Machine learning for membrane design and discovery

Green Energy and Environment 9, 54-70 DOI: 10.1016/j.gee.2022.12.001

Citation Report

#	Article	IF	CITATIONS
1	Machine learning in gas separation membrane developing: Ready for prime time. Separation and Purification Technology, 2023, 313, 123493.	7.9	13
2	Data-driven future for nanofiltration: Escaping linearity. , 2023, 3, 100040.		5
3	Understanding Single-Protein Fouling in Micro- and Ultrafiltration Systems via Machine-Learning-Based Models. Industrial & Engineering Chemistry Research, 2023, 62, 7610-7621.	3.7	0
4	Prospects of artificial intelligence in the development of sustainable separation processes. Frontiers in Sustainability, 0, 4, .	2.6	3
5	Ensemble hybrid machine learning to simulate dye/divalent salt fractionation using a loose nanofiltration membrane. Environmental Science Advances, 2023, 2, 1446-1459.	2.7	4
6	Machine Learning for Heavy Metal Removal from Water: Recent Advances and Challenges. ACS ES&T Water, 2024, 4, 820-836.	4.6	3
7	Sustainable valorisation of food waste into engineered biochars for CO ₂ capture towards a circular economy. Green Chemistry, 2024, 26, 1790-1805.	9.0	0
8	In-situ growth of molecular waterwheel (Noria) functionalized porous organic polymer membrane for fast separation in liquid. Separation and Purification Technology, 2024, 337, 126443.	7.9	0
9	Machine learning for membrane design in energy production, gas separation, and water treatment: a review. Environmental Chemistry Letters, 2024, 22, 505-560.	16.2	0
10	Polymeric porous membranes as solid support and protective material in microextraction processes: A review. TrAC - Trends in Analytical Chemistry, 2024, 173, 117651.	11.4	0