volcanism in Kutch, India. Earth and Planetary Science Letters, 2009, 277, 101-111.	4.4	93
713	New constraints on the HIMU mantle from neon and helium isotopic compositions of basalts from the Cook–Austral Islands. Earth and Planetary Science Letters, 2009, 277, 253-261.	4.4	68
714	Estimates of the transition zone temperature in a mechanically mixed upper mantle. Earth and Planetary Science Letters, 2009, 277, 244-252.	4.4	43
715	Lithium isotope systematics of lavas from the Cook–Austral Islands: Constraints on the origin of HIMU mantle. Earth and Planetary Science Letters, 2009, 277, 433-442.	4.4	67
716	Enriched, HIMU-type peridotite and depleted recycled pyroxenite in the Canary plume: A mixed-up mantle. Earth and Planetary Science Letters, 2009, 277, 514-524.	4.4	104
717	The K/U ratio of the silicate Earth: Insights into mantle composition, structure and thermal evolution. Earth and Planetary Science Letters, 2009, 278, 361-369.	4.4	202
718	Dynamics and internal structure of a lower mantle plume conduit. Earth and Planetary Science Letters, 2009, 282, 314-322.	4.4	76
719	Osmium isotopes in Grande Comore lavas: A new extreme among a spectrum of EM-type mantle endmembers. Earth and Planetary Science Letters, 2009, 284, 219-227.	4.4	50
720	Re–Os isotope systematics and HSE abundances of the 3.5ÂGa Schapenburg komatiites, South Africa: Hydrous melting or prolonged survival of primordial heterogeneities in the mantle?. Chemical Geology, 2009, 262, 355-369.	3.3	55
721	A low Î7Li lower crustal component: Evidence from an alkalic intraplate volcanic series (Chaîne des) Tj ETQq1 1	0,784314 3.3	l rgBT /Overl
722	Determining melt productivity of mantle sources from 238U–230Th and 235U–231Pa disequilibria; an example from Pico Island, Azores. Geochimica Et Cosmochimica Acta, 2009, 73, 2103-2122.	3.9	49
723	Tungsten in Hawaiian picrites: A compositional model for the sources of Hawaiian lavas. Geochimica Et Cosmochimica Acta, 2009, 73, 4517-4530.	3.9	15
724	Thallium isotopes as a potential tracer for the origin of cratonic eclogites. Geochimica Et Cosmochimica Acta, 2009, 73, 7387-7398.	3.9	19
725	Siberian meimechites: origin and relation to flood basalts and kimberlites. Russian Geology and Geophysics, 2009, 50, 999-1033.	0.7	121
726	Density profiles of oceanic slabs and surrounding mantle: Integrated thermodynamic and thermal modeling, and implications for the fate of slabs at the 660km discontinuity. Physics of the Earth and Planetary Interiors, 2009, 172, 257-267.	1.9	84
727	Subduction fluxes through geologic time. Applied Geochemistry, 2009, 24, 1052-1057.	3.0	4

#	Article	IF	CITATIONS
728	Hfâ€Nd input flux in the Izuâ€Mariana subduction zone and recycling of subducted material in the mantle. Geochemistry, Geophysics, Geosystems, 2009, 10, .	2.5	150
729	Mantle source variations beneath the Eastern Lau Spreading Center and the nature of subduction components in the Lau basin–Tonga arc system. Geochemistry, Geophysics, Geosystems, 2009, 10, .	2.5	88
730	Ancient carbonate sedimentary signature in the Hawaiian plume: Evidence from Mahukona volcano, Hawaii. Geochemistry, Geophysics, Geosystems, 2009, 10, .	2.5	29
731	Reconciling the geophysical and geochemical mantles: Plume flows, heterogeneities, and disequilibrium. Geochemistry, Geophysics, Geosystems, 2009, 10, .	2.5	27
732	Deep mantle subduction flux. Geochemistry, Geophysics, Geosystems, 2009, 10, .	2.5	57
733	W isotope compositions of oceanic islands basalts from French Polynesia and their meaning for core–mantle interaction. Chemical Geology, 2009, 260, 37-46.	3.3	23
734	Basaltic accumulation instability and chaotic plate motion in the earliest mantle inferred from numerical experiments. Journal of Geophysical Research, 2009, 114, .	3.3	12
735	The solid Earth. , 0, , 218-247.		0
736	Oceanic Island Basalts and Mantle Plumes: The Geochemical Perspective. Annual Review of Earth and Planetary Sciences, 2010, 38, 133-160.	11.0	206
737	BjĶrnnutane and Sembberget basalt lavas and the geochemical provinciality of Karoo magmatism in western Dronning Maud Land, Antarctica. Journal of Volcanology and Geothermal Research, 2010, 198, 1-18.	2.1	27
738	Os, Nd and Sr isotope and trace element geochemistry of the Muli picrites: Insights into the mantle source of the Emeishan Large Igneous Province. Lithos, 2010, 119, 108-122.	1.4	75
739	Small-scale mantle heterogeneity on the source of the Gran Canaria (Canary Islands) Pliocene–Quaternary magmas. Lithos, 2010, 119, 377-392.	1.4	19
741	Intraplate Seamounts as a Window into Deep Earth Processes. Oceanography, 2010, 23, 42-57.	1.0	53
742	Carbonate-fluxed Melting of MORB-like Pyroxenite at 2{middle dot}9 GPa and Genesis of HIMU Ocean Island Basalts. Journal of Petrology, 2010, 51, 2067-2088.	2.8	114
743	Orogens in the evolving Earth: from surface continents to â€~lost continents' at the core–mantle boundary. Geological Society Special Publication, 2010, 338, 77-116.	1.3	44
744	Noble gases in the dynamic mantle. Geochemistry, Geophysics, Geosystems, 2010, 11, .	2.5	16
745	Petrogenesis of Plio-Quaternary post-collisional ultrapotassic volcanism in NW of Marand, NW Iran. Journal of Asian Earth Sciences, 2010, 39, 37-50.	2.3	51
746	Nitrogen recycling in subducted oceanic lithosphere: The record in high- and ultrahigh-pressure metabasaltic rocks. Geochimica Et Cosmochimica Acta, 2010, 74, 1636-1652.	3.9	76

#	ARTICLE	IF	CITATIONS
747	Zn/Fe systematics in mafic and ultramafic systems: Implications for detecting major element heterogeneities in the Earth's mantle. Geochimica Et Cosmochimica Acta, 2010, 74, 2779-2796.	3.9	249
748	Evidence for distinct proportions of subducted oceanic crust and lithosphere in HIMU-type mantle beneath El Hierro and La Palma, Canary Islands. Geochimica Et Cosmochimica Acta, 2010, 74, 6565-6589.	3.9	146
749	Major element chemistry of ocean island basalts — Conditions of mantle melting and heterogeneity of mantle source. Earth and Planetary Science Letters, 2010, 289, 377-392.	4.4	166
750	Chlorine isotope evidence for crustal recycling into the Earth's mantle. Earth and Planetary Science Letters, 2010, 298, 175-182.	4.4	90
751	Tracking deep mantle reservoirs with ultra-low velocity zones. Earth and Planetary Science Letters, 2010, 299, 1-9.	4.4	187
752	Noble gases in anhydrous mantle xenoliths from Tasmania in comparison with other localities from eastern Australia: Implications for the tectonic evolution. Earth and Planetary Science Letters, 2010, 299, 317-327.	4.4	12
753	Global structure of mantle isotopic heterogeneity and its implications for mantle differentiation and convection. Earth and Planetary Science Letters, 2010, 299, 339-351.	4.4	299
754	Chemical variations and regional diversity observed in MORB. Chemical Geology, 2010, 271, 70-85.	3.3	313
755	Mechanism and timing of Pb transport from subducted oceanic crust and sediment to the mantle source of arc lavas. Chemical Geology, 2010, 273, 46-54.	3.3	36
756	Formation of enriched mantle components by recycling of upper and lower continental crust. Chemical Geology, 2010, 276, 188-197.	3.3	239
757	Influence of gradational compositional layering on plume entrainment and its implication for geochemistry. Physics of the Earth and Planetary Interiors, 2010, 178, 68-79.	1.9	3
758	Low-viscosity mantle blobs are sampled preferentially at regions of surface divergence and stirred rapidly into the mantle. Physics of the Earth and Planetary Interiors, 2010, 180, 104-107.	1.9	8
759	Origin of HIMU and EM-1 domains sampled by ocean island basalts, kimberlites and carbonatites: The role of CO2-fluxed lower mantle melting in thermochemical upwellings. Physics of the Earth and Planetary Interiors, 2010, 181, 112-131.	1.9	79
761	Subsurface structure of a submarine hydrothermal system in ocean crust formed at the East Pacific Rise, ODP/IODP Site 1256. Geochemistry, Geophysics, Geosystems, 2010, 11, .	2.5	150
762	A Study of Sr, Nd and O Isotopes of the Kâ€rich Melanocratic Dykes in the Late Mesozoic Gold Field in the Jiaodong Peninsula. Acta Geologica Sinica, 2001, 75, 432-444.	1.4	5
763	Mineralogy and Composition of the Oceanic Mantle. Journal of Petrology, 2011, 52, 279-313.	2.8	120
764	Geochemical characteristics and origin of the HIMU reservoir: A possible mantle plume source in the lower mantle. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	2.5	105
765	Compositional trends of Icelandic basalts: Implications for short-length scale lithological heterogeneity in mantle plumes. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	2.5	117

#	ARTICLE	IF	CITATIONS
766	The energetics of melting fertile heterogeneities within the depleted mantle. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	2.5	26
768	An ancient recipe for flood-basalt genesis. Nature, 2011, 476, 316-319.	27.8	88
770	Identification of Source Lithology in the Hawaiian and Canary Islands: Implications for Origins. Journal of Petrology, 2011, 52, 113-146.	2.8	422
771	A young source for the Hawaiian plume. Nature, 2011, 476, 434-437.	27.8	82
772	Magmatic evolution of a dying spreading axis: Evidence for the interaction of tectonics and mantle heterogeneity from the fossil Phoenix Ridge, Drake Passage. Chemical Geology, 2011, 280, 115-125.	3.3	31
773	Combined Li–He isotopes in Iceland and Jan Mayen basalts and constraints on the nature of the North Atlantic mantle. Geochimica Et Cosmochimica Acta, 2011, 75, 922-936.	3.9	19
774	The Earth's tungsten budget during mantle melting and crust formation. Geochimica Et Cosmochimica Acta, 2011, 75, 2119-2136.	3.9	112
775	Origin of 3He/4He ratios in HIMU-type basalts constrained from Canary Island lavas. Earth and Planetary Science Letters, 2011, 305, 226-234.	4.4	68
776	Constraints on the origin of the HIMU reservoir from He–Ne–Ar isotope systematics. Earth and Planetary Science Letters, 2011, 307, 377-386.	4.4	36
777	Mineralogical heterogeneities in the Earth's mantle: Constraints from Mn, Co, Ni and Zn partitioning during partial melting. Earth and Planetary Science Letters, 2011, 307, 395-408.	4.4	194
778	Re–Os isotope systematics in Samoan shield lavas and the use of Os-isotopes in olivine phenocrysts to determine primary magmatic compositions. Earth and Planetary Science Letters, 2011, 312, 91-101.	4.4	38
779	Geochemical diversity in oceanic basalts hosted by the Zasur'ya accretionary complex, NW Russian Altai, Central Asia: Implications from trace elements and Nd isotopes. Journal of Asian Earth Sciences, 2011, 42, 191-207.	2.3	50
780	Physicochemical conditions for melting in the Earth's mantle containing a C–O–H fluid (from) Tj ETQq0	0 0 rgBT /0	Dverlock 10 T
782	Lithium abundance and isotope composition of Logudoro basalts, Sardinia: Origin of light Li signature. Geochemical Journal, 2011, 45, 323-340.	1.0	5
783	Origin of Late Permian Emeishan basaltic rocks from the Panxi region (SW China): Implications for the Ti-classification and spatial–compositional distribution of the Emeishan flood basalts. Journal of Volcanology and Geothermal Research, 2011, 199, 85-95.	2.1	91
784	Geochemical constraints on the nature of mantle source for Cenozoic continental basalts in east-central China. Lithos, 2011, 125, 940-955.	1.4	106
785	Mantle source heterogeneity, magma generation and magmatic evolution at Terceira Island (Azores) Tj ETQq0 0 402-418.	0 rgBT /Ov 1.4	verlock 10 Tf 55
786	Early Cretaceous volcanism of the Coastal Ranges, NW Syria: Magma genesis and regional dynamics. Lithos, 2011, 126, 290-306.	1.4	14

#	Article	IF	CITATIONS
787	Trace element partitioning between mica- and amphibole-bearing garnet lherzolite and hydrous basanitic melt: 2. Tasmanian Cainozoic basalts and the origins of intraplate basaltic magmas. Contributions To Mineralogy and Petrology, 2011, 161, 883-899.	3.1	32
788	Formation of cratonic subcontinental lithospheric mantle and complementary komatiite from hybrid plume sources. Contributions To Mineralogy and Petrology, 2011, 161, 947-960.	3.1	27
789	Hafnium isotopic variations in East Atlantic intraplate volcanism. Contributions To Mineralogy and Petrology, 2011, 162, 21-36.	3.1	28
790	Oxygen isotope heterogeneity of the mantle beneath the Canary Islands: insights from olivine phenocrysts. Contributions To Mineralogy and Petrology, 2011, 162, 349-363.	3.1	47
791	Constraints from eclogite and MARID xenoliths on origins of mantle Zr/Hf–Nb/Ta variability. Contributions To Mineralogy and Petrology, 2011, 162, 1047-1062.	3.1	30
792	Multistage Evolution of Dolerites in the Karoo Large Igneous Province, Central South Africa. Journal of Petrology, 2011, 52, 959-984.	2.8	118
793	The Petrology and Geochemistry of St. Helena Alkali Basalts: Evaluation of the Oceanic Crust-recycling Model for HIMU OIB. Journal of Petrology, 2011, 52, 791-838.	2.8	125
794	The fate of subducted oceanic crust: a mineral segregation model. International Geology Review, 2011, 53, 879-893.	2.1	18
796	Monte Carlo Simulations of Metasomatic Enrichment in the Lithosphere and Implications for the Source of Alkaline Basalts. Journal of Petrology, 2011, 52, 1415-1442.	2.8	199
797	What â€~anorogenic' igneous rocks can tell us about the chemical composition of the upper mantle: case studies from the circum-Mediterranean area. Geological Magazine, 2011, 148, 304-316.	1.5	21
798	Dynamical geochemistry of the mantle. Solid Earth, 2011, 2, 159-189.	2.8	8
799	Late stage rifting of the Laurentian continent: evidence from the geochemistry of greenstone and amphibolite in the central Vermont Appalachians1This article is one of a series of papers published in CJES Special Issue: In honour of Ward Neale on the theme of Appalachian and Grenvillian geology Canadian lournal of Earth Sciences, 2012, 49, 43-58.	1.3	7
800	Carbonatites and associated nephelinites from São Vicente, Cape Verde Islands. Mineralogical Magazine, 2012, 76, 311-355.	1.4	21
801	Osmium isotope systematics of historical lavas from Piton de la Fournaise (Réunion Island, Indian) Tj ETQq1 1 ().784314 3.1	rgBT /Overlo
802	Oceanic crust components in continental basalts from Shuangliao, Northeast China: Derived from the mantle transition zone?. Chemical Geology, 2012, 328, 168-184.	3.3	174
803	A comparative analysis of potential biosignatures in basalt glass by FIB-TEM. Chemical Geology, 2012, 330-331, 165-175.	3.3	22
804	Geochemical constraints on a mixed pyroxenite–peridotite source for East Pacific Rise basalts. Chemical Geology, 2012, 330-331, 176-187.	3.3	29
805	Are â€ ⁻ hot spots' hot spots?. Journal of Geodynamics, 2012, 58, 1-28.	1.6	42

	CITATION	KEPORT	
#	ARTICLE Permian high Ti/Y basalts from the eastern part of the Emeishan Large Igneous Province, southwestern	IF	CITATIONS
806	China: Petrogenesis and tectonic implications. Journal of Asian Earth Sciences, 2012, 47, 216-230.	2.3	84
807	Element partitioning during carbonated pelite melting at 8, 13 and 22GPa and the sediment signature in the EM mantle components. Earth and Planetary Science Letters, 2012, 327-328, 84-96.	4.4	51
808	Reaction between MORB-eclogite derived melts and fertile peridotite and generation of ocean island basalts. Earth and Planetary Science Letters, 2012, 329-330, 97-108.	4.4	194
809	Consequences of mantle heterogeneity for melt extraction at mid-ocean ridges. Earth and Planetary Science Letters, 2012, 335-336, 226-237.	4.4	89
810	OsHf isotopic insight into mantle plume dynamics beneath the East African Rift System. Chemical Geology, 2012, 320-321, 66-79.	3.3	32
811	Geophysics of Chemical Heterogeneity in the Mantle. Annual Review of Earth and Planetary Sciences, 2012, 40, 569-595.	11.0	129
812	Large volumes of rejuvenated volcanism in Samoa: Evidence supporting a tectonic influence on lateâ€stage volcanism. Geochemistry, Geophysics, Geosystems, 2012, 13, .	2.5	52
813	Lithosphere versus asthenosphere mantle sources at the Big Pine Volcanic Field, California. Geochemistry, Geophysics, Geosystems, 2012, 13, .	2.5	52
814	Homogeneous superchondritic ¹⁴² Nd/ ¹⁴⁴ Nd in the midâ€ocean ridge basalt and ocean island basalt mantle. Geochemistry, Geophysics, Geosystems, 2012, 13, .	2.5	46
815	Major element variations in Hawaiian shield lavas: Source features and perspectives from global ocean island basalt (OIB) systematics. Geochemistry, Geophysics, Geosystems, 2012, 13, .	2.5	59
816	Lead and osmium isotopic constraints on the oceanic mantle from single abyssal peridotite sulfides. Earth and Planetary Science Letters, 2012, 359-360, 279-293.	4.4	58
817	Amphibolites from the Szklarska Poręba hornfels belt, West Sudetes, SW Poland: magma genesis and implications for the break-up of Gondwana. International Journal of Earth Sciences, 2012, 101, 1253-1272.	1.8	6
818	Possible layering of mantle convection at the top of the Iceland Hotspot: a crosscheck between 3-D numerical models and gravimetric, seismic and petrological data. Geophysical Journal International, 2012, 188, 35-60.	2.4	3
819	The effects of polybaric partial melting on density and seismic velocities of mantle restites. Lithos, 2012, 134-135, 289-303.	1.4	42
820	Origin of submarine volcanism at the eastern margin of the central atlantic: Investigation of the alkaline volcanic rocks of the carter seamount (Grimaldi Seamounts). Petrology, 2012, 20, 59-85.	0.9	6
821	The geochemical composition of the terrestrial surface (without soils) and comparison with the upper continental crust. International Journal of Earth Sciences, 2012, 101, 365-376.	1.8	44
822	A composite, isotopically-depleted peridotite and enriched pyroxenite source for Madeira magmas: Insights from olivine. Lithos, 2013, 170-171, 224-238.	1.4	19

823	Geochronology and geochemistry of Cenozoic basalts from eastern Guangdong, SE China: constraints on the lithosphere evolution beneath the northern margin of the South China Sea. Contributions To Mineralogy and Petrology, 2013, 165, 437-455.	3.1	77
-----	--	-----	----

ARTICLE IF CITATIONS Implications of Subduction Rehydration for Earth's Deep Water Cycle. Geophysical Monograph Series, 824 0.1 15 2013, , 263-276. Mantle refertilization by melts of crustal-derived garnet pyroxenite: Evidence from the Ronda 4.4 44 peridotite massif, southern Spain. Earth and Planetary Science Letters, 2013, 362, 66-75. Reactive Infiltration of MORB-Eclogite-Derived Carbonated Silicate Melt into Fertile Peridotite at 3 826 2.8 113 GPa and Genesis of Alkalic Magmas. Journal of Petrology, 2013, 54, 2267-2300. Hotspot volcanism and highly siderophile elements. Chemical Geology, 2013, 341, 50-74. 109 The Lithospheric Mantle Plays No Active Role in the Formation of Orthomagmatic Ore Deposits. 828 3.8 40 Economic Geology, 2013, 108, 1953-1970. Geochemistry and petrogenesis of Late Ladinian OIB-like basalts from Tabai, Yunnan Province, China. Diqiu Huaxue, 2013, 32, 337-346. Petrogenesis of mafic alkaline dikes from the ~2.18Ga Mahbubnagar Large Igneous Province, Eastern 830 Dharwar Craton, India: Geochemical evidence for uncontaminated intracontinental mantle derived 1.4 13 magmatism. Lithos, 2013, 179, 84-98. Simplified mantle architecture and distribution of radiogenic power. Geochemistry, Geophysics, 2.5 26 Geosystems, 2013, 14, 2265-2285. Constraints from melt inclusions and their host olivines on the petrogenesis of Oligocene-Early 832 Miocene Xindian basalts, Chifeng area, North China Craton. Contributions To Mineralogy and 3.1 35 Petrology, 2013, 165, 305-326. Experimentally determined mineral/melt partitioning of first-row transition elements (FRTE) during 145 partial melting of peridotite at 3GPa. Geochimica Et Cosmochimica Acta, 2013, 104, 232-260. Temporal source evolution and crustal contamination at Lopevi Volcano, Vanuatu Island Arc. Journal 834 2.1 11 of Volcanology and Geothermal Research, 2013, 264, 72-84. Markers of the pyroxenite contribution in the major-element compositions of oceanic basalts: Review 1.4 168 of the experimental constraints. Lithos, 2013, 160-161, 14-36. Identification of an ancient mantle reservoir and young recycled materials in the source region of a young mantle plume: Implications for potential linkages between plume and plate tectonics. Earth and 836 4.4 134 Planetary Science Letters, 2013, 377-378, 248-259. Anomalous sulphur isotopes in plume lavas reveal deep mantle storage of Archaean crust. Nature, 840 27.8 2013, 496, 490-493. Directions of seismic anisotropy in laboratory models of mantle plumes. Geophysical Research 841 4.0 20 Letters, 2013, 40, 3544-3549. Geochemistry and Geochronology of the Society Islands: New Evidence for Deep Mantle Recycling. Geophysical Monograph Series, 0, , 183-206. 842 79 Origin of early Triassic rift-related alkaline basalts from Southwest China: age, isotope, and 843 2.15 trace-element constraints. International Geology Review, 2013, 55, 1162-1178. Chemical heterogeneity in the Hawaiian mantle plume from the alteration and dehydration of recycled 844 4.4 oceanic crust. Earth and Planetary Science Letters, 2013, 361, 298-309.

#	Article	IF	CITATIONS
845	Melt inclusions in olivine and plagioclase phenocrysts from Antarctic–Phoenix Ridge basalts: Implications for origins of N- and E-type MORB parent magmas. Journal of Volcanology and Geothermal Research, 2013, 253, 75-86.	2.1	7
846	Petrology and geochemistry of the Tertiary Suez rift volcanism, Sinai, Egypt. Journal of Volcanology and Geothermal Research, 2013, 267, 119-137.	2.1	22
847	Buoyancy and localizing properties of continental mantle lithosphere: Insights from thermomechanical models of the eastern Gulf of Aden. Geochemistry, Geophysics, Geosystems, 2013, 14, 2800-2817.	2.5	30
848	Can we identify source lithology of basalt?. Scientific Reports, 2013, 3, 1856.	3.3	89
849	Plates, planets, and phase changes: 50 years of petrology. , 2013, , .		1
850	The links between large igneous provinces, continental break-up and environmental change: evidence reviewed from Antarctica. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2013, 104, 17-30.	0.3	44
851	Recycling of oceanic crust and the origin of intraplate volcanism. Australian Journal of Earth Sciences, 2013, 60, 675-680.	1.0	5
852	Origin of hotspots in the South Pacific: Recent advances in seismological and geochemical models. Geochemical Journal, 2013, 47, 259-284.	1.0	12
853	Lithological structure of the Galápagos Plume. Geochemistry, Geophysics, Geosystems, 2013, 14, 4214-4240.	2.5	33
854	lsotopic systematics of the early Mauna Kea shield phase and insight into the deep mantle beneath the Pacific Ocean. Geochemistry, Geophysics, Geosystems, 2013, 14, 659-676.	2.5	29
855	The Influence of Mantle Plumes in Generation of Indian Oceanic Crust. Geophysical Monograph Series, 2013, , 57-89.	0.1	17
856	Ocean Island Basalts in Polynesia, South Pacific. Journal of Geography (Chigaku Zasshi), 2013, 122, 539-545.	0.3	1
857	Three Time-Scales for the Mantle. Geophysical Monograph Series, 0, , 99-108.	0.1	5
858	lsotopic Evidence for a Hotspot Origin of the Louisville Seamount Chain. Geophysical Monograph Series, 0, , 283-296.	0.1	38
859	Ancient crust rises from the deep. Nature, 2013, 496, 410-410.	27.8	0
860	Constraints on the Temperature and Composition of the Base of the Mantle. Geophysical Monograph Series, 0, , 181-189.	0.1	13
861	The Subduction-Zone Filter and the Impact of Recycled Materials on the Evolution of the Mantle. , 2014, , 479-508.		53
862	Orogenic, Ophiolitic, and Abyssal Peridotites. , 2014, , 103-167.		119

#	Article	IF	CITATIONS
863	Iron isotope tracing of mantle heterogeneity within the source regions of oceanic basalts. Earth and Planetary Science Letters, 2014, 404, 396-407.	4.4	134
864	From the lavas to the gabbros: 1.25km of geochemical characterization of upper oceanic crust at ODP/IODP Site 1256, eastern equatorial Pacific. Lithos, 2014, 210-211, 289-312.	1.4	15
865	Short Length Scale Oxygen Isotope Heterogeneity in the Icelandic Mantle: Evidence from Plagioclase Compositional Zones. Journal of Petrology, 2014, 55, 2537-2566.	2.8	23
866	Assessment of relative <scp>T</scp> i, <scp>T</scp> a, and <scp>N</scp> b (<scp>TITAN</scp>) enrichments in ocean island basalts. Geochemistry, Geophysics, Geosystems, 2014, 15, 4424-4444.	2.5	15
867	Volatile cycling of <scp>H₂O</scp> , <scp>CO</scp> ₂ , <scp>F</scp> , and <scp>C</scp> l in the <scp>HIMU</scp> mantle: A new window provided by melt inclusions from oceanic hot spot lavas at <scp>M</scp> angaia, <scp>C</scp> ook <scp>I</scp> slands. Geochemistry, Geophysics, Geosystems, 2014, 15, 4445-4467.	2.5	67
868	Composition of the Oceanic Crust. , 2014, , 457-496.		141
869	Gem Deposits. , 2014, , 595-622.		6
870	Large-Scale and Long-Term Volcanism on Oceanic Lithosphere. Developments in Marine Geology, 2014, , 553-597.	0.4	1
871	Isotope evolution in the HIMU reservoir beneath St. Helena: Implications for the mantle recycling of U and Th. Geochimica Et Cosmochimica Acta, 2014, 143, 232-252.	3.9	54
872	Phenocryst He–Ar isotopic and whole-rock geochemical constraints on the origin of crustal components in the mantle source of Cenozoic continental basalt in eastern China. Journal of Volcanology and Geothermal Research, 2014, 272, 99-110.	2.1	16
873	Mid-Cretaceous lamproite from the Kutch region, Gujarat, India: Genesis and tectonic implications. Gondwana Research, 2014, 26, 942-956.	6.0	19
874	Traces of ancient mafic layers in the Tethys oceanic mantle. Earth and Planetary Science Letters, 2014, 389, 155-166.	4.4	19
875	Seamounts off the West Antarctic margin: A case for non-hotspot driven intraplate volcanism. Gondwana Research, 2014, 25, 1660-1679.	6.0	38
876	Geochemistry and paleotectonic setting of Ediacaran metabasites from the Ossa-Morena Zone (SW) Tj ETQq1 1	0.784314 1.8	rgBT /Overlo
877	Geochemistry of anorthositic xenolith and host tholeiite basalt from Jeju Island, South Korea. Geosciences Journal, 2014, 18, 125-135.	1.2	6
878	Quantifying lithological variability in the mantle. Earth and Planetary Science Letters, 2014, 395, 24-40.	4.4	105
879	Is the â€~Azores Hotspot' a Wetspot? Insights from the Geochemistry of Fluid and Melt Inclusions in Olivine of Pico Basalts. Journal of Petrology, 2014, 55, 377-393.	2.8	93
880	Isotopic evidence for interaction between Öræfajökull mantle and the Eastern Rift Zone, Iceland. Contributions To Mineralogy and Petrology, 2014, 167, 1.	3.1	14

щ		IF	CITATIONS
#	ARTICLE Lead isotope signatures of Kerguelen plume-derived olivine-hosted melt inclusions: Constraints on	IF	CITATIONS
881	the ocean island basalt petrogenesis. Lithos, 2014, 198-199, 153-171.	1.4	13
882	Sampling Mantle Heterogeneity through Oceanic Basalts: Isotopes and Trace Elements. , 2014, , 67-101.		98
883	Mantle melting in within-plate continental settings: Sr–Nd–Pb and U-series isotope constraints in alkali basalts from the Sicily Channel (Pantelleria and Linosa Islands, Southern Italy). Lithos, 2014, 188, 113-129.	1.4	16
884	Plume versus plate origin for the Shatsky Rise oceanic plateau (NW Pacific): Insights from Nd, Pb and Hf isotopes. Lithos, 2014, 200-201, 49-63.	1.4	45
885	Phantom Archean crust in Mangaia hotspot lavas and the meaning of heterogeneous mantle. Earth and Planetary Science Letters, 2014, 396, 97-106.	4.4	79
886	Recycled oceanic crust in the source of 90–40Ma basalts in North and Northeast China: Evidence, provenance and significance. Geochimica Et Cosmochimica Acta, 2014, 143, 49-67.	3.9	114
887	Petrology of the Guenfalabo ring-complex: An example of a complete series along the Cameroon Volcanic Line (CVL), Cameroon. Journal of African Earth Sciences, 2014, 96, 139-154.	2.0	6
888	Trace element budgets and (re-)distribution during subduction-zone ultrahigh pressure metamorphism: Evidence from Western Tianshan, China. Chemical Geology, 2014, 365, 54-68.	3.3	21
889	Kr and Xe isotopic compositions of Fe-Mn crusts from the western and central Pacific Ocean and implications for their genesis. Acta Oceanologica Sinica, 2014, 33, 26-33.	1.0	0
890	Louisville Seamount Chain: Petrogenetic processes and geochemical evolution of the mantle source. Geochemistry, Geophysics, Geosystems, 2014, 15, 2380-2400.	2.5	42
891	Metasomatized ancient lithospheric mantle beneath the young Zealandia microcontinent and its role in HIMU-like intraplate magmatism. Geochemistry, Geophysics, Geosystems, 2014, 15, 3477-3501.	2.5	85
892	Helium and lead isotopes reveal the geochemical geometry of the Samoan plume. Nature, 2014, 514, 355-358.	27.8	90
894	Geophysical Constraints on Mantle Composition. , 2014, , 41-65.		8
895	Hydrothermal alteration of plagioclase microphenocrysts and glass in basalts from the East Pacific Rise near 13°N: An SEM-EDS study. Science China Earth Sciences, 2014, 57, 1427-1437.	5.2	1
896	Oceanic Plateaus. , 2014, , 631-667.		49
897	Contrasting behaviours of CO2, S, H2O and halogens (F, Cl, Br, and I) in enriched-mantle melts from Pitcairn and Society seamounts. Chemical Geology, 2014, 370, 69-81.	3.3	80
898	Sulfur isotope budget (32S, 33S, 34S and 36S) in Pacific–Antarctic ridge basalts: A record of mantle source heterogeneity and hydrothermal sulfide assimilation. Geochimica Et Cosmochimica Acta, 2014, 133, 47-67.	3.9	95
899	The origin of intraplate magmatism in the western Trans-Mexican Volcanic Belt. , 2014, 10, 340-373.		26

#	ARTICLE	IF	CITATIONS
900	Contamination of MORB by anatexis of magma chamber roof rocks: Constraints from a geochemical study of experimental melts and associated residues. Lithos, 2014, 202-203, 120-137.	1.4	35
901	Oxygen isotope systematics of South African olivine melilitites and implications for HIMU mantle reservoirs. Lithos, 2014, 202-203, 76-84.	1.4	33
902	Geochemistry and petrogenesis of lava flows around Linga, Chhindwara area in the Eastern Deccan Volcanic Province (EDVP), India. Journal of Asian Earth Sciences, 2014, 91, 174-193.	2.3	22
903	Recent Advances in Geophysical Studies of the Interior of Terrestrial Planets. Journal of Geography (Chigaku Zasshi), 2015, 124, 1-30.	0.3	0
904	Geochemical variation of volcanic rocks from the South China Sea and neighboring land: Implication for magmatic process and mantle structure. Acta Oceanologica Sinica, 2015, 34, 112-124.	1.0	12
905	Geochronology and Geochemistry of Mafic Rocks in the Xuhe, Shaanxi, China: Implications for Petrogenesis and Mantle Dynamics. Acta Geologica Sinica, 2015, 89, 187-202.	1.4	19
906	Oxygen isotopic heterogeneity of Pali Aike basaltic magmas from southern Patagonia as evidenced by oxygen isotope compositions of olivines. Geochemical Journal, 2015, 49, 83-101.	1.0	0
907	Deeply dredged submarine HIMU glasses from the <scp>T</scp> uvalu <scp>I</scp> slands, <scp>P</scp> olynesia: Implications for volatile budgets of recycled oceanic crust. Geochemistry, Geophysics, Geosystems, 2015, 16, 3210-3234.	2.5	23
908	Submarine and subaerial lavas in the <scp>W</scp> est <scp>A</scp> ntarctic <scp>R</scp> ift <scp>S</scp> ystem: Temporal record of shifting magma source components from the lithosphere and asthenosphere. Geochemistry, Geophysics, Geosystems, 2015, 16, 4344-4361.	2.5	24
909	Water in <scp>H</scp> awaiian peridotite minerals: A case for a dry metasomatized oceanic mantle lithosphere. Geochemistry, Geophysics, Geosystems, 2015, 16, 1211-1232.	2.5	51
910	Survival of LLSVPs for billions of years in a vigorously convecting mantle: Replenishment and destruction of chemical anomaly. Journal of Geophysical Research: Solid Earth, 2015, 120, 3824-3847.	3.4	64
911	Metallogenic model for the Laochang Pb–Zn–Ag–Cu volcanogenic massive sulfide deposit related to a Paleo-Tethys OIB-like volcanic center, SW China. Ore Geology Reviews, 2015, 70, 578-594.	2.7	19
912	Melting in the mantle in the presence of carbon: Review of experiments and discussion on the origin of carbonatites. Chemical Geology, 2015, 418, 171-188.	3.3	115
913	Magmas Erupted during the Main Pulse of Siberian Traps Volcanism were Volatile-poor. Journal of Petrology, 2015, 56, 2089-2116.	2.8	23
914	The helium flux from the continents and ubiquity of low-3He/4He recycled crust and lithosphere. Geochimica Et Cosmochimica Acta, 2015, 153, 116-133.	3.9	83
915	Water in Hawaiian garnet pyroxenites: Implications for water heterogeneity in the mantle. Chemical Geology, 2015, 397, 61-75.	3.3	59
916	Geochemistry, Sr–Nd–Pb isotopes and geochronology of amphibole- and mica-bearing lamprophyres in northwestern Iran: Implications for mantle wedge heterogeneity in a palaeo-subduction zone. Lithos, 2015, 216-217, 352-369.	1.4	38
917	Mixing it up in the mantle. Nature, 2015, 517, 275-276.	27.8	1

#	Article	IF	CITATIONS
918	Ocean <scp>B</scp> asalt <scp>S</scp> imulator version 1 (<scp>OBS</scp> 1): Trace element mass balance in adiabatic melting of a pyroxeniteâ€bearing peridotite. Geochemistry, Geophysics, Geosystems, 2015, 16, 267-300.	2.5	38
919	Petrogenesis of Late Cenozoic basalts from North Hainan Island: Constraints from melt inclusions and their host olivines. Geochimica Et Cosmochimica Acta, 2015, 152, 89-121.	3.9	59
920	Multiple sulfur isotope composition of oxidized Samoan melts and the implications of a sulfur isotope â€~mantle array' in chemical geodynamics. Earth and Planetary Science Letters, 2015, 417, 28-39.	4.4	63
921	Selective ingress of a Samoan plume component into the northern Lau backarc basin. Nature Communications, 2015, 6, 6554.	12.8	17
922	A radiogenic isotopic (He-Sr-Nd-Pb-Os) study of lavas from the Pitcairn hotspot: Implications for the origin of EM-1 (enriched mantle 1). Lithos, 2015, 228-229, 1-11.	1.4	43
923	Proposal for a continent 'Itsaqia' amalgamated at 3.66 Ga and rifted apart from 3.53 Ga: Initiation of a Wilson Cycle near the start of the rock record. Numerische Mathematik, 2015, 315, 509-536.	1.4	26
924	Recycling of oceanic crust from a stagnant slab in the mantle transition zone: Evidence from Cenozoic continental basalts in Zhejiang Province, SE China. Lithos, 2015, 230, 146-165.	1.4	34
925	Mineralogy of the Earth: Trace Elements and Hydrogen in the Earth's Transition Zone and Lower Mantle. , 2015, , 61-84.		2
926	Hotspots, Large Igneous Provinces, and Melting Anomalies. , 2015, , 393-459.		13
927	Mantle Geochemical Geodynamics. , 2015, , 521-585.		23
928	The Core–Mantle Boundary Region. , 2015, , 461-519.		43
929	Resolving mantle and magmatic processes in basalts from the Cameroon volcanic line using the Re–Os isotope system. Lithos, 2015, 224-225, 1-12.	1.4	5
930	Drilling the solid earth: global geodynamic cycles and earth evolution. International Journal of Earth Sciences, 2015, 104, 1573-1587.	1.8	5
931	Chemical Geodynamics in a Non-chondritic Earth. , 2015, , 329-366.		2
932	Developing plate tectonics theory from oceanic subduction zones to collisional orogens. Science China Earth Sciences, 2015, 58, 1045-1069.	5.2	198
933	Low-buoyancy thermochemical plumes resolve controversy of classical mantle plume concept. Nature Communications, 2015, 6, 6960.	12.8	71
934	Magmatic Response to Slab Tearing: Constraints from the Afyon Alkaline Volcanic Complex, Western Turkey. Journal of Petrology, 2015, 56, 527-562.	2.8	105
935	Isotopes, DUPAL, LLSVPs, and Anekantavada. Chemical Geology, 2015, 419, 10-28.	3.3	105

#	Article	IF	CITATIONS
936	Geophysical characteristics of the Hupijiao Rise and their implication to Miocene volcanism in the northeastern part of the East China Sea. Marine Geology, 2015, 363, 134-145.	2.1	9
937	Source components and magmatic processes in the genesis of Miocene to Quaternary lavas in western Turkey: constraints from HSE distribution and Hf–Pb–Os isotopes. Contributions To Mineralogy and Petrology, 2015, 170, 1.	3.1	23
938	Constraints on the DUPAL anomaly from helium isotope systematics in the Southwest Indian mid-ocean ridge basalts. Chemical Geology, 2015, 417, 163-172.	3.3	12
939	Oceanic lavas sampling the high- ³ He/ ⁴ He mantle reservoir: Primitive, depleted, or re-enriched?. American Mineralogist, 2015, 100, 2066-2081.	1.9	14
940	OIB-type rocks within West Junggar ophiolitic mélanges: Evidence for the accretion of seamounts. Earth-Science Reviews, 2015, 150, 477-496.	9.1	122
941	Production of mildly alkaline basalts at complex ocean ridge settings: Perspectives from basalts emitted during the 2010 eruption at the Eyjafjallajökull volcano, Iceland. Journal of Geodynamics, 2015, 91, 51-64.	1.6	3
942	The halogen (F, Cl, Br, I) and H2O systematics of Samoan lavas: Assimilated-seawater, EM2 and high-3He/4He components. Earth and Planetary Science Letters, 2015, 410, 197-209.	4.4	62
943	On the relationship between volcanic hotspot locations, the reconstructed eruption sites of large igneous provinces and deep mantle seismic structure. Earth and Planetary Science Letters, 2015, 411, 121-130.	4.4	71
944	Tectonic development from oceanic subduction to continental collision: Geochemical evidence from postcollisional mafic rocks in the Hong'an–Dabie orogens. Gondwana Research, 2015, 27, 1236-1254.	6.0	63
945	Geochemistry and petrogenesis of Rajahmundry trap basalts ofÂKrishna-Godavari Basin, India. Geoscience Frontiers, 2015, 6, 437-451.	8.4	23
946	Isotopic heterogeneity of oceanic, arc and continental basalts and its implications for mantle dynamics. Gondwana Research, 2015, 27, 1131-1152.	6.0	309
947	Hf isotope systematics of seamounts near the East Pacific Rise (EPR) and geodynamic implications. Lithos, 2016, 262, 107-119.	1.4	14
948	Origin of Late Cenozoic Abaga–Dalinuoer basalts, eastern China: Implications for a mixed pyroxenite–peridotite source related with deep subduction of the Pacific slab. Gondwana Research, 2016, 37, 130-151.	6.0	48
949	Discovery and Geological Significance of Neoproterozoic Metamorphic Granite in Jimo, Shandong Province, Eastern China. Acta Geologica Sinica, 2016, 90, 2080-2096.	1.4	9
950	The Composition of Melts from a Heterogeneous Mantle and the Origin of Ferropicrite: Application of a Thermodynamic Model. Journal of Petrology, 0, , egw065.	2.8	7
951	Peridotitic Lithosphere Metasomatized by Volatile-bearing Melts, and its Association with Intraplate Alkaline HIMU-like Magmatism. Journal of Petrology, 2016, 57, 2053-2078.	2.8	56
952	Extreme differences in 87Sr/86Sr between Samoan lavas and the magmatic olivines they host: Evidence for highly heterogeneous 87Sr/86Sr in the magmatic plumbing system sourcing a single lava. Chemical Geology, 2016, 439, 120-131.	3.3	10
953	Rapid Cenozoic ingrowth of isotopic signatures simulating "HIMU―in ancient lithospheric mantle: Distinguishing source from process. Geochimica Et Cosmochimica Acta, 2016, 187, 79-101.	3.9	46

	CITATION		
#	Article	IF	Citations
954	Hot Spots and Mantle Plumes. Encyclopedia of Earth Sciences Series, 2016, , 316-327.	0.1	1
955	Crystal/melt partitioning of water and other volatiles during the near-solidus melting of mantle peridotite: Comparisons with non-volatile incompatible elements and implications for the generation of intraplate magmatism. American Mineralogist, 2016, 101, 876-888.	1.9	22
956	The composition of mantle plumes and the deep Earth. Earth and Planetary Science Letters, 2016, 444, 13-25.	4.4	21
957	Petrogenesis of high-CaO lavas from Mauna Kea, Hawaii: Constraints from trace element abundances. Geochimica Et Cosmochimica Acta, 2016, 185, 198-215.	3.9	12
958	Evidence from accreted seamounts for a depleted component in the early Galapagos plume. Geology, 2016, 44, 383-386.	4.4	23
959	The aluminum conundrum in Hawaiian shield-building lavas: An argument for a deep, garnet-bearing, mantle source. Geochimica Et Cosmochimica Acta, 2016, 185, 216-231.	3.9	6
960	Thallium Isotopes. Encyclopedia of Earth Sciences Series, 2016, , 1-6.	0.1	0
961	Petrology of Eocene volcanic rocks from the Central Sakarya Zone (northwestern Anatolia, Turkey): new evidence from Ar-Ar and Sr-Nd isotope determinations. Arabian Journal of Geosciences, 2016, 9, 1.	1.3	2
962	186Os/188Os variations in upper mantle peridotites: Constraints on the Pt/Os ratio of primitive upper mantle, and implications for late veneer accretion and mantle mixing timescales. Chemical Geology, 2016, 442, 11-22.	3.3	14
963	Fluorine partitioning between eclogitic garnet, clinopyroxene, and melt at upper mantle conditions. Chemical Geology, 2016, 437, 88-97.	3.3	18
964	The role of pyroxenite in basalt genesis: Meltâ€PX, a melting parameterization for mantle pyroxenites between 0.9 and 5 CPa. Journal of Geophysical Research: Solid Earth, 2016, 121, 5708-5735.	3.4	137
965	Origin of geochemical mantle components: Role of subduction filter. Geochemistry, Geophysics, Geosystems, 2016, 17, 3289-3325.	2.5	47
966	Effect of melt/mantle interactions on <scp>MORB</scp> chemistry at the easternmost <scp>S</scp> outhwest <scp>I</scp> ndian <scp>R</scp> idge (61°–67° <scp>E</scp>). Geochemistry, Geophysics, Geosystems, 2016, 17, 4605-4640.	2.5	36
967	<scp>REEBOX</scp> <scp>PRO</scp> : A forward model simulating melting of thermally and lithologically variable upwelling mantle. Geochemistry, Geophysics, Geosystems, 2016, 17, 3929-3968.	2.5	44
968	Ordovician and Triassic mafic dykes in the Wudang terrane: Evidence for opening and closure of the South Qinling ocean basin, central China. Lithos, 2016, 266-267, 1-15.	1.4	13
969	Oceanic Island Basalts. Encyclopedia of Earth Sciences Series, 2016, , 1-5.	0.1	2
970	Mantle Geochemistry. Encyclopedia of Earth Sciences Series, 2016, , 1-12.	0.1	0
971	Missing Archean sulfur returned from the mantle. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12893-12895.	7.1	13

#	Article	IF	CITATIONS
972	Re–Pt–Os Isotopic and Highly Siderophile Element Behavior in Oceanic and Continental Mantle Tectonites. , 2016, , 369-440.		2
974	Temporal magma source changes at Gaua volcano, Vanuatu island arc. Journal of Volcanology and Geothermal Research, 2016, 322, 30-47.	2.1	16
975	Recycling of crustal material by the Iceland mantle plume: New evidence from nitrogen elemental and isotope systematics of subglacial basalts. Geochimica Et Cosmochimica Acta, 2016, 176, 206-226.	3.9	34
976	Silicon isotopes reveal recycled altered oceanic crust in the mantle sources of Ocean Island Basalts. Geochimica Et Cosmochimica Acta, 2016, 189, 282-295.	3.9	32
977	Zircon U–Pb ages and Hf–O isotopic signatures of the Wajilitag and Puchang Fe–Ti oxide–bearing intrusive complexes: Constraints on their source characteristics and temporal–spatial evolution of the Tarim large igneous province. Gondwana Research, 2016, 37, 71-85.	6.0	26
978	The origin of Cenozoic basalts from central Inner Mongolia, East China: The consequence of recent mantle metasomatism genetically associated with seismically observed paleo-Pacific slab in the mantle transition zone. Lithos, 2016, 240-243, 104-118.	1.4	60
979	Advances in Lithium Isotope Geochemistry. Advances in Isotope Geochemistry, 2016, , .	1.4	160
980	Nd isotopic and trace element constraints on the source of Silurian–Devonian mafic lavas in the Chaleur Bay Synclinorium of New Brunswick (Canada): Tectonic implications. Tectonophysics, 2016, 681, 364-375.	2.2	18
981	Re–Pt–Os Isotopic and Highly Siderophile Element Behavior in Oceanic and Continental Mantle Tectonites. Reviews in Mineralogy and Geochemistry, 2016, 81, 369-440.	4.8	53
982	Lithium in the Deep Earth: Mantle and Crustal Systems. Advances in Isotope Geochemistry, 2016, , 119-156.	1.4	8
983	The Flaw in the Crustal â€~Zircon Archive': Mixed Hf Isotope Signatures Record Progressive Contamination of Late-stage Liquid in Mafic–Ultramafic Layered Intrusions. Journal of Petrology, 2016, 57, 27-52.	2.8	60
984	Do mantle plumes preserve the heterogeneous structure of their deep-mantle source?. Earth and Planetary Science Letters, 2016, 434, 10-17.	4.4	36
985	Mantle Sulfides and their Role in Re–Os and Pb Isotope Geochronology. Reviews in Mineralogy and Geochemistry, 2016, 81, 579-649.	4.8	70
986	Melt evolution beneath a rifted craton edge: 40 Ar/ 39 Ar geochronology and Sr–Nd–Hf–Pb isotope systematics of primitive alkaline basalts and lamprophyres from the SW Baltic Shield. Geochimica Et Cosmochimica Acta, 2016, 173, 1-36.	3.9	35
987	Geological setting and geochemical signatures of the mafic rocks from the Intra-Pontide Suture Zone: implications for the geodynamic reconstruction of the Mesozoic Neotethys. International Journal of Earth Sciences, 2016, 105, 39-64.	1.8	23
988	Petrogenesis and tectonic implications of the Neoproterozoic Datian mafic–ultramafic dykes in the Panzhihua area, western Yangtze Block, SW China. International Journal of Earth Sciences, 2017, 106, 185-213.	1.8	19
989	The role of meltâ€rock interaction in the formation of Quaternary highâ€MgO potassic basalt from the Greater Khingan Range, northeast China. Journal of Geophysical Research: Solid Earth, 2017, 122, 262-280.	3.4	28
990	Decoupling of Mg–C and Sr–Nd–O isotopes traces the role of recycled carbon in magnesiocarbonatites from the Tarim Large Igneous Province. Geochimica Et Cosmochimica Acta, 2017, 202, 159-178.	3.9	55

#	Article	IF	CITATIONS
991	Investigation and Application of Thallium Isotope Fractionation. Reviews in Mineralogy and Geochemistry, 2017, 82, 759-798.	4.8	70
992	Evolution of K-rich magmas derived from a net veined lithospheric mantle in an ongoing extensional setting: Geochronology and geochemistry of Eocene and Miocene volcanic rocks from Eastern Pontides (Turkey). Gondwana Research, 2017, 45, 65-86.	6.0	54
993	Magnesium isotopic variation of oceanic island basalts generated by partial melting and crustal recycling. Earth and Planetary Science Letters, 2017, 463, 127-135.	4.4	79
994	There were no large volumes of felsic continental crust in the early Earth. , 2017, 13, 235-246.		28
995	Continental basalts record the crust-mantle interaction in oceanic subduction channel: A geochemical case study from eastern China. Journal of Asian Earth Sciences, 2017, 145, 233-259.	2.3	51
996	Basalts and picrites from a plume-type ophiolite in the South Qilian Accretionary Belt, Qilian Orogen: Accretion of a Cambrian Oceanic Plateau?. Lithos, 2017, 278-281, 97-110.	1.4	68
997	Origin of geochemical mantle components: Role of spreading ridges and thermal evolution of mantle. Geochemistry, Geophysics, Geosystems, 2017, 18, 697-734.	2.5	20
998	Boninite-like intraplate magmas from Manihiki Plateau require ultra-depleted and enriched source components. Nature Communications, 2017, 8, 14322.	12.8	37
999	Geodynamic implications for zonal and meridional isotopic patterns across the northern <scp>L</scp> au and <scp>N</scp> orth <scp>F</scp> iji <scp>B</scp> asins. Geochemistry, Geophysics, Geosystems, 2017, 18, 1013-1042.	2.5	14
1000	Seismic evidence for Earth's crusty deep mantle. Earth and Planetary Science Letters, 2017, 470, 54-63.	4.4	31
1001	Petrogenetic evolution of Cretaceous Samchampi-Samteran Alkaline Complex, Mikir Hills, Northeastern India: Implications on multiple melting events of heterogeneous plume and metasomatized sub-continental lithospheric mantle. Gondwana Research, 2017, 48, 237-256.	6.0	19
1002	Lithium Isotopic Geochemistry in Subduction Zones: Retrospects and Prospects. Acta Geologica Sinica, 2017, 91, 688-710.	1.4	8
1003	Postâ€rift magmatic evolution of the eastern <scp>N</scp> orth <scp>A</scp> merican "passiveâ€aggressive―margin. Geochemistry, Geophysics, Geosystems, 2017, 18, 3-22.	2.5	25
1004	South-to-north pyroxenite–peridotite source variation correlated with an OIB-type to arc-type enrichment of magmas from the Payenia backarc of the Andean Southern Volcanic Zone (SVZ). Contributions To Mineralogy and Petrology, 2017, 172, 1.	3.1	11
1005	The hottest lavas of the Phanerozoic and the survival of deep Archaean reservoirs. Nature Geoscience, 2017, 10, 451-456.	12.9	54
1006	Geochemical systematics of Pb isotopes, fluorine, and sulfur in melt inclusions from São Miguel, Azores. Chemical Geology, 2017, 458, 22-37.	3.3	17
1007	Magmaâ€magma interaction in the mantle beneath eastern China. Journal of Geophysical Research: Solid Earth, 2017, 122, 2763-2779.	3.4	27
1008	Diffusion-zoned pyroxenes in an isotopically heterogeneous mantle lithosphere beneath the Dunedin Volcanic Group, New Zealand, and their implications for intraplate alkaline magma sources. Lithosphere, 2017, 9, 463-475.	1.4	30

#	Article	IF	CITATIONS
1009	Early Permian Qiangtang flood basalts, northern Tibet, China: A mantle plume that disintegrated northern Gondwana?. Gondwana Research, 2017, 44, 96-108.	6.0	56
1010	Molybdenum isotope variations in magmatic rocks. Chemical Geology, 2017, 449, 253-268.	3.3	110
1011	Elemental and Sr–Nd–Pb isotope geochemistry of the Cenozoic basalts in Southeast China: Insights into their mantle sources and melting processes. Lithos, 2017, 272-273, 16-30.	1.4	37
1012	Helium–oxygen–osmium isotopic and elemental constraints on the mantle sources of the Deccan Traps. Earth and Planetary Science Letters, 2017, 478, 245-257.	4.4	10
1013	Mantle geochemistry: Insights from ocean island basalts. Science China Earth Sciences, 2017, 60, 1976-2000.	5.2	15
1014	Geochemical characteristics of the La Réunion mantle plume source inferred from olivine-hosted melt inclusions from the adventive cones of Piton de la Fournaise volcano (La Réunion Island). Contributions To Mineralogy and Petrology, 2017, 172, 1.	3.1	12
1015	Rift–plume interaction reveals multiple generations of recycled oceanic crust in Azores lavas. Geochimica Et Cosmochimica Acta, 2017, 218, 132-152.	3.9	26
1016	Light Stable Isotopic Compositions of Enriched Mantle Sources: Resolving the Dehydration Paradox. Geochemistry, Geophysics, Geosystems, 2017, 18, 3801-3839.	2.5	70
1017	Ancient xenocrystic zircon in young volcanic rocks of the southern Lesser Antilles island arc. Lithos, 2017, 290-291, 228-252.	1.4	26
1018	High Ni and low Mn/Fe in olivine phenocrysts of the Karoo meimechites do not reflect pyroxenitic mantle sources. Chemical Geology, 2017, 467, 134-142.	3.3	21
1019	Redox variations in Mauna Kea lavas, the oxygen fugacity of the Hawaiian plume, and the role of volcanic gases in Earth's oxygenation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8997-9002.	7.1	111
1020	Baddeleyite U–Pb age and geochemical data of the mafic dykes from South Qinling: Constraints on the lithospheric extension. Geological Journal, 2017, 52, 272-285.	1.3	6
1021	The prevalence of kilometer-scale heterogeneity in the source region of MORB upper mantle. Science Advances, 2017, 3, e1701872.	10.3	28
1022	Geochemistry of MORB and OIB in the Yuejinshan Complex, NE China: Implications for petrogenesis and tectonic setting. Journal of Asian Earth Sciences, 2017, 145, 475-493.	2.3	41
1023	Middle Triassic back-arc basalts from the blocks in the Mersin Mélange, southern Turkey: Implications for the geodynamic evolution of the Northern Neotethys. Lithos, 2017, 268-271, 102-113.	1.4	31
1024	The origin of Cenozoic continental basalts in east-central China: Constrained by linking Pb isotopes to other geochemical variables. Lithos, 2017, 268-271, 302-319.	1.4	28
1025	Geochemistry of lavas from the Caroline hotspot, Micronesia: Evidence for primitive and recycled components in the mantle sources of lavas with moderately elevated 3He/4He. Chemical Geology, 2017, 455, 385-400.	3.3	23
1026	Thallium elemental behavior and stable isotope fractionation during magmatic processes. Chemical Geology, 2017, 448, 71-83.	3.3	36

	CHATION K	EPUKI	
#	Article	IF	CITATIONS
1027	Molybdenum isotope fractionation in the mantle. Geochimica Et Cosmochimica Acta, 2017, 199, 91-111.	3.9	76
1028	Recycling of Paleotethyan oceanic crust: Geochemical record from postcollisional mafic igneous rocks in the Tongbai-Hong'an orogens. Bulletin of the Geological Society of America, 2017, 129, 179-192.	3.3	32
1029	Distribution, cycling and impact of water in the Earth's interior. National Science Review, 2017, 4, 879-891.	9.5	21
1030	18 Investigation and Application of Thallium Isotope Fractionation. , 2017, , 759-798.		2
1031	Geochemistry of the NW Pacific Plate: Origins of Indian and Pacific Mantles and Nature of Their Boundary. Journal of Geography (Chigaku Zasshi), 2017, 126, 163-179.	0.3	4
1032	On the relative motions of long-lived Pacific mantle plumes. Nature Communications, 2018, 9, 854.	12.8	55
1033	The Archean Fortescue large igneous province: A result of komatiite contamination by a distinct Eo-Paleoarchean crust. Precambrian Research, 2018, 310, 365-390.	2.7	23
1034	Melt Origin across a Rifted Continental Margin: a Case for Subduction-related Metasomatic Agents in the Lithospheric Source of Alkaline Basalt, NW Ross Sea, Antarctica. Journal of Petrology, 2018, 59, 517-558.	2.8	57
1035	Origin of the LLSVPs at the base of the mantle is a consequence of plate tectonics – A petrological and geochemical perspective. Geoscience Frontiers, 2018, 9, 1265-1278.	8.4	36
1036	Isotope Geochemistry of Oceanic Volcanics. , 0, , 134-166.		1
1037	Cretaceous basalts of the High Arctic large igneous province at Axel Heiberg Island (Canada): Volcanic stratigraphy, geodynamic setting, and origin. Geological Journal, 2018, 53, 2918-2934.	1.3	17
1038	Archaean tectonic systems: A view from igneous rocks. Lithos, 2018, 302-303, 99-125.	1.4	200
1039	Evidence for a deep mantle source for EM and HIMU domains from integrated geochemical and geophysical constraints. Earth and Planetary Science Letters, 2018, 484, 154-167.	4.4	40
1040	Global distribution of the HIMU end member: Formation through Archean plume-lid tectonics. Earth-Science Reviews, 2018, 182, 85-101.	9.1	40
1041	Mesozoic mafic magmatism in North China: Implications for thinning and destruction of cratonic lithosphere. Science China Earth Sciences, 2018, 61, 353-385.	5.2	187
1042	182W and HSE constraints from 2.7â€ ⁻ Ga komatiites on the heterogeneous nature of the Archean mantle. Geochimica Et Cosmochimica Acta, 2018, 228, 1-26.	3.9	48
1043	Geochemical and petrological insights into the tectonic origin of the Transmexican Volcanic Belt. Earth-Science Reviews, 2018, 183, 153-181.	9.1	43
1044	Stagnant lids and mantle overturns: Implications for Archaean tectonics, magmagenesis, crustal growth, mantle evolution, and the start of plate tectonics. Geoscience Frontiers, 2018, 9, 19-49.	8.4	292

#	Article	IF	CITATIONS
1045	U enrichment and Th/U fractionation in Archean boninites: Implications for paleo-ocean oxygenation and U cycling at juvenile subduction zones. Journal of Asian Earth Sciences, 2018, 157, 187-197.	2.3	3
1046	Zircon SHRIMP U–Pb age of Late Jurassic OIB-type volcanic rocks from the Tethyan Himalaya: constraints on the initial activity time of the Kerguelen mantle plume. Acta Geochimica, 2018, 37, 441-455.	1.7	20
1047	Thallium isotope systematics in volcanic rocks from St. Helena – Constraints on the origin of the HIMU reservoir. Chemical Geology, 2018, 476, 292-301.	3.3	24
1048	Early Cretaceous high-Ti and low-Ti mafic magmatism in Southeastern Tibet: Insights into magmatic evolution of the Comei Large Igneous Province. Lithos, 2018, 296-299, 396-411.	1.4	21
1049	Boron Isotopes in the Ocean Floor Realm and the Mantle. Advances in Isotope Geochemistry, 2018, , 189-215.	1.4	49
1050	Origin of 1.8 Ga zircons in Post Eocene mafic dikes in the Roshtkhar area, NE Iran. International Geology Review, 2018, 60, 1855-1882.	2.1	5
1051	Stochastic Inversion of <i>P</i> â€ŧoâ€ <i>S</i> Converted Waves for Mantle Composition and Thermal Structure: Methodology and Application. Journal of Geophysical Research: Solid Earth, 2018, 123, 10,706.	3.4	5
1052	Longâ€Lived Source Heterogeneities in the Galapagos Mantle Plume. Geochemistry, Geophysics, Geosystems, 2018, 19, 2764-2779.	2.5	19
1053	Sub-arc mantle heterogeneity in oxygen isotopes: evidence from Permian mafic–ultramafic intrusions in the Central Asian Orogenic Belt. Contributions To Mineralogy and Petrology, 2018, 173, 1.	3.1	9
1054	The mantle source of thermal plumes: Trace and minor elements in olivine and major oxides of primitive liquids (and why the olivine compositions don't matter). American Mineralogist, 2018, 103, 1253-1270.	1.9	35
1055	Geochemistry and Distribution of Recycled Domains in the Mantle Inferred From Nd and Pb Isotopes in Oceanic Hot Spots: Implications for Storage in the Large Low Shear Wave Velocity Provinces. Geochemistry, Geophysics, Geosystems, 2018, 19, 3496-3519.	2.5	29
1056	Marine Sediment. Encyclopedia of Earth Sciences Series, 2018, , 878-892.	0.1	1
1057	Generation of Cenozoic intraplate basalts in the big mantle wedge under eastern Asia. Science China Earth Sciences, 2018, 61, 869-886.	5.2	99
1058	Sr and Nd isotopic compositions of individual olivine-hosted melt inclusions from Hawai'i and Samoa: Implications for the origin of isotopic heterogeneity in melt inclusions from OIB lavas. Chemical Geology, 2018, 495, 36-49.	3.3	15
1059	Petrogenesis of plio-quaternary intra-plate continental alkaline lavas from the İskenderun Gulf (Southern Turkey): Evidence for metasomatized lithospheric mantle. Chemie Der Erde, 2018, 78, 521-534.	2.0	2
1060	Barium isotope evidence for pervasive sediment recycling in the upper mantle. Science Advances, 2018, 4, eaas8675.	10.3	55
1061	Ferromanganese Crusts and Nodules: Rocks That Grow. Encyclopedia of Earth Sciences Series, 2018, , 477-483.	0.1	3
1062	Hafnium. Encyclopedia of Earth Sciences Series, 2018, , 629-631.	0.1	0

#	Article	IF	CITATIONS
1063	Magmatic Process Modeling. Encyclopedia of Earth Sciences Series, 2018, , 841-853.	0.1	0
1064	Samarium. Encyclopedia of Earth Sciences Series, 2018, , 1321-1322.	0.1	0
1065	Circa 1 Ga sub-seafloor hydrothermal alteration imprinted on the Horoman peridotite massif. Scientific Reports, 2018, 8, 9887.	3.3	4
1066	The historical basanite - alkali basalt - tholeiite suite at Lanzarote, Canary Islands: Carbonated melts of heterogeneous mantle source?. Chemical Geology, 2018, 494, 56-68.	3.3	14
1067	Primary Melt Compositions in the Earth's Mantle. , 2018, , 3-42.		16
1068	Dynamics of rheological heterogeneities in mantle plumes. Earth and Planetary Science Letters, 2018, 499, 74-82.	4.4	18
1069	Recycled ancient ghost carbonate in the Pitcairn mantle plume. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8682-8687.	7.1	73
1070	Olivine Oxygen Isotope Evidence for Intracontinental Recycling of Delaminated Continental Crust. Geochemistry, Geophysics, Geosystems, 2018, 19, 1913-1924.	2.5	13
1071	Geochemical and geochronological study of early Paleozoic volcanic rocks from the Lajishan accretionary complex, NW China: Petrogenesis and tectonic implications. Lithos, 2018, 314-315, 323-336.	1.4	15
1072	Hafnium isotopic constraints on the origin of late Miocene to Pliocene seamount basalts from the South China Sea and its tectonic implications. Journal of Asian Earth Sciences, 2019, 171, 162-168.	2.3	22
1073	The emerging portrait of an ancient, heterogeneous and continuously evolving mantle plume source. Lithos, 2019, 346-347, 105153.	1.4	12
1074	Basalt Tectonic Discrimination Using Combined Machine Learning Approach. Minerals (Basel,) Tj ETQq1 1 0.7843	14 rgBT /(2.0	Dverlock 10
1075	Metasomatism of the crust-mantle boundary by melts derived from subducted sedimentary carbonates and silicates. Geochimica Et Cosmochimica Acta, 2019, 260, 311-328.	3.9	20
1076	Zinc Isotope Constraints on Recycled Oceanic Crust in the Mantle Sources of the Emeishan Large Igneous Province. Journal of Geophysical Research: Solid Earth, 2019, 124, 12537-12555.	3.4	30
1077	Effect of Serpentinite Dehydration in Subducting Slabs on Isotopic Diversity in Recycled Oceanic Crust and Its Role in Isotopic Heterogeneity of the Mantle. Geochemistry, Geophysics, Geosystems, 2019, 20, 5449-5472.	2.5	8
1078	A Framework for Understanding Whole-Earth Carbon Cycling. , 2019, , 313-357.		30
1079	Geochemistry of volcanic rocks from Oldoinyo Lengai, Tanzania: Implications for mantle source lithology. Lithos, 2019, 350-351, 105223.	1.4	4
1080	X-discontinuity and transition zone structure beneath Hawaii suggests a heterogeneous plume. Earth and Planetary Science Letters, 2019, 527, 115781.	4.4	19

# 1081	ARTICLE Mantle plumes are oxidised. Earth and Planetary Science Letters, 2019, 527, 115798.	lF 4.4	Citations 85
1082	The History, Relevance, and Applications of the Periodic System in Geochemistry. Structure and Bonding, 2019, , 111.	1.0	0
1083	Reconciling petrological and isotopic mixing mechanisms in the Pitcairn mantle plume using stable Fe isotopes. Earth and Planetary Science Letters, 2019, 521, 60-67.	4.4	42
1084	Vitrification treatment of municipal solid waste bottom ash. Waste Management, 2019, 95, 250-258.	7.4	31
1085	Two Types of mafic rocks in southern Tibet: A mark of tectonic setting change from Neo-Tethyan oceanic crust subduction to Indian continental crust subduction. Journal of Asian Earth Sciences, 2019, 181, 103883.	2.3	3
1086	Magmatic evolution biases basaltic records of mantle chemistry towards melts from recycled sources. Earth and Planetary Science Letters, 2019, 520, 199-211.	4.4	47
1087	Signature of deep mantle melting in South Iceland olivine. Contributions To Mineralogy and Petrology, 2019, 174, 1.	3.1	16
1088	Petrogenesis of shield volcanism from the Juan Fernández Ridge, Southeast Pacific: Melting of a low-temperature pyroxenite-bearing mantle plume. Geochimica Et Cosmochimica Acta, 2019, 257, 311-335.	3.9	4
1089	New Constraints on the Origin of the EMâ€1 Component Revealed by the Measurement of the Laâ€Ce Isotope Systematics in Gough Island Lavas. Geochemistry, Geophysics, Geosystems, 2019, 20, 2484-2498.	2.5	13
1090	Crustal controls on apparent mantle pyroxenite signals in ocean-island basalts. Geology, 2019, 47, 321-324.	4.4	43
1091	The Sidi El Hemissi Triassic "ophites―(Souk Ahras, NE Algeria): petrology, geochemistry, and petrogenesis. Arabian Journal of Geosciences, 2019, 12, 1.	1.3	5
1092	Using Major Element Logratios to Recognize Compositional Patterns of Basalt: Implications for Source Lithological and Compositional Heterogeneities. Journal of Geophysical Research: Solid Earth, 2019, 124, 3458-3490.	3.4	36
1093	Geochemical and Geochronological Constraints on the Origin and Emplacement of the East Taiwan Ophiolite. Geochemistry, Geophysics, Geosystems, 2019, 20, 2110-2133.	2.5	12
1094	Chemical Disequilibria, Lithospheric Thickness, and the Source of Ocean Island Basalts. Journal of Petrology, 2019, 60, 755-790.	2.8	5
1095	Recycled oceanic crust as a source for tonalite intrusions in the mantle section of the Khor Fakkan block, Semail ophiolite (UAE). Geoscience Frontiers, 2019, 10, 1187-1210.	8.4	4
1096	Subduction zone geochemistry. Geoscience Frontiers, 2019, 10, 1223-1254.	8.4	284
1097	Testing pyroxenite versus peridotite sources for marine basalts using U-series isotopes. Lithos, 2019, 332-333, 226-244.	1.4	18
1098	Closing the loop: Subducted eclogites match thallium isotope compositions of ocean island basalts. Geochimica Et Cosmochimica Acta, 2019, 250, 130-148.	3.9	20

#	Article	IF	CITATIONS
1099	lsotopic fractionation of zirconium during magmatic differentiation and the stable isotope composition of the silicate Earth. Geochimica Et Cosmochimica Acta, 2019, 250, 311-323.	3.9	50
1100	Lu-Hf and Sm-Nd geochronological constraints on the influence of subduction metamorphism in controlling the Hf-Nd terrestrial array: Evidence from the world's orogenic belts. , 2019, 15, 607-620.		1
1101	Recycled Components in Mantle Plumes Deduced From Variations in Halogens (Cl, Br, and I), Trace Elements, and 3 He/ 4 He Along the Hawaiianâ€Emperor Seamount Chain. Geochemistry, Geophysics, Geosystems, 2019, 20, 277-294.	2.5	10
1102	Trace-element characteristics of east–west mantle geochemical hemispheres. Comptes Rendus - Geoscience, 2019, 351, 209-220.	1.2	2
1103	Petrogenesis and mantle source characteristics of volcanic rocks on Jeju Island, South Korea. Lithos, 2019, 326-327, 476-490.	1.4	22
1104	Multiple mantle metasomatism beneath the Leizhou Peninsula, South China: evidence from elemental and Sr-Nd-Pb-Hf isotope geochemistry of the late Cenozoic volcanic rocks. International Geology Review, 2019, 61, 1768-1785.	2.1	29
1105	Investigating ocean island mantle source heterogeneity with boron isotopes in melt inclusions. Earth and Planetary Science Letters, 2019, 508, 97-108.	4.4	21
1106	Evolution of Alkalic Magma Systems: Insight from Coeval Evolution of Sodic and Potassic Fractionation Lineages at The Pleiades Volcanic Complex, Antarctica. Journal of Petrology, 2019, 60, 117-150.	2.8	17
1107	Geochronological and geochemical studies of the OIB-type Baiyanghe dolerites: implications for the existence of a mantle plume in northern West Junggar (NW China). Geological Magazine, 2019, 156, 702-724.	1.5	7
1108	A review of large low shear velocity provinces and ultra low velocity zones. Tectonophysics, 2019, 760, 199-220.	2.2	116
1109	Magmatism in the North Atlantic Igneous Province; mantle temperatures, rifting and geodynamics. Earth-Science Reviews, 2020, 206, 102794.	9.1	24
1110	Petrogenesis and mantle source characteristics of the late Cenozoic Baekdusan (Changbaishan) basalts, North China Craton. Gondwana Research, 2020, 78, 156-171.	6.0	24
1111	Late Cretaceous (99-69 Ma) basaltic intraplate volcanism on and around Zealandia: Tracing upper mantle geodynamics from Hikurangi Plateau collision to Gondwana breakup and beyond. Earth and Planetary Science Letters, 2020, 529, 115864.	4.4	26
1112	Intraplate volcanism and mantle dynamics of Mainland China: New constraints from shear-wave tomography. Journal of Asian Earth Sciences, 2020, 188, 104103.	2.3	23
1113	Influence of the subduction of the Pacific plate on the mantle characteristics of South China: Constraints from the temporal geochemical evolution of the Mesozoic basalts in the Jitai Basin. Lithos, 2020, 352-353, 105253.	1.4	11
1114	Geochemical constraints on the origin of late Cenozoic basalts in the Mt. Changbai volcanic field, NE China: evidence for crustal recycling. International Geology Review, 2020, 62, 2125-2145.	2.1	5
1115	Anomalous 182W in high 3He/4He ocean island basalts: Fingerprints of Earth's core?. Geochimica Et Cosmochimica Acta, 2020, 271, 194-211.	3.9	87
1116	The Pb isotope evolution of Bulk Silicate Earth: Constraints from its accretion and early differentiation history. Geochimica Et Cosmochimica Acta, 2020, 271, 179-193.	3.9	26

#	Article	IF	CITATIONS
1117	Geochemistry of mafic volcanics in the Bayingou ophiolitic mélange, Western Tianshan, NW China: Implications for magma genesis and tectonic setting. Lithos, 2020, 352-353, 105292.	1.4	2
1118	The Continually Stable Subduction, Iron‧pin Transition, and the Formation of LLSVPs From Subducted Oceanic Crust. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018262.	3.4	6
1119	Chemical geodynamics of mafic magmatism above subduction zones. Journal of Asian Earth Sciences, 2020, 194, 104185.	2.3	92
1120	Great Oxidation and Lomagundi events linked by deep cycling and enhanced degassing of carbon. Nature Geoscience, 2020, 13, 71-76.	12.9	54
1121	Calcium isotope compositions of mantle pyroxenites. Geochimica Et Cosmochimica Acta, 2020, 270, 144-159.	3.9	24
1122	Multi-element isotope study of natrocarbonatites (1993 lava flows) from Oldoinyo Lengai volcano, Tanzania: Implications for core-mantle interactions. Journal of African Earth Sciences, 2020, 162, 103725.	2.0	0
1123	Geochemistry of NW-SE trending Palaeoproterozoic mafic dyke intrusions in the Bundelkhand Craton, India and subcontinental lithospheric mantle processes. Precambrian Research, 2020, 351, 105956.	2.7	9
1124	Global variations of Earth's 520- and 560-km discontinuities. Earth and Planetary Science Letters, 2020, 552, 116600.	4.4	15
1125	Ancient helium and tungsten isotopic signatures preserved in mantle domains least modified by crustal recycling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30993-31001.	7.1	41
1126	Do Supercontinent-Superplume Cycles Control the Growth and Evolution of Continental Crust?. Journal of Earth Science (Wuhan, China), 2020, 31, 1142-1169.	3.2	11
1127	Paleo- to Mesoproterozoic magmatic and tectonic evolution of the southwestern Yangtze Block, south China: New constraints from ca. 1.7–1.5ÂGa mafic rocks in the Huili-Dongchuan area. Gondwana Research, 2020, 87, 248-262.	6.0	16
1128	Peridotite versus pyroxenite input in Mongolian Mesozoic-Cenozoic lavas, and dykes. Lithos, 2020, 376-377, 105747.	1.4	7
1129	Mantle Evolution of Asia Inferred from Pb Isotopic Signatures of Sources for Late Phanerozoic Volcanic Rocks. Minerals (Basel, Switzerland), 2020, 10, 739.	2.0	2
1130	Early Palaeozoic alkaline trachytes in the North Daba Mountains, South Qinling Belt: petrogenesis and geological implications. International Geology Review, 2021, 63, 2037-2056.	2.1	7
1131	Effect of Rumen Protected Methionine and α-Tocopherol on Growth Performance, Carcass Characteristics, and Meat Composition of Late Fattening Hanwoo Steer in High-Temperature Seasons. Animals, 2020, 10, 2430.	2.3	2
1132	An experimental study of trace element mobility during dehydration of lawsonite blueschist along different P-T paths: Implications for geochemical heterogeneity of Earth's mantle. Journal of Asian Earth Sciences, 2020, 197, 104389.	2.3	0
1133	Insights Into the Origins and Compositions of Mantle Plumes: A Comparison of Galápagos and Hawai'i. Geochemistry, Geophysics, Geosystems, 2020, 21, e2019GC008887.	2.5	18
1134	Compositional heterogeneity of Archean mantle estimated from Sr and Nd isotopic systematics of basaltic rocks from North Pole, Australia, and the Isua supracrustal belt, Greenland. Precambrian Research, 2020, 347, 105803.	2.7	5

#	Article	IF	CITATIONS
1135	Various Ages of Recycled Material in the Source of Cenozoic Basalts in SE China: Implications for the Role of the Hainan Plume. Journal of Petrology, 2020, 61, .	2.8	8
1136	Vein-plus-wall rock melting model for the origin of Early Paleozoic alkali diabases in the South Qinling Belt, Central China. Lithos, 2020, 370-371, 105619.	1.4	8
1137	The distribution and abundance of halogens in eclogites: An in situ SIMS perspective of the Raspas Complex (Ecuador). American Mineralogist, 2020, 105, 307-318.	1.9	15
1138	The evolution and distribution of recycled oceanic crust in the Earth's mantle: Insight from geodynamic models. Earth and Planetary Science Letters, 2020, 537, 116171.	4.4	29
1139	Southward-Directed Subduction of the Farallon–Aluk Spreading Ridge and Its Impact on Subduction Mechanics and Andean Arc Magmatism: Insights From Geochemical and Seismic Tomographic Data. Frontiers in Earth Science, 2020, 8, .	1.8	14
1140	A 100 m.y. record of volcanic arc evolution in Nicaragua. Island Arc, 2020, 29, e12346.	1.1	6
1141	Contrasting Old and Young Volcanism from Aitutaki, Cook Islands: Implications for the Origins of the Cook–Austral Volcanic Chain. Journal of Petrology, 2020, 61, .	2.8	14
1143	A Role for Subducted Oceanic Crust in Generating the Depleted Midâ€Ocean Ridge Basalt Mantle. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009148.	2.5	10
1144	Paired EMI-HIMU hotspots in the South Atlantic—Starting plume heads trigger compositionally distinct secondary plumes?. Science Advances, 2020, 6, eaba0282.	10.3	26
1145	High-temperature kinetic isotope fractionation of calcium in epidosites from modern and ancient seafloor hydrothermal systems. Earth and Planetary Science Letters, 2020, 535, 116101.	4.4	11
1146	Insights into the petrogenesis of an intraplate volcanic province: Sr-Nd-Pb-Hf isotope geochemistry of the Bathymetrists Seamount Province, eastern equatorial Atlantic. Chemical Geology, 2020, 544, 119599.	3.3	0
1147	Mantle heterogeneity through Zn systematics in oceanic basalts: Evidence for a deep carbon cycling. Earth-Science Reviews, 2020, 205, 103174.	9.1	44
1148	Mantle plume: the dynamic setting of the origin of Early Paleozoic mafic dykes in Ziyang, Shaanxi Province, Southern Qinling Block, China. Acta Geochimica, 2020, 39, 307-325.	1.7	3
1149	Heavy <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si46.svg"><mml:mrow><mml:mi>Î</mml:mi></mml:mrow></mml:math> 57Fe in ocean island basalts: A non-unique signature of processes and source lithologies in the mantle. Geochimica Et Cosmochimica Acta. 2021, 292, 309-332.	3.9	36
1150	Reaction between basaltic melt and orthopyroxene at 3.0–4.5Â GPa: Implications for the evolution of ocean island basalts in the mantle. Geoscience Frontiers, 2021, 12, 907-919.	8.4	2
1151	The chondritic neodymium stable isotope composition of the Earth inferred from mid-ocean ridge, ocean island and arc basalts. Geochimica Et Cosmochimica Acta, 2021, 293, 575-597.	3.9	10
1152	The volatile budget of Hawaiian magmatism: Constraints from melt inclusions from Haleakala volcano, Hawaii. Journal of Volcanology and Geothermal Research, 2021, 410, 107144.	2.1	4
1153	Late Silurian mafic and felsic magmatism in the South Qilian Belt, northern Tibet Plateau: Response to slab breakoff. Lithos, 2021, 380-381, 105860.	1.4	3

	CITATION	Report	
#	Article	IF	Citations
1154	Chapter 5.2b Erebus Volcanic Province: petrology. Geological Society Memoir, 2021, 55, 447-489.	1.7	18
1155	Mantle Plumes. Encyclopedia of Earth Sciences Series, 2021, , 1094-1107.	0.1	0
1156	Peridotites, chromitites and diamonds in ophiolites. Nature Reviews Earth & Environment, 2021, 2, 198-212.	29.7	40
1157	Recycled calcium carbonate is an efficient oxidation agent under deep upper mantle conditions. Communications Earth & Environment, 2021, 2, .	6.8	13
1158	Extreme isotopic heterogeneity in Samoan clinopyroxenes constrains sediment recycling. Nature Communications, 2021, 12, 1234.	12.8	10
1159	Burying Earth's Primitive Mantle in the Slab Graveyard. Geochemistry, Geophysics, Geosystems, 2021, 22, e2020GC009396.	2.5	16
1160	Spatial Characteristics of Recycled and Primordial Reservoirs in the Deep Mantle. Geochemistry, Geophysics, Geosystems, 2021, 22, e2020GC009525.	2.5	20
1161	Low-δ18O A-type granites in SW China: Evidence for the interaction between the subducted Paleotethyan slab and the Emeishan mantle plume. Bulletin of the Geological Society of America, 2022, 134, 81-93.	3.3	15
1162	Thallium Isotope Fractionation During Magma Degassing: Evidence From Experiments and Kamchatka Arc Lavas. Geochemistry, Geophysics, Geosystems, 2021, 22, e2020GC009608.	2.5	8
1163	Role of Pyroxenite Mantle in the Formation of the Mesozoic Karoo Plume Melts: Evidence from the Western Queen Maud Land, East Antarctica. Geochemistry International, 2021, 59, 357-376.	0.7	3
1164	Simultaneous development of arc-like and OIB-like mafic dikes in eastern Guangdong, SE China: Implications for late Jurassic – early Cretaceous tectonic setting and deep geodynamic processes of South China. Lithos, 2021, 388-389, 106021.	1.4	5
1165	Thallium elemental and isotopic systematics in ocean island lavas. Geochimica Et Cosmochimica Acta, 2021, 301, 187-210.	3.9	6
1166	Segregated oceanic crust trapped at the bottom mantle transition zone revealed from ambient noise interferometry. Nature Communications, 2021, 12, 2531.	12.8	9
1167	Mantle plumes and their role in Earth processes. Nature Reviews Earth & Environment, 2021, 2, 382-401.	29.7	78
1168	Petrogenesis of Basaltic Lavas From the West Pacific Seamount Province: Geochemical and Srâ€Ndâ€Pbâ€Hf Isotopic Constraints. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021598.	3.4	5
1169	Nature of the Mantle Plume Under the Emeishan Large Igneous Province: Constraints From Olivineâ€Hosted Melt Inclusions of the Lijiang Picrites. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB021022.	3.4	11
1170	A heterogeneous subcontinental mantle under the African–Arabian Plate boundary revealed by boron and radiogenic isotopes. Scientific Reports, 2021, 11, 11230.	3.3	9
1171	Boron recycling in the mantle: Evidence from a global comparison of ocean island basalts. Geochimica Et Cosmochimica Acta, 2021, 302, 83-100.	3.9	16

#	Article	IF	CITATIONS
1172	Sulfur Isotope Evidence for a Geochemical Zonation of the Samoan Mantle Plume. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009816.	2.5	2
1174	LIP printing: Use of immobile element proxies to characterize Large Igneous Provinces in the geologic record. Lithos, 2021, 392-393, 106068.	1.4	64
1175	Recycled carbon degassed from the Emeishan plume as the potential driver for the major end-Guadalupian carbon cycle perturbations. Geoscience Frontiers, 2021, 12, 101140.	8.4	9
1176	A subduction influence on ocean ridge basalts outside the Pacific subduction shield. Nature Communications, 2021, 12, 4757.	12.8	22
1177	Geochemistry and Sr–Nd isotopic studies of Paleoproterozoic (<i>c.</i> 2.3 Ga) meta-lamprophyre from the Rapuru area, Nellore Schist Belt, southern India: implications for back-arc basin magmatism and its relevance to the Columbia supercontinent assembly. Geological Society Special Publication, 2022, 513, 103-132.	1.3	2
1178	Machine Learning Reveals Source Compositions of Intraplate Basaltic Rocks. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009946.	2.5	7
1179	A process-oriented approach to mantle geochemistry. Chemical Geology, 2021, 579, 120350.	3.3	18
1180	The slab gap-related Late Cretaceous-Paleocene magmatism of southern Patagonia. Journal of Geodynamics, 2021, 147, 101869.	1.6	2
1181	Mantle overturn and thermochemical evolution of a non-plate tectonic mantle. Earth and Planetary Science Letters, 2021, 569, 117047.	4.4	3
1182	Old subcontinental mantle zircon below Oahu. Communications Earth & Environment, 2021, 2, .	6.8	4
1183	Mixing between chemically variable primitive basalts creates and modifies crystal cargoes. Nature Communications, 2021, 12, 5495.	12.8	5
1184	Potassium distribution and isotope composition in the lithospheric mantle in relation to global Earth's reservoirs. Geochimica Et Cosmochimica Acta, 2021, 309, 151-170.	3.9	13
1185	The Mercury Isotopic Composition of Earth's Mantle and the Use of Mass Independently Fractionated Hg to Test for Recycled Crust. Geophysical Research Letters, 2021, 48, e2021GL094301.	4.0	33
1186	Continuous convergence along the paleo-Pacific margin of Australia during the Early Paleozoic: Insights from the Running River Metamorphics, NE Queensland. Lithos, 2021, 398-399, 106343.	1.4	4
1187	Magnesium isotope constraints on contributions of recycled oceanic crust and lithospheric mantle to generation of intraplate basalts in a big mantle wedge. Lithos, 2021, 398-399, 106327.	1.4	2
1188	Petrology and geochemistry of early Permian mafic–ultramafic rocks in the Wajilitag area of the southwestern Tarim Large Igneous Province: Insights into Fe-rich magma of mantle plume activity. Lithos, 2021, 398-399, 106355.	1.4	2
1190	A Geochemical and Petrological View of Mantle Plume. , 2007, , 165-186.		8
1101	Oceanic islands 2007 245-285		5

#	Article	IF	CITATIONS
1192	Strontium Isotopes. Encyclopedia of Earth Sciences Series, 2016, , 1-6.	0.1	1
1193	Mantle Geochemistry. Encyclopedia of Earth Sciences Series, 2018, , 867-878.	0.1	3
1194	Thallium Isotopes and Their Application to Problems in Earth and Environmental Science. Advances in Isotope Geochemistry, 2012, , 247-269.	1.4	18
1195	Ridge Suction Drives Plume-Ridge Interactions. , 2004, , 285-307.		17
1196	The Sources for Hotspot Volcanism in the South Pacific Ocean. , 2004, , 253-284.		1
1197	Patterns and Geological Significance of Age Determinations in Continental Blocks. , 1984, , 207-219.		2
1198	Mantle Chemistry and Accretion History of the Earth. , 1984, , 1-24.		97
1199	Geochemical Characteristics of Archaean Ultramafic and Mafic Volcanic Rocks: Implications for Mantle Composition and Evolution. , 1984, , 25-46.		17
1200	Mantle Plumes. Encyclopedia of Earth Sciences Series, 2011, , 857-869.	0.1	5
1201	Hot Spots and Mantle Plumes. , 2014, , 1-20.		1
1202	Petrogenetic evaluation of trace element discrimination diagrams. Proceedings of the International Conferences on Basement Tectonics, 1992, , 93-127.	0.1	4
1203	Convective Thinning of the Lithosphere: A Mechanism for Rifting and Mid-Plate Volcanism on Earth, Venus, and Mars. Developments in Geotectonics, 1983, 19, 67-90.	0.3	2
1204	Secular change and the onset of plate tectonics on Earth. Earth-Science Reviews, 2020, 207, 103172.	9.1	171
1205	Geochemistry, petrogenesis and tectonic significance of the volcanic rocks of the Las Tortolas Formation, Coastal Cordillera, northern Chile. Journal of South American Earth Sciences, 2018, 87, 66-86.	1.4	8
1206	Hot Spots and Mantle Plumes. , 2001, , 499-546.		1
1208	Sr-Nd-Pb isotope ratios, geochemical compositions, and 40Ar/39Ar data of lavas from San Felix Island (Southeast Pacific): Implications for magma genesis and sources. Terra Nova, 2000, 12, 90-96.	2.1	2
1209	Applicability of large-ion lithophile and high field strength element basalt discrimination diagrams. International Journal of Digital Earth, 2018, 11, 752-760.	3.9	6
1210	Possible Effects of Spreading Rate on Morb Isotopic and Rare Earth Composition Arising from Melting of a Heterogeneous Source. Journal of Geology, 1989, 97, 247-260.	1.4	31

		CITATION REPORT		
#	Article	412 417	IF	CITATIONS
1212	The Amount of Recycled Crust in Sources of Mantle-Derived Melts. Science, 2007, 316	, 412-417.	12.6	470
1213	Subducted oceanic crust as the origin of seismically slow lower-mantle structures. Prog Earth and Planetary Science, 2020, 7, .	gress in	3.0	32
1215	Do mantle plumes exist?. Episodes, 2006, 29, 162-168.		1.2	56
1216	A trace element perspective on the source of ocean island basalts (OIB) and fate of sub crust (SOC) and mantle lithosphere (SML). Episodes, 2012, 35, 310-327.	oducted ocean	1.2	68
1217	A numerical evolutionary model of interacting continents floating on a spherical Earth. Journal of Earth Sciences, 2001, 3, 83-95.	Russian	0.7	6
1218	Lithium, strontium, and neodymium isotopic compositions of oceanic island basalts in region: constraints on a Polynesian HIMU origin. Geochemical Journal, 2005, 39, 91-10	the Polynesian 3.	1.0	44
1219	Geochemistry and cosmochemistry of lithium. Utility of the Li isotopes as a geochemic Journal of Mineralogy, Petrology and Economic Geology, 1993, 88, 415-431.	al tracer	0.1	6
1220	Geochemistry of Zero-Age N-MORB from Hole 648B, ODP Legs 106-109, M.A.R., 22°N	V., O,,.		2
1221	Mineralogy and Geochemistry of a Basalt from Site 738; Implications for the Tectonic H Southernmost Part of the Kerguelen Plateau. , 0, , .	listory of the		10
1222	Sr-Nd-Pb Isotope Geochemistry of Leg 144 West Pacific Guyots: Implications for the Ge Evolution of the "SOPITA" Mantle Anomaly. , 0, , .	eochemical		5
1223	Leg 185 Synthesis: Sampling the Oldest Crust in the Ocean Basins to Understand Eartl and Geochemical Fluxes. , 0, , .	h's Geodynamic		12
1224	Mantle-Derived Magmas and Magmatic Ni-Cu-(PGE) Deposits. , 2005, , .			86
1225	Effects of dietary levels of tapioca residue on growth performance and carcass charact Hanwoo steers. Asian-Australasian Journal of Animal Sciences, 2019, 32, 1128-1136.	eristics in	2.4	3
1226	Release of subducted sedimentary nitrogen throughout Earth's mantle. Geochemic Letters, 2016, , 148-159.	cal Perspectives	5.0	45
1227	Generation of Tholeiitic Magmas in the Interaction Zone of Evolving Ridge, Fracture Zo Evidence from Basalts in 332Đ' Hole, DSDP Leg 37, North Atlantic. Geochemistry Inter 903-921.	ne, and Plume: national, 2021, 59,	0.7	0
1228	Understanding the Yanshan volcano eruption in the Chaihe–Arxan volcanic field, nor Arabian Journal of Geosciences, 2021, 14, 1.	theastern China.	1.3	3
1229	Petrology of Young Submarine Hotspot Lava: Composition and Classification. , 2004, ,	431-459.		1
1230	Oceanic islands. , 2007, , 245-285.			0

#	Article	IF	CITATIONS
1232	Break-up of Gondwana and Assembly of Antarctica. , 2011, , 491-515.		0
1233	Mantle convection for geologists. Choice Reviews, 2011, 49, 49-1473-49-1473.	0.2	2
1234	Cenozoic alkaline volcanisms and mantle dynamics in eastern margin of Eurasian continent. Ganseki Kobutsu Kagaku, 2013, 42, 68-82.	0.1	0
1235	Sea Floor Rocks. , 2014, , 75-108.		Ο
1236	Cosmo- and Geochemical Cycles and Balance For the Contents of Yttrium and/or Rare Earth Elements. , 1987, , 137-205.		0
1238	Review in Zirconology. III. Rare-earth element geochemistry of zircon Journal of Mineralogy, Petrology and Economic Geology, 1994, 89, 1-14.	0.1	1
1239	A review of isotope geochemical studies for Iceland. I. Isotope-geochemical characterization of Icelandic hot spot Journal of Mineralogy, Petrology and Economic Geology, 1995, 90, 379-387.	0.1	1
1240	Plate Tectonics: An Overview. , 2015, , 1-7.		0
1241	Mantle Geochemistry. Encyclopedia of Earth Sciences Series, 2016, , 1-12.	0.1	1
1242	Mid-Ocean Ridge Basalts (MORB). Encyclopedia of Earth Sciences Series, 2017, , 1-9.	0.1	0
1243	History of Geochemistry. Encyclopedia of Earth Sciences Series, 2017, , 1-15.	0.1	0
1244	Formation and Evolution of the Earth. Encyclopedia of Earth Sciences Series, 2018, , 1-18.	0.1	Ο
1245	Formation and Evolution of the Earth. Encyclopedia of Earth Sciences Series, 2018, , 498-513.	0.1	0
1246	Mid-Ocean Ridge Basalts (MORB). Encyclopedia of Earth Sciences Series, 2018, , 924-932.	0.1	0
1247	Thallium Isotopes. Encyclopedia of Earth Sciences Series, 2018, , 1429-1433.	0.1	0
1248	Effect of Total Digestible Nutrients Level of Concentrates on Growth Performance, Carcass Characteristics, and Meat Composition of Korean Hanwoo Steers. Food Science of Animal Resources, 2019, 39, 388-401.	4.1	2
1249	Rhönite in Cenozoic alkali basalt from Changle, Shandong Province, China, and its significance. European Journal of Mineralogy, 2020, 32, 325-346.	1.3	1
1250	Multi-stage melting of enriched mantle components along the eastern Gakkel Ridge. Chemical Geology, 2021, 586, 120594.	3.3	4

#	Article	IF	CITATIONS
1251	A Plate–Mantle Convection System in the West Pacific Revealed by Tertiary Ultramafic–Mafic Volcanic Rocks in Southeast China. Earth and Space Science, 2021, 8, e2020EA001324.	2.6	0
1252	Clinopyroxene-hosted melt inclusions in seamount basalts in the Muli mélange in Sichuan, SW China: Tracks of hotspot-ridge interaction in the Ganzi-Litang Paloetethys Ocean. Acta Petrologica Sinica, 2020, 36, 925-947.	0.8	2
1253	Mantle Plumes. Encyclopedia of Earth Sciences Series, 2020, , 1-13.	0.1	0
1254	Improvement of Kolbroek Boar Growth Performance and Carcass Quality through Dietary Crude Protein Supplementation. Open Journal of Animal Sciences, 2020, 10, 502-513.	0.6	1
1255	Mantle sources and magma genesis of Late Cenozoic basalts in Weizhou Island, Guangxi, China. Acta Petrologica Sinica, 2020, 36, 2092-2110.	0.8	6
1256	Geochemistry and mineralization of titanium. Acta Petrologica Sinica, 2020, 36, 68-76.	0.8	1
1257	Strontium Isotopes. Encyclopedia of Earth Sciences Series, 2018, , 1379-1384.	0.1	2
1259	Mantle sources of ocean islands basalts revealed from noble gas isotope systematics. Chemical Geology, 2022, 587, 120626.	3.3	14
1260	The life cycle of large igneous provinces. Nature Reviews Earth & Environment, 2021, 2, 840-857.	29.7	33
1261	Plume-Induced Subduction Initiation: Revisiting Models and Observations. Frontiers in Earth Science, 2021, 9, .	1.8	13
1262	Whole rock and mineral chemistry of hornblenditic xenoliths in volcanic alkaline rocks from the northern part of Uromieh Dokhatar magmatic belt (NW Iran). Comptes Rendus - Geoscience, 2021, 353, 187-215.	1.2	1
1263	Heterogeneous nickel isotope compositions of the terrestrial mantle – Part 2: Mafic lithologies. Geochimica Et Cosmochimica Acta, 2022, 317, 349-364.	3.9	10
1264	Porphyry copper deposit formation in arcs: What are the odds?. , 2022, 18, 130-155.		26
1265	High ³ He/ ⁴ He in central Panama reveals a distal connection to the Galápagos plume. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	12
1266	Early global mantle chemical and isotope heterogeneity revealed by the komatiite-basalt record: The Western Australia connection. Geochimica Et Cosmochimica Acta, 2022, 320, 238-278.	3.9	13
1267	Food for a Volcanic Diet. Science, 2007, 316, 378-379.	12.6	0
1268	Mantle Source Evolution and Volcanism Migration at Ambrym Volcano, Vanuatu Island Arc. SSRN Electronic Journal, O, , .	0.4	0
1269	Aptian Flood Basalts in Bacalhau Field: Petrogenesis and Geodynamics of Post-Rift Tholeiites in the Pre-Salt of Santos Basin, Brazil. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
1270	Clobal trends in novel stable isotopes in basalts: Theory and observations. Geochimica Et Cosmochimica Acta, 2022, 318, 388-414.	3.9	26
1271	An eclogitic component in the Pitcairn mantle plume: Evidence from olivine compositions and Fe isotopes of basalts. Geochimica Et Cosmochimica Acta, 2022, 318, 415-427.	3.9	15
1272	Geochemical Characteristics and Zircon U-Pb Geochronology of Diabase in the Jinchanghe Mining Area, Western Yunnan, SW China: Implications for Tectonic and Magmatic Evolution of the Baoshan Block. Minerals (Basel, Switzerland), 2022, 12, 176.	2.0	2
1273	B″ not D″ as the source of intraplate volcanism. , 2022, , .		0
1274	Earth's missing argon paradox resolved by recycling of oceanic crust. Nature Geoscience, 2022, 15, 85-90.	12.9	9
1275	The Extent, Nature, and Origin of K and Rb Depletions and Isotopic Fractionations in Earth, the Moon, and Other Planetary Bodies. Planetary Science Journal, 2022, 3, 29.	3.6	16
1276	Linking Chemical Heterogeneity to Lithological Heterogeneity of the Samoan Mantle Plume With Fe‣râ€Ndâ€Pb Isotopes. Journal of Geophysical Research: Solid Earth, 2021, 126, .	3.4	10
1277	Origin of low-MgO primitive intraplate alkaline basalts from partial melting of carbonate-bearing eclogite sources. Geochimica Et Cosmochimica Acta, 2022, 324, 240-261.	3.9	13
1278	Rifting of the Indian passive continental margin: Insights from the Langjiexue basalts in the central Tethyan Himalaya, southern Tibet. Bulletin of the Geological Society of America, 2022, 134, 2633-2648.	3.3	8
1279	Mantle Source Components and Magmatic Evolution for the Comei Large Igneous Province: Evidence from the Early Cretaceous Niangzhong Mafic Magmatism in Tethyan Himalaya. Journal of Earth Science (Wuhan, China), 2022, 33, 133-149.	3.2	7
1280	Partitioning Behaviors of Cobalt and Manganese along Diverse Melting Paths of Peridotitic and MORB-Like Pyroxenitic Mantle. Journal of Petrology, 2022, 63, .	2.8	5
1281	Contribution of recycled sediments to the mantle reservoir beneath Hainan Island: Evidence from Sr, Nd, Pb, Hf, and Mg isotopic analyses of Late Cenozoic basalts. Chemie Der Erde, 2022, , 125883.	2.0	0
1282	Mobile mantle could explain volcanic hotspot locations. Nature, 2022, 603, 796-797.	27.8	0
1283	Near-zero 33S and 36S anomalies in Pitcairn basalts suggest Proterozoic sediments in the EM-1 mantle plume. Earth and Planetary Science Letters, 2022, 584, 117422.	4.4	6
1284	The komatiite testimony to ancient mantle heterogeneity. Chemical Geology, 2022, 594, 120776.	3.3	13
1285	Geochemical constraints on source nature and recycled oceanic crust in the mantle of the Celebes Sea. Lithos, 2022, 418-419, 106685.	1.4	1
1286	Exploring small-scale recycled mantle components with intraplate continental twin volcanoes. Chemical Geology, 2022, 598, 120842.	3.3	1
1287	The mantle source of basalts from Reunion Island is not more oxidized than the MORB source mantle. Contributions To Mineralogy and Petrology, 2022, 177, 1.	3.1	8

#	Article	IF	CITATIONS
1288	Source and magmatic evolution of ocean island basalts from the Pohnpei Island, Northwest Pacific Ocean: Insights from olivine geochemistry. Acta Oceanologica Sinica, 2021, 40, 27-38.	1.0	1
1289	History of geochemistry. , 1998, , 315-322.		1
1290	A perisphere/LLAMA model for Hawaiian volcanism. Special Paper of the Geological Society of America, 0, , 305-324.	0.5	0
1291	Insights from Olivine Chemistry into Crustal Magmatic Processes and the Mantle Source Lithology of Basalts from Hainan Island, China. SSRN Electronic Journal, 0, , .	0.4	0
1292	Possible Control of Earth's Boron Budget by Metallic Iron. Geophysical Research Letters, 2022, 49, .	4.0	3
1293	Chromium isotope fractionation during magmatic processes: Evidence from mid-ocean ridge basalts. Geochimica Et Cosmochimica Acta, 2022, 327, 79-95.	3.9	7
1294	Dupal Anomaly and Identification using Ndâ€Hf Isotopes. Acta Geologica Sinica, 2022, 96, 416-429.	1.4	0
1295	Geochemical constraints on the nature of Late Archean basaltic-andesitic magmatism in the North China Craton. Earth-Science Reviews, 2022, 230, 104065.	9.1	15
1296	Noble gas isotope systematics in the Canary Islands and implications for refractory mantle components. Geochimica Et Cosmochimica Acta, 2022, 331, 35-47.	3.9	8
1297	Calcium isotope constraints on OIB and MORB petrogenesis: The importance of melt mixing. Earth and Planetary Science Letters, 2022, 593, 117665.	4.4	21
1298	Multi-mode chemical exchange in seafloor alteration revealed by lithium and potassium isotopes. Chemical Geology, 2022, 606, 121004.	3.3	5
1299	Contrasting oxidation states of low-Ti and high-Ti magmas control Ni-Cu sulfide and Fe-Ti oxide mineralization in Emeishan Large Igneous Province. Geoscience Frontiers, 2022, 13, 101434.	8.4	2
1300	Compositional heterogeneity in the mantle transition zone. Nature Reviews Earth & Environment, 2022, 3, 533-550.	29.7	4
1301	Improved in situ analysis of lead isotopes in lowâ€Pb melt inclusions using laser ablation–multiâ€collector–inductively coupled plasma–mass spectrometry. Rapid Communications in Mass Spectrometry, 2022, 36, .	1.5	2
1302	lron isotope evidence in ocean island basalts for plume- and plate-controlled melting, São Miguel, Azores. Geochimica Et Cosmochimica Acta, 2022, 335, 111-123.	3.9	3
1303	Sources of dehydration fluids underneath the Kamchatka arc. Nature Communications, 2022, 13, .	12.8	5
1304	Physics and chemistry of mantle plumes. Eos, 1991, 72, 236-237.	0.1	8
1305	Mantle plume-subducted oceanic slab interaction contributes to geochemical heterogeneity of the Emeishan large igneous province. Chemical Geology, 2022, 611, 121117.	3.3	6

#	Article	IF	CITATIONS
1306	Insights from olivine chemistry into crustal magmatic processes and the mantle source lithology of basalts from Hainan Island, China. Lithos, 2022, 430-431, 106852.	1.4	3
1307	<i>In situ</i> measurement of Sm–Nd isotopic ratios in geological materials with Nd < 100 μg g ^{â''1} by LA-MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 2022, 37, 1776-1786.	3.0	2
1308	Barium isotopes in ocean island basalts as tracers of mantle processes. Geochimica Et Cosmochimica Acta, 2022, 336, 436-447.	3.9	9
1309	The age and origin of the Balleny and Scott volcanic provinces, Ross Sea, Antarctica. Chemie Der Erde, 2022, 82, 125904.	2.0	1
1310	Insights into the Tethyan Mantle Heterogeneity: Trace Element Evidence from the Karakaya Complex, Central Anatolia. Geosystems and Geoenvironment, 2022, , 100139.	3.2	0
1311	Olivines and Their Melt Inclusions in Potassic Volcanic Rocks Record Mantle Heterogeneity beneath the Southern Tibet. Journal of Petrology, 2022, 63, .	2.8	1
1312	Abrolhos Magmatic Province petrogenesis and its link with the Vitória-Trindade Ridge, Southeast Brazilian Margin, South Atlantic Ocean. Journal of South American Earth Sciences, 2022, 120, 104075.	1.4	1
1313	Hemispheric Geochemical Dichotomy of the Mantle Is a Legacy of Austral Supercontinent Assembly and Onset of Deep Continental Crust Subduction. AGU Advances, 2022, 3, .	5.4	9
1314	Protolith origin of eclogites from the North Qaidam UHP metamorphic Belt, NW China: Implications for the breakup of the Rodinia supercontinent. Precambrian Research, 2023, 384, 106942.	2.7	2
1315	äį¯å†²å,¦ç»"构演å•̀解剖ä,Žç"究展望. Diqiu Kexue - Zhongguo Dizhi Daxue Xuebao/Earth Science - J Geosciences, 2022, 47, 3073.	ournal of C	China Univer
1316	Petrogenesis of the Limerick Igneous Suite: insights into the causes of post-eruptive alteration and the magmatic sources underlying the Iapetus Suture in SW Ireland. Journal of the Geological Society, 2023, 180, .	2.1	1
1317	Olivine and melt inclusion chemical constraints on the nature and origin of the common mantle component beneath eastern Asia. Contributions To Mineralogy and Petrology, 2022, 177, .	3.1	3
1318	Large-scale structures in the Earth's interior: Top-down hemispherical dynamics constrained by geochemical and geophysical approaches. Frontiers in Earth Science, 0, 10, .	1.8	1
1319	Heterogeneous Fossil Réunion Plume Component in the Source Region of Enriched MORB Along the Central Indian Ridge Between 12° and 17°S. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	1
1320	Long-term core–mantle interaction explains W-He isotope heterogeneities. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	6
1321	Shallow recycling of lower continental crust: The Mahoney Seamount at the Southwest Indian Ridge. Earth and Planetary Science Letters, 2023, 602, 117968.	4.4	2
1322	Mantle source lithologies for the Columbia River flood basalt province. Contributions To Mineralogy and Petrology, 2023, 178, .	3.1	2
1323	A Mantle Plume Connection for Alkaline Lamprophyres (Sannaites) from the Permian Tarim Large Igneous Province: Petrological, Geochemical and Isotopic Constraints. Journal of Petrology, 2023, 64,	2.8	3

#	Article	IF	CITATIONS
1324	In-situ Sr isotope disequilibrium in plagioclases from Late Cenozoic basalts in Leiqiong area: Evidence for the role of the Hainan plume and mantle metasomatism due to a paleo-subduction event. Frontiers in Earth Science, 0, 11, .	1.8	0
1325	A robust discrimination scheme for ocean island basalts based on Ce/Rb, Tb/La, and Ba/Nb ratios. Chemical Geology, 2023, 628, 121486.	3.3	1
1326	A peridotite source for strongly alkalic ultrabasic HIMU lavas of the Oslo Rift, Norway. Chemical Geology, 2023, 622, 121377.	3.3	1
1327	Contribution from ancient subducted slab to the Emeishan Large Igneous Province: Constraints from the petrogenesis of mafic intrusions in the western Guangxi area, South China. Lithos, 2023, 446-447, 107131.	1.4	0
1328	Melting a melt-metasomatized subcontinental lithospheric mantle: Evidence from Oligocene lamproites within the Gangdese batholith, southern Tibet. Lithos, 2023, 448-449, 107163.	1.4	0
1331	Hf isotope compositions of basaltic rocks from Jeju Island, South Korea: Implications for the origin of the dichotomous isotopic distribution of late Cenozoic magmatism in East Asia. Lithos, 2023, 442-443, 107047.	1.4	2
1332	The isotopic origin of Lord Howe Island reveals secondary mantle plume twinning in the Tasman Sea. Chemical Geology, 2023, 622, 121374.	3.3	2
1333	Petrogenesis and Geodynamic Significance of Xenolithic Eclogites. Annual Review of Earth and Planetary Sciences, 2023, 51, 521-549.	11.0	7
1334	Geodynamics of the one-way subduction of the Neo-Tethys Ocean. Chinese Science Bulletin, 2023, 68, 1699-1708.	0.7	7
1335	Geochemical data, Nd and Hf isotopes and U–Pb geochronology of meta-mafic rocks from western Gondwana suture zone. Journal of South American Earth Sciences, 2023, 127, 104373.	1.4	1
1337	Linking Geodynamic Models of Basalt Segregation in Mantle Plumes to the Xâ€Discontinuity Observed Beneath Hotspots. Journal of Geophysical Research: Solid Earth, 2023, 128, .	3.4	0
1338	The role of recycled oceanic crust in the alkaline basalts: Evidence from Zn isotopic compositions of alkaline basalts from the Madeira hotspot (eastern North Atlantic). Chemical Geology, 2023, 635, 121606.	3.3	1
1339	The global lead isotope system: Toward a new framework reflecting Earth's dynamic evolution. Earth-Science Reviews, 2023, , 104483.	9.1	1
1340	Variable distribution of subducted oceanic crust beneath subduction regions of the lowermost mantle. Physics of the Earth and Planetary Interiors, 2023, 341, 107063.	1.9	1
1341	Earth's evolving geodynamic regime recorded by titanium isotopes. Nature, 2023, 621, 100-104.	27.8	7
1342	Magmatic evolution during proto-oceanic rifting at Alu, Dalafilla and Borale Volcanoes (Afar) determined by trace element and Sr-Nd-Pb isotope geochemistry. Lithos, 2023, 456-457, 107311.	1.4	0
1343	Double arc–continent collision record in the latest Mesozoic–Cenozoic tectonic history of the Himalayan–Tibetan orogenic belt in western Pakistan. Journal of the Geological Society, 2023, 180, .	2.1	1
1344	Earth's mantle composition revealed by mantle plumes. Nature Reviews Earth & Environment, 2023, 4, 604-625.	29.7	1

#	Article	IF	CITATIONS
1345	Geochemical Characteristics of the Volcanic Rocks Associated with Boron-Rich Deposits from the Xiongba Basin, Qinghai–Tibet Plateau. Geosciences (Switzerland), 2023, 13, 265.	2.2	0
1346	The origin of Na-alkaline lavas revisited: new constraints from experimental melting of amphibole-rich metasomes+lherzolite at uppermost mantle pressure. Contributions To Mineralogy and Petrology, 2023, 178, .	3.1	0
1347	Molybdenum isotope evidence for subduction-modified, recycled mafic oceanic crust in the mantle sources of ocean island basalts from La Palma and Hawaii. Earth and Planetary Science Letters, 2023, 621, 118399.	4.4	3
1348	Barium isotope compositions of altered oceanic crust from the IODP Site 1256 at the East Pacific rise. Chemical Geology, 2023, 641, 121778.	3.3	1
1349	Molybdenum isotopic heterogeneity for intraplate basalts and its origin. Chemical Geology, 2023, 641, 121784.	3.3	1
1350	å¤å®™åœ°è^ä,Žæෑå⊷æž"é€ <bold>: </bold> è§,嬟ä,Žè§£é‡Š. SCIENTIA SINICA Te	ræ,32024,	594, 1-30.
1351	Geochemical modeling. , 2023, , .		0
1352	Mixing time of heterogeneities in a buoyancy-dominated magma ocean. Geophysical Journal International, 2023, 236, 764-777.	2.4	1
1353	Calcium isotopic variability in hotspot lavas controlled by partial melting and source lithological heterogeneity. Chemical Geology, 2024, 644, 121857.	3.3	2
1354	Chlorine isotope evidence for Farallon-derived metasomatism of the North American lithospheric mantle. Geochimica Et Cosmochimica Acta, 2024, 365, 70-84.	3.9	0
1355	Plate tectonics in the Archean: Observations versus interpretations. Science China Earth Sciences, 0, ,	5.2	0
1356	Basaltic magmatism from Halab- Nobaran area: an example of Late Cretaceous magmatic activity in the Urumia-Dokhtar magmatic arc , 2023, 31, 435-454.		0
1357	Late Cretaceous basalts in the eastern South China Block: The result of slab tearing during retreating subduction of the Paleo-Pacific plate. Journal of Asian Earth Sciences, 2024, 261, 105979.	2.3	0
1358	How lowermost mantle viscosity controls the chemical structure of Earth's deep interior. Communications Earth & Environment, 2023, 4, .	6.8	0
1359	The significance of recycled oceanic mantle lithosphere beneath the Arctic Gakkel Ridge. Earth and Planetary Science Letters, 2024, 626, 118553.	4.4	0
1360	Deep Mantle Component and Continental Crust Remobilization in the Source of Vesteris Seamount, East Greenland Margin. Geochemistry, Geophysics, Geosystems, 2024, 25, .	2.5	0
1361	Extensive H2O degassing in deeply erupted submarine glasses inferred from Samoan melt inclusions: The EM2 mantle source is damp, not dry. Chemical Geology, 2024, 651, 121979.	3.3	0
1362	lron isotopic compositions of HIMU Ocean island basalts: Implications for the mantle source lithology. Lithos, 2024, 470-471, 107531.	1.4	0

#	Article	IF	CITATIONS
1363	Calcium isotope variability among ocean islands reveals the physical and lithological controls on mantle partial melting. Geochimica Et Cosmochimica Acta, 2024, , .	3.9	0
1364	Full-waveform tomography reveals iron spin crossover in Earth's lower mantle. Nature Communications, 2024, 15, .	12.8	0
1365	Deep recycling of crustal materials by the Hainan mantle plume: evidence from Zn–Sr–Nd–Pb isotopes of Hainan Island basalts. Contributions To Mineralogy and Petrology, 2024, 179, .	3.1	0
1366	Heterogeneous mantle sources for basaltic rocks of the Nagaland–Manipur Hill Ophiolite (NMHO) complex of North-Eastern India: inferences from source melting models. International Journal of Earth Sciences, 2024, 113, 757-777.	1.8	0
1367	Formation and prolonged preservation of dense arc root cumulates: insights from retrograded eclogite xenoliths in the western Yangtze craton. Contributions To Mineralogy and Petrology, 2024, 179, .	3.1	0