Characterization and Thermal Treatment of the Black M Batteries

Sustainability 15, 15 DOI: 10.3390/su15010015

Citation Report

#	Article	IF	CITATIONS
1	Study on Pyrolysis Pretreatment Characteristics of Spent Lithium-Ion Batteries. Separations, 2023, 10, 259.	2.4	4
2	A simple methodology for the quantification of graphite in end-of-life lithium-ion batteries using thermogravimetric analysis. IScience, 2023, 26, 107782.	4.1	1
3	Recovery of Graphite from Spent Lithium-Ion Batteries. Recycling, 2023, 8, 79.	5.0	0
4	An Electrochemical Approach to the Recovery of Metals Typical of Battery Waste. Metals, 2024, 14, 109.	2.3	0
5	A Review of Lithium-Ion Battery Recycling: Technologies, Sustainability, and Open Issues. Batteries, 2024, 10, 38.	4.5	1
6	Battery Waste Management in Europe: Black Mass Hazardousness and Recycling Strategies in the Light of an Evolving Competitive Regulation. Recycling, 2024, 9, 13.	5.0	0
7	Characterization of Black Mass After Different Pre-Treatment Processes for Optimized Metal Recovery. Minerals, Metals and Materials Series, 2024, , 389-408.	0.4	0
8	Modelling Binder Degradation in the Thermal Treatment of Spent Lithium-Ion Batteries by Coupling Discrete Element Method and Isoconversional Kinetics. Batteries, 2024, 10, 63.	4.5	Ο