Accelerating innovative water treatment in Latin Ameri

Nature Sustainability 6, 349-351

DOI: 10.1038/s41893-022-01042-z

Citation Report

#	ARTICLE	IF	CITATIONS
1	Selectivity modulation during electrochemical reduction of nitrate by electrolyte engineering. Separation and Purification Technology, 2023, 321, 124233.	7.9	1
2	Enhanced antibiotic degradation performance of Cd0.5Zn0.5S/Bi2MoO6 S-scheme photocatalyst by carbon dot modification. Journal of Materials Science and Technology, 2023, 164, 59-67.	10.7	104
3	Ti/RuO2-lrO2 anodic electrochemical oxidation composting leachate biochemical effluent: Response surface optimization and failure mechanism. Chemosphere, 2023, 331, 138777.	8.2	3
4	Hybrid electrolysis and membranes system for apple packing houses water treatment. Water Science and Technology, 2023, 88, 677-693.	2.5	1
5	Preparation of Yb–Sb co-doped Ti/SnO2 electrode for electrocatalytic degradation of sulfamethoxazole (SMX). Chemosphere, 2023, 339, 139633.	8.2	3
6	Application of an Fe-TAML/H2O2 system for rapid degradation of organic matter. Journal of Environmental Chemical Engineering, 2023, 11, 110994.	6.7	1
7	Electrochemical technologies as modular adaptative decentralized treatment systems to enact water security for Latin America: Insights and prospects. Water Security, 2023, 20, 100147.	2.5	1
8	Approaching easy water disinfection for all: Can in situ electrochlorination outperform conventional chlorination under realistic conditions?. Water Research, 2024, 250, 121014.	11.3	2
9	Navigating the electrodisinfection frontier: A roadmap towards resilient implementation. Current Opinion in Electrochemistry, 2024, 43, 101437.	4.8	0
10	Justice and injustice in "Modular, Adaptive and Decentralized―(MAD) water systems. Water Security, 2023, 20, 100151.	2.5	O
11	Step-by-step guide for electrochemical generation of highly oxidizing reactive species on BDD for beginners. Frontiers in Chemistry, 0, 11 , .	3.6	0
12	Carbon quantum dots-modified tetra (4-carboxyphenyl) porphyrin/BiOBr S-scheme heterojunction for efficient photocatalytic antibiotic degradation. Science China Materials, 2024, 67, 562-572.	6.3	4
13	Electrochemical oxidation of surfactants as an essential step to enable greywater reuse. Environmental Technology and Innovation, 2024, 34, 103563.	6.1	0
14	Chemically bonded Mn0.5Cd0.5S/BiOBr S-scheme photocatalyst with rich oxygen vacancies for improved photocatalytic decontamination performance., 2024, 3, 100183.		0