CITATION REPORT List of articles citing

Multidimensional quantum well laser and temperature dependence of its threshold current

DOI: 10.1063/1.92959 Applied Physics Letters, 1982, 40, 939-941.

Source: https://exaly.com/paper-pdf/15782216/citation-report.pdf

Version: 2024-04-20

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
2340	Near thresholdless laser operation at room temperature. 2015 , 2, 66		
2339	Quantum well laser operation at low temperature in strong magnetic fields. 1983 , 48, 671-673		1
2338	Graded barrier single quantum well lasers - Theory and experiment. 1983 , 19, 1025-1030		59
2337	Two-dimensional quantum-mechanical confinement of electrons in DH lasers by strong magnetic fields. 1983 , 19, 1255-1257		4
2336	Elastic collision cross sections for laser-induced diffusion. 1983 , 19, 1257-1258		5
2335	The two-dimensional electron gas and its technical applications. 1983 , 227-257		5
2334	Direct intersubband optical absorption of semiconducting thin wire. 1983 , 54, 5482-5484		28
2333	Spontaneous Emission Characteristics of Quantum Well Lasers in Strong Magnetic Fields An Approach to Quantum-Well-Box Light Source <i>Japanese Journal of Applied Physics</i> , 1983 , 22, L804-L80)6 ^{1.4}	29
2332	Quantum noise and dynamics in quantum well and quantum wire lasers. <i>Applied Physics Letters</i> , 1984 , 45, 950-952	3.4	199
2331	Double heterojunction lasers and quantum well lasers. 1984 , 29, 123-161		5
2330	Double heterojunction lasers and quantum well lasers. 1984 , 29, 123-161		5
2329	Radiative efficiency in low-dimensional semiconductor structures. 1985 , 21, 733		7
2328	QUANTUM-WELL HETEROSTRUCTURE LASERS. 1985 , 257-310		4
2327	Light emission from zero-dimensional excitons P hotoluminescence from quantum wells in strong magnetic fields. <i>Applied Physics Letters</i> , 1985 , 46, 83-85	3.4	37
2326	Binding Energies of Wannier Excitons in Ga1-xAlxAs Quantum-Well Wires. <i>Japanese Journal of Applied Physics</i> , 1985 , 24, 1370-1371	1.4	33
2325	Theoretical Gain of Quantum-Well Wire Lasers. <i>Japanese Journal of Applied Physics</i> , 1985 , 24, L95-L97	1.4	168
2324	Enhanced modulation bandwidth of GaAlAs double heterostructure lasers in high magnetic fields: Dynamic response with quantum wire effects. <i>Applied Physics Letters</i> , 1985 , 47, 1142-1144	3.4	35

2323	Physical limits of heterostructure field-effect transitors and possibilities of novel quantum field-effect devices. 1986 , 22, 1845-1852		27	
2322	Quantum well lasersGain, spectra, dynamics. 1986 , 22, 1887-1899		456	
2321	Giant oscillations and increase of the photoluminescence efficiency of GaAs-AlGaAs modulation-doped multiquantum wells as a function of axial magnetic field. 1986 , 174, 136-142		8	
2320	Dynamic and spectral properties of semiconductor lasers with quantum-well and quantum-wire effects. 1986 , 174, 155-162		20	
2319	Theory of Auger recombination in a quantum well wire. 1986 , 174, 169-174		8	
2318	Gain and the threshold of three-dimensional quantum-box lasers. 1986 , 22, 1915-1921		892	
2317	Binding Energies of Wannier Excitons in Ga1-xAlxAs Quantum-Well Wires. <i>Japanese Journal of Applied Physics</i> , 1986 , 25, 1875-1878	1.4	9	
2316	Recombination coefficients in low-dimensional systems, with special reference to long-wavelength quaternary lasers. 1986 , 133, 118		1	
2315	Reduced temperature sensitivity AlxGa1\(As-GaAs\) quantum well lasers with (Si2)x(GaAs)1\(Barriers\) Applied Physics Letters, 1986 , 48, 1156-1158	3.4	3	
2314	Reduction of the spectral linewidth of semiconductor lasers with quantum wire effects pectral properties of GaAlAs double heterostructure lasers in high magnetic fields. <i>Applied Physics Letters</i> , 1986 , 48, 384-386	3.4	28	
2313	Calculated Threshold Current Densityof Multi-Quantum-Well Wire Lasers. <i>Japanese Journal of Applied Physics</i> , 1987 , 26, 236-238	1.4		
2312	One-dimensional GaAs wires fabricated by focused ion beam implantation. <i>Applied Physics Letters</i> , 1987 , 51, 1620-1622	3.4	51	
2311	Chapter 7 Quantum Confinement Heterostructure Semiconductor Lasers. 1987, 397-458		16	
2310	The Physics of the Quantum Well Laser. 1987 , T19A, 209-214		9	
2309	Horizons for new semiconducting materials*. 1987 , 147, 217-228		3	
2308	Novel infrared band-aligned superlattice laser. <i>Applied Physics Letters</i> , 1987 , 51, 1404-1406	3.4	54	
2307	Gigantic nonlinear optical polarizability of semiconductor microcrystallites. 1987, 62, 465-469		72	
2306	Relations between theT 0 values of bulk and quantum-well GaAs. 1987, 44, 151-153		47	

	y Level Discreteness of CuCl Electrons Confined to a Three-Dimensional Potential Well. 1988 , 11-K15	{	3
2304 Fabri o	cation technique for GalnAsP/InP quantum wire structure by LP-MOVPE. 1988 , 93, 365-369]	[1
2303 Auge	recombination in low-dimensional structures. 1988 , 49, 607-613	1	19
2302 Polari	zation dependent absorption spectra in quantum wire structures. 1988 , 4, 19-22	1	10
2301 Very	arge optical nonlinearity of semiconductor microcrystallites. 1988 , 37, 1273-1279	ŗ	582
2300 . 1988	3, 24, 523-530	1	133
2299 . 1988	3, 24, 1778-1790	1	116
2298 Spon l	aneous and stimulated emission from quasifree electrons. 1988 , 60, 471-535	8	33
2297 Fabrio	ration and optical spectroscopy of ultra small IIIIV compound semiconductor structures. 1988 , 99-119	1	15
	nermoelectric power in 3D quantum-well structures of Kane-type semiconductors under large etic field. 1989 , 66, 3056-3059	1	13
2295 Use o	f tilted-superlattices for quantum-well-wire lasers. 1989 , 36, 2612-2613	1	12
	mination of tilted superlattice structure by atomic force microscopy. <i>Applied Physics Letters</i> , 55, 2491-2493	ļ 4	40
	raneous growth of coherent tilted superlattice on vicinal (100) GaAs substrates. <i>Applied</i> 3.4 ss <i>Letters</i> , 1989 , 54, 1690-1692	ļ I	100
	t of sidewall recombination on the quantum efficiency of dry etched InGaAs/InP onductor wires. <i>Applied Physics Letters</i> , 1989 , 54, 1552-1554	ļ ⁸	30
	cterization of Al/sub 0.3/Ga/sub 0.7/As/GaAs quantum-well delta-doped channel FET grown lecular-beam epitaxy. 1989 , 36, 2615-2616	(6
	al anisotropy in a quantum-well-wire array with two-dimensional quantum confinement. 1989 , 6-469	3	354
2289 . 1989	, 36, 2631		
2288 Proce 1 989 ,	edings of 47th Annual Device Research Conference (papers in summary form only received). 36,		

(1990-1989)

2287	Fabrication and optical properties of GaAs-quantum wires produced by ion-implantation induced disordering. 1989 , 9, 361-364		3	
2286	On the thermoelectric power in 3D quantum well structures of small-gap semiconductors in the presence of crossed strong magnetic and electric fields. 1989 , 141, 81-84		25	
2285	Anisotropic transport and nonparabolic miniband in a novel in-plane superlattice consisting of a grid-inserted selectively doped heterojunction. <i>Applied Physics Letters</i> , 1989 , 55, 1214-1216	3.4	35	
2284	. 1989 , 25, 705-712		41	
2283	. 1989 , 25, 1459-1468		40	
2282	. 1989 , 25, 2001-2006		88	
2281	. 1989 , 25, 2007-2012		10	
2280	Wavelength and threshold current of a quantum well laser in a strong magnetic field. <i>Applied Physics Letters</i> , 1989 , 54, 1827-1829	3.4	19	
2279	Step Profile Fluctuations in Quantum-Well Wire Growth on Vicinal Surfaces. 1989 , 160, 405		2	
2278	Einstein Relation in Quantum Wires of Tetragonal Semiconductors. 1990 , 198, 333		4	
2277	On the Thermoelectric Power in Quantum Dots of Non-Parabolic Semiconductors in the Presence of a Classically Large Field. 1990 , 198, 327		5	
2276	A detailed study of Auger recombination in 1.3 Im InGaAsP/InP quantum wells and quantum well wires. 1990 , 5, 90-104		25	
2275	Fabrication and optical properties of semiconductor quantum wells and superlattices. 1990 , 14, 289-356	5	71	
2274	InGaAs/InP quantum well wires fabricated by GSMBE, MOCVD, and selective chemical etching techniques. 1990 , 105, 254-259		8	
2273	Temperature dependence of InGaP, InAlP, and AlGaP growth in metalorganic molecular-beam epitaxy. 1990 , 102, 31-42		14	
2272	Discrete Shifts of Absorption and Emission Lines by Individual Electron-Hole Pair Excitation in DC-Biased Quantum Box Structures. <i>Japanese Journal of Applied Physics</i> , 1990 , 29, L308-L311	1.4	5	
2271	MBE Growth Method for Pyramid-Shaped GaAs Micro Crystals on ZnSe(001) Surface Using Ga Droplets. <i>Japanese Journal of Applied Physics</i> , 1990 , 29, L2093-L2095	1.4	65	
2270	Lateral quantization induced emission energy shift of buried GaAs/AlGaAs quantum wires. <i>Applied Physics Letters</i> , 1990 , 57, 807-809	3.4	31	

2269	Carrier capture in intermixed quantum wires with sharp lateral confinement. <i>Applied Physics Letters</i> , 1990 , 56, 48-50	F	49
2268	Optical absorption and carrier-induced bleaching effect in quantum wire and quantum box structures. <i>Applied Physics Letters</i> , 1990 , 57, 2800-2802	-	35
2267	Fabrication of ultrafine gratings on GaAs by electron beam lithography and two-step wet chemical etching. <i>Applied Physics Letters</i> , 1990 , 57, 1212-1214	F	9
2266	Lasing characteristics of quantum wire lasers: tight binding analysis.		
2265	Optical transitions in quantum wires with strain-induced lateral confinement. 1990 , 65, 1631-1634		155
2264	. 1990 , 26, 1039-1051		32
2263	Formation of in-plane superlattice and quantum wire states in grid inserted heterostructures with period of 80🛮 60 🖟 Anisotropy of electronic states. 1990, 228, 408-411		26
2262	Anisotropy in photoluminescence and absorption spectra of fractional layer superlattices. <i>Applied Physics Letters</i> , 1991 , 59, 301-303		23
2261	Growth kinetics simulation of the Al-Ga self-organization on GaAs(100) stepped surfaces. 1991 , 245, 150-172		39
2260	On the photoemission from quantum-confined Kane-type semiconductors. 1991 , 69, 1666-1677		32
2259	Electron Beam Assisted MOCVD For Quantum Wires And Boxes.		
2258	Optical loss distribution in anodically oxidized alumina with a 2-D structure. 1991 , 30, 2257-62		8
2257	Microcavity semiconductor laser with enhanced spontaneous emission. 1991 , 44, 657-668		225
2256	Intrinsic mechanism for the poor luminescence properties of quantum-box systems. 1991 , 44, 10945-10948	3	761
2255	. 1991 , 3, 191-192		8
2254	New quantum structures. 1991 , 254, 1326-35		149
2253	Indium tin oxide single-mode waveguide modulator. 1991 ,		O
2252	Role of molecular beam epitaxy in the optoelectronic field. 1991 , 9, 77-81		3

2251	Patterning and overgrowth of nanostructure quantum well wire arrays by LP-MOVPE. 1991 , 107, 591-59	97	15
2250	Formation of InAs microstructures on variously oriented GaAs substrates. 1991 , 115, 164-168		9
2249	Direct synthesis of semiconductor quantum wires by molecular-beam epitaxy on (311) surfaces. 1991 , 115, 318-323		16
2248	New MBE growth method for InSb quantum well boxes. 1991 , 111, 688-692		293
2247	Fabrication and characterization of MBE grown InAs/GaAs strained-layer superlattices on variously oriented substrates. 1991 , 111, 402-406		7
2246	Investigation of tilted superlattices for quantum-wire laser applications. <i>Applied Physics Letters</i> , 1991 , 59, 3015-3017	3.4	11
2245	Optical characterization of selectively intermixed GaAs/GaAlAs quantum wires by Ga+ masked implantation. 1991 , 70, 1444-1450		32
2244	Wannier excitons in low-dimensional microstructures: Shape dependence of the quantum size effect. 1991 , 44, 13085-13088		101
2243	Electronic properties of semiconductor nanostructures probed by scanning tunneling microscopy. <i>Applied Physics Letters</i> , 1991 , 58, 2402-2404	3.4	10
2242	Clear energy level shift in ultranarrow InGaAs/InP quantum well wires fabricated by reverse mesa chemical etching. <i>Applied Physics Letters</i> , 1991 , 58, 720-722	3.4	80
2241	Vertically stacked multiple-quantum-wire semiconductor diode lasers. <i>Applied Physics Letters</i> , 1991 , 59, 2225-2227	3.4	89
2240	GaAs tetrahedral quantum dot structures fabricated using selective area metalorganic chemical vapor deposition. <i>Applied Physics Letters</i> , 1991 , 58, 2018-2020	3.4	201
2239	Carrier-induced optical nonlinear effects in semiconductor quantum well wire structure. 1991 , 70, 7024	-7032	25
2238	Effect of structural disorder on electronic states in GaAs/AlGaAs quantum wires. <i>Applied Physics Letters</i> , 1991 , 59, 3142-3144	3.4	20
2237	Improvement of Organometallic Vapor Phase Epitaxy Regrown GaInAs/InP Heterointerface by Surface Treatment. <i>Japanese Journal of Applied Physics</i> , 1991 , 30, L1702-L1704	1.4	4
2236	A New Reactor for Metalorganic Chemical Vapor Deposition Equipped with an Internal Rotary Flow Selector. <i>Japanese Journal of Applied Physics</i> , 1991 , 30, L396-L397	1.4	
2235	Improvement of Regrown Interface in InP Organo-Metallic Vapor Phase Epitaxy. <i>Japanese Journal of Applied Physics</i> , 1991 , 30, L672-L674	1.4	11
2234	Selected Bibliography. 1991 , 217-246		

2233	Patterning of GaAs by in situ electron beam lithography toward nanometer-scale structures. 1992 , 3, 54-59		13
2232	On the possibilities and problems of semiconductor quantum microstructures. 1992 , 3, 180-184		2
2231	Density of states of quantum dots and crossover from 3D to Q0D electron gas. 1992 , 7, 1072-1079		12
2230	Coherent-potential approximation calculations in compositionally disordered quantum wires: density of states. 1992 , 4, 2565-2576		7
2229	Quantum Wire Fabrication by E-Beam Elithography Using High-Resolution and High-Sensitivity E-Beam Resist ZEP-520. <i>Japanese Journal of Applied Physics</i> , 1992 , 31, 4508-4514	1.4	90
2228	Photoluminescence spectra and anisotropic energy shift of GaAs quantum wires in high magnetic fields. 1992 , 69, 2963-2966		130
2227	Photoluminescence study of lateral carrier confinement and compositional intermixing in (Al,Ga)Sb lateral superlattices. <i>Applied Physics Letters</i> , 1992 , 60, 1676-1678	3.4	15
2226	Fabrication of GaAs quantum wires on epitaxially grown V grooves by metal-organic chemical-vapor deposition. 1992 , 71, 533-535		149
2225	Direct and exchange-correlation carrier interaction effects in a resonant tunnel diode. 1992 , 72, 3562-35	569	18
2224	Semiconductor quantum-wire structures directly grown on high-index surfaces. 1992 , 45, 3507-3515		227
2223	Theory of luminescence polarization anisotropy in quantum wires. 1992 , 45, 9443-9446		51
2222	Formation of lateral quantum wells in vertical short-period superlattices by strain-induced lateral-layer ordering process. <i>Applied Physics Letters</i> , 1992 , 60, 2892-2894	3.4	158
2221	Magneto-optics of narrow GaAs/AlxGa1-xAs quantum wells grown on vicinal substrates. 1992 , 45, 6942-	6945	10
2220	Advantage of Strained Quantum Wire Lasers. <i>Japanese Journal of Applied Physics</i> , 1992 , 31, 286-287	1.4	30
2219	Crossovers of the density of states in two-direction double-barrier resonant-tunneling structures. 1992 , 45, 9173-9178		5
2218	One-Dimensional Conduction on the Cleaved Edge of InAs Quantum Wells. <i>Japanese Journal of Applied Physics</i> , 1992 , 31, L127-L129	1.4	20
2217	Fabrication of GaInAs/InP Quantum Wires by Organometallic-Vapor-Phase-Epitaxial (OMVPE) Selective Growth on Grooved Side Walls of Ultrafine Multilayers. <i>Japanese Journal of Applied Physics</i> , 1992 , 31, L535-L538	1.4	6
2216	On the Burste In-Moss Shift in Quantum Confined Wide-Band Gap Semiconductors. 1992 , 242, 373		2

2215	Optical Properties and New Functionality of Nanocrystalline CuCl and Ge. 1992 , 283, 15		3
2214	GaAs Quantum Dots by MOCVD. 1992 , 283, 759		
2213	A selective growth of GaAs microcrystals grown on Se-terminated GaAlAs surface for the quantum well box structure. 1992 , 283, 765		
2212	Germanium Loaded Zeolite Y: Preparation and Characterization. 1992 , 286, 353		2
2211	Carrier capture and quantum confinement in GaAs/AlGaAs quantum wire lasers grown on V-grooved substrates. <i>Applied Physics Letters</i> , 1992 , 60, 521-523	3.4	101
2210	Microcrystal growth of GaAs on a Se-terminated GaAlAs surface for the quantum-well box structure by sequential supplies of Ga and As molecular beams. <i>Applied Physics Letters</i> , 1992 , 61, 2431-2433	3.4	20
2209	Electron relaxation in quantum dots by means of Auger processes. 1992 , 46, 15574-15577		292
2208	Electro-optic and all-optical phase modulator on an indium tin oxide single-mode waveguide. <i>Applied Physics Letters</i> , 1992 , 60, 1541-1543	3.4	27
2207	GaAs p-n junction formed in quantum wire crystals. <i>Applied Physics Letters</i> , 1992 , 60, 745-747	3.4	180
2206	GaAs tetrahedral quantum dot structures fabricated using selective area MOCVD. 1992 , 267, 236-240		15
2205	Surface structure dependence of GaAs microcrystals size grown by As-incorporation into Ga droplets. 1992 , 267, 241-244		6
2204	Luminescence of narrow RIE etched In1\(\text{In1} \text{InP} \) and GaAs/Ga1\(\text{InAlxAs} \) quantum wires. 1992 , 267, 253-256		7
2203	Cathodoluminescence investigation of lateral carrier confinement in GaAs/AlGaAs quantum wires grown by OMCVD on nonplanar substrates. 1992 , 267, 257-262		31
2202	Polarized photoluminescence of fractional layer superlattices. 1992 , 267, 300-303		
2201	Two-dimensional quantum confinement in multiple quantum wire lasers grown by OMCVD on V-grooved substrates. 1992 , 267, 593-600		38
22 00	Quantum wires, quantum boxes and related structures: Physics, device potentials and structural requirements. 1992 , 267, 623-629		93
2199	. 1992 , 4, 835-837		4
2198	. 1992 , 4, 964-966		4

2197	. 1992 , 4, 1089-1092	9
2196	Waveguide Optoelectronics. 1992 ,	3
2195	Infrared Optical Constants of Anodic Alumina Films with Micropore Arrays. <i>Japanese Journal of Applied Physics</i> , 1992 , 31, 3589-3593	26
2194	1D Charge Carrier Dynamics in GaAs Quantum Wires Carrier Capture, Relaxation, and Recombination. 1992 , 173, 307-321	17
2193	Optical Properties of Barrier-Modulated InGaAs/GaAs Quantum Wires. 1992 , 173, 323-330	2
2192	Optical properties of wire and dot structures for photonic applications. 1992 , 12, 419-428	19
2191	GaAs tetrahedral quantum dots grown by selective area MOCVD. 1992 , 12, 141-144	8
2190	Electron scatterers near the boundary in AlGaAs/GaAs quantum wires fabricated by focused ion beam implantation. 1992 , 11, 261-264	12
2189	Polarization effects and carrier capture in quantum wires. 1992 , 11, 321-323	8
2188	MOCVD methods for fabricating GaAs quantum wires and quantum dots. 1992 , 124, 493-496	31
2187	Fabrication of InGaAs strained quantum wires using selective MOCVD growth on SiO2-patterned GaAs substrate. 1992 , 124, 502-506	18
2186	Anisotropic photoluminescence behaviour of vertical AlGaAs structures grown on gratings. 1992 , 124, 513-518	20
2185	Evaluation of nucleation and defects in MBE-grown strained InAs/GaAs quantum structures on variously oriented substrates. 1992 , 60-61, 631-636	
2184	Influence of cross-field configuration on the einstein relation in quantum wires of tetragonal semiconductors. 1992 , 72, 147-159	1
2183	. 1992 , 80, 398-410	63
2182	10-nm-wire fabrication in GaAs/AlGaAs MQWs by Cl2 reactive ion beam etching using SiO2 sidewall masks. 1993 , 21, 303-306	
2181	Future nanometer electronics. 1993 , 21, 381-388	1
2180	Direct growth of (AlGa)As/GaAs quantum wires by metalorganic vapour phase epitaxy. 1993 , 132, 179-190	13

Formation of multiple quantum wires by strain-induced lateral-layer ordering process.	1993 , 127, 900-903	5
Growth process and mechanism of nanometer-scale GaAs dot-structures using MOCVD growth. 1993 , 126, 707-717) selective	41
Reduction of lateral ion straggling for the fabrication of intermixed GaAs/AlGaAs quan 1993 , 80-81, 827-830	tum wires.	4
Tilted superlattice composition profile determined by photoluminescence and thermal 1993 , 22, 331-334	l disordering.	5
2175 Mesoscopic physics and nanoelectronics: nanoscience and nanotechnology. 1993 , 234,	73-174	154
2174 . 1993 , 29, 2123-2133		23
2173 Electronic states and optical transitions in low-dimensional semiconductors. 1993 , 16,	1-85	38
Quasi-one-dimensional electron gas and its magnetic depopulation in a quantum wire powergrowth on a cleaved edge of AlGaAs/GaAs multiple quantum wells. <i>Applied Physics</i> 1993 , 63, 1786-1788		21
InGaAs/GaAs strained quantum wire lasers grown by organometallic chemical vapor de nonplanar substrates. <i>Applied Physics Letters</i> , 1993 , 62, 2170-2172	eposition on 3.4	59
2170 Hydrogenic impurities in quantum wires in the presence of a magnetic field. 1993 , 47, 7	1316-1323	132
2169 Carrier transport into intermixed GaAs/AlGaAs quantum wires. <i>Applied Physics Letters</i> ,	1993 , 62, 1256-12 <u>5</u> .8	4
2168 Biexciton lasing in CuCl quantum dots. <i>Applied Physics Letters</i> , 1993 , 62, 225-227	3.4	92
Fabrication and optical properties of GaAs quantum wires and dots by MOCVD selective 1993 , 8, 1082-1088	e growth.	22
Intermixed GaAs/AlGaAs quantum wires and the influence of implantation species on to of the lateral potential. 1993 , 73, 2376-2380	he steepness	8
Fabrication of GaAs quantum wires (~10 nm) by metalorganic chemical vapor selective growth. <i>Applied Physics Letters</i> , 1993 , 63, 355-357	deposition 3.4	75
Near band edge polarization dependence as a probe of structural symmetry in GaAs/Al quantum dot structures. <i>Applied Physics Letters</i> , 1993 , 62, 756-758	lGaAs 3·4	31
2163 .		
2162 . 1993 , 5, 864-867		16

6 2161 . **1993**, 5, 867-869 Observation of InP Surfaces after (NH4)2SxTreatment by a Scanning Tunneling Microscope. 2160 1.4 Japanese Journal of Applied Physics, **1993**, 32, L444-L446 Formation of Two-Dimensional Electron Gas in N-AlGaAs/GaAs Heterojunctions on (111)B Microfacets Grown by Molecular Beam Epitaxy on a Patterned (001) Substrate. Japanese Journal of 2159 5 1.4 Applied Physics, 1993, 32, L383-L385 Fabrication of InGaAs Strained Quantum Wire Structures Using Selective-Area Metal-Organic 2158 26 1.4 Chemical Vapor Deposition Growth. Japanese Journal of Applied Physics, 1993, 32, L1377-L1379 Dot Structures Fabricated by Laser Etching -Laser Wavelength Dependence of Dot Structures 1.4 4 Fabricated by Laser Etching-. Japanese Journal of Applied Physics, 1993, 32, 1308-1311 Application of Atomic Force Microscopy to the Study of Size Fluctuation in E-Beam Patterned 1.4 Quantum Wire Structures. Japanese Journal of Applied Physics, 1993, 32, 2973-2979 Growth of GaAs Epitaxial Microcrystals on an S-Terminated GaAs Substrate by Successive 207 2155 1.4 Irradiation of Ga and As Molecular Beams. Japanese Journal of Applied Physics, 1993, 32, 2052-2058 Quantum Dots and Quantum Wires with High Optical Quality by Implantation-Induced Intermixing. 2154 8 1.4 Japanese Journal of Applied Physics, 1993, 32, 6228-6232 2153 Confined and interface phonon scattering in finite barrier GaAs/AlGaAs quantum wires. 1993, 74, 1652-1659 14 Theoretical optimization of quantum wire array lasers for low threshold current density and high 2152 3.4 modulation frequency. Applied Physics Letters, 1993, 63, 2024-2026 Band-edge optical absorption spectra of GaAs quantum wires calculated by multiband effective 2151 38 mass theory. 1993, 74, 6383-6390 2150 Lasing from excitons in quantum wires. **1993**, 71, 4071-4074 280 Fabrication of GaAs arrowhead-shaped quantum wires by metalorganic chemical vapor deposition 2149 3.4 55 selective growth. Applied Physics Letters, 1993, 62, 49-51 Geometrical shape dependent polarization anisotropy in electroluminescence from InGaAs/InP 13 3.4 quantum wires. Applied Physics Letters, 1993, 62, 1094-1096 Photoluminescence excitation spectroscopy on intermixed GaAs/AlGaAs quantum wires. Applied 2147 32 3.4 Physics Letters, 1993, 62, 1365-1367 Monte Carlo calculation of electron relaxation times in perfect and disordered quantum wire laser 2146 12 3.4 structures. Applied Physics Letters, 1993, 62, 2251-2253 Direct measurement of size fluctuation in reverse-mesa etched quantum wire structures by the 2145 3.4 4 atomic force microscope. Applied Physics Letters, 1993, 62, 2350-2352 2144 Density of states and localization length in compositionally disordered quantum wires. 1993, 47, 6555-6565 23

2143	Transient and steady-state analysis of electron transport in one-dimensional coupled quantum-box structures. 1993 , 47, 15593-15600		21
2142	GaAs/AlGaAs quantum dots by implantation induced intermixing. <i>Applied Physics Letters</i> , 1993 , 63, 140	2- <u>3</u> .404	16
2141	Cross Sectional Shape Dependence of Quantum Wire Band Structures and Optical Matrix Elements. Japanese Journal of Applied Physics, 1993 , 32, L1592-L1595	1.4	3
2140	A structure observation of GaAs micro crystal/Se-terminated GaAlAs interface for the quantum well box structure. 1993 , 300, 519		
2139	Optical Characterization of InGaAs/InP Quantum Wires and Dots. 1993 , 324, 181		
2138	Direct Formation of GaAstaAlAs Quantum Dots Structure by Droplet Epitaxy. 1993 , 326, 269		2
2137	Stimulated Emission from Excitons in a Quantum Wire Laser Fabricated by Cleaved Edge Overgrowth. 1993 , 326, 401		
2136	Fabrication of quantum well wires and vertical quantum wells on submicron gratings by MOVPE. 1993 , 344, 481-492		2
2135	Fabrication of Vertical and Uniform-Size Porous InP Structure by Electrochemical Anodization. Japanese Journal of Applied Physics, 1994 , 33, L643-L645	1.4	82
2134	Emission Energy Shift in GalnAs/GalnAsP Strained Quantum-Box Structures Due to 0-Dimensional Quantum-Box Effect. <i>Japanese Journal of Applied Physics</i> , 1994 , 33, 3571-3577	1.4	1
2133	Self-Formed \$bf In_{0.5}Ga_{0.5}As\$ Quantum Dots on GaAs Substrates Emitting at \$bf 1.3,{mbi {mu}}m\$. Japanese Journal of Applied Physics, 1994 , 33, L1710-L1712	1.4	174
2132	Area Density Control of Quantum-Size InGaAs/Ga(Al)As Dots by Metalorganic Chemical Vapor Deposition. <i>Japanese Journal of Applied Physics</i> , 1994 , 33, L1634-L1637	1.4	34
2131	Chapter 4 Lateral Patterning of Quantum Well Heterostructures by Growth on Nonplanar Substrates. 1994 , 259-336		34
2130	Lasing action of Ga0.67In0.33As/GaInAsP/InP tensile-strained quantum-box laser. 1994 , 30, 142-143		53
2129	Lasing in lower-dimensional structures formed by cleaved edge overgrowth. 1994 , 9, 1933-1938		14
2128	Carrier relaxation in quantum wires: consequences for quantum wire laser performance. 1994 , 9, 878-8	81	1
2127	GaAs quantum dots with lateral dimension of 25 nm fabricated by selective metalorganic chemical vapor deposition growth. <i>Applied Physics Letters</i> , 1994 , 64, 2495-2497	3.4	53
2126	Ionization balance in semiconductor quantum-dot lasers. 1994 , 49, 2536-2553		14

2125	Intraband Auger processes and simple models of the ionization balance in semiconductor quantum-dot lasers. 1994 , 49, 11272-11287		12
2124	Thermalization effect on radiative decay of excitons in quantum wires. 1994 , 72, 924-927		150
2123	Room-temperature stimulated emission of optically pumped GaAs/AlAs quantum wires grown on (311)A-oriented substrates. <i>Applied Physics Letters</i> , 1994 , 64, 3443-3445	3.4	4
2122	Lateral subband transitions in the luminescence spectra of a one-dimensional electron-hole plasma in In0.53Ga0.47As/InP quantum wires. 1994 , 50, 11746-11749		14
2121	Magnetoexcitons in quantum wires with an anisotropic parabolic potential. 1994 , 50, 7719-7723		18
2120	High efficiency submicron light-emitting resonant tunneling diodes. <i>Applied Physics Letters</i> , 1994 , 65, 3332-3334	3.4	4
2119	Optical gain due to phonon-assisted exciton transitions in quantum wires. 1994 , 50, 2306-2315		6
2118	Strong photoluminescence emission at room temperature of strained InGaAs quantum disks (200B0 nm diameter) self-organized on GaAs (311)B substrates. <i>Applied Physics Letters</i> , 1994 , 65, 457-4	59 ^{.4}	79
2117	Exciton radiative lifetime in GaAs quantum wires grown by metalorganic chemical-vapor selective growth. <i>Applied Physics Letters</i> , 1994 , 64, 1564-1566	3.4	14
2116	Atomic structure and luminescence excitation of GaAs/(AlAs)n(GaAs)m quantum wires with the scanning tunneling microscope. <i>Applied Physics Letters</i> , 1994 , 65, 1168-1170	3.4	33
2115	Photoluminescence studies of sidewall properties of dry-etched InGaAs/InP quantum wires. 1994 , 75, 8071-8074		6
2114	One-dimensional quantum electron states in n-AlxGa1NAs/u-GaAs modulation-doped corrugated heterojunctions. <i>Applied Physics Letters</i> , 1994 , 65, 3096-3098	3.4	7
2113	Fabrication of vertical-microcavity quantum wire lasers. <i>Applied Physics Letters</i> , 1994 , 64, 2200-2202	3.4	28
2112	Submicrometer resonant tunnelling diodes fabricated by photolithography and selective wet etching. <i>Applied Physics Letters</i> , 1994 , 65, 1124-1126	3.4	28
2111	In situ pattern deposition of In2O3 and in situ pattern etching of GaAs. <i>Applied Physics Letters</i> , 1994 , 65, 1635-1637	3.4	2
2110	Carrier thermalization in sub-three-dimensional electronic systems: Fundamental limits on modulation bandwidth in semiconductor lasers. 1994 , 50, 14309-14326		56
2109	Collisional processes involved in the population kinetics of semiconductor quantum-dot lasers. 1994 , 49, 2554-2575		9
2108	Calculation of the ground-state energies in intermixed GaAs/AlxGa1-xAs cylindrical quantum dots. 1994 , 49, 8109-8112		8

Study of the factors affecting the broadening of the photoluminescence spectra of In quantum wires. 1994 , 75, 4161-4166	GaAs/InP	13
Polarization-resolved photoluminescence of InAs/GaAs strained-layer structures on va oriented substrates. 1994 , 75, 164-168	ariously	4
2105 Quantum microstructure devices. 1994 , 92, 119-127		29
2104 Fabrication of quantum wires and dots by MOCVD selective growth. 1994 , 37, 523-528	8	44
Optical properties of GaAs quantum dots fabricated by MOCVD selective growth. 199	94 , 37, 579-581	4
Direct epitaxial growth of (AlGa)As/GaAs quantum wires by orientation-dependent moves are vapour phase epitaxy. 1994 , 37, 591-596	etalorganic	2
2101 Strong lateral quantization effects in the luminescence of InGaAs/InP quantum wires.	1994 , 37, 1183-1186	2
Growth of GaAs microcrystal by Ga droplet formation and successive As supply with lo metalorganic chemical vapor deposition. 1994 , 145, 707-713	ow-pressure	15
2099 Highly uniform InGaAs quantum dots ([hm) grown by MOVPE on GaAs. 1994 , 145, 986	5-987	10
Atmospheric and low pressure metalorganic vapor phase epitaxial growth of vertical wells and quantum well wires on submicron gratings. 1994 , 23, 121-124	quantum	9
2097 Self-organized growth of strained InGaAs quantum disks. 1994 , 369, 131-133		334
Self-organized growth of strained InGaAs quantum disks. 1994 , 369, 131-133 Highly uniform InGaAs/GaAs quantum dots (~15 nm) by metalorganic chemical vapor of Applied Physics Letters, 1994 , 65, 1421-1423	deposition. 3-4	
Highly uniform InGaAs/GaAs quantum dots (~15 nm) by metalorganic chemical vapor o	3.4	334
Highly uniform InGaAs/GaAs quantum dots (~15 nm) by metalorganic chemical vapor of Applied Physics Letters, 1994 , 65, 1421-1423	3·4 0, 1416-1417	334
Highly uniform InGaAs/GaAs quantum dots (~15 nm) by metalorganic chemical vapor of Applied Physics Letters, 1994 , 65, 1421-1423 Low threshold, large To injection laser emission from (InGa)As quantum dots. 1994 , 30 Surface diffusion processes in molecular beam epitaxial growth of GaAs and AlAs as so	3.4 0, 1416-1417 tudied on	334 202 662
Highly uniform InGaAs/GaAs quantum dots (~15 nm) by metalorganic chemical vapor of Applied Physics Letters, 1994, 65, 1421-1423 Low threshold, large To injection laser emission from (InGa)As quantum dots. 1994, 30 Surface diffusion processes in molecular beam epitaxial growth of GaAs and AlAs as si GaAs (001)-(111)B facet structures. 1994, 76, 4138-4144 Current injection GaAs/AlGaAs quantum wire lasers fabricated by cleaved edge overg	3.4 0, 1416-1417 tudied on rowth.	33420266283
Highly uniform InGaAs/GaAs quantum dots (~15 nm) by metalorganic chemical vapor of Applied Physics Letters, 1994, 65, 1421-1423 Low threshold, large To injection laser emission from (InGa)As quantum dots. 1994, 30 Surface diffusion processes in molecular beam epitaxial growth of GaAs and AlAs as st GaAs (001)-(111)B facet structures. 1994, 76, 4138-4144 Current injection GaAs/AlGaAs quantum wire lasers fabricated by cleaved edge overgapplied Physics Letters, 1994, 65, 2510-2512 High efficiency and low threshold current strained V-groove quantum-wire lasers. Applied Physics Letters and Iow threshold current strained V-groove quantum-wire lasers.	3.4 0, 1416-1417 tudied on rowth. 3.4 plied Physics 3.4	3342026628363

2089 . 1994 , 30, 511-523		242
2088 . 1994 , 30, 608-618		71
2087 . 1994 , 30, 640-653		30
2086 Monte Carlo study of electron relaxation in quantum-wire laser structures. 1994 , 30, 2012-2025		4
2085 .		
Cathodoluminescence of single quantum wires and vertical quantum wells grown on a submicron grating. <i>Applied Physics Letters</i> , 1994 , 64, 695-697	3.4	10
Room temperature study of strong lateral quantization effects in InGaAs/InP quantum wires. Applied Physics Letters, 1994 , 64, 496-498	3.4	43
2082 Threshold current and modulation dynamics in quantum dot lasers.		1
Room temperature CW operation of GaInP/AlGaInP multiple quantum wire visible lasers (MQWR-LD).		1
Effect of spectral broadening and electron-hole scattering on carrier relaxation in GaAs quantum dots. <i>Applied Physics Letters</i> , 1994 , 64, 232-234	3.4	55
Formation of Quantum Wires by Strain-Induced Lateral-Layer Ordering Process: Growth Mechanism and Device Applications. 1995 , 417, 241		3
Formation of Stacked Self-Assembled InAs Quantum Dots in GaAs Matrix for Laser Applications. 1995 , 417, 141		10
2077 Static and dynamic properties of (InGa)As/GaAs quantum dot lasers.		1
2076 Pseudomorphic InAs/GaAs quantum dots on low index planes. 1996 , 123-154		10
TEM/HREM visualization of nm-scale coherent InAs islands (quantum dots) in a GaAs matrix. 1995 , 150, 471-478		41
2074 Optical characterization of quantum wires and quantum dots. 1995 , 152, 269-280		14
2073 Lateral quantization effects in the Luminescence of InGaAs/InP quantum wires. 1995 , 188, 229-240		3
2072 InAs/GaAs quantum dots radiative recombination from zero-dimensional states. 1995 , 188, 249-258		119

2071 Anisotropic optical matrix elements in [hhk]-oriented quantum wires. 1995 , 35, 288-294		4
Ultrathin wires incorporated within chrysotile asbestos nanotubes: optical and electrical properties. 1995 , 4, 319-322		21
2069 GaAs/AlGaAs quantum wire lasers fabricated by cleaved edge overgrowth. 1995 , 150, 285-292		18
2068 Self-organization processes in MBE-grown quantum dot structures. 1995 , 267, 32-36		100
2067 Intrinsic radiative lifetimes of InP/In0.48Ga0.52P quantum dots. 1995 , 96, 265-269		25
2066 Quantum interference resonator: Effects of disorder. 1995 , 52, 9007-9014		10
2065 Optical matrix elements in [hhk]-oriented quantum wires. 1995 , 78, 1361-1363		12
Dimensionality effects on strain and quantum confinement in lattice-mismatched InAsxP1-x/InP quantum wires. 1995 , 52, 11147-11158		35
Step bunching on {111} facets in the selective growth of GaAs by metalorganic vapor phase epitaxy. 1995 , 78, 2854-2856		4
Polarization dependence of the absorption coefficient for an array of strained quantum wires. 1995 , 77, 4931-4934		4
Linear polarization of photoluminescence emission and absorption in quantum-well wire structures: Experiment and theory. 1995 , 51, 4272-4277		78
Effect of (GaP)/sub m//(InP)/sub m/ short period binary superlattice period on quantum wire formation by strain induced lateral layer ordering in GaInP/AlInP multi-quantum-wire lasers.		
GaxIn1NAs quantum wire heterostructures formed by strain-induced lateral-layer ordering. 1995 , 78, 6270-6275		44
Novel InGaAs/GaAs Quantum Dot Structures Formed in Tetrahedral-Shaped Recesses on (111)B 2058 GaAs Substrate Using Metalorganic Vapor Phase Epitaxy. <i>Japanese Journal of Applied Physics</i> , 1995 , 34, 4384-4386	1.4	16
Spontaneous formation of aligned InGaAs quantum dots on GaAs multi-atomic steps by metalorganic chemical vapor deposition growth.		
Threshold Current and Its Temperature Dependence in InGaAsP/InP Strained Quantum-Well Lasers under a Magnetic Field. <i>Japanese Journal of Applied Physics</i> , 1995 , 34, 1583-1584	1.4	6
A Molecular Beam Epitaxy Approach to Quantum Dot Arrays. <i>Japanese Journal of Applied Physics</i> , 1995 , 34, 4390-4391	1.4	4
Formation of InGaAs Quantum Dots on GaAs Multi-Atomic Steps by Metalorganic Chemical Vapor Deposition Growth. <i>Japanese Journal of Applied Physics</i> , 1995 , 34, 4376-4379	1.4	23

2053	One-Dimensional Quantum Electron and Hole States in n-AlxGa1-xAs/u-GaAs/u-AlxGa1-xAs Corrugated Double-Heterojunctions. <i>Japanese Journal of Applied Physics</i> , 1995 , 34, 4462-4465	1.4	
2052	Near-\$bf 1.3mbox{-}{mbi mu }m\$ High-Intensity Photoluminescence at Room Temperature by InAs/GaAs Multi-Coupled Quantum Dots. <i>Japanese Journal of Applied Physics</i> , 1995 , 34, L405-L407	1.4	48
2051	Time-Resolved Study of Carrier Transfer among InAs/GaAs Multi-Coupled Quantum Dots. <i>Japanese Journal of Applied Physics</i> , 1995 , 34, L1439	1.4	31
2050	Self-consistent energy levels in low-dimensionally delta -doped structures. 1995, 7, 731-743		8
2049	Confined Electrons and Photons: A Summary. 1995 , 1-14		5
2048	High-power two-dimensional quantum wire laser arrays. 1995 , 31, 102-104		9
2047	Effect of a Magnetic Field on the Excitonic Luminescence Decay Time in a \$bf GaAs-Al_{ninmbi x}Ga_{1-{ninmbi x}As\$ Quantum Well. <i>Japanese Journal of Applied Physics</i> , 1995 , 34, L547-L550	1.4	3
2046	In situ pattern etching of GaAs by trimethylindium and H2O2gases with electron-beam-induced resist. 1995 , 10, 91-94		1
2045	Electron-Stimulated Desorption and in situ Scanning Electron Microscopy Study on Self-Developing Reaction of High-Resolution Inorganic Electron Beam Resist. <i>Japanese Journal of Applied Physics</i> , 1995 , 34, L948-L950	1.4	
2044	Surface Damage in GalnAs/GalnAsP/InP Wire Structures Prepared by Substrate-Potential-Controlled Reactive Ion Beam Etching. <i>Japanese Journal of Applied Physics</i> , 1995 , 34, 3307-3308	1.4	4
2043	On a Possibility of Wavelength-Domain-Multiplication Memory Using Quantum Boxes. <i>Japanese Journal of Applied Physics</i> , 1995 , 34, L210-L212	1.4	84
2042	Low Dimensional Structures Prepared by Epitaxial Growth or Regrowth on Patterned Substrates. 1995,		23
2041	Molecular Beam Epitaxy. 1995 , 84-169		
2040	. 1995 , 7, 241-243		3
2039	Lasing at three-dimensionally quantum-confined sublevel of self-organized In/sub 0.5/Ga/sub 0.5/As quantum dots by current injection. 1995 , 7, 1385-1387		129
2038	Mesoscopic devices. 1995 , 58, 311-364		58
2037	GaAs/AlGaAs quantum wire lasers and other low-dimensional structures fabricated by cleaved edge overgrowth. 1996 , 155-174		2
2036	Ultranarrow Luminescence Lines from Single Quantum Dots. 1995 , 74, 4043-4046		645

2035	Ino.53Gao.47As/InP quantum wires. 1995 , 52, 11073-11088		17
2034	Confined photons and electrons in semiconductor nanostructure lasers.		
2033	Fabrication of InP-based quantum-wires and its application to lasers.		1
2032	Wavelength controllability of InGaAs/GaAs quantum dots emitting at 1.3 /spl mu/m region.		2
2031	. IEEE Journal of Selected Topics in Quantum Electronics, 1995 , 1, 173-182	3.8	15
2030	. IEEE Journal of Selected Topics in Quantum Electronics, 1995 , 1, 293-300	3.8	3
2029	. IEEE Journal of Selected Topics in Quantum Electronics, 1995 , 1, 841-847	3.8	26
2028	. 1995 , 31, 208-218		43
2027	. 1995 , 31, 1380-1388		11
2026	Inhomogeneous line broadening and the threshold current density of a semiconductor quantum dot laser. 1996 , 11, 554-567		248
2025	The theory of quantum-dot infrared phototransistors. 1996 , 11, 759-765		268
2024	Realization of dot DFB lasers. 1996 , 8, 587-589		13
2023	Observation of lasing from vertically self-organized InAs three-dimensional island quantum boxes on GaAs (001). 1996 , 8, 965-967		111
2022	Proposal for quantum-dot electroabsorption modulator. 1996 , 8, 1477-1479		15
2021	Room temperature CW operation at the ground state of self-formed quantum dot lasers with multi-stacked dot layer. 1996 , 32, 2023		82
2020	Direct formation of vertically coupled quantum dots in Stranski-Krastanow growth. 1996 , 54, 8743-8750)	452
2019	The history and future of semiconductor heterostructures from the point of view of a Russian scientist. 1996 , T68, 32-45		36
2018	Optical spectroscopy of InGaAs/GaAs V-shaped quantum wires. 1996 , 13, 1031		24

2017 Excition relaxation in self-organized InAs/GaAs quantum dots. 1996 , 361-362, 770-773	6
Exciton interaction effects in the emission spectra of single free-standing InGaAs/GaAs quantum dots. 1996 , 361-362, 805-809	3
2015 Power spectral density analysis of strain-induced InP islands on. 1996 , 366, 129-139	
Direct fabrication of SiGe crystallites on glass substrate: from nanocrystals to microcrystals. 1996 , 198-200, 879-882	10
2013 Quantum-confined Stark effects in semiconductor quantum disks. 1996 , 32, 1760-1766	19
Splitting of electronic levels with positive and negative angular momenta in In0.53Ga0.47As/InP quantum dots by a magnetic field. 1996 , 53, 15810-15814	12
2011 Prevention of gain saturation by multi-layer quantum dot lasers. 1996 , 32, 1302	109
Optical anisotropy in 5-nm-scale T-shaped quantum wires fabricated by the cleaved-edge overgrowth method. 1996 , 53, R4229-R4232	48
2009 Introduction. 1996 , 1-31	3
2008 Quantum wire and dot lasers and related technologies.	
2007 Self-organized growth of quantum-dot structures. 1996 , 11, 1365-1379	205
Calculation of lasing characteristics in quantum dot lasers considering interaction of electrons with LO phonons.	2
2005 Self-formed In(Ga)As quantum dot lasers.	
2004 Room temperature lasing from InGaAs quantum dots. 1996 , 32, 1732	142
Fabrication and optical properties of self assembled InGaAs quantum dots embedded in microcavities.	
2002 InAs/GaAs quantum dot lasers.	3
Room temperature observation of lateral quantization effects in modulated barrier InGaAs/InP wires.	

1999 3D Arrays of Quantum Dots for Laser Applications. 1996 , 421, 133	5
1998 Direct Formation of Fine Structure by Low Energy Focused Ion Beam. 1996 , 448, 21	1
Optical Investigations of InAs Growth on GaAs and Lasing in Singly and Multiply Star Quantum Boxes. 1996 , 448, 487	cked Island
1996 Spontaneous and Stimulated Recombination in the Nitrides. 1996 , 449, 641	3
Theoretical analysis of the temperature dependence of threshold current density o laser.	f a quantum dot
1994 Overcoming gain saturation in InAs/GaAs quantum dot lasers.	
1993 Resonant tunnelling hot electron transistors: present status and future prospects. 1	1996 , 354, 2399-2411 1
1992 Normal incident infrared absorption from InGaAs/GaAs quantum dot superlattice. 1	1996 , 32, 1726 56
1991 Visible wavelength (6470 🏿 GaxIn1 🔻 P/GaAs0.66P0.34 quantum wire heterostructure	es. 1996 , 80, 7124-7129 5
1990 InP/InAlAs/InGaAs-quantum wires.	1
Strong magnetic field dependence of laser emission from quantum wires formed by overgrowth. 1996 , 40, 1-6	y cleaved edge 9
1988 Time and spatial resolved photoluminescence from a single quantum dot. 1996 , 40,	, 537-540 6
1987 Self-organized growth of quantum-dot structures. 1996 , 40, 777-783	3
Ordered arrays of quantum dots: Formation, electronic spectra, relaxation phenomy, 40, 785-798	nena, lasing. 1996 186
1985 Multiple quantum-dot infrared phototransistors. 1996 , 227, 17-20	12
1984 Light emission from vertical-microcavity quantum dot laser structures. 1996 , 227, 4	04-406 6
1983 Quantum wires and dots for optical studies. 1996 , 32, 317-330	4
Synchrotron radiation photoelectron spectroscopy study of bonding at heterointer InAs nanocrystals and Se-terminated GaAs. 1996 , 80, 221-224	faces between 7

1981	Size effect in steady-state and time-resolved luminescence of quantized MoS2 particle colloidal solutions. 1996 , 68, 299-311	13
1980	Quantum dots in quantum well structures. 1996 , 70, 108-119	10
1979	InP/InAlAs/InGaAs quantum wires. 1996 , 9, 32-38	
1978	In-plane photoconductivity of InAs/GaAs strained-layer structures prepared on variously oriented GaAs substrates. 1996 , 107, 233-237	
1977	Self-organization mechanism of GalnP quantum wires in (GaP) m /(lnP) m short-period binary superlattices for GalnP/AllnP multi-quantum-wire (MQWR) lasers. 1996 , 28, 547-556	6
1976	InAs-GaAs quantum dots: From growth to lasers. 1996 , 194, 159-173	61
1975	Quantum anti-dot arrays and quantum wire transistors fabricated on heterostructures. 1996 , 11, 571-575	2
1974	Exciton relaxation dynamics in quantum dots with strong confinement. 1996 , 54, R17292-R17295	27
1973	Electronic structure of the ridge quantum wire based on an analytic confinement model. 1996 , 79, 269-272	34
1972	Spatially resolved photoluminescence study on T-shaped quantum wires fabricated by cleaved edge overgrowth method. 1996 , 79, 2522-2528	16
1971	Dimensional crossover and confinement-induced optical anisotropy in GaAs T-shaped quantum wires. 1996 , 53, R10520-R10523	12
1970	Energy subbands, envelope states, and intersubband optical transitions in one-dimensional quantum wires: The local-envelope-states approach. 1996 , 54, 2675-2684	17
1969	Optimization of light emitting diodes based on bipolar double-barrier resonant-tunneling structures.	
1968	Theoretical gain of [hhk]-oriented quantum wire lasers. 1996 , 79, 3340-3342	3
1967	Room temperature lasing at lower-order subband of self-formed InGaAs quantum dot lasers with multi-stacked dot layer.	2
1966	Fabrication and characterization of GaInAsP/InP long wavelength quantum-wire lasers.	
1965	Phonon bottleneck in self-formed InxGa1-xAs/GaAs quantum dots by electroluminescence and time-resolved photoluminescence. 1996 , 54, R5243-R5246	96
1964	Concentrated oscillator strength of one-dimensional excitons in quantum wires observed with photoluminescence excitation spectroscopy. 1996 , 53, R16160-R16163	24

1963	Controlled Quantum Confinement Potentials in Self-Formed InGaAs Quantum Dots Grown by Atomic Layer Epitaxy Technique. <i>Japanese Journal of Applied Physics</i> , 1996 , 35, L262-L265	1.4	25
1962	High-Density GaAs/AlAs Quantum Wires Grown on (775)B-Oriented GaAs Substrates by Molecular Beam Epitaxy. <i>Japanese Journal of Applied Physics</i> , 1996 , 35, L606-L608	1.4	73
1961	Self-Formed InGaAs Quantum Dot Lasers with Multi-Stacked Dot Layer. <i>Japanese Journal of Applied Physics</i> , 1996 , 35, L903-L905	1.4	45
1960	Quantum-wires and -boxes based on GaInAsP/InP and related materials for advanced semiconductor lasers.		
1959	Epitaxial growth and physics of nanostructures for quantum dot lasers.		
1958	Electroluminescence from double-barrier resonant-tunnelling structures. 1997 , 12, 535-543		2
1957	Narrow Photoluminescence Line Width of Closely Stacked InAs Self-Assembled Quantum Dot Structures. <i>Japanese Journal of Applied Physics</i> , 1997 , 36, L158-L161	1.4	42
1956	Semiconductor lasers. 1997 , 27, 1035-1047		4
1955	Optical Properties of Manganese-Doped ZnSe/ZnS Quantum Dots Grown by Molecular Beam Epitaxy. <i>Japanese Journal of Applied Physics</i> , 1997 , 36, L1648-L1650	1.4	8
1954	Optical Transitions of Interacting Electrons in Coupled Quantum Dots Modulated by an External Electric Field. <i>Japanese Journal of Applied Physics</i> , 1997 , 36, 638-641	1.4	4
1953	Linear polarization of photoluminescence in quantum wires. 1997 , 9, 5105-5116		12
1952	Near-field optical spectroscopy of semiconductor quantum wires. 1997 , 8, A44-A49		O
1951	Study of high frequency response of self-organised stacked quantum dot lasers at room temperature. 1997 , 33, 1641		32
1950	Exciton states in isolated quantum wires. 1997 , 55, 1596-1601		17
1949	High photoluminescence efficiency of InGaAs/GaAs quantum dots self-formed by atomic layer epitaxy technique. <i>Applied Physics Letters</i> , 1997 , 70, 2416-2418	3.4	75
1948	A new self-limited growth for the fabrication of atomically uniform quantum wires and quantum dots. 1997 ,		
1947	Coulomb Correlation and Band Gap Renormalization at High Carrier Densities in Quantum Wires. 1997 , 78, 3579-3582		92
1946	Ultrafast energy relaxation in quantum dots through defect states: A lattice-relaxation approach. 1997 , 56, 10423-10427		45

1944	Fabry-Perot and vertical cavity surface emitting InAs quantum dot lasers. 1997,		
1943	Highly uniform and high-density GaAs/(GaAs)4(AlAs)2 quantum wires grown on (775)B-oriented GaAs substrates by molecular beam epitaxy. <i>Applied Physics Letters</i> , 1997 , 71, 2005-2007	3.4	37
1942	Linearly polarized and time-resolved cathodoluminescence study of strain-induced laterally ordered (InP)2/(GaP)2 quantum wires. 1997 , 81, 6837-6852		16
1941	InAs/GaAs Quantum Dots Grown by Metalorganic Chemical Vapor Deposition. <i>Japanese Journal of Applied Physics</i> , 1997 , 36, 4129-4133	1.4	20
1940	Self-assembled Quantum Dots For Laser Applications.		
1939	Auger carrier relaxation in self-assembled quantum dots by collisions with two-dimensional carriers. 1997 , 81, 7895-7899		56
1938	Large excited state Stokes shift in crescent-shaped AlGaAs/GaAs quantum wires. <i>Applied Physics Letters</i> , 1997 , 71, 2130-2132	3.4	23
1937	Observation of exciton states in GaAs coupled quantum wires on a V-grooved substrate. <i>Applied Physics Letters</i> , 1997 , 71, 3350-3352	3.4	5
1936	Metalorganic vapor phase epitaxy of coherent self-assembled InAs nanometer-sized islands in InP(001). <i>Applied Physics Letters</i> , 1997 , 71, 527-529	3.4	92
1935	Length quantization in In0.13Ga0.87As/GaAs quantum boxes with rectangular cross section. <i>Applied Physics Letters</i> , 1997 , 70, 393-395	3.4	8
1934	Small-signal modulation and differential gain of single-mode self-organized In0.4Ga0.6As/GaAs quantum dot lasers. <i>Applied Physics Letters</i> , 1997 , 70, 2952-2953	3.4	75
1933	Self-formed InGaAs/GaAs quantum dot superlattice and direct observation on strain distribution in the capped superlattice. <i>Applied Physics Letters</i> , 1997 , 70, 2440-2442	3.4	11
1932	Perfect spatial ordering of self-organized InGaAs/AlGaAs box-like structure array on GaAs (311)B substrate with silicon nitride dot array. <i>Applied Physics Letters</i> , 1997 , 71, 1655-1657	3.4	40
1931	Fabrication of ZnSe quantum dots under VolmerWeber mode by metalorganic chemical vapor deposition. <i>Applied Physics Letters</i> , 1997 , 70, 2256-2258	3.4	66
1930	Anisotropic polarization properties of GaInAsP/InP compressively-strained quantum-wire structure.		
1929	Surface damage in GaInAsP/InP wire structures by Cl/sub 2//H/sub 2/-ECR dry etching.		
1928	Optical characterization of InGaAs/InP quantum wire overgrowth by hydride VPE with InP.		1

1927	Vertical Microcavity Lasers with InGaAs/GaAs Quantum Dots Formed by Spinodal Phase Separation. Japanese Journal of Applied Physics, 1997 , 36, L357-L360	1.4	23
1926	Electronic States in Crescent-Shaped GaAs Coupled Quantum Wires. <i>Japanese Journal of Applied Physics</i> , 1997 , 36, 1927-1932	1.4	3
1925	High Resolution X-Ray Diffraction and Reflectivity Studies of Vertical and Lateral Ordering in Multiple Self-Organized InGaAs Quantum Dots. <i>Japanese Journal of Applied Physics</i> , 1997 , 36, 4084-408	7 ^{1.4}	4
1924	Photoluminescence and Photothermal Deflection Spectroscopy of InAs Quantum Dot Superlattices Grown on GaAs by Molecular Beam Epitaxy. <i>Japanese Journal of Applied Physics</i> , 1997 , 36, L811-L814	1.4	2
1923	InGaAs/GaAs Quantum Dot Lasers with Ultrahigh Characteristic Temperature (T0=385K) Grown by Metal Organic Chemical Vapour Deposition. <i>Japanese Journal of Applied Physics</i> , 1997 , 36, 4221-4223	1.4	50
1922	Dephasing Processes in Self-Organized Strained InGaAs Single-Dots on (311)B-GaAs Substrate. Japanese Journal of Applied Physics, 1997 , 36, 4194-4198	1.4	30
1921	Photon Recycling Effect in Semiconductor Lasers using Low Dimensional Structures. <i>Japanese Journal of Applied Physics</i> , 1997 , 36, 6368-6375	1.4	5
1920	Negative Characteristic Temperature of InGaAs Quantum Dot Injection Laser. <i>Japanese Journal of Applied Physics</i> , 1997 , 36, 4216-4218	1.4	80
1919	Characteristic temperature of quantum dot laser. 1997 , 33, 1871		32
1918	Gain and Threshold of Quantum Dot Lasers: Theory and Comparison to Experiments. <i>Japanese Journal of Applied Physics</i> , 1997 , 36, 4181-4187	1.4	98
1917	Room-temperature continuous-wave lasing from stacked InAs/GaAs quantum dots grown by metalorganic chemical vapor deposition. <i>Applied Physics Letters</i> , 1997 , 71, 22-24	3.4	276
1916	Temperature dependent lasing characteristics of multi-stacked quantum dot lasers. <i>Applied Physics Letters</i> , 1997 , 71, 193-195	3.4	84
1915	Characterization of lateral semiconductor nanostructures by means of x-ray grazing-incidence diffraction. <i>Applied Physics Letters</i> , 1997 , 70, 1031-1033	3.4	8
1914	Semiconductor Nanostructures For Femtosecond Optoelectronics.		
1913	Structural and optical properties of vertically aligned InP quantum dots. <i>Applied Physics Letters</i> , 1997 , 71, 2972-2974	3.4	128
1912	Growth of Self-Organized GaN Nanostructures on \$bf Al_{2}O_{3}(0001)\$ by RF-Radical Source Molecular Beam Epitaxy. <i>Japanese Journal of Applied Physics</i> , 1997 , 36, L459-L462	1.4	303
1911	Quantum wires in staggered-band-line-up single heterostructures with corrugated interfaces. 1997 , 55, 7733-7742		7
1910	Trapping of photogenerated carriers by InAs quantum dots and persistent photoconductivity in novel GaAs/n-AlGaAs field-effect transistor structures. <i>Applied Physics Letters</i> , 1997 , 70, 345-347	3.4	191

1909	Modeling of strained quantum wires using eight-band k?p theory. 1997, 55, 7726-7732	67
1908	Interband optical transition spectra in GaAs quantum wires with rectangular cross sections. 1997 , 56, 1958-1966	19
1907	Temperature dependence of photoluminescence spectra in InAs/GaAs quantum dot superlattices with large thicknesses. 1997 , 82, 4489-4492	112
1906	Nanometer-scale Si/Au bilayer dots fabricated by self-assembly process through liquid phase epitaxy. 1997 , 8, 1033-1039	1
1905	Effect of growth kinetics on the quantum dot arrays formation on vicinal surfaces. 1997 , 377-379, 895-898	19
1904	Direct Ga deposition by low-energy focused ion-beam system. 1997 , 386, 254-258	10
1903	Charge neutrality violation in quantum-dot lasers. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 1997 , 3, 148-157	63
1902	Lasing characteristics of self-formed quantum-dot lasers with multistacked dot layer. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 1997 , 3, 188-195	50
1901	InGaAs-GaAs quantum-dot lasers. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 1997 , 3, 196-20 <u>5</u> .8	401
1900	In Situ Monitoring And Control For MBE Growth Of Optoelectronic Devices. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 1997 , 3, 831-835	1
1899	10 Gbit/s differential receiver for large optical power fluctuation. 1997 , 33, 1642	12
1898	High-density quantum wires naturally formed on (7 7 5)B-oriented GaAs substrates by molecular beam epitaxy. 1997 , 175-176, 814-818	12
1897	MBE growth of novel field-effect transistor structures with embedded InAs quantum traps and their transport characteristics. 1997 , 175-176, 730-735	6
1896	Improved optical qualities of tilted T-shaped quantum wires fabricated by glancing-angle molecular beam epitaxy. 1997 , 175-176, 809-813	2
1895	MOCVD growth and optical characterization of strain-induced quantum dots with InP island stressors. 1997 , 174, 605-610	11
1894	Three-dimensional arrays of self-ordered quantum dots for laser applications. 1997 , 28, 915-931	13
1893	Arrays of strained InAs quantum dots in an (In Ga)As matrix, grown on InP substrates by molecular-beam epitaxy. 1997 , 31, 1080-1083	17
1892	Thermal stability of vertically coupled InAs-GaAs quantum dot arrays. 1997 , 31, 84-87	5

1891	Quantum dot injection heterolaser with ultrahigh thermal stability of the threshold current up to 50 LC. 1997 , 31, 124-126	24
1890	Injection heterolaser based on an array of vertically aligned InGaAs quantum dots in a AlGaAs matrix. 1997 , 31, 411-414	29
1889	Luminescence properties of InAs/GaAs quantum dots prepared by submonolayer migration-stimulated epitaxy. 1997 , 31, 777-780	2
1888	Quantum-dot cw heterojunction injection laser operating at room temperature with an output power of 1 W. 1997 , 23, 149-150	26
1887	Edge and surface emitting quantum dot lasers.	1
1886	Quantum-dot cascade laser: proposal for an ultralow-threshold semiconductor laser. 1997 , 33, 1170-1173	63
1885	Electron tunneling through a Hubbard gap. 1997 , 240, 128-132	6
1884	Spectroscopy of one-dimensional excitons in gaas quantum wires. 1997 , 48, 126-130	1
1883	Growth and optical evaluation of InGaAs/GaAs quantum dots self-formed during alternate supply of precursors. 1997 , 112, 102-109	20
1882	GalnAs/InP quantum wires grown by metalorganic vapor phase epitaxy on V-grooved InP substrates. 1997 , 28, 903-908	
1881	Luminescence properties of semiconductor quantum dots. 1997 , 72-74, 34-37	14
1880	Formation of 10 nm-Scale Edge Quantum Wire Structures and Their Excitonic and Electronic Properties. 1997 , 164, 241-251	6
1879	Theory of Quantum Dot Laser Gain and Threshold: Correlated versus Uncorrelated Electron and Hole Capture. 1997 , 164, 297-300	16
1878	Evolution of the Optical Properties of InAs/GaAs Quantum Dots for Increasing InAs Coverages. 1997 , 164, 493-497	15
1877	Self-Organized Quantum Wires and Dots in III IV semiconductors. 1997 , 9, 1019-1026	24
1876	Self-assembled structures of closely stacked InAs islands grown on GaAs by molecular beam epitaxy. 1997 , 175-176, 713-719	77
1875	Intersubband absorption from In0.26Ga0.74AsGaAs quantum dot superlattice. 1997 , 175-176, 760-764	13
1874	Low-threshold injection lasers based on vertically coupled quantum dots. 1997 , 175-176, 689-695	70

1873	Self-assembled nanocomposite structure of SiAu system formed by liquid phase epitaxy. 1997 , 181, 304-307	13
1872	Formation mechanism of volcano-like structural defects in multiple periods of InAs quantum dots on GaAs. 1997 , 182, 292-298	9
1871	Selective epitaxy with in situ mask processing and pulse plasma. 1997 , 71-72, 3-29	
1870	Vertical stacking of strained InGaAs/GaAs quantum wires by chemical beam epitaxy. 1998 , 188, 191-196	2
1869	Formation of GaAs island by Ga-droplet-induced chemical beam epitaxy. 1998 , 188, 377-382	6
1868	Real-time observations of the GaN dot formation by controlling growth mode on the AlGaN surface in gas-source molecular beam epitaxy. 1998 , 189-190, 147-152	3
1867	Size control of self-assembled InP/GaInP quantum islands. 1998 , 195, 591-595	59
1866	Self-organized growth, ripening, and optical properties of wide-bandgap IIIVI quantum dots. 1998 , 184-185, 228-236	4
1865	New approach to the fabrication of CdSe/ZnSe quantum dots using a cleaved-edge overgrowth technique. 1998 , 184-185, 283-287	12
1864	The history and future of semiconductor heterostructures. 1998 , 32, 1-14	237
1864		237
1863	Quantum dot heterostructures: Fabrication, properties, lasers (Review). 1998, 32, 343-365 Nanometer-size atomic clusters in semiconductors new approach to tailoring material	281
1863	Quantum dot heterostructures: Fabrication, properties, lasers (Review). 1998, 32, 343-365 Nanometer-size atomic clusters in semiconductors new approach to tailoring material properties. 1998, 32, 457-465 Investigation of the device characteristics of a low-threshold quantum-dot laser emitting at 1.9 µm.	281
1863 1862 1861	Quantum dot heterostructures: Fabrication, properties, lasers (Review). 1998, 32, 343-365 Nanometer-size atomic clusters in semiconductors new approach to tailoring material properties. 1998, 32, 457-465 Investigation of the device characteristics of a low-threshold quantum-dot laser emitting at 1.9 1998, 32, 795-797 Effect of the quantum-dot surface density in the active region on injection-laser characteristics.	281
1863 1862 1861 1860	Quantum dot heterostructures: Fabrication, properties, lasers (Review). 1998, 32, 343-365 Nanometer-size atomic clusters in semiconductors new approach to tailoring material properties. 1998, 32, 457-465 Investigation of the device characteristics of a low-threshold quantum-dot laser emitting at 1.9 pm. 1998, 32, 795-797 Effect of the quantum-dot surface density in the active region on injection-laser characteristics. 1998, 32, 997-1000 Continuous stimulated emission at T=293 K from separate-confinement heterostructure diode lasers with one layer of lnAs quantum dots grown on vicinal GaAs(bd001) surfaces misoriented in	281 20 5 24
1863 1862 1861 1860	Quantum dot heterostructures: Fabrication, properties, lasers (Review). 1998, 32, 343-365 Nanometer-size atomic clusters in semiconductors new approach to tailoring material properties. 1998, 32, 457-465 Investigation of the device characteristics of a low-threshold quantum-dot laser emitting at 1.9 pm. 1998, 32, 795-797 Effect of the quantum-dot surface density in the active region on injection-laser characteristics. 1998, 32, 997-1000 Continuous stimulated emission at T=293 K from separate-confinement heterostructure diode lasers with one layer of lnAs quantum dots grown on vicinal GaAs(bd001) surfaces misoriented in the [010] direction in the active region. 1998, 32, 1323-1327	281 20 5 24 11

New method for the growth of highly uniform quantum dots. 1998 , 43-44, 79-83	1
Fabrication of Zn1td Se quantum dots by molecular beam epitaxy on the GaAs (110) cleaved surface. 1998 , 43-44, 677-682	1
Influence of Auger and LO-phonon scattering on bulk and quasiEquantum wire mid-IR laser diodes. 1998, 145, 281-286	
1852 Annealing behavior of InAs/GaAs quantum dot structures. 1998 , 27, 59-61	4
1851 Injection lasers based on InGaAs quantum dots in an AlGaAs matrix. 1998 , 27, 106-109	29
1850 Semiconductor quantum dots for application in diode lasers. 1998 , 318, 83-87	13
Light emission from individual InAs/GaAs self-assembled quantum dots excited by tunneling current injection. 1998 , 42, 1079-1082	
Near-field optical spectroscopy of self-assembled quantum dots: NSOM apparatus for measuring the features of single dots. 1998 , 42, 1083-1086	7
Anisotropic optical properties of arbitrarily oriented quantum wires with arbitrary cross-sections. 1998 , 42, 1205-1209	4
1846 Barrier thickness dependence of optical properties in GaAs coupled quantum wires. 1998 , 42, 1211-121	6 2
Edge and vertical cavity surface emitting InAs quantum dot lasers. 1998 , 42, 1433-1437	14
Temperature dependence of exciton lifetimes in high-density GaAs/(GaAs)4(AlAs)2 quantum wires grown on (775)B-oriented GaAs substrates by molecular beam epitaxy. 1998 , 42, 1581-1585	5
Kinetic Monte Carlo simulation of the nucleation stage of the self-organized growth of quantum dots. 1998 , 42, 1587-1591	30
Self-organized quantum dots grown on GaAs(311)B by atomic hydrogen-assisted molecular beam epitaxy. 1998 , 42, 1613-1621	4
Selective growth of GaAs quantum dots and vertical quantum wires in two-dimensional V-grooves. 1998 , 2, 15-18	2
Electroluminescence studies of stacked self-assembled InAs/GaAs-quantum dots embedded in a Bragg resonator. 1998 , 2, 594-598	2
Observation of spectral hole burning in photocurrent spectrum of InAs self-assembled quantum dots buried in pn-junction. 1998 , 2, 632-636	
Trapping of a single photogenerated hole by an InAs quantum dot in GaAs/n-AlGaAs quantum trap FET and its spectral response in the near-infrared regime. 1998 , 2, 734-737	3

1837	Characterization of InGaAs quantum dot lasers with a single quantum dot layer as an active region. 1998 , 2, 738-742		10
1836	Temperature dependence of photoluminescence from high-density GaAs/(GaAs)4(AlAs)2 quantum wires grown on (775)B-oriented GaAs substrates by molecular beam epitaxy. 1998 , 2, 959-963		4
1835	First observation of symmetry breaking in strained In0.7Ga0.3As/InP V-groove quantum wires. 1998 , 2, 969-973		1
1834	Near-field spectroscopy of quantum wires grown by selective growth method. 1998 , 2, 987-990		3
1833	Application of self-organized quantum dots to edge emitting and vertical cavity lasers. 1998 , 3, 129-136		21
1832	Carrier dynamics of quantum confined structures. 1998 , 22, 79-111		1
1831	InAs dots grown on InP (001) by droplet hetero-epitaxy using OMVPE. 1998 , 51, 118-121		9
1830	A new approach to ZnCdSe quantum dots. 1998 , 51, 127-131		13
1829	Volume distributions of InAs/GaAs self-assembled quantum dots by Stranski K rastanow mode of molecular beam epitaxy. 1998 , 1, 131-140		4
1828	Correlation of InGaAs/GaAs quantum dot and wetting layer formation. 1998 , 123-124, 352-355		11
1827	Atomic force microscopy study of self-organized ZnCdSe nanostructures fabricated on the cleavage-induced GaAs (110) surface. 1998 , 130-132, 719-723		
1826	InAs nanocrystal growth on Si (100). 1998 , 130-132, 760-764		35
1825	Numerical and experimental investigations of the size ordering of nanocrystals. 1998 , 410, L748-L756		13
1824	Characteristics of spectral-hole burning of InAs self-assembled quantum dots. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 1998 , 4, 880-885	8	22
1823	Temperature dependence of the threshold current density of a quantum dot laser. 1998 , 34, 841-850		70
1822	Feasibility study on the application of the quantum disk to the gain-coupled distributed feedback laser. 1998 , 34, 1317-1324		6
1821	Performance of GaAs-AlGaAs V-grooved inner stripe quantum-well wire lasers with different current blocking configurations. 1998 , 34, 1461-1468		10
1820	Characteristics of InAs/AlGaAs self-organized quantum dot modulation doped field effect transistors. <i>Applied Physics Letters</i> , 1998 , 72, 3509-3511	4	32

1819	Density Control of GaSb/GaAs Self-assembled Quantum Dots (~25nm) Grown by Molecular Beam Epitaxy. <i>Japanese Journal of Applied Physics</i> , 1998 , 37, L203-L205	1.4	35
1818	Effect of matrix on InAs self-organized quantum dots on InP substrate. <i>Applied Physics Letters</i> , 1998 , 72, 362-364	3.4	88
1817	Selective carrier injection into V-groove quantum wires. <i>Applied Physics Letters</i> , 1998 , 73, 2959-2961	3.4	17
1816	Polarization properties of longitudinal-cavity V-groove quantum wire lasers.		
1815	Seeded self-assembled GaAs quantum dots grown in two-dimensional V grooves by selective metal B rganic chemical-vapor deposition. <i>Applied Physics Letters</i> , 1998 , 72, 800-802	3.4	24
1814	Emission spectra and mode structure of InAs/GaAs self-organized quantum dot lasers. <i>Applied Physics Letters</i> , 1998 , 73, 969-971	3.4	134
1813	The formation of GaN dots on AlxGa1NN surfaces using Si in gas-source molecular beam epitaxy. <i>Applied Physics Letters</i> , 1998 , 72, 344-346	3.4	52
1812	Gain spectral characteristics of GaInAsP/InP quantum-wire lasers.		
1811	Low threshold CW lasing of closely-stacked self-organized InAs/GaAs quantum dots.		
1810	Room-temperature continuous-wave lasing from InAs/GaAs quantum dot laser grown by molecular beam epitaxy.		
1809	Low threshold and high output power lasing of columnar-shaped self-assembled InAs-GaAs quantum dots.		
1808	Growth, Spectroscopy, and Laser Application of Self-Ordered III-V Quantum Dots. 1998 , 23, 31-34		90
1807	Light emission from individual self-assembled InAs/GaAs quantum dots excited by tunneling current injection. <i>Applied Physics Letters</i> , 1998 , 73, 1460-1462	3.4	25
1806	Normal-incidence intersubband (In, Ga)As/GaAs quantum dot infrared photodetectors. <i>Applied Physics Letters</i> , 1998 , 73, 1937-1939	3.4	301
1805	Electrical detection of optically induced charge storage in self-assembled InAs quantum dots. <i>Applied Physics Letters</i> , 1998 , 73, 2618-2620	3.4	168
1804	Self-organized quantum dots and quantum dot lasers (invited). 1998 , 16, 794-800		36
1803	One-dimensional excitons in GaAs quantum wires. 1998 , 10, 3095-3139		48
1802	Multi-stacked quantum dot resonant-cavity photodetector operating at 1.06 [micro sign]m. 1998 , 34, 694		14

1801	Blue-light emission from GaN self-assembled quantum dots due to giant piezoelectric effect. 1998 , 58, R15989-R15992	239
1800	Self-aggregated InAs quantum dots in GaAs. 1998 , 83, 5529-5535	25
1799	Excited states and energy relaxation in stacked InAs/GaAs quantum dots. 1998, 57, 9050-9060	209
1798	Tunable intersublevel transitions in self-forming semiconductor quantum dots. 1998 , 58, R4262-R4265	103
1797	Scanning transmission-electron microscopy study of InAs/GaAs quantum dots. 1998 , 58, R10127-R10130	106
1796	Temperature sensitivity of threshold current density of a quantum dot laser. 1998,	
1795	Low threshold quantum dot injection laser emitting at 1.9 [micro sign]m. 1998 , 34, 670	55
1794	Local probe techniques for luminescence studies of low-dimensional semiconductor structures. 1998 , 84, 1715-1775	146
1793	Nanoscale liquid phase epitaxy between Si and Au nanoparticles. 1998 , 13, 1492-1496	7
1792	QUANTUM DOT SEMICONDUCTOR LASERS. 1998 , 09, 1081-1107	1
1791	Lasing with low threshold current and high output power from columnar-shaped InAs/GaAs quantum dots. 1998 , 34, 1588	63
1790	Transition of Absorption Spectra due to Electron-Electron Interaction in a Square-Well Quantum Dot under a Magnetic Field. <i>Japanese Journal of Applied Physics</i> , 1998 , 37, 863-867	2
1789	Anisotropic Polarization Properties of Photoluminescence from GaInAsP/InP Quantum-Wire Structures Fabricated by Two-Step Organometallic Vapor Phase Epitaxy Growth. <i>Japanese Journal of Applied Physics</i> , 1998 , 37, L46-L49	7
1788	Estimation of Sidewall Nonradiative Recombination in GaInAsP/InP Wire Structures Fabricated by Low Energy Electron-Cyclotron-Resonance Reactive-Ion-Beam-Etching. <i>Japanese Journal of Applied</i> 1.4 <i>Physics</i> , 1998 , 37, 3576-3584	21
1787	Threshold current of quantum-disk and quantum-wire gain-coupled distributed feedback lasers. 1998 , 84, 5883-5886	1
1786	Observation of wire width fluctuations in the optical spectra of GaAsAlGaAs V-groove quantum wires. <i>Applied Physics Letters</i> , 1998 , 73, 3420-3422	13
1785	Lateral periodicity and elastic stress relaxation in GaInAsP quantum wires on InP investigated by x-ray diffractometry. 1998 , 83, 5810-5813	3

1783	Growth and characterization of InGaAs/InGaP quantum dots for midinfrared photoconductive detector. <i>Applied Physics Letters</i> , 1998 , 73, 963-965	3.4	136
1782	Site control of self-organized InAs dots on GaAs substrates by in situ electron-beam lithography and molecular-beam epitaxy. <i>Applied Physics Letters</i> , 1998 , 73, 1712-1714	3.4	88
1781	Excited-state optical transitions of excitons and biexcitons in a single InxGa1NAs quantum disk. 1998 , 58, 16243-16251		64
1780	Polarized photoluminescence spectroscopy of single self-assembled InAs quantum dots. 1998 , 58, R10	147-R1	0\$50
1779	Self-assembled islands on strained systems: Control of formation, evolution, and spatial distribution. 1998 , 57, 12501-12505		8
1778	Suppression of Ostwald ripening in In0.5Ga0.5As quantum dots on a vicinal (100) substrate. 1998 , 57, 11879-11882		52
1777	Self-organization of (In,Ga)As/GaAs quantum dots on relaxed (In,Ga)As films. <i>Applied Physics Letters</i> , 1998 , 73, 2164-2166	3.4	17
1776	Photoluminescence study of lateral confinement energy in T-shaped InxGa1NAs quantum wires. 1998 , 57, 3765-3768		17
1775	Near-field magneto-optical spectroscopy of single self-assembled InAs quantum dots. <i>Applied Physics Letters</i> , 1998 , 73, 517-519	3.4	63
1774	Microphotoluminescence characterization of cleaved edge overgrowth T-shaped InxGa1⊠As quantum wires. 1998 , 83, 3777-3783		22
1773	Control of Ge dots in dimension and position by selective epitaxial growth and their optical properties. <i>Applied Physics Letters</i> , 1998 , 72, 1617-1619	3.4	118
1772	Self-assembled InAs/GaAs quantum dots under resonant excitation. 1998, 83, 1631-1636		56
1771	Stimulated emission in ridge quantum wire laser structures measured with optical pumping and microscopic imaging methods. <i>Applied Physics Letters</i> , 1998 , 73, 511-513	3.4	26
1770	Cathodoluminescence study of InGaAs/GaAs quantum dot structures formed on the tetrahedral-shaped recesses on GaAs (111)B substrates. 1998 , 83, 4944-4950		14
1769	Red-light-emitting injection laser based on InP/GaInP self-assembled quantum dots. <i>Applied Physics Letters</i> , 1998 , 73, 1784-1786	3.4	56
1768	Spin-polarization spectroscopy in rectangular GaAs quantum wires. 1998 , 58, 15652-15659		8
1767	Competitive Vertical Cavity and Edge Emitting Quantum Dot Lasers.		
1766	Highly packed InGaAs quantum dots on GaAs(311)B. <i>Applied Physics Letters</i> , 1998 , 73, 3411-3413	3.4	71

1765 Low-threshold quantum dot injection laser emitting at 1.9 /spl mu/m.

1764	Quantum-confined Stark effects of exciton states in V-shaped GaAs/AlxGa1NAs quantum wires. 1998 , 58, 2031-2037	36
1763	Growth and optical properties of self-assembled type II GaSb/GaAs quantum dots.	
1762	Injection lasers with vertically aligned InP/GaInP quantum dots: Dependence of the threshold current on temperature and dot size. <i>Applied Physics Letters</i> , 1998 , 73, 3730-3732	21
1761	EXTENDED WAVELENGTH (1.0 to 1.3 Ith.) InGaAs/GaAs QUANTUM DOT GaAs-BASED VERTICAL-CAVITY SURFACE-EMITTING AND LATERAL-CAVITY EDGE-EMITTING LASERS. 1998 , 09, 979-1005	
1760	Perfect Spatial Ordering of Self-Organized InGaAs/AlGaAs Quantum Disks on GaAs (311)B Substrate with Silicon-Nitride Dot Array. <i>Japanese Journal of Applied Physics</i> , 1998 , 37, 1559-1564	4
1759	Effects of Substrate Misorientation on the Formation and Characteristics of Self-Assembled InP/InGaP Quantum Dots. <i>Japanese Journal of Applied Physics</i> , 1998 , 37, L366-L368	6
1758	Slow Carrier Relaxation among Sublevels in Annealed Self-Formed InGaAs/GaAs Quantum Dots. Japanese Journal of Applied Physics, 1998, 37, 5451-5456	20
1757	GaInAsP/InP Compressively Strained Quantum-Wire Lasers Fabricated by Electron Beam Lithography and 2-Step Organometallic Vapor Phase Epitaxy. <i>Japanese Journal of Applied Physics</i> , 1998, 37, 4792-4800	27
1756	Sidewall Recombination Velocity in GaInAsP/InP Quantum-Well Lasers with Wire-like Active Region Fabricated by Wet-Chemical Etching and Organo-Metallic Vapor-Phase-Epitaxial Regrowth. 1.4 Japanese Journal of Applied Physics, 1998, 37, 6569-6574	8
1755	Gain Spectrum Measurement of GaInAsP/InP Compressively-Strained Quantum-Wire Lasers. <i>Japanese Journal of Applied Physics</i> , 1998 , 37, L1386-L1389	2
1754	DEVICES CHARACTERISTICS OF LOW-THRESHOLD QUANTUM-DOT LASERS. 1998 , 09, 1109-1138	11
1753	GaAs/AlGaAs single quantum well laser with two pairs of linear GRIN-SCH.	
1752	Optical properties of self-assembled II-VI quantum dots. 1998,	1
1751	Spatial hole burning and multimode generation threshold in quantum dot lasers.	
1750	Piezoelectric Properties of GaN Self-Organized Quantum Dots. 1998 , 537, 1	
1749	Piezoelectric Properties of GaN Self-Organized Quantum Dots. 1999 , 4, 846-851	3
1748	Diode lasers based on quantum dots. 1999 , 203-214	2

1747	Quantum Wire and Quantum Dot Lasers. 1999 , 291-360		3
1746	Quantum Dot Semiconductor Optical Amplifiers. 1999 , 183		
1745	Elastic stress relaxation in GaInAsP quantum wires on InP. 1999 , 32, A21-A25		5
1744	Influence of Long-Range Lateral Ordering in Structures with Quantum Dots on the Spatial Distribution of Diffracted X-Ray Radiation. <i>Japanese Journal of Applied Physics</i> , 1999 , 38, 818-821	1.4	15
1743	Molecular Beam Epitaxial Growth of InAs Quantum Dots Directly on Silicon. <i>Japanese Journal of Applied Physics</i> , 1999 , 38, 6219-6221	1.4	12
1742	Optically Induced Persistent Charge Storage Effects in Self Assembled InAs Quantum Dots. Japanese Journal of Applied Physics, 1999 , 38, 531-534	1.4	3
1741	Time-Resolved Emission from Self-Assembled Single Quantum Dots Using Scanning Near-Field Optical Microscope. <i>Japanese Journal of Applied Physics</i> , 1999 , 38, L1460-L1462	1.4	13
1740	Structure and optical properties of semiconductor quantum nanostructures self-formed in inverted tetrahedral pyramids. 1999 , 11, 5901-5915		49
1739	Crystallographic Properties of Closely Stacked InAs Quantum Dots Investigated by Ion Channeling. Japanese Journal of Applied Physics, 1999 , 38, 504-506	1.4	1
1738	Effect of dopant on the uniformity of InAs self-organized quantum dots. 1999 , 8, 624-628		1
1737	Control of the emission wavelength of self-organized InGaAs quantum dots: main achievements and present status. 1999 , 14, 575-581		46
1736	Long-wavelength luminescence from In0.5Ga0.5As/GaAs quantum dots grown by migration enhanced epitaxy. 1999 , 17, 1124		12
1735	Ordering of InxGa1NAs quantum dots self-organized on GaAs(311)B substrates. 1999 , 17, 1105		18
1734	Lifetime of Confined LO Phonons in Quantum Dots and Its Impact on Phonon Bottleneck Issue. Japanese Journal of Applied Physics, 1999 , 38, 473-476	1.4	7
1733	Quantum Dots - Pages 133-145. 1999 , 133-145		
1732	Electron-filling modulation reflectance in charged self-assembled InxGa1⊠As quantum dots. 1999 , 60, R2189-R2192		17
1731	Suppression of temperature sensitivity of interband emission energy in 1.3-th-region by an InGaAs overgrowth on self-assembled InGaAs/GaAs quantum dots. <i>Applied Physics Letters</i> , 1999 , 74, 3963-3965	3.4	67
1730	Self-organized GaAs quantum-wire lasers grown on (775)B-oriented GaAs substrates by molecular beam epitaxy. <i>Applied Physics Letters</i> , 1999 , 74, 780-782	3.4	55

1729	Dynamic properties of InGaAs quantum dot lasers.		1
1728	High-performance GalnAs/GaAs quantum-dot lasers based on a single active layer. <i>Applied Physics Letters</i> , 1999 , 74, 2915-2917	3.4	71
1727	Electronic structure of nanometer-scale quantum dots created by a conductive atomic force microscope tip in resonant tunneling structures. <i>Applied Physics Letters</i> , 1999 , 74, 1582-1584	3.4	10
1726	InGaAs quantum wires and wells on V-grooved InP substrates. 1999 , 86, 5207-5214		19
1725	Exciton-phonon scattering in GaAs/AlAs quantum wires. <i>Applied Physics Letters</i> , 1999 , 74, 2474-2476	3.4	11
1724	Cathodoluminescence spectroscopy and imaging of individual GaN dots. <i>Applied Physics Letters</i> , 1999 , 74, 3513-3515	3.4	26
1723	Temperature characteristics of threshold currents of columnar-shaped self-assembled InGaAs/GaAs quantum-dot lasers: Influence of nonradiative recombination centers. <i>Applied Physics Letters</i> , 1999 , 75, 656-658	3.4	19
1722	Room-temperature lasing oscillation in an InGaN self-assembled quantum dot laser. <i>Applied Physics Letters</i> , 1999 , 75, 2605-2607	3.4	73
1721	A comparison of photoluminescence properties of InGaAs/GaAs quantum dots with a single quantum well. 1999 , 86, 1456-1459		14
1720	Spectral analysis of InGaAs/GaAs quantum-dot lasers. <i>Applied Physics Letters</i> , 1999 , 75, 2169-2171	3.4	23
1719	Electron-Hole Correlation Effects in the Emission of Light from Quantum Wires. 1999 , 82, 843-846		43
1718	Optical spectroscopy of quasimonolayer InAs at the onset of quantum-dot nucleation. 1999 , 60, 2592-2	2598	39
1717	Gain characteristics of InAs/GaAs self-organized quantum-dot lasers. <i>Applied Physics Letters</i> , 1999 , 75, 3512-3514	3.4	18
1716	Polarization dependent photocurrent spectroscopy of InAs/GaAs quantum dots. <i>Applied Physics Letters</i> , 1999 , 75, 2247-2249	3.4	48
1715	Phonon bottleneck in quantum dots: Role of lifetime of the confined optical phonons. 1999 , 59, 5069-5	5073	165
1714	Effects of Spectral Broadening and Cross Relaxation on the Gain Saturation Characteristics of Quantum Dot Laser Amplifiers. <i>Japanese Journal of Applied Physics</i> , 1999 , 38, 5087-5095	1.4	19
1713	Evaluation of Optical Gain Properties of GaInAsP/InP Compressively Strained Quantum-Wire Lasers. Japanese Journal of Applied Physics, 1999 , 38, 6327-6334	1.4	1
1712	Strain Effect on the Band Structure of InAs/GaAs Quantum Dots. <i>Japanese Journal of Applied Physics</i> , 1999 , 38, 6264-6265	1.4	5

1711	Scanning Transmission Electron Microscopy (STEM) Study of InAs/GaAs Quantum Dots. <i>Japanese Journal of Applied Physics</i> , 1999 , 38, 496-499	1.4	13
1710	1.3 µm Room Temperature Emission from InAs/GaAs Self-Assembled Quantum Dots. <i>Japanese Journal of Applied Physics</i> , 1999 , 38, 528-530	1.4	89
1709	Microscopic Photoluminescence Study of InAs Single Quantum Dots Grown on (100) GaAs. <i>Japanese Journal of Applied Physics</i> , 1999 , 38, 546-549	1.4	13
1708	Red Light Emitting Injection Lasers with Vertically-Aligned InP/GaInP Quantum Dots. <i>Japanese Journal of Applied Physics</i> , 1999 , 38, 597-600	1.4	11
1707	Multi-Stacked InAs/InGaAs/InP Quantum Dot Laser (Jth=11A/cm2, 월1.9ਊm (77 K)). <i>Japanese Journal of Applied Physics</i> , 1999 , 38, 601-604	1.4	22
1706	Effect of Size Fluctuations on the Photoluminescence Spectral Linewidth of Closely Stacked InAs Self-Assembled Quantum Dot Structures. <i>Japanese Journal of Applied Physics</i> , 1999 , 38, 1085-1089	1.4	22
1705	New Self-Organized Growth Method for InGaAs Quantum Dots on GaAs(001) Using Droplet Epitaxy. Japanese Journal of Applied Physics, 1999 , 38, L1009-L1011	1.4	64
1704	Recombination in InGaAs/GaAs quantum wire lasers. 1999 , 112, 55-60		2
1703	Optical processes and electronic states in InGaAs/GaAs V-groove quantum wire lasers. 1999 , 55, 1923-	1929	
1702	10 nm-scale edge- and step-quantum wires and related structures: Progress in their design, epitaxial synthesis and physics. 1999 , 4, 56-64		6
			6 37
1701	epitaxial synthesis and physics. 1999 , 4, 56-64		
1701	epitaxial synthesis and physics. 1999 , 4, 56-64 The influence of inter-diffusion on electron states in quantum dots. 1999 , 4, 231-237		37
1701 1700	epitaxial synthesis and physics. 1999, 4, 56-64 The influence of inter-diffusion on electron states in quantum dots. 1999, 4, 231-237 The present status of quantum dot lasers. 1999, 5, 167-184 ElectronBole reduced effective mass in monoatomic DTiDTiDTquantum wires embedded in the siliceous crystalline matrix of ETS-10. 1999, 30, 155-163		37 177
1701 1700 1699	epitaxial synthesis and physics. 1999, 4, 56-64 The influence of inter-diffusion on electron states in quantum dots. 1999, 4, 231-237 The present status of quantum dot lasers. 1999, 5, 167-184 Electronfiole reduced effective mass in monoatomic DTiDTiDTquantum wires embedded in the siliceous crystalline matrix of ETS-10. 1999, 30, 155-163		37 177 89
1701 1700 1699 1698	epitaxial synthesis and physics. 1999, 4, 56-64 The influence of inter-diffusion on electron states in quantum dots. 1999, 4, 231-237 The present status of quantum dot lasers. 1999, 5, 167-184 ElectronBole reduced effective mass in monoatomic DTiDTiDTquantum wires embedded in the siliceous crystalline matrix of ETS-10. 1999, 30, 155-163 Effects of vicinal InP (001) surface on InAs dots grown by droplet hetero-epitaxy. 1999, 58, 195-198		37 177 89
1701 1700 1699 1698	The influence of inter-diffusion on electron states in quantum dots. 1999, 4, 231-237 The present status of quantum dot lasers. 1999, 5, 167-184 ElectronBole reduced effective mass in monoatomic DTiDTiDDquantum wires embedded in the siliceous crystalline matrix of ETS-10. 1999, 30, 155-163 Effects of vicinal InP (001) surface on InAs dots grown by droplet hetero-epitaxy. 1999, 58, 195-198 Self organization of nitride quantum dots by molecular beam epitaxy. 1999, 59, 330-334 Influence of composition and anneal conditions on the optical properties of (In, Ga)As quantum		37 177 89 1

1693	Quantum dot lasers: The birth and future trends. 1999 , 33, 946-950	28
1692	Quantum dots: Paradigm changes in semiconductor physics. 1999 , 33, 951-955	58
1691	Role of thermal ejection of carriers in the burning of spatial holes in quantum dot lasers. 1999 , 33, 981-984	2
1690	Gain characteristics of quantum-dot injection lasers. 1999 , 33, 1013-1015	4
1689	X-Ray diffraction analysis of multilayer InAs-GaAs heterostructures with InAs quantum dots. 1999 , 33, 1229-1237	9
1688	Quantum-dot injection heterolaser with 3.3 W output power. 1999 , 25, 438-439	5
1687	Non-dimensional size effects on the thermodynamic properties of solids. 1999 , 42, 1991-2001	22
1686	Uniformity enhancement of the self-organized InAs quantum dots. 1999 , 197, 372-375	9
1685	Enhancement of surface decomposition using supersonic beam: direct evidence from GaN quantum dot formations on AlGaN surfaces in gas-source molecular beam epitaxy. 1999 , 201-202, 402-406	
1684	Magneto-optical studies of GaAs/AlGaAs T-shaped quantum wire structures fabricated by cleaved edge overgrowth. 1999 , 201-202, 805-809	2
1683	Selective molecular beam epitaxy (MBE) growth of GaAs/AlAs ridge structures containing 10nm scale wires and side quantum wells (QWs) and their stimulated emission characteristics. 1999 , 201-202, 810-813	12
1682	GaAs/(GaAs)4(AlAs)2 quantum wire lasers grown on (775)B-oriented GaAs substrates by molecular beam epitaxy. 1999 , 201-202, 886-890	15
1681	Self-assembled InP quantum dots for red LEDs on Si and injection lasers on GaAs. 1999 , 201-202, 1121-1125	8
1680	In0.5Ga0.5As quantum dot lasers grown on (1 0 0) and (3 1 1)B GaAs substrates. 1999 , 201-202, 1139-1142	2
1679	Control of size and density of self-assembled InAs dots on (0 0 1)GaAs and the dot size dependent capping process. 1999 , 201-202, 1146-1149	30
1678	Effect of GaAs(001) surface misorientation on the emission from MBE grown InAs quantum dots. 1999 , 201-202, 1158-1160	9
1677	Characterization of In0.5Ga0.5As quantum dot p-i-n structures with different matrices. 1999 , 201-202, 1168-1171	3
1676	Self-assembled InAs and In0.9Al0.1As quantum dots on (001)InP substrates grown by molecular beam epitaxy (MBE). 1999 , 204, 24-28	4

1675	Fabrication of InGaAs quantum dots with an underlying InGaAlAs layer on GaAs(100) and high index substrates by molecular beam epitaxy. 1999 , 205, 607-612		8
1674	TEM observation of threading dislocations in InAs self-assembled quantum dot structure. 1999 , 205, 461-466		14
1673	Design of quantum structure stripe lasersfor low threshold current. 1999 , 31, 23-28		2
1672	Self-organized growth of In(Ga)As/GaAs quantum dots and their opto-electronic device applications. 1999 , 22, 519-529		3
1671	Spatial ordering of self-organized InGaAs/AlGaAs quantum disks on GaAs (311)B substrates. 1999 , 28, 445-451		7
1670	InGaAs quantum dots formed in tetrahedral-shaped recesses on GaAs (111)B grown by metalorganic chemical vapor deposition. 1999 , 28, 466-480		3
1669	The shape of self-assembled InAs islands grown by molecular beam epitaxy. 1999 , 28, 481-485		12
1668	In(Ga)As/GaAs self-organized quantum dot lasers: DC and small-signal modulation properties. 1999 , 46, 871-883		81
1667	Fabrication of quantum structures in wide-gap II-VI semiconductors. 1999 , 82, 51-60		
1666	MOCVD Growth and Optical Characterization of Stacked InGaN Quantum Dots for Laser Applications. 1999 , 176, 629-633		5
1665	Manipulating the energy levels of semiconductor quantum dots. 1999 , 59, 15368-15373		149
1664	Spatial hole burning and multimode generation threshold in quantum-dot lasers. <i>Applied Physics Letters</i> , 1999 , 74, 1215-1217	3.4	23
1663	Structural and optical properties of type II GaSb/GaAs self-assembled quantum dots grown by molecular beam epitaxy. 1999 , 85, 8349-8352		121
1662	Reprinted Articles. 1999 , 151-342		Ο
1661	Nanometer-scale InGaN self-assembled quantum dots grown by metalorganic chemical vapor deposition. <i>Applied Physics Letters</i> , 1999 , 74, 383-385	3.4	177
1660	A narrow photoluminescence linewidth of 21 meV at 1.35 th from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates. <i>Applied Physics Letters</i> , 1999 , 74, 1111-1113	3.4	533
1659	Electron escape from InAs quantum dots. 1999 , 60, 14265-14268		138
1658	Photoluminescence decay time measurements from self-organized InAs/GaAs quantum dots. 1999 , 86, 2555-2561		72

1657	Optical linewidths in an individual quantum dot. 1999 , 60, 1915-1920		54
1656	Excited states and selection rules in self-assembled InAs/GaAs quantum dots. 1999 , 60, R2185-R2188		57
1655	Temperature dependence of the optical properties of InAs/AlyGa1¶As self-organized quantum dots. 1999 , 59, 5064-5068		196
1654	Intraband relaxation in CdSe quantum dots. 1999 , 60, R2181-R2184		318
1653	Strong normal-incidence infrared absorption in self-organized InAs/InAlAs quantum dots grown on InP(001). <i>Applied Physics Letters</i> , 1999 , 74, 413-415	3.4	78
1652	Thermal effects in quantum dot lasers. 1999 , 85, 625-627		35
1651	Chapter 6 Self-Assembled Quantum Dot Lasers. 1999 , 241-286		7
1650	Ripening suppression and large photoluminescence blueshift in aligned InGaAs quantum dots on a vicinal (100) GaAs substrate. 1999 , 85, 2140-2145		10
1649	Visible photoluminescence from self-assembled InAs quantum dots embedded in AlAs cladding layers. <i>Applied Physics Letters</i> , 1999 , 74, 1597-1599	3.4	52
1648	GalnAsP/InP quantum-wire lasers. 1999 ,		
1647	Critical tolerable parameters of a quantum dot laser structure. 1999 ,		2
1646	1.25 /spl mu/m low threshold current density dots-in-a-well (DWELL) lasers. 1999 ,		2
1645	High performance GaInAs/AlGaAs quantum-dot light emitting diodes and lasers.		
1644	QD-lasers up to and beyond 1300 nm. 1999 ,		
1643	Superlattice Structures. 1999, 485-523		
1642	. IEEE Journal of Selected Topics in Quantum Electronics, 1999 , 5, 648-657	3.8	37
1641	Chapter 2 Molecular Beam Epitaxial Growth of Self-Assembled InAs/GaAs Quantum Dots. 1999 , 60, 117-	154	10
1640	Quantum dot VCSELs. 1999 ,		1

Influence of growth conditions on the photoluminescence of self-assembled InAs/GaAs quantum dots. 1999 , 85, 2355-2362	136
1638 Theoretical Bases of the Optical Properties of Semiconductor Quantum Nano-Structures. 1999 , 60, 1-116	10
1637 Growth and photoluminescence study of ZnTe quantum dots. 1999 , 86, 4694-4696	18
1636 Devices. 1999 , 525-562	
The importance of high-index surfaces for the morphology of GaAs quantum dots. 1999 , 85, 3597-3601	53
1.3-fh CW lasing of InGaAs-GaAs quantum dots at room temperature with a threshold current of 8 mA. 1999 , 11, 1205-1207	137
1633 Very low room-temperature threshold current density dots in a well (DWELL) lasers.	2
1632 Wavelength tuning of InAs quantum dots grown on (311)B InP. <i>Applied Physics Letters</i> , 1999 , 74, 3356-3358	77
1631 Gain characteristics of quantum dot injection lasers. 1999 , 14, 118-123	81
1630 Excited-state absorption of excitons confined in spherical quantum dots. 1999 , 59, 9826-9829	33
1629 Chapter 5 The Photon Bottleneck Effect in Quantum Dots. 1999 , 209-239	10
MBE Growth and Characterization of Composite InAlAs/In(Ga)As Vertically Aligned Quantum Dots. 1999 , 571, 109	3
1627 1.55 Micron Emission from InAs/InP Self-Assembled Quantum Dots. 1999 , 571, 159	
1626 1.3 th InAs/GaAs Quantum Dot Led. 1999 , 571, 267	5
Controlling Growth of InAs/GaAs Self-Assembled Quantum Dots to Give 1.3 th Room Temperature Emission. 1999 , 571, 273	
Self-Assembled III-Phospide Quantum Dots Grown by Metalorganic Chemical Vapor Deposition. 1624 1999 , 583, 39	2
Novel Stm Probe Assisted Site-Control of Quantum Dots with Nanometer Precision. 1999 , 583, 71	
Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well. 1999 , 35, 1163	355

1621	Effect of excited-state transitions on the threshold characteristics of a quantum dot laser. 2000,	4
1620	InGaAs/GaAs Quantum Dot Interdiffusion Induced by Cap Layer Overgrowth. 2000 , 618, 179	1
1619	Optoelectronic Device Applications of Self-Organized In(Ga,Al)As/Ga(Al)As Quantum Dots. 2000 , 618, 195	
1618	Highly Ordered Uniform Quantum Dots Induced by Ion Sputtering. 2000 , 618, 3	
1617	InGaAs Quantum Dots Embedded in p-n Junction on GaAs(311)B Substrate. 2000 , 642, 3111	
1616	Effects of Spacer Thickness on the Performance of InGaAs/GaAs Quantum Dot Lasers. 2000 , 642, 3211	
1615	Annealing effect on the surface morphology and photoluminescence of InGaAs/GaAs quantum dots grown by molecular beam epitaxy. 2000 , 212, 356-359	17
1614	Photoluminescence in Si and Be directly doped self-organized InAs/GaAs quantum dots. 2000 , 212, 35-38	9
1613	The structural and photoluminescence properties of self-organized quantum dots in InAs/In0.53Ga0.47As multilayer on InP substrate. 2000 , 212, 360-363	4
1612	In situ RHEED study of CdSe/ZnSe quantum dots formation during alternate beam supply and photoluminescence properties. 2000 , 214-215, 690-693	8
1611	Growth of self-organized InAs quantum dots on InP by solid-source molecular beam epitaxy. 2000 , 216, 57-61	7
1610	Planar ordering of InP quantum dots on (1 0 0)In0.48Ga0.52P. 2000 , 216, 26-32	31
1609	Formation of InAs quantum dots on low-temperature GaAs epi-layer. 2000 , 218, 209-213	3
1608	Temperature dependence of electron redistribution in modulation-doped InAs/GaAs quantum dots. 2000 , 219, 199-204	20
1607	GaInNAs/GaAs quantum dots grown by chemical beam epitaxy. 2000 , 221, 561-565	42
1606	Formation of uniform 10-nm-scale InGaN quantum dots by selective MOCVD growth and their micro-photoluminescence intensity images. 2000 , 221, 576-580	15
1605	Optimizing the growth procedure for InAs quantum dot stacks by optical in situ techniques. 2000 , 221, 592-598	33
1604	Molecular beam epitaxial growth of InAs self-assembled quantum dots with light-emission at 1.3fn. 2000 , 208, 93-99	118

(2000-2000)

1603	Effects of rapid thermal annealing on self-assembled InGaAs/GaAs quantum dots superlattice. 2000 , 208, 791-794	15
1602	Dynamic behavior of group III and V organometallic sources and nanostructure fabrication by supersonic molecular beams. 2000 , 209, 492-498	1
1601	Fabrication of InGaAs quantum dots on GaAs(001) by droplet epitaxy. 2000 , 209, 504-508	61
1600	Quantum dot lasers: breakthrough in optoelectronics. 2000 , 367, 235-249	157
1599	InAs quantum dots embedded in silicon. 2000 , 367, 85-88	17
1598	CapacitanceNoltage study of single-crystalline Si dots on ultrathin buried SiO 2 formed by nanometer-scale local oxidation. 2000 , 369, 69-72	17
1597	In situ electron-beam processing for IIIIV semiconductor nanostructure fabrication. 2000, 373, 170-175	
1596	InAs/GaAs lasers with very thin active layer. 2000 , 380, 233-236	5
1595	1.3 th electroluminescence of LP-MOVPE grown InAs/GaAs quantum dots, and influence of the re-growth temperature on the spectral response. 2000 , 78, 145-147	4
1594	Optical characterisation of InAs/GaAs structures grown by MBE. 2000 , 69-70, 514-518	5
1593	SR-stimulated etching and OMVPE growth for semiconductor nanostructure fabrication. 2000, 74, 7-11	7
1592	3.5 W continuous wave operation from quantum dot laser. 2000 , 74, 70-74	4
1591	Lasing from excited states in self-assembled InP/GaInP quantum islands. 2000, 74, 263-268	13
1590	Self-assembled InGaAs dots grown on GaP (0 0 1) substrate by low-pressure organometallic vapor phase epitaxy. 2000 , 7, 855-859	4
1589	MOCVD growth of a stacked InGaN quantum dot structure and its lasing oscillation at room temperature. 2000 , 7, 944-948	3
1588	Effect of growth interruption on photoluminescence of self-assembled InAs quantum dot structures grown on (0 0 1) InP substrate by MOCVD. 2000 , 8, 290-295	10
1587	Engineering quantum-dot lasers. 2000 , 8, 154-163	23
1586	Novel nano-scale site-controlled InAs quantum dot assisted by scanning tunneling microscope probe. 2000 , 7, 331-336	26

1585	Electronic characteristics of InAs self-assembled quantum dots. 2000 , 7, 383-387	1
1584	Carrier emission processes in InAs quantum dots. 2000 , 7, 388-392	5
1583	Magneto-photoluminescence study of InGaAs quantum dots fabricated by droplet epitaxy. 2000 , 7, 448-451	5
1582	Hole burning spectroscopy of InAs self-assembled quantum dots for memory application. 2000 , 7, 503-507	7
1581	Lasing via ground-subband transitions in V-groove quantum wire lasers. 2000 , 7, 513-516	6
1580	InAs G aAs self-assembled quantum dot lasers: physical processes and device characteristics. 2000 , 7, 489-493	3
1579	Self-organized quantum dot formation by ion sputtering. 2000 , 53, 245-248	19
1578	Effect of strain on the chemical bonds in InAs nanocrystals self-organized on GaAs and Se-terminated GaAs surfaces. 2000 , 162-163, 625-629	1
1577	Self-assembling nanostructures and atomic layer precise etching in molecular beam epitaxy. 2000 , 131, 61-68	
1576	Nonlinear susceptibilities of quantum dots. 2000 , 88, 390-396	5
1575	Overview of fundamentals and applications of electrons, excitons and photons in confined	
	structures. 2000 , 85, 271-293	82
1574		82
1574 1573	structures. 2000 , 85, 271-293 Bringing quantum dots up to speed [Breaking the phonon bottleneck with high-speed modulation	4
	Bringing quantum dots up to speed [Breaking the phonon bottleneck with high-speed modulation of quantum-dot lasers]. 2000, 16, 17-23 GaAs quantum wire lasers grown on v-grooved substrates isolated by self-aligned ion implantation.	4
1573	Bringing quantum dots up to speed [Breaking the phonon bottleneck with high-speed modulation of quantum-dot lasers]. 2000, 16, 17-23 GaAs quantum wire lasers grown on v-grooved substrates isolated by self-aligned ion implantation. 2000, 47, 1769-1772	4
1573 1572	Bringing quantum dots up to speed [Breaking the phonon bottleneck with high-speed modulation of quantum-dot lasers]. 2000, 16, 17-23 GaAs quantum wire lasers grown on v-grooved substrates isolated by self-aligned ion implantation. 2000, 47, 1769-1772 Growth mode transition of InGaAs in OMVPE growth on GaP (001). 2000, 51-52, 35-42	4
1573 1572 1571	Bringing quantum dots up to speed [Breaking the phonon bottleneck with high-speed modulation of quantum-dot lasers]. 2000, 16, 17-23 GaAs quantum wire lasers grown on v-grooved substrates isolated by self-aligned ion implantation. 2000, 47, 1769-1772 Growth mode transition of InGaAs in OMVPE growth on GaP (001). 2000, 51-52, 35-42 Temperature dependence of InP/GaInP quantum dot photoluminescence. 2000, 51-52, 73-78 Quantum-dot heterostructure lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6, 439-451	4 4

1567	Growth and photoluminescence study of ZnSe quantum dots. 2000 , 29, 173-176		12
1566	Optical spectroscopy on single quantum dots. 2000 , 561-576		1
1565	Influence of InxGa1-xAs (0½0.3) Cap Layer on Structural and Optical Properties of Self-assembled InAs/GaAs Quantum Dots. <i>Japanese Journal of Applied Physics</i> , 2000 , 39, 5076-5079	1.4	9
1564	Area-Controlled Growth of InAs Quantum Dots by Selective MOCVD. <i>Japanese Journal of Applied Physics</i> , 2000 , 39, 2344-2346	1.4	4
1563	InAs Quantum Dots Growth by Modified Droplet Epitaxy Using Sulfur Termination. <i>Japanese Journal of Applied Physics</i> , 2000 , 39, 4580-4583	1.4	21
1562	Properties and Frequency Conversion of High-Brightness Diode-Laser Systems. 2000 , 225-263		
1561	InP and InAlP self-assembled quantum dots grown by metalorganic chemical vapor deposition.		О
1560	Radiative recombination in InP quantum dots on GaP.		
1559	Controlled ordering and positioning of InAs self-assembled quantum dots. 2000 , 18, 2193		74
1558	EXTENDED WAVELENGTH (1.0 TO 1.3 th) InGaAs/GaAs QUANTUM DOT GaAs-BASED VERTICAL-CAVITY SURFACE-EMITTING AND LATERAL-CAVITY EDGE-EMITTING LASERS. 2000 , 133-159		
1557	QUANTUM DOT SEMICONDUCTOR LASERS. 2000, 235-261		О
1556	DEVICE CHARACTERISTICS OF LOW-THRESHOLD QUANTUM-DOT LASERS. 2000 , 263-292		2
1555	Acoustical plasma oscillations in photoexcited electron-hole plasma induced in GaAs layers embedded with InAs quantum dots. 2000 , 11, 314-317		3
1554	Generalized Grazing Incidence-Angle X-Ray Diffraction Studies on InAs Quantum Dots on Si (100) Substrates. <i>Japanese Journal of Applied Physics</i> , 2000 , 39, 4483-4485	1.4	9
1553			
1552	Light confinement in a quantum dot. 2000 , 15, 491-496		13
1551	Structural and photoluminescence properties of In0.9(Ga/Al)0.1As self-assembled quantum dots on InP substrate. 2000 , 88, 533-536		5
1550	Photocurrent studies of the carrier escape process from InAs self-assembled quantum dots. 2000 , 62, 6959-6962		77

1549	InAs quantum wires in InP-based microdisks: Mode identification and continuous wave room temperature laser operation. 2000 , 88, 6170-6174		17
1548	Excitonic lasing in semiconductor quantum wires. 2000 , 61, R10575-R10578		33
1547	Selective growth of InGaN quantum dot structures and their microphotoluminescence at room temperature. <i>Applied Physics Letters</i> , 2000 , 76, 3212-3214	3.4	91
1546	Experimental studies of the multimode spectral emission in quantum dot lasers. 2000 , 87, 1943-1946		13
1545	Area-controlled growth of InAs quantum dots and improvement of density and size distribution. <i>Applied Physics Letters</i> , 2000 , 77, 3382-3384	3.4	36
1544	Narrow photoluminescence peaks from localized states in InGaN quantum dot structures. <i>Applied Physics Letters</i> , 2000 , 76, 2361-2363	3.4	118
1543	Room-temperature lasing via ground state of current-injected vertically aligned InP/GaInP quantum dots. <i>Applied Physics Letters</i> , 2000 , 76, 3343-3345	3.4	31
1542	Optical properties of GaN quantum dots. 2000 , 87, 3883-3890		66
1541	Self-assembled zinc blende GaN quantum dots grown by molecular-beam epitaxy. <i>Applied Physics Letters</i> , 2000 , 77, 809-811	3.4	78
1540	Separation of strain and quantum-confinement effects in the optical spectra of quantum wires. 2000 , 61, 4488-4491		13
1540 1539			13
	2000 , 61, 4488-4491	3.4	
1539	2000, 61, 4488-4491 Modal gain and lasing states in InAs/GaAs self-organized quantum dot lasers. 2000, 87, 615-617 High characteristic temperature of near-1.3-fh InGaAs/GaAs quantum-dot lasers at room	3.4	18
1539 1538	2000, 61, 4488-4491 Modal gain and lasing states in InAs/GaAs self-organized quantum dot lasers. 2000, 87, 615-617 High characteristic temperature of near-1.3-fh InGaAs/GaAs quantum-dot lasers at room temperature. <i>Applied Physics Letters</i> , 2000, 76, 3349-3351 Abnormal temperature dependence of band-gap energies observed in (InAs)/(GaAs) and (InP)/(GaP)	3.4	18
1539 1538 1537	Modal gain and lasing states in InAs/GaAs self-organized quantum dot lasers. 2000, 87, 615-617 High characteristic temperature of near-1.3-fh InGaAs/GaAs quantum-dot lasers at room temperature. Applied Physics Letters, 2000, 76, 3349-3351 Abnormal temperature dependence of band-gap energies observed in (InAs)/(GaAs) and (InP)/(GaP) superlattices with strong lateral composition modulation. 2000, 87, 285-288 Homogeneous line broadening in individual semiconductor quantum dots by temperature	3.4	18 60 7
1539 1538 1537 1536	Modal gain and lasing states in InAs/GaAs self-organized quantum dot lasers. 2000, 87, 615-617 High characteristic temperature of near-1.3-fit InGaAs/GaAs quantum-dot lasers at room temperature. Applied Physics Letters, 2000, 76, 3349-3351 Abnormal temperature dependence of band-gap energies observed in (InAs)/(GaAs) and (InP)/(GaP) superlattices with strong lateral composition modulation. 2000, 87, 285-288 Homogeneous line broadening in individual semiconductor quantum dots by temperature fluctuations. 2000, 62, 11029-11037 Near-field coherent excitation spectroscopy of InGaAs/GaAs self-assembled quantum dots. Applied		18 60 7
1539 1538 1537 1536 1535	Modal gain and lasing states in InAs/GaAs self-organized quantum dot lasers. 2000, 87, 615-617 High characteristic temperature of near-1.3-th InGaAs/GaAs quantum-dot lasers at room temperature. Applied Physics Letters, 2000, 76, 3349-3351 Abnormal temperature dependence of band-gap energies observed in (InAs)/(GaAs) and (InP)/(GaP) superlattices with strong lateral composition modulation. 2000, 87, 285-288 Homogeneous line broadening in individual semiconductor quantum dots by temperature fluctuations. 2000, 62, 11029-11037 Near-field coherent excitation spectroscopy of InGaAs/GaAs self-assembled quantum dots. Applied Physics Letters, 2000, 76, 3887-3889 Nanoscale InGaAs concave disks fabricated by heterogeneous droplet epitaxy. Applied Physics	3.4	18 60 7 11 51

(2000-2000)

1531	High-speed modulation and switching characteristics of In(Ga)As-Al(Ga)As self-organized quantum-dot lasers. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2000 , 6, 426-438	3.8	67	
1530	Continuous-wave low-threshold performance of 1.3-/spl mu/m InGaAs-GaAs quantum-dot lasers. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2000 , 6, 452-461	3.8	51	
1529	Performance and physics of quantum-dot lasers with self-assembled columnar-shaped and 1.3-/spl mu/m emitting InGaAs quantum dots. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2000 , 6, 462-474	3.8	42	
1528	Growth of InGaN self-assembled quantum dots and their application to lasers. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2000 , 6, 475-481	3.8	23	
1527	Growth of self-assembled InP quantum islands for red-light-emitting injection lasers. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2000 , 6, 482-490	3.8	33	
1526	Laser-action in V-groove-shaped InGaAs-InP single quantum wires. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2000 , 6, 522-527	3.8	25	
1525	Near-field spectroscopy of a single InGaAs self-assembled quantum dot. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2000 , 6, 528-533	3.8	6	
1524	Double heterostructure lasers: early days and future perspectives. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2000 , 6, 832-840	3.8	43	
1523	1.3-/spl mu/m CW lasing characteristics of self-assembled InGaAs-GaAs quantum dots. 2000 , 36, 472-47	8	98	
1522	Longitudinal spatial hole burning in a quantum-dot laser. 2000 , 36, 1151-1160		35	
1521	Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1⊠As/GaAs quantum dot lasers. 2000 , 61, 7595-7603		208	
1520	GaAs-based long-wavelength lasers. 2000 , 15, R41-R54		158	
1519	Transition dipole moment of InAs/InGaAs quantum dots from experiments on ultralow-threshold laser diodes. <i>Applied Physics Letters</i> , 2000 , 77, 262-264	3.4	141	
1518	Modal gain and internal optical mode loss of a quantum dot laser. <i>Applied Physics Letters</i> , 2000 , 77, 163	-3645	26	
1517	Selective control of self-organized In0.5Ga0.5As/GaAs quantum dot properties: Quantum dot intermixing. 2000 , 88, 4619		55	
1516	Optical gain and stimulated emission in nanocrystal quantum dots. 2000 , 290, 314-7		2315	
1515	Electron tunneling rate in quantum dots under a uniform electric field. 2000 , 61, 11051-11056		52	
1514	Short-wavelength laser diodes based on AlinAs/AlGaAs self-assembled quantum dots. 2000 , 87, 1496-1	502	35	

1513	Structural and chemical investigation of In0.6Ga0.4As Stranski-Krastanow layers buried in GaAs by transmission electron microscopy. 2000 , 61, 8276-8288	57
1512	Raman study of self-assembled GaAs and AlAs islands embedded in InAs. 2000 , 61, 13785-13790	26
1511	Effect of growth rate on the size, composition, and optical properties of InAs/GaAs quantum dots grown by molecular-beam epitaxy. 2000 , 62, 10891-10895	177
1510	Experimental determination of local Strain effect on InAs/GaAs self-organized quantum dots. 2000 , 61, 5530-5534	36
1509	Conical potential model for InGaAs/GaAs quantum dots formed in tetrahedral-shaped recesses. 2000 , 88, 4745	
1508	Tuning the energy levels of self-assembled InAs quantum dots by rapid thermal annealing. <i>Applied Physics Letters</i> , 2000 , 76, 691-693	72
1507	Carrier transfer in self-assembled coupled InAs/GaAs quantum dots. 2000 , 88, 7162-7170	50
1506	Stranski-Krastanov Growth of InAs Quantum Dots with Narrow Size Distribution. <i>Japanese Journal of Applied Physics</i> , 2000 , 39, L1245-L1248	146
1505	Room-temperature gain and differential gain characteristics of self-assembled InGaAs/GaAs quantum dots for 1.1🛚 .3 th semiconductor lasers. <i>Applied Physics Letters</i> , 2000 , 77, 773-775	39
1504	Effect of matrix on InAs self-organized nanostructures on InP substrate.	
1503	Very low threshold current density room temperature continuous-wave lasing from a single-layer InAs quantum-dot laser. 2000 , 12, 227-229	78
1502	Self-assembled In/sub 0.5/Ga/sub 0.5/As quantum-dot lasers with doped active region. 2000 , 12, 1123-1125	7
1501	A close look on single quantum dots. 2000 , 112, 7790-7798	139
1500	Anomalous temperature dependence of photoluminescence from InAs quantum dots. 2000 , 88, 2529-2532	33
1499	Lattice deformation and interdiffusion of InAs quantum dots on GaAs(100). 2001, 89, 160-164	8
1498	Thermal redistribution of photocarriers between bimodal quantum dots. 2001 , 90, 1973-1976	60
1497	Oscillatory characteristic temperature of InAs quantum-dot laser. 2001 , 13, 915-917	1
1496	Self-assembled III-V quantum dots: potential for silicon optoelectronics.	

1495	Optical transition in infrared photodetector based on V-groove Al0.5Ga0.5As/GaAs multiple quantum wire. 2001 , 89, 2351-2356		17
1494	PROPERTIES AND TURNING OF INTRABAND OPTICAL ABSORPTION IN InxGa1-xAs/GaAs SELF-ASSEMBLED QUANTUM DOT SUPERLATTICE. 2001 , 15, 1959-1968		6
1493	Self-organized InGaAs quantum dots for advanced applications in optoelectronics.		1
1492	Energy level control for self-assembled InAs quantum dots utilizing a thin AlAs layer. <i>Applied Physics Letters</i> , 2001 , 78, 3247-3249	.4	30
1491	Elastic relaxation of truncated pyramidal quantum dots and quantum wires in a half space: An analytical calculation. 2001 , 90, 3232-3241		41
1490	Effective boundary conditions for planar quantum dot structures. 2001, 64,		25
1489	Epitaxial growth and optical characterization of InAs/InGaAsP/InP self-assembled quantum dots. Applied Physics Letters, 2001 , 78, 1171-1173	·4	47
1488	Quantum size and shape effects on the excited states of InxGa1NAs quantum dots. 2001 , 64,		25
1487	Bimodal distribution of Indium composition in arrays of low-pressure metalorganic-vapor-phase-epitaxy grown InGaAs/GaAs quantum dots. <i>Applied Physics Letters</i> , 2001 , 79, 2157-2159	·4	23
1486	Selective growth of InAs self-assembled quantum dots on nanopatterned SiO2/Si substrate. <i>Applied Physics Letters</i> , 2001 , 78, 1403-1405	-4	20
1485	Luminescence spectra of a quantum-dot cascade laser. <i>Applied Physics Letters</i> , 2001 , 78, 1820-1822	5-4	17
1484	Ground-state emission and gain in ultralow-threshold InAs-InGaAs quantum-dot lasers. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2001 , 7, 135-142	.8	78
1483	. 2001 , 37, 418-425		33
1482	Gain and threshold characteristics of long wavelength lasers based on InAs/GaAs quantum dots formed by activated alloy phase separation. 2001 , 37, 676-683		54
1481	Tunneling-injection quantum-dot laser: ultrahigh temperature stability. 2001, 37, 905-910		68
1480	Height dispersion control of InAs/InP quantum dots emitting at 1.55 th. <i>Applied Physics Letters</i> , 2001 , 78, 1751-1753	5-4	139
1479	Valence band alignment and work function of heteroepitaxial nanocrystals on GaAs(001). 2001 , 19, 2057		4
1478	Nobel Lecture: The double heterostructure concept and its applications in physics, electronics, and technology. 2001 , 73, 767-782		219

1477	Polarized front-illumination response in intraband quantum dot infrared photodetectors at 77 K. 2001 , 63,		52
1476	Strain-induced lateral ordering and quantum effects in self-assembled GaInAs quantum wires.		
1475	Temperature-insensitive quantum dot laser.		
1474	Optical properties of self-assembled InAs quantum islands grown on InP(001) vicinal substrates. Applied Physics Letters, 2001 , 79, 4435-4437	·4	34
1473	InP self-assembled quantum dots embedded in In/sub 0.5/Al/sub 0.3/Ga/sub 0.2/P grown on GaAs substrates by metalorganic chemical vapor deposition.		
1472	Recent advances in quantum dot optoelectronic devices and future trends. 2001 , 133-154		2
1471	InP Self Assembled Quantum Dot Lasers Grown on GaAs Substrates by Metalorganic Chemical Vapor Deposition. 2001 , 692, 1		
1470	InAs quantum dots in AlAs/GaAs short period superlattices: structure, optical characteristics and laser diodes. 2001 , 692, 1		
1469	InP Self Assembled Quantum Dot Lasers Grown on GaAs Substrates by Metalorganic Chemical Vapor Deposition. 2001 , 707, 1161		1
1468	InAs Quantum Dots in AlAs/GaAs Short Period Superlattices: Structure, Optical Characteristics and Laser Diodes. 2001 , 707, 381		
1467	Quantum dots, lasers and amplifiers.		1
1466	Growth area control of InAs quantum dots for photonic-crystal-based optical devices by selective MOCVD. 2001 ,		2
1465	Micro-machined tunable (Mi-T) VCSEL around 1.3 lb. 2001,		
1464	Optical properties of nanocrystals and their assemblies. 2001,		
1463	Quantum dot intersubband photodetectors. 2001 ,		1
1462	Progress in quantum dots for optoelectronics applications. 2001 , 4598, 106		1
1461	Investigation of carrier relaxation dynamics in single CdSe/ZnSe self-organized quantum dot by time-resolved micro-photoluminescence. 2001 , 30, 448-452		2
1460	Photoluminescence of InAs quantum dots coupled to a two-dimensional electron gas. 2001 , 30, 459-462		1

(2001-2001)

Growth and characterizations of InP self-assembled quantum dots embedded in InAIP grown on GaAs substrates. 2001 , 30, 471-476	7
1458 Plasmons and magnetoplasmons in semiconductor heterostructures. 2001 , 41, 1-416	155
Near-field spectroscopy of single quantum dots at room temperature. 2001 , 202, 209-11	4
Arsenic/phosphorus exchange and wavelength tuning of in situ annealed InAs/InP quantum dot superlattice. 2001 , 117, 465-469	1
1455 InGaAs/GaAs quantum wells and quantum dots on (111)B orientation. 2001 , 117, 649-654	1
1454 InP quantum dots in GaP: Growth and luminescence. 2001 , 4, 497-501	16
1453 X-ray investigations of IIIIV compounds: layers, nanostructures, surfaces. 2001 , 80, 81-86	
Formation of lateral-two-dimensional ordering in self-assembled InGaAs quantum dot on high index substrates. 2001 , 11, 94-98	10
Micro-photoluminescence spectroscopy of single (Al, Ga)As quantum wires grown on vicinal GaAs (110) surfaces. 2001 , 11, 228-232	2
1450 ExcitonAcoustic Phonon Coupling in Single CdTe Quantum Dots. 2001 , 224, 621-627	3
Novel Infrared Quantum Dot Lasers: Theory and Reality. 2001 , 224, 787-796	30
1448 Gain Characteristics of Self-Assembled InAs/GaAs Quantum Dots. 2001 , 224, 827-831	5
1447 980 nm Quantum Dot Lasers with Very Small Threshold Current Densities. 2001 , 224, 845-848	
Properties of Fluorescent Semiconductor Nanocrystals and their Application to Biological Labeling. 2001 , 2, 261-276	335
The double heterostructure: the concept and its applications in physics, electronics, and technology (Nobel lecture). 2001 , 2, 500-13	20
1444 Progress in Growth and Physics of Nitride-Based Quantum Dots. 2001 , 224, 1-11	41
Optical Spectroscopic Study of Carrier Processes in Self-Assembled In(Ga)Asta(Al)As Quantum Dot Lasers. 2001 , 224, 123-127	2
Near 1.3 th Emission at Room Temperature from InAsSb/GaAs Self-Assembled Quantum Dots on GaAs Substrates. 2001 , 224, 139-142	18

1441	Nanoscale Compositional Fluctuations in Single InGaAs/GaAs Quantum Dots. 2001 , 224, 17-20	7
1440	Structural and Chemical Investigation of InAs/GaAs Nanostructures by Transmission Electron Microscopy. 2001 , 224, 213-216	6
1439	Optical Properties of InAs Quantum Dots Grown on InP (001) Substrate by MOCVD. 2001 , 224, 73-77	2
1438	Observation of Charged Few-Particle States in the Optical Spectra of Single Semiconductor Quantum Dots. 2001 , 224, 325-330	5
1437	Growth and Characterization of InAs Quantum Dots on Silicon. 2001 , 224, 515-519	9
1436	Uniform Array of GaN Quantum Dots in AlGaN Matrix by Selective MOCVD Growth. 2001 , 228, 187-190	9
1435	Self-Assembled Growth of GaN Quantum Dots Using Low-Pressure MOCVD. 2001 , 228, 191-194	1
1434	Arrays of Two-Dimensional Islands Formed by Submonolayer Insertions: Growth, Properties, Devices. 2001 , 183, 207-233	76
1433	Progress in Growth and Physics of Nitride-Based Quantum Dots. 2001 , 188, 37-45	17
1432	InGaAs quantum dots on GaAs(311)B substrates confined in AlGaAs barrier layers. 2001 , 222, 53-57	1
1431	Structural anisotropy and optical properties of InxGa1⊠As quantum dots on GaAs(001). 2001 , 223, 55-60	
1430	Quantum well and laser containing InAs quantum dots. 2001 , 223, 92-98	3
1429	Effect of InxGa1⊠As (0?x?0.4) capping layer on self-assembled 1.3th wavelength InAs/GaAs quantum islands. 2001 , 223, 363-368	12
1428	Optical properties of InGaAs quantum dots formed on InAlAs wetting layer. 2001 , 224, 41-46	
1427	Multiple quantum wells and laser structures containing InAs quantum dots grown by molecular-beam epitaxy. 2001 , 225, 550-555	1
1426	Stacking effect of self-organized In0.15Ga0.85As quantum wires grown on (775)B-oriented GaAs substrates by molecular beam epitaxy. 2001 , 227-228, 970-974	4
1425	Modification of emission wavelength of self-assembled In(Ga)As/GaAs quantum dots covered by InxGa1⊠As(0?x?0.3) layer. 2001 , 227-228, 1062-1068	9
1424	Indium segregation in the fabrication of InGaAs concave disks by heterogeneous droplet epitaxy. 2001 , 227-228, 1069-1072	8

1423 Growth and emission tuning of InAs/InP quantum dots superlattice. **2001**, 227-228, 1084-1088

1422	InAs/GaInP self-assembled quantum dots: molecular beam epitaxial growth and optical properties. 2001 , 227-228, 1089-1094		9
1421	Theoretical study of embedded InAs quantum dots in GaAs. 2001, 229, 615-618		
1420	Infrared spectroscopy of self-organized InAs nanostructures grown on InAlAs/InP(0 0 1) for infrared photodetection applications. 2001 , 42, 443-451		32
1419	Transmission electron microscopy of GaN columnar nanostructures grown by molecular beam epitaxy. 2001 , 43, 151-156		8
1418	Anisotropy of the spatial distribution of In(Ga)As quantum dots in In(Ga)As-GaAs multilayer heterostructures studied by X-ray and synchrotron diffraction and transmission electron microscopy. 2001 , 35, 932-940		5
1417	Growth temperature dependence of InAs islands grown on GaAs [001] substrates.		
1416	1.5-/spl mu/m emission at room temperature of InAs quantum dots in strained InGaAs quantum well.		
1415	Self Size-Limiting Process of InAs Quantum Dots Grown by Molecular Beam Epitaxy. <i>Japanese Journal of Applied Physics</i> , 2001 , 40, 1885-1887	1.4	34
1414	Growth of InGaAs Quantum Dots on the AlGaAs(311)B Surface. <i>Japanese Journal of Applied Physics</i> , 2001 , 40, 1870-1873	1.4	1
1413	Ordering InAs Quantum Dots Formation on GaAs/InP by Low Pressure Metal-Organic Chemical Vapor Deposition. <i>Japanese Journal of Applied Physics</i> , 2001 , 40, 5889-5892	1.4	
1412	FERROMAGNETIC AND MOTT TRANSITIONS MODULATED BY VARYING FRACTAL DIMENSIONS IN FRACTALBHAPED NANOSTRUCTURES. 2001 , 15, 2025-2044		6
1411	Selective Growth of Highly Packed Array of ZnCdS Quantum Dots with a Mask Prepared by Atomic Force Microscope Nanolithography. <i>Japanese Journal of Applied Physics</i> , 2001 , 40, 1899-1901	1.4	1
1410	Photoluminescence properties of self-assembled InAs quantum dots grown on InP substrates by solid source molecular beam epitaxy. 2001 , 19, 1475		1
1409	The breakdown of the temperature dependence of the photoluminescence peak position in single asymmetric quantum wells. 2001 , 53, 790-796		4
1408	Structure and Photoluminescence of InGaAs Quantum Dots Formed on an InAlAs Wetting Layer. 2001 , 18, 1411-1414		2
1407	Photoluminescence decay time measurements from self-organized InAs/GaAs quantum dots grown on misoriented substrates. 2001 , 12, 512-514		5
1406	Substrate dependence of InGaAs quantum dots grown by molecular beam epitaxy. 2001 , 19, 197		31

1405	Single Photon Detection with a Quantum Dot Transistor. <i>Japanese Journal of Applied Physics</i> , 2001 , 40, 2058-2064	1.4	34
1404	Longitudinal Stark Effect in Parabolic Quantum Dots. <i>Japanese Journal of Applied Physics</i> , 2001 , 40, 2007	212ρ05	6
1403	Fabrication of GaAs Quantum Dots on a Bilayer-GaSe Terminated Si(111) Substrate. <i>Japanese Journal of Applied Physics</i> , 2001 , 40, 1888-1891	1.4	12
1402	Resonant Raman scattering on self-assembled GaN quantum dots. <i>Applied Physics Letters</i> , 2001 , 78, 987	- <u>9.8</u> 9	23
1401	Observation of negative differential resistance of a trench-type narrow InGaAs quantum-wire field-effect transistor on a (311)A InP substrate. <i>Applied Physics Letters</i> , 2001 , 78, 2369-2371	3.4	13
1400	Droplet hetero-epitaxy of InAs quantum dots on InP nanopyramids formed by selective-area flow rate modulation epitaxy.		
1399	Formation of GaInNAs/GaAs densely packed quantum dots by chemical beam epitaxy.		
1398	Over 1.5 th light emission from InAs quantum dots embedded in InGaAs strain-reducing layer grown by metalorganic chemical vapor deposition. <i>Applied Physics Letters</i> , 2001 , 78, 3469-3471	3.4	209
1397	Quantification of segregation and mass transport in InxGa1NAs/GaAs Stranski-Krastanow layers. 2001 , 64,		93
1396	Midinfrared surface-emitting PbSe/PbEuTe quantum-dot lasers. <i>Applied Physics Letters</i> , 2001 , 79, 1225-	13.27	65
1395	Radiative recombination from InP quantum dots on (100) GaP. <i>Applied Physics Letters</i> , 2001 , 78, 2163-21	65 4	30
1394	Efficient, narrow linewidth excitonic emission at room temperature from GaAs/AlGaAs V-groove quantum wire light-emitting diodes. <i>Applied Physics Letters</i> , 2001 , 79, 4-6	3.4	12
1393	Intensity noise in quantum-dot laser diodes. <i>Applied Physics Letters</i> , 2001 , 78, 3577-3579	3.4	4
1392	Wavelength control from 1.25 to 1.4 th in InxGa1NAs quantum dot structures grown by metal organic chemical vapor deposition. <i>Applied Physics Letters</i> , 2001 , 78, 1382-1384	3.4	47
1391	Excited-state dynamics and carrier capture in InGaAs/GaAs quantum dots. <i>Applied Physics Letters</i> , 2001 , 79, 3320-3322	3.4	25
1390	Matrix effects on the structural and optical properties of InAs quantum dots. <i>Applied Physics Letters</i> , 2001 , 79, 3681-3683	3.4	38
1389	Abnormal temperature behavior of photoluminescence from self-assembled InAs/AlAs quantum dots. <i>Applied Physics Letters</i> , 2001 , 79, 2564-2566	3.4	27
1388	Room-temperature continuous photopumped laser operation of coupled InP quantum dot and InGaP quantum well InPInGaPIn(AlGa)PInAlP heterostructures. <i>Applied Physics Letters</i> , 2001 , 79, 1956-19	9 38	79

1387	Photopumped red-emitting InP/In0.5Al0.3Ga0.2P self-assembled quantum dot heterostructure lasers grown by metalorganic chemical vapor deposition. <i>Applied Physics Letters</i> , 2001 , 78, 4091-4093	3.4	19
1386	Biexciton binding energy and excitonIIO-phonon scattering in ZnSe quantum wires. 2001 , 63,		16
1385	Close-to-ideal device characteristics of high-power InGaAs/GaAs quantum dot lasers. <i>Applied Physics Letters</i> , 2001 , 78, 1207-1209	3.4	184
1384	Effect of growth temperature on luminescence and structure of self-assembled InAlAs/AlGaAs quantum dots. 2001 , 90, 2048-2050		6
1383	Mismatch and chemical composition analysis of vertical InxGa1\(\text{Inx} As quantum-dot arrays by transmission electron microscopy. <i>Applied Physics Letters</i> , 2001 , 78, 3830-3832	3.4	15
1382	Evidence for strain-induced lateral carrier confinement in InGaAs quantum wells by low-temperature near-field spectroscopy. <i>Applied Physics Letters</i> , 2001 , 79, 1611-1613	3.4	7
1381	High-density InP self-assembled quantum dots embedded in In0.5Al0.5P grown by metalorganic chemical vapor deposition. <i>Applied Physics Letters</i> , 2001 , 78, 3526-3528	3.4	18
1380	Efficient quantum well to quantum dot tunneling: Analytical solutions. <i>Applied Physics Letters</i> , 2002 , 80, 1270-1272	3.4	65
1379	High-gain coupled InGaAs quantum well InAs quantum dot AlGaAstaAsthGaAsthAs heterostructure diode laser operation. <i>Applied Physics Letters</i> , 2002 , 80, 1126-1128	3.4	46
1378	Gain dynamics and ultrafast spectral hole burning in In(Ga)As self-organized quantum dots. <i>Applied Physics Letters</i> , 2002 , 81, 670-672	3.4	38
1377	Effect of annealing on formation of self-assembled (In,Ga)As quantum wires on GaAs (100) by molecular beam epitaxy. 2002 , 92, 4043-4046		24
1376	Photoluminescence quenching of a low-pressure metal-organic vapor-phase-epitaxy grown quantum dots array with bimodal inhomogeneous broadening. 2002 , 91, 10115		46
1375	Optical anisotropy of self-assembled InGaAs quantum dots embedded in wall-shaped and air-bridge structures. <i>Applied Physics Letters</i> , 2002 , 81, 3954-3956	3.4	9
1374	Changes in luminescence intensities and carrier dynamics induced by proton irradiation in InxGa1\(\text{InxGa1}\(\text{InxGa}\) As/GaAs quantum dots. 2002 , 66,		28
1373	Comparative study of InGaAs quantum dot lasers with different degrees of dot layer confinement. <i>Applied Physics Letters</i> , 2002 , 81, 1-3	3.4	64
1372	Facet formation of uniform InAs quantum dots by molecular beam epitaxy.		
1371	Vertically stacking self-assembled quantum wires. <i>Applied Physics Letters</i> , 2002 , 81, 1107-1109	3.4	6
1370	Self-assembled InAs quantum wires on InP(001). 2002 , 91, 3925-3927		15

1369 Negative transconductance in trench-type InGaAs/InAlAs quantum wire FET.

1368	GROWTH, STRUCTURES, AND OPTICAL PROPERTIES OF III-NITRIDE QUANTUM DOTS. 2002 , 12, 79-110		18
1367	Midinfrared luminescence from InAs quantum dots in unipolar devices. <i>Applied Physics Letters</i> , 2002 , 81, 2848-2850	3.4	25
1366	Spectral mode dynamics of short cavity quantum-dot lasers. <i>Applied Physics Letters</i> , 2002 , 81, 147-149	3.4	8
1365	Indium supply from triisopropylindium onto a GaAs(001) surface at room temperature. <i>Applied Physics Letters</i> , 2002 , 81, 4058-4060	3.4	1
1364	Surface-acoustic-wave-induced carrier transport in quantum wires. 2002 , 66,		24
1363	Hydrogen passivation of self assembled InAs quantum dots. 2002 , 92, 6794-6798		19
1362	Midinfrared IVIII vertical-cavity surface-emitting lasers with zero-, two-, and three-dimensional systems in the active regions. <i>Applied Physics Letters</i> , 2002 , 81, 208-210	3.4	40
1361	Coupled-stripe quantum-well-assisted AlGaAstaAsthGaAsthAs quantum-dot laser. <i>Applied Physics Letters</i> , 2002 , 80, 3045-3047	3.4	12
1360	Photoluminescence study of InAs quantum dots embedded in GaNAs strain compensating layer grown by metalorganic-molecular-beam epitaxy. 2002 , 92, 6813-6818		28
1359	InGaN self-assembled quantum dots grown by metalorganic chemical-vapor deposition with indium as the antisurfactant. <i>Applied Physics Letters</i> , 2002 , 80, 485-487	3.4	28
1358	Quantum dot formation by segregation enhanced CdSe reorganization. 2002 , 92, 6546-6552		48
1357	Small-signal modulation response of InP/GaInP quantum-dot lasers. <i>Applied Physics Letters</i> , 2002 , 80, 4015-4017	3.4	9
1356	Effect of excited state transitions and Auger recombination on the T/sub 0/ of InAs/InGaAs quantum dot lasers.		
1355	Flat-band ferromagnetism in quantum dot superlattices. 2002 , 65,		52
1354	Lasing from a single-quantum wire. <i>Applied Physics Letters</i> , 2002 , 81, 4937-4939	3.4	54
1353	Hole emission processes in InAs/GaAs self-assembled quantum dots. 2002 , 66,		43
1352	Quantum wires in multidimensional microcavities: Effects of photon dimensionality on emission properties. 2002 , 66,		16

1351	Optical properties of bilayer InAs/GaAs quantum dot structures: Influence of strain and surface morphology. 2002 , 66,	33
1350	LOW-DIMENSIONAL SYSTEMS. 2002 , 12, 1-14	2
1349	Theory of high power performance of a quantum dot laser.	
1348	Efficient, narrow linewidth emission from InGaAs/AlGaAs V-groove quantum wire light-emitting diodes.	
1347	Vertically stacking 10 periods of self-assembled InAs/InP quantum wires.	
1346	THEORY OF THRESHOLD CHARACTERISTICS OF QUANTUM DOT LASERS: EFFECT OF QUANTUM DOT PARAMETER DISPERSION. 2002 , 12, 111-176	11
1345	Novel concepts for injection lasers. 2002 , 41, 3193	49
1344	Effects of proton irradiation on luminescence emission and carrier dynamics of self-assembled III-V quantum dots. 2002 , 49, 2844-2851	25
1343	Height control of InAs/GaAs quantum dots by combining layer-by-layer in situ etching and molecular beam epitaxy. 2002 , 20, 668	4
1342	High characteristic temperature (T0=243 K) of stacked InGaAs quantum wire lasers grown on (775)B GaAs substrates by molecular beam epitaxy. 2002 , 20, 1270	4
1341	Room temperature oscillation of self-organized In0.2Ga0.8As/GaAs quantum wire lasers grown on (221)A GaAs substrates by molecular beam epitaxy. 2002 , 20, 1493	2
1340	Growth of self-assembled PbSe quantum-dots on GaSb(100) by liquid phase epitaxy. 2002 , 35, 3091-3095	10
1339	The energy gap of clusters, nanoparticles, and quantum dots. 2002 , 61-97	23
1338	InAs quantum dot laser diodes: structure, characteristics, and temperature dependence. 2002,	4
1337	VCSEL for Metro Communications. 2002 , 666-698	5
1336	Raman Scattering Study for Self-Organized Ge Quantum Dots Formed on Si Substrate. 2002 , 744, 1	
1335	1.5 th Range Self-Organized In0.65Ga0.35As/In0.52Al0.48As Quantum Wire Structures Grown on (775)B-Oriented InP Substrates by Molecular Beam Epitaxy. 2002 , 744, 1	
1334	A Comparative Study of an Inp Quantum Dot Laser and a GAxIN(1-X)P Quantum Well Laser. 2002 , 722, 1141	1

Effect of the internal electric fields in Quantum Dot laser structures grown by Metal Organic Chemical Vapor Deposition. **2002**, 722, 1151

1332	Novel approaches to semiconductor lasers. 2002 , 4905, 222		3
1331	Progress and prospect of quantum dots and photonic crystal for future photonic network devices.		
1330	InAs self-assembled quantum-dot lasers grown on (100) InP. <i>Applied Physics Letters</i> , 2002 , 80, 3629-3631	3.4	58
1329	High-density and size-controlled GaN self-assembled quantum dots grown by metalorganic chemical vapor deposition. <i>Applied Physics Letters</i> , 2002 , 80, 3937-3939	3.4	108
1328	Intrinsic nonlinearity of the lightdurrent characteristic of semiconductor lasers with a quantum-confined active region. <i>Applied Physics Letters</i> , 2002 , 81, 2154-2156	3.4	32
1327	Enhancement of the activation energy in coupled CdTe/ZnTe quantum dots and quantum-well structures with a ZnTe thin separation barrier. <i>Applied Physics Letters</i> , 2002 , 81, 3750-3752	3.4	31
1326	Formation of InAs quantum dot arrays on GaAs (100) by self-organized anisotropic strain engineering of a (In,Ga)As superlattice template. <i>Applied Physics Letters</i> , 2002 , 81, 1705-1707	3.4	84
1325	Tuning InAs/GaAs quantum dot properties under Stranski-Krastanov growth mode for 1.3 th applications. 2002 , 91, 6710		85
1324	Closely stacked InAs/GaAs quantum dots grown at low growth rate. <i>Applied Physics Letters</i> , 2002 , 80, 1544-1546	3.4	89
1323	Near-Field Imaging of Quantum Devices and Photonic Structures. 2002 , 237-286		1
1322	From amplified spontaneous emission to microring lasing using nanocrystal quantum dot solids. Applied Physics Letters, 2002 , 81, 1303-1305	3.4	216
1321	Spectral mode dynamics of short cavity quantum-dot lasers at 1.13 /spl mu/m.		
1320	Color-selective semiconductor nanocrystal laser. <i>Applied Physics Letters</i> , 2002 , 80, 4614-4616	3.4	286
1319	Electronic states in the conduction band of V-groove quantum wires. 2002 , 92, 2023-2034		14
1318	High-reliability MOCVD-grown quantum dot laser. 2002 , 38, 883		40
1317	Strong carrier confinement and evidence for excited states in self-assembled InAs quantum islands grown on InP(001). 2002 , 66,		33
1316	Self-assembled semiconductor quantum dots. 2002 , 43, 351-364		22

1315	Quantum-Dot Vertical-Cavity Surface-Emitting Lasers. 2002 , 27, 531-537		45
1314	THE DOUBLE HETEROSTRUCTURE: CONCEPT AND ITS APPLICATIONS IN PHYSICS, ELECTRONICS AND TECHNOLOGY. 2002 , 16, 647-675		10
1313	Influence of substrate orientation on self-assembled InAs/GaAs quantum dots for long wavelength emission grown by molecular beam epitaxy.		
1312	Progress in quantum dots and photonic crystal for future photonic network devices in Japan.		
1311	Molecular-beam epitaxial growth of GaAs and InGaAs/GaAs nanodot arrays using anodic Al2O3 nanohole array template masks. <i>Applied Physics Letters</i> , 2002 , 81, 361-363	3.4	113
1310	Decomposition of trisdimethylaminoarsenic and As nucleation on GaAs(001)-24 at low temperature. <i>Applied Physics Letters</i> , 2002 , 81, 132-134	3.4	1
1309	Properties of InP self-assembled quantum dots embedded in In0.49(AlxGa1日)0.51P for visible light emitting laser applications grown by metalorganic chemical vapor deposition. 2002 , 91, 5313-5320		12
1308	Effects of high potential barrier on InAs quantum dots and wetting layer. 2002, 91, 5055-5059		33
1307	Strong carrier confinement in self-assembled InAs/InP[001] elongated quantum islands emitting at 1.5 /spl mu/m.		
1306	Strained-layer heteroepitaxy to fabricate self-assembled semiconductor islands. 2002 , 207-245		
1305	Height-controlled InAs quantum dots by using a thin InGaAs layer. <i>Applied Physics Letters</i> , 2002 , 80, 471	43,4471	6 27
1304	Roles of Quantum Nanostructures in Advanced Electronics. 2002 , 12-17		
1303	Progress in GaN-based quantum dots for optoelectronics applications. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2002 , 8, 823-832	3.8	100
1302	Long-wavelength quantum-dot lasers on GaAs substrates: from media to device concepts. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2002 , 8, 1015-1024	3.8	74
1301	Inorganic semiconductor nanowires: rational growth, assembly, and novel properties. 2002 , 8, 1260-8		344
1300	Excitons in Wide-Gap Semiconductors: Coherence, Dynamics, and Lasing. 2002 , 234, 70-83		10
1299	AlGaN Nanocolumns and AlGaN/GaN/AlGaN Nanostructures Grown by Molecular Beam Epitaxy. 2002 , 234, 717-721		27
1298	Optical Gain of CdSe Quantum Dot Stacks. 2002 , 190, 593-597		9

1297	UV Photoluminescence from Size-Controlled GaN Quantum Dots Grown by MOCVD. 2002, 192, 33-38	13
1296	Initial Experiments to Obtain Self-Assembled GaInN Quantum Islands by MOVPE. 2002 , 192, 412-416	4
1295	Quantum measurement of excitonic states using stimulated Raman adiabatic passage. 2002 , 314, 20-24	1
1294	Nonlinear effects of energy band structures on optical transitions in quantum dots. 2002 , 316-317, 342-345	
1293	Scanning tunneling miscroscopy study of InAs islands grown on GaAs(001) substrates. 2002, 88, 158-163	13
1292	Optical properties of a quantum-dot cascade structure. 2002 , 14, 294-298	8
1291	Observation of dip structures in PLE spectra of a highly excited single self-assembled quantum dot. 2002 , 13, 151-154	2
1290	Fabrication of 3.9Imid-infrared surface emitting PbSe/PbEuTe quantum dot lasers using molecular beam epitaxy. 2002 , 13, 876-880	8
1289	Optical emission from a V-groove quantum wire laser diode immersed in high magnetic fields. 2002 , 13, 881-884	1
1288	Fabrication of height-controlled InAs quantum dots on GaAs surfaces by in situ AsBr3 etching and molecular beam epitaxy. 2002 , 13, 1151-1154	8
1287	Two modes of Ga diffusion into InAs self-assembled quantum dots suggested by ion channeling. 2002 , 13, 1168-1171	1
1286	Electronic structure of piezoelectric In0.2Ga0.8N quantum dots in GaN calculated using a tight-binding method. 2002 , 15, 169-181	89
1285	Size-shrinkage effect of InAs quantum dots during a GaAs capping growth. 2002 , 190, 212-217	19
1284	Annealing effect on InAs islands on GaAs(0 0 1) substrates studied by scanning tunneling microscopy. 2002 , 190, 218-221	10
1283	Study of the spontaneous alignment of InAs quantum dots along the surface steps as a function of the InAs coverage. 2002 , 410, 188-193	1
1282	Carrier thermalization and activation within self-assembled InAs/AlAs quantum dot states. 2002 , 511, 57-64	14
1281	GaAs in GaSb: Strained nanostructures for mid-infrared optoelectronics. 2002 , 36, 816-820	6
1280	Variations in critical coverage for InAs/GaAs quantum dot formation in bilayer structures. 2002 , 244, 39-48	27

1279	Growth of Si-doped InAs quantum dots and annealing effects on size distribution. 2002 , 234, 105-109	21
1278	Characterization of strain distribution in quantum dots by X-ray diffraction. 2002 , 234, 197-201	19
1277	Metal-organic vapor-phase epitaxy of defect-free InGaAs/GaAs quantum dots emitting around 1.3th. 2002 , 235, 89-94	14
1276	Improved size control of InP nanopyramids by selective-area flow rate modulation epitaxy. 2002 , 237-239, 239-243	8
1275	Luminescence in excess of 1.5 th at room-temperature of InAs quantum dots capped by a thin InGaAs strain-reducing layer. 2002 , 237-239, 1296-1300	21
1274	Fabrication of GaN quantum dots by metalorganic chemical vapor selective deposition. 2002 , 237-239, 1312-1315	9
1273	Stranski K rastanow growth of GaN quantum dots by metalorganic chemical vapor deposition. 2002 , 237-239, 1316-1319	18
1272	A new method to fabricate InGaN quantum dots by metalorganic chemical vapor deposition. 2002 , 235, 188-194	21
1271	Maximization of the InAs quantum-dot density through the growth of an intentionally non-homogeneous sample. 2002 , 236, 41-45	18
1270	Effects of internal piezoelectric field on electronic states of InGaN quantum dots grown on GaN. 2002 , 237-239, 1172-1175	3
1269	Dependence on In content of InxGa1NAs quantum dots grown along GaAs multiatomic steps by MOVPE. 2002 , 237-239, 1476-1480	9
1268	Energetics in the growth mechanism of semiconductor heteroepitaxy. 2002 , 237-239, 1599-1602	1
1267	Atomic-force microscopy study of self-assembled InAs quantum dots along their complete evolution cycle. 2002 , 241, 19-30	17
1266	Effect of InAlAs/InGaAs cap layer on optical properties of self-assembled InAs/GaAs quantum dots. 2002 , 241, 304-308	4
1265	Investigation of self-assembled InPtainP quantum dot stacks by transmission electron microscopy. 2002 , 244, 129-135	10
1264	Improved area density and luminescence properties of InP quantum dots grown on In0.5Al0.5P by metal-organic chemical vapor deposition. 2003 , 32, 1335-1338	5
1264		2

X-ray diffraction analysis of lateral composition modulation in InAs/GaSb superlattices intended for infrared detector applications. **2003**, 150, 420

1260	InP based quantum dash lasers with 2 [micro sign]m wavelength. 2003 , 150, 318	24
1259	The role of Auger recombination in InAs 1.3-th quantum-dot lasers investigated using high hydrostatic pressure. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2003 , 9, 1300-1307	47
1258	Semiconductor quantum dots. 2003 , 19, 24-29	6
1257	Heterotic quantum dots: a clean region surrounded by a dirty region. 2003 , 319, 299-304	3
1256	Growth of GalnNAs by atomic hydrogen-assisted RF-MBE. 2003 , 251, 412-416	10
1255	Three decades of molecular beam epitaxy. 2003 , 251, 1-8	21
1254	Optical response at 1.3 th and 1.5 th with InAs quantum dots embedded in a pure GaAs matrix. 2003 , 251, 181-185	14
1253	Controlling the shape of InAs self-assembled quantum dots by thin GaAs capping layers. 2003 , 251, 155-160	28
1252	InAs quantum dots grown on InAlGaAs lattice matched to InP. 2003 , 252, 481-485	18
1251	Influence of InGaAs overgrowth layer on structural and optical properties of InAs quantum dots. 2003 , 255, 57-62	12
1250	Growth of self-organized quantum dots for optoelectronics applications: nanostructures, nanoepitaxy, defect engineering. 2003 , 255, 68-80	26
1249	Formation of quantum wires and quantum dots on buffer layers grown on InP substrates. 2003 , 255, 266-272	31
1248	Role of Al in spacer layer on the formation of stacked InAs quantum dot structures on InP(311)B. 2003 , 256, 7-11	15
1247	Using As/P exchange processes to modify InAs/InP quantum dots. 2003 , 257, 89-96	47
1246	Studies on single- and multi-layer InAsN quantum dots grown by solid-source molecular beam epitaxy. 2003 , 259, 40-46	8
1245	Quantum dot nanostructures and molecular beam epitaxy. 2003 , 47, 166-195	48
1244	Quantum dots: lasers and amplifiers. 2003 , 34, 323-328	23

1243	Optical studies of GaInP/GaP quantum dots. 2003 , 102-103, 1-6	5
1242	Abnormal temperature dependence of photoluminescence from self-assembled InAs quantum dots covered by an InAlAs/InGaAs combination layer. 2003 , 126, 391-394	4
1241	Temperature-insensitive semiconductor quantum dot laser. 2003 , 47, 205-212	47
1240	Infrared detectors: status and trends. 2003 , 27, 59-210	743
1239	Evidence of excited levels in self-organized InAs/InP(001) islands with low size dispersion. 2003 , 17, 124-126	8
1238	The energy level spacing between the ground and first excited states in InAs/GaAs quantum dots as a measure of the zero dimensionality. 2003 , 17, 129-130	8
1237	Recent advances in semiconductor quantum-dot lasers. 2003 , 4, 611-619	18
1236	Polaronic exciton in a parabolic quantum dot. 2003 , 236, 82-89	11
1235	Effect of strain variation on photoluminescence from InGaAs quantum dots in air-bridge structures. 2003 , 238, 289-292	2
1234	Thermal annealing effect on self-assembled GaInNAs/GaAs quantum dots grown by chemical beam epitaxy. 2003 , 1097-1100	4
1233	Effect of thermal treatment on structure of GaN self-assembled quantum dots grown by MOCVD. 2003 , 1101-1104	4
1232	Direct observation of phonon relaxation bottleneck in InAs quantum dots of high-uniformity. 2003, 1165-116	8 11
1231	Impurity free vacancy disordering of self-assembled InGaAs quantum dots by using PECVD-grown SiO2 and SiNx capping films. 2003 , 1185-1188	1
1230	InAs quantum dots on GaAs substrates with InGaAs strain reducing layer for long wavelength emission. 2003 , 1193-1196	6
1229	Optical studies of GaxIn1⊠P/Ga0.5In0.5P quantum dots. 2003 , 1225-1228	3
1228	Structural and magneto-optical studies on multiple quantum dots containing magnetic semiconductors. 2003 , 1283-1287	
1227	Optical properties of InAs/InP quantum dot stack grown by metalorganic chemical vapor deposition. 2003 , 1347-1350	
1226	Growth of InGaN quantum dots on GaN by MOVPE, employing a growth temperature nitrogen anneal. 2003 , 2515-2519	7

1225 Hi	igh quality InAs quantum dots covered by InGaAs/GaAs hetero-capping layer. 2003, 939-943	7
1224 S t	ructural and optical properties of InAs quantum dots in AlGaAs matrix. 2003 , 37, 559-563	8
	illisecond photoluminescence kinetics in a system of direct-bandgap InAs quantum dots in an As matrix. 2003 , 77, 389-392	21
	nape transition of InAs from two-dimensional islands to three-dimensional dots by annealing. 203 , 216, 407-412	1
1221 Th	ne optical Stark effect in semiconductor quantum wires. 2003 , 310, 460-464	39
1220 G I	rowth characteristics of GaInNAs/GaAs quantum dots by chemical beam epitaxy. 2003 , 251, 372-377	11
	ole of In desorption for formation of self-organized (In,Ga)As quantum wires on GaAs(100) during uperlattice formation. 2003 , 251, 264-268	9
1218 G I	rowth and temperature characteristic of self-assembled InAs-QD on GaInP. 2003 , 251, 223-229	2
	ogress and prospects of advanced quantum nanostructures and roles of molecular beam epitaxy. 203 , 251, 9-16	19
	cudies on single- and multi-layer InAsN quantum dots grown by solid source molecular beam pitaxy. 2003 , 258, 123-129	5
1215 N	onlinear optical response from Kagome quantum dot array. 2003 , 102-103, 226-231	2
	ptical Characterization of In(Ga)As/GaAs Self-assembled Quantum Dots Using Near-Field bectroscopy. 2003 , 83-117	
	ow threshold current operation of self-assembled InAs G aAs quantum dot lasers by metal organic nemicalvapour deposition. 2003 , 39, 1130	35
1212 U	v-Blue Lasers Based on Ingan/Gan/Al2O3 and on Ingan/Gan/Si Heterostructures. 2003 , 455-464	1
1211 I N	As/GaAs quantum dot intermixing induced by proton implantation. 2003, 93, 1208-1211	43
	me dependence of the photoluminescence of GaN/AlN quantum dots under high notoexcitation. 2003 , 68,	38
1209 Q	uantum dots: lasers and amplifiers. 2003 , 15, R1063-R1076	66
1208 Q	uantum cascade transitions in nanostructures. 2003 , 52, 455-521	44

1207	Internal efficiency of semiconductor lasers with a quantum-confined active region. 2003 , 39, 404-418		44
1206	Conductance in double quantum well systems. 2003 , 15, R143-R175		11
1205	Linewidth enhancement factor and chirp in quantum dot lasers. 2003, 94, 1983-1989		23
1204	Effects of a thin InGaAs layer on InAs quantum dots embedded in InAl(Ga)As. <i>Applied Physics Letters</i> , 2003 , 83, 3785-3787	3.4	16
1203	Analytical model for quantum well to quantum dot tunneling.		1
1202	MOVPE growth and characterization of long-wavelength emitting quantum dots based lasers at 300 K.		
1201	CW lasing of self-assembled InAs quantum dot lasers on GaAs substrates grown by metalorganic chemical vapour deposition.		
1200	Effect of the InAlGaP matrix on the growth of self-assembled InP quantum dots by metalorganic chemical vapor deposition. <i>Applied Physics Letters</i> , 2003 , 83, 1349-1351	3.4	13
1199	Structural and optical properties of shape-engineered InAs quantum dots. 2003 , 94, 2486-2490		21
1198	Effects of a thin AlAs layer on InAs quantum dot electronic structure. 2003 , 94, 4515-4519		8
1197	Micromachines as Tools for Nanotechnology. 2003,		14
1196	Room-Temperature Defect Tolerance of Shape Engineered Quantum Dot Structures. 2003 , 799, 227		
1195	Importance of Auger recombination in InAs 1.3 [micro sign]m quantum dot lasers. 2003 , 39, 58		23
1194	Nanoengineered Quantum Dot Active Medium for Thermally-Stable Laser Diodes. 2003 , 799, 303		
1193	Dynamic Behavior of a Silicon Oxide Layer on Silicon Ultrafine Particles. 2003, 10, 361-364		1
1192	Nanoengineered Quantum Dot Active Medium for Thermally-Stable Laser. 2003, 794, 223		
1191	Effects of alloying elements on thermoelectric properties of ReSi1.75. 2003 , 793, 419		
1190	GaN quantum dot UV light emitting diode. 2003 , 798, 320		1

1189 Quantum Dot Lasers and Amplifiers. 2003, 799, 288

1188	Structural and Optical Properties of GaN Quantum Dots. 2003 , 798, 34		
1187	Effects of growth interruption on the structural and optical properties of GaN self-assembled quantum dots. 2003 , 798, 401		2
1186	Quantum Dot Lasers and Amplifiers. 2003 , 794, 208		
1185	Mixed dimensionality quantum heterostructures grown in axially modulated V grooves. 2003, 67,		7
1184	Generalized grazing-incidence-angle x-ray scattering analysis of quantum dots. 2003 , 93, 2034-2040		9
1183	Fabrication of Zn/ZnS nanocable heterostructures by thermal reduction/sulfidation. <i>Applied Physics Letters</i> , 2003 , 82, 1398-1400	3.4	58
1182	Quantum dot photonic devices for lightwave communications.		
1181	Proton-implantation-induced photoluminescence enhancement in self-assembled InAs/GaAs quantum dots. <i>Applied Physics Letters</i> , 2003 , 82, 2802-2804	3.4	24
1180	Strain-induced modifications of the electronic states of InGaAs quantum dots embedded in bowed airbridge structures. 2003 , 94, 6812-6817		14
1179	Coupling between magnetic/nonmagnetic semiconductor quantum dots in double-layer geometry. <i>Applied Physics Letters</i> , 2003 , 83, 2865-2867	3.4	5
1178	Imaging of emission patterns in a T-shaped quantum wire laser. <i>Applied Physics Letters</i> , 2003 , 83, 4089-4	19941	9
1177	Characterization of GaN quantum discs embedded in AlxGa1⊠N nanocolumns grown by molecular beam epitaxy. 2003 , 68,		106
1176	Level degeneracy and temperature-dependent carrier distributions in self-organized quantum dots. <i>Applied Physics Letters</i> , 2003 , 82, 1959-1961	3.4	14
1175	Influence of coupling effect in the operation of vertically coupled quantum-dot lasers. <i>Applied Physics Letters</i> , 2003 , 82, 4788-4790	3.4	6
1174	Excitonic states in CdTe/Cd0.74Mg0.26Te quantum wires grown on vicinal substrates. 2003 , 67,		2
1173	Effect of strain on the magnetoexciton ground state in InP/GaxIn1⊠P quantum disks. 2003, 67,		24
1172	Long-wavelength emission from nitridized InAs quantum dots. <i>Applied Physics Letters</i> , 2003 , 83, 4152-4	1 <u>53</u>	11

1171	Coulomb-correlated electron-hole plasma and gain in a quantum-wire laser of high uniformity. 2003 , 67,		28
1170	The role of free carriers and excitons on the lasing characteristics of InAs/InGaAs quantum-dot lasers. <i>Applied Physics Letters</i> , 2003 , 82, 4812-4814	3.4	1
1169	Temperature dependence of photoreflectance in InAs/GaAs quantum dots. <i>Applied Physics Letters</i> , 2003 , 82, 3895-3897	3.4	17
1168	Post-delay-time dependences of the formation of CdTe/ZnTe nanostructures and their activation energies. 2003 , 94, 2612-2615		2
1167	AlGaAs/GaAs quantum wires with high photoluminescence thermal stability. <i>Applied Physics Letters</i> , 2003 , 83, 5059-5061	3.4	5
1166	Selective formation of ZnO nanodots on nanopatterned substrates by metalorganic chemical vapor deposition. <i>Applied Physics Letters</i> , 2003 , 83, 3593-3595	3.4	35
1165	Optical properties of confined polaronic excitons in spherical ionic quantum dots. 2003, 68,		123
1164	Enhanced thermal stability of laser diodes with shape-engineered quantum dot medium. <i>Applied Physics Letters</i> , 2003 , 83, 833-835	3.4	35
1163	Structural and optical properties of coherent GaN islands grown on 6H-SiC(0001)-(BB). <i>Applied Physics Letters</i> , 2003 , 82, 2889-2891	3.4	10
1162	Size-dependent radiative decay time of excitons in GaN/AlN self-assembled quantum dots. <i>Applied Physics Letters</i> , 2003 , 83, 984-986	3.4	70
1161	Optical nonlinear properties of InAs quantum dots by means of transient absorption measurements. 2003 , 94, 1184-1189		20
1160	InGaN quantum dots grown by metalorganic vapor phase epitaxy employing a post-growth nitrogen anneal. <i>Applied Physics Letters</i> , 2003 , 83, 755-757	3.4	126
1159	HUBBARD-GAP ENGINEERING IN A DOUBLE-HELIX-BASED HIERARCHICAL STRUCTURE. 2003 , 17, 4883-48	390	2
1158	Growth Structure, and Optical Properties of III-Nitride Quantum Dots. 2003 , 799, 257		
1157	Growth Structure, and Optical Properties of III-Nitride Quantum Dots. 2003, 789, 334		
1156	Optical and Structural Properties of InAs/GaSb Nanostructures. 2003 , 794, 283		
1155	Growth Structure, and Optical Properties of III-Nitride Quantum Dots. 2003, 794, 177		
1154	Optical Properties of Excitons in Quantum Well Wires Under the Magnetic Field. 2003 , 10, 737-743		2

1153	AFM ANALYSIS OF QUANTUM DOT STRUCTURES INDUCED BY ION SPUTTERING WITH DIFFERENT TIPS. 2003 , 10, 837-841	
1152	Output power and its limitation in ridge-waveguide 1.3 Im wavelength quantum-dot lasers. 2003 , 18, 774-781	35
1151	Quantum Dot Lasers. 2003 , 367-410	
1150	Engineering the Electronic Structure and the Optical Properties of Semiconductor Quantum Dots. 2003 , 1-50	
1149	Effects of Polaron Formation in Semiconductor Quantum Dots on Transport Properties. 2003 , 72, 1495-1500	3
1148	Thermal annealing effect on self-assembled GaInNAs/GaAs quantum dots grown by chemical beam epitaxy.	
1147	Characteristics of long wavelength quantum dots lasers.	
1146	Room temperature lasing with low threshold current of InAs/GaAs quantum dots grown by metalorganic chemical vapor deposition.	
1145	Polarization anisotropy in strained quantum-wire structures considering the strain relaxation effect.	
1144		
1143	1.3 /spl mu/m ln(Ga)As/GaAs quantum-dot lasers and their dynamic properties.	
1142	Gain and carrier distribution in InGaAs quantum dot lasers.	
1141	Tunable bandpass microwave filters based on defect commandable photonic bandgap waveguides. 2003 , 39, 1131	10
1140	Photoluminescence of Self-Assembled InAs/GaAs Quantum Dots Covered by InAlAs and InGaAs Combination Strain-Reducing Layer. 2003 , 20, 2061-2063	1
1140		1
, in the second second	Combination Strain-Reducing Layer. 2003 , 20, 2061-2063	1
1139	Combination Strain-Reducing Layer. 2003, 20, 2061-2063 Introduction to Semiconductor Lasers. 2003, 1-12	1

1135	One-dimensional excitonic states and lasing in highly uniform quantum wires formed by cleaved-edge overgrowth with growth-interrupt annealing. 2004 , 16, S3549-S3566		5	
1134	Coherent Control of Exciton in a Single Quantum Dot Using High-Resolution Michelson Interferometer. <i>Japanese Journal of Applied Physics</i> , 2004 , 43, 6093-6096	1.4	3	
1133	Effects of InGaAs Insertion Layer on the Properties of High-Density InAs/AlAs Quantum Dots. Japanese Journal of Applied Physics, 2004 , 43, 3828-3830	1.4		
1132	Transition Energy Control via Strain in Single Quantum Dots Embedded in Micromachined Air-Bridge. <i>Japanese Journal of Applied Physics</i> , 2004 , 43, 2069-2072	1.4		
1131	Binding Energies of Excitons in Square Quantum-Well Wires in the Presence of a Magnetic Field. 2004 , 21, 166-169		1	
1130	Electrical transport and low frequency noise characteristics of Au/n-GaAs Schottky diodes containing InAs quantum dots. 2004 , 19, 461-467		17	
1129	Carrier distribution, spontaneous emission, and gain in self-assembled quantum dot lasers. 2004 , 5365, 86		3	
1128	Temperature stabilized 1.55 th photoluminescence in InAs quantum dots grown on InAlGaAs/InP. 2004 , 22, 1508		8	
1127	Temperature dependence of optical properties of Ga0.3In0.7NxAs1☑ quantum dots grown on GaAs (001). 2004 , 22, 1515		10	
1126	Manipulation of electronic states in single quantum dots by micromachined air-bridge. <i>Applied Physics Letters</i> , 2004 , 84, 1392-1394	3.4	7	
1125	Narrow photoluminescence linewidth (. Applied Physics Letters, 2004, 84, 2817-2819	3.4	51	
1124	GeO2 fibers: preparation, morphology and photoluminescence property. 2004 , 121, 441-5		66	
1123	Morphology and optical properties of InAs(N) quantum dots. 2004 , 96, 2832-2840		34	
1122	How do nanoislands induced by ion suputtering evolve during the early stage of growth?. 2004 , 96, 224	14-2248	8 20	
1121	Photoluminescence and lasing characteristics of InGaAsIhGaAsPIhP quantum dots. 2004 , 96, 5766-5770)	12	
1120	Correlated stacks of CdSe/ZnSSe quantum dots. <i>Applied Physics Letters</i> , 2004 , 84, 4367-4369	3.4	11	
1119	Near room temperature droplet epitaxy for fabrication of InAs quantum dots. <i>Applied Physics Letters</i> , 2004 , 85, 5893-5895	3.4	105	
1118	Lasing characteristics of InAs quantum-dot microdisk from 3K to room temperature. <i>Applied Physics Letters</i> , 2004 , 85, 1326-1328	3.4	26	

1117	Improvement of the uniformity of self-assembled InAs quantum dots grown on InGaAs©aAs by low-pressure metalorganic chemical vapor deposition. <i>Applied Physics Letters</i> , 2004 , 85, 2753-2755	3.4	18
1116	Room-temperature continuous-wave operation of GaInNAstaAs quantum dot laser with GaAsN barrier grown by solid source molecular beam epitaxy. <i>Applied Physics Letters</i> , 2004 , 85, 1469-1471	3.4	15
1115	Single-dot spectroscopy via elastic single-electron tunneling through a pair of coupled quantum dots. 2004 , 93, 066801		53
1114	Ground-state interband transition of individual self-assembled InAs/Al0.6Ga0.4As quantum dots observed by scanning-tunneling-microscope light-emission spectroscopy. 2004 , 95, 1064-1073		4
1113	Magnetoexciton in vertically coupled InPtainP quantum disks: Effect of strain on the exciton ground state. 2004 , 69,		8
1112	Carrier relaxation in closely stacked InAs quantum dots. 2004 , 96, 150-154		16
1111	Positional control of self-assembled quantum dots by patterning nanoscale SiN islands. <i>Applied Physics Letters</i> , 2004 , 85, 2836-2838	3.4	1
1110	Nonlinear optical phase shift in InAs quantum dots measured by a unique two-color pumpprobe ellipsometric polarization analysis. 2004 , 96, 1425-1434		28
1109	Formation of highly aligned ZnO tubes on sapphire (0001) substrates. <i>Applied Physics Letters</i> , 2004 , 84, 4098-4100	3.4	165
1108	Investigation of single electron traps induced by InAs quantum dots embedded in GaAs layer using the low-frequency noise technique. 2004 , 96, 5735-5739		18
1107	Fabrication of InAs quantum dots on InP(100) by metalorganic vapor-phase epitaxy for 1.55 th optical device applications. <i>Applied Physics Letters</i> , 2004 , 85, 4331	3.4	39
1106	Time-resolved photoluminescence measurements of InAs self-assembled quantum dots grown on misorientated substrates. <i>Applied Physics Letters</i> , 2004 , 84, 7-9	3.4	40
1105	Photoluminescence of GaN/AlN Quantum Dots Grown on SiC Substrates. 2004 , 457-460, 1593-1596		
1104	Temperature-Insensitive Eye-Opening under 10-Gb/s Modulation of 1.3-\tilde{\top}m P-Doped Quantum-Dot Lasers without Current Adjustments. <i>Japanese Journal of Applied Physics</i> , 2004 , 43, L1124-L1126	1.4	128
1103	InAs Quantum Dots for Optoelectronic Device Applications. 2004 , 829, 249		1
1102	Progress and prospects of semiconductor Ss for nanoelectronics.		
1101	Controlling the uniformity of self-assembled InAs/GaAs quantum dots by a combined GaAs/InGaAs strained buffer layer.		
1100	Characteristics of InGaAs quantum dots grown on tensile-strained GaAs/sub 1-x/P/sub x/.		

1099	Preparation of InAs quantum dots on GaAs substrate by metal-organic vapor phase epitaxy using N/sub 2/ as carrier gas.	
1098	Surfactant Effect of Sb on GaInAs Quantum Dots Grown by Molecular Beam Epitaxy. <i>Japanese Journal of Applied Physics</i> , 2004 , 43, L605-L607	31
1097	Enhanced Optical Properties of High-Density (>1011/cm2) InAs/AlAs Quantum Dots by Hydrogen Passivation. <i>Japanese Journal of Applied Physics</i> , 2004 , 43, 2118-2121	4
1096	Optical Characteristics of InAs/GaAs Double Quantum Dots Grown by MBE with the Indium-Flush Method. <i>Japanese Journal of Applied Physics</i> , 2004 , 43, 2083-2087	11
1095	BARRIER THICKNESS DEPENDENCE OF OPTICAL ABSORPTION OF EXCITONS IN GaAs COUPLED QUANTUM WIRE. 2004 , 11, 49-55	2
1094	Theory of threshold characteristics of semiconductor quantum dot lasers. 2004 , 38, 1-22	29
1093	Lasing in Cd(Zn)Se/ZnMgSSe heterostructures pumped by nitrogen and InGaN/GaN lasers. 2004 , 38, 1099-1	10412
1092	Long-wavelength monolithic mode-locked diode lasers. 2004 , 6, 179-179	82
1091	Composition dependence of energy structure and lattice structure in InGaAs/GaP. 2004 , 21, 36-44	12
1090	Growth and optical characterization of dense arrays of site-controlled quantum dots grown in inverted pyramids. 2004 , 21, 193-198	4
1089	Recent developments in the physics and applications of self-assembled quantum dots. 2004 , 21, 155-163	30
1088	Successful growth of two different quantum dots on one substrate. 2004 , 21, 372-375	1
1087	Frequency-dependent C(V) spectroscopy of the hole system in InAs quantum dots. 2004 , 21, 445-450	17
1086	Electronic states of self-organized InGaAs quantum dots on GaAs (311)B studied by conductive scanning probe microscope. 2004 , 21, 414-418	2
1085	InGaN quantum dots grown by MOVPE via a droplet epitaxy route. 2004 , 21, 546-550	21
1084	Numerical analysis of DFB lasing action in photonic crystals with quantum dots. 2004 , 21, 814-819	2
1083	Strongly confined quantum wire states in strained T-shaped GaAs/InAlAs structures. 2004 , 21, 236-240	2
1082	Long wavelength vertically stacked InAs/GaAs(001) quantum dots with a bimodal size distribution: Optical properties and electronic coupling. 2004 , 36, 55-61	15

1081	Time domain investigation on excitonic spectral diffusion in CdSe quantum dots grown on vicinal surface GaAs substrates. 2004 , 130, 63-66	3
1080	Relaxation oscillations and damping factors of 1.3 th In(Ga)As/GaAs quantum-dot lasers. 2004 , 36, 927-933	4
1079	Low-temperature growth of single-crystalline ZnO tubes on sapphire(0001) substrates. 2004 , 79, 1711-1714	9
1078	QD lasers go to market. 2004 , 17, 28-31	3
1077	Multidimensional ZnO nanodot arrays by self-ordering on functionalised substrates. 2004 , 1, 896-899	1
1076	Optical properties of low-dimensional semiconductor systems fabricated by cleaved edge overgrowth. 2004 , 1, 2028-2055	3
1075	Soft-Lithographically Embossed, Multilayered Distributed-Feedback Nanocrystal Lasers. 2004 , 16, 2137-2141	70
1074	Mode formation in broad area quantum dot lasers at 1060 nm. 2004 , 235, 387-393	4
1073	Fabrication of InAs quantum dots by droplet heteroepitaxy on periodic arrays of InP nanopyramids. 2004 , 464-465, 240-243	5
1072	Growth of self-assembled GaInNAs quantum dots by atomic-H assisted RF molecular beam epitaxy. 2004 , 464-465, 229-232	6
1071	Properties of self-assembled InAs quantum dots grown by various growth techniques. 2004 , 260, 343-347	6
1070	Fabrication of self-organized GaInNAs quantum dots by atomic H-assisted RF-molecular beam epitaxy. 2004 , 261, 11-15	5
1069	1.3th InAs/GaAs quantum dots directly capped with GaAs grown by metal-organic chemical vapor deposition. 2004 , 264, 128-133	2
1068	Fabrication of ZnCdSe quantum dots under StranskiRrastanow mode. 2004 , 265, 541-547	10
1067	The influence of ammonia on the growth mode in InGaN/GaN heteroepitaxy. 2004, 272, 393-399	21
1066	Real-time control of quantum dot laser growth using reflectance anisotropy spectroscopy. 2004 , 272, 143-147	16
1065	Growth of self-assembled AlxInyGa1-x-yN quantum dots by MOVPE. 2004 , 272, 186-191	2
1064	Selective growth of GaInN quantum dot structures. 2004 , 272, 204-210	12

1063	Formation of high-density GaN self-assembled quantum dots by MOCVD. 2004 , 272, 161-166	4
1062	Long-wavelength light emission from InAs quantum dots covered by GaAsSb grown on GaAs substrates. 2004 , 21, 295-299	65
1061	Fabrication and microscopic characterization of a single quantum-wire laser with high uniformity. 2004 , 21, 230-235	4
1060	Structural and optical properties of high-density (>1011/cm2) InAs QDs with varying Al(Ga)As matrix layer thickness. 2004 , 21, 279-284	6
1059	Spectroscopy on single columns of vertically aligned InAs quantum dots. 2004 , 21, 409-413	3
1058	One-dimensional single (In,Ga)As quantum dot arrays formed by self-organized anisotropic strain engineering. 2004 , 21, 568-572	3
1057	Controlled stacking growth of uniform InAs quantum dots by molecular beam epitaxy. 2004 , 21, 555-559	7
1056	GaN quantum dots by molecular beam epitaxy. 2004 , 21, 540-545	9
1055	Analysis of inelastic scattering processes of electrons by localized electrons in quantum dots. 2004 , 21, 532-535	
1054	Regular array of InGaAs quantum dots with 100-nm-periodicity formed on patterned GaAs substrates. 2004 , 21, 551-554	25
1053	Influence of strain on the magneto-exciton in single and coupled InP/GaInP quantum disks. 2004 , 21, 349-353	
1052	Si-doping and annealing effects on In0.5Ga0.5As/GaAs quantum dots grown by heterogeneous droplet epitaxy. 2004 , 24, 211-216	1
1051	Numerical investigations of the heterotic phase in dirty and clean layers. 2004, 328, 73-78	
1050	Ferromagnetic transition in multiple helices with hierarchically organized interactions. 2004 , 337, 520-530	
1049	Selective Area Epitaxy of InGaAs Quantum Dots for Optoelectronic Device Integration. 2004,	
1048	35 GHz pure passively mode locked quantum dot lasers operating close to 1.3 /spl mu/m.	
1047	Stacking of over 150 layers of InAs quantum dots on InP(311)B substrates.	
1046	High-speed modulation characteristics of 1.3 /spl mu/m quantum-dot lasers: influence of effective capture time on the maximum bandwidth.	1

 $_{\rm 1045}$ $\,$ Comparison of Photocurrent Spectra of InGaAsN QD and InGaAs QW Laser Devices.

1044	Online control of quantum dot laser growth.		
1043	Formation of ultrahigh-density InAs/AlAs quantum dots by metalorganic chemical vapor deposition. Applied Physics Letters, 2004 , 84, 1877-1879	3.4	19
1042	Room temperature cw lasing from GaInNAs quantum dots by solid source molecular beam epitaxy.		
1041	Size, shape, and strain dependence of the g factor in self-assembled In(Ga)As quantum dots. 2004 , 70,		95
1040	Large self-assembled InAs/GaAs quantum dots with an optical emission above 1.3 fb. 2004, 1, S133-S14	0	1
1039	Exciton and biexciton luminescence from single hexagonal GaNAlN self-assembled quantum dots. <i>Applied Physics Letters</i> , 2004 , 85, 64-66	3.4	84
1038	Nucleation and growth of GaNAIN quantum dots. 2004 , 70,		41
1037	Direct imaging of self-organized anisotropic strain engineering for improved one-dimensional ordering of (In,Ga)As quantum dot arrays. 2004 , 95, 109-114		49
1036	Photoluminescence probing of non-radiative channels in hydrogenated In(Ga)As/GaAs quantum dots.		
1035	Interplay between Optical Gain and Photoinduced Absorption in CdSe Nanocrystals. 2004 , 108, 5250-52	255	89
1034	Properties of Defect Traps in Triple-Stack InAs/GaAs Quantum Dots and Effect of Annealing. Japanese Journal of Applied Physics, 2004, 43, L1150-L1153	1.4	9
1033	High-frequency modulation characteristics of 1.3-th InGaAs quantum dot lasers. 2004 , 16, 377-379		75
1032	Room-temperature operation of InP-based InAs quantum dot laser. 2004 , 16, 1607-1609		41
1031	Design of quantum-dot lasers with an indirect bandgap short-period Superlattice for reducing the linewidth enhancement factor. 2004 , 16, 2203-2205		8
1030	Ultrafast electron capture into p-modulation-doped quantum dots. <i>Applied Physics Letters</i> , 2004 , 85, 4570-4572	3.4	64
1029	Photon lifetime dependence of modulation efficiency and K factor in 1.3th self-assembled InAstaAs quantum-dot lasers: Impact of capture time and maximum modal gain on modulation bandwidth. <i>Applied Physics Letters</i> , 2004 , 85, 4145-4147	3.4	70
1028	Photoluminescence study of ZnO nanorods epitaxially grown on sapphire (112 0) substrates. <i>Applied Physics Letters</i> , 2004 , 84, 586-588	3.4	128

1027	Devices Based on Epitaxial Nanostructures. 2004 , 315-334	4
1026	Finite element analysis of valence band structures in quantum wires. 2004 , 96, 2055-2062	20
1025	Multiexcitonic two-state lasing in a CdSe nanocrystal laser. <i>Applied Physics Letters</i> , 2004 , 85, 2460-2462 3.4	68
1024	On the nature of quantum dash structures. 2004 , 95, 6103-6111	67
1023	Inhomogeneous strain state in a rectangular InGaAs quantum wire/GaAs barrier specimen prepared for cross sectional high-resolution transmission electron microscopy. 2004 , 96, 1644-1648	1
1022	Formation and optical properties of stacked GaN self-assembled quantum dots grown by metalorganic chemical vapor deposition. <i>Applied Physics Letters</i> , 2004 , 85, 1262-1264	42
1021	Spectroscopy of the electronic states in InAs quantum dots grown on InxAl1⊠As/InP(001). 2004 , 69,	14
1020	Temperature dependence of the photoluminescence emission from InAs quantum dots in a strained Ga0.85In0.15As quantum well. 2004 , 19, 33-38	66
1019	The photoluminescence properties of zinc oxide nanofibres prepared by electrospinning. 2004 , 15, 320-323	87
1018	SELF-ASSEMBLED SEMICONDUCTOR QUANTUM DOTS: Fundamental Physics and Device Applications. 2004 , 34, 181-218	98
1017	InAstaAs self-assembled quantum-dot lasers grown by metalorganic chemical vapor depositionEffects of postgrowth annealing on stacked InAs quantum dots. <i>Applied Physics Letters</i> , 2004 , 85, 1024-1026	41
1016	. 2004 , 40, 105-112	20
1015	Transform-limited optical pulses from 18 GHz monolithic modelocked quantum dot lasers operating at ~1.3 [micro sign]m. 2004 , 40, 346	25
1014	Temperature dependence of carrier dynamics in an inhomogeneous array of quantum dots. 2004 , 5452, 33	2
1013	Why is the room temperature optical differential gain of zero, one and two dimensional semiconductor lasers nearly identical. 2005 ,	
1012	Growth and characterization of multiple layer quantum dot lasers. 2005,	1
1011	Tunnel quantum dot/well InAs/InGaAs Structures as active medium for laser diodes. 2005,	2
1010	Electroluminescence from a single quantum dot at telecommunication wavelength.	2

1009	QD lasers: physics and applications. 2005 ,	13
1008	Long-wavelength lasers based on metamorphic quantum dots. 2005 , 81, 229-237	10
1007	Quantum dot photonic devices for lightwave communication. 2005 , 36, 175-179	15
1006	Optical characteristics of In(Ga)As quantum dots on (100) InP substrate for 1.5 th laser diodes. 2005 , 36, 190-193	
1005	Surface morphology of AlN and size dispersion of GaN quantum dots. 2005 , 274, 387-393	9
1004	Improvement of self-organized InAs quantum dots growth by molecular beam epitaxy. 2005 , 276, 72-76	1
1003	The effect of a combined InAlAs and GaAs strained buffer layer on the structure and optical property of InAs quantum dots. 2005 , 276, 77-82	1
1002	Self-assembled InAs quantum dots on GaSb/GaAs(001) layers by molecular beam epitaxy. 2005 , 275, e2269-e2273	55
1001	Polarization-selective magneto-photoluminescence study on CdSe self-assembled quantum dots by resonant excitation. 2005 , 275, e2301-e2306	4
1000	MBE growth optimization and optical spectroscopy of InAs/GaAs quantum dots emitting at 1.3 fb in single and stacked layers. 2005 , 275, e2313-e2319	19
999	Effect of InxGa1⊠As strain release layers on the microstructural and interband transition properties of InAs/GaAs quantum dots. 2005 , 275, 415-421	7
998	Optical evidences of quantum dots formed in ZnTe matrix. 2005 , 275, 481-485	
997	Excitation power dependent photoluminescence of In0.7Ga0.3As1⊠Nx quantum dots grown on GaAs (0 0 1). 2005 , 278, 244-248	6
996	Resonant tunneling of electrons through a single self-assembled InAs quantum dot probed via a novel overlayed quantum dot electrode. 2005 , 278, 98-102	3
995	Large InAs/GaAs quantum dots with an optical response in the long-wavelength region. 2005, 278, 103-107	10
994	High-power InAs/GaInAs/GaAs QD lasers grown in a multiwafer MBE production system. 2005 , 278, 335-341	28
993	The effect of In content on high-density InxGa1⊠As quantum dots. 2005 , 282, 173-178	5
992	Comparative study of InAs quantum dots grown on different GaAs substrates by MOCVD. 2005 , 282, 297-304	8

(2005-2005)

991	Structural studies of a combined InAlAsInGaAs capping layer on 1.3-In Inas/GaAs quantum dots. 2005 , 285, 17-23	17
990	Structure and thermal stability of InAs/GaAs quantum dots grown by atomic layer epitaxy and molecular beam epitaxy. 2005 , 285, 137-145	10
989	Size distribution and dot shape of self-assembled quantum dots induced by ion sputtering. 2005 , 25, 425-430	5
988	Strong photoluminescence and laser operation of InAs quantum dots covered by a GaAsSb strain-reducing layer. 2005 , 26, 395-399	22
987	Highly uniform self-assembled InAs/GaAs quantum dots emitting at 1.3th by metalorganic chemical vapor deposition. 2005 , 26, 77-80	2
986	InAs/AlAs quantum dots with InGaAs insertion layer: dependence of the indium composition and the thickness. 2005 , 26, 138-142	3
985	Influence of strain on the Stark effect in InP/GaInP quantum discs. 2005, 26, 312-316	2
984	Stable biexcitonic lasing of CuCl quantum dots under two-photon resonant excitation. 2005 , 26, 347-350	14
983	Magnetic field dependence of hole levels in InAs quantum dots. 2005 , 26, 446-449	6
982	Magneto-optical study of nonmagnetic quantum dots coupled to a magnetic semiconductor quantum well. 2005 , 26, 271-275	4
981	Effects of Si-doped GaAs layer on optical properties of InAs quantum dots. 2005 , 25, 647-653	4
980	Optical anisotropy and photoluminescence excitation density dependence for auto-organized Al0.28In0.72As/Al0.28Ga0.72As quantum dots. 2005 , 27, 369-373	
979	Parameter-dependent resonant third-order susceptibility contributed by inter-band transitions in quantum wells. 2005 , 28, 412-418	4
978	Ordered quantum dots formation on engineered template by molecular beam epitaxy. 2005 , 78-79, 349-352	4
977	Microphotoluminescence and photocurrent studies of InGaN quantum dots grown by MOVPE at low surface densities on GaN. 2005 , 36, 223-226	
976	Improved performances of 1.3th InGaAs QD structures grown at high temperature by metal organic chemical vapour deposition. 2005 , 36, 180-182	1
975	Effects of different modified underlayer surfaces on growth and optical properties of InGaN quantum dots. 2005 , 77, 307-314	3
974	Control of photoluminescence wavelength from uniform InAs quantum dots by annealing. 2005 , 244, 88-91	9

973	X-ray methods for strain and composition analysis in self-organized semiconductor nanostructures. 2005 , 6, 47-59		15
972	Epitaxial self-organization: from surfaces to magnetic materials. 2005 , 6, 61-73		16
971	Self-organization on surfaces: foreword. 2005 , 6, 3-9		2
970	Effect of p-doping of the active region on the temperature stability of InAs/GaAs QD lasers. 2005 , 39, 477		23
969	Engineering atomic and molecular nanostructures at surfaces. 2005, 437, 671-9		1852
968	Lasing at 1.28 /spl mu/m of InAs-GaAs quantum dots with AlGaAs cladding layer grown by metal-organic chemical vapor deposition. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2005 , 11, 1027-1034	3.8	15
967	Recombination and loss mechanisms in low-threshold InAs-GaAs 1.3-/spl mu/m quantum-dot lasers. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2005 , 11, 1041-1047	3.8	33
966	Use of the photoacoustic spectroscopy for surface characterization of nanometer-sized cobalt-ferrite particles. 2005 , 41, 3382-3384		7
965	Structural and Optical Properties of Uniform ZnO Nanosheets. 2005, 17, 586-590		296
964	Quantum dot photonic devices for lightwave communication. 2005 , 80, 1179-1182		16
963	Synthesis of aligned GaN nanorods on Si (111) by molecular beam epitaxy. 2005 , 80, 1635-1639		33
962	Continuous-wave high-power (320 mW) single mode operation of electronic vertically coupled InAs/GaAs quantum dot narrow-ridge-waveguide lasers. 2005 , 81, 1097-1100		6
961	Photoreflectance study of energy level structure of self-assembled InAs/GaAs quantum dots emitting at 1.3 lb. 2005 , 135, 232-236		4
960	GaN/AlGaN nanocavities with AlN/GaN Bragg reflectors grown in AlGaN nanocolumns by plasma assisted MBE. 2005 , 202, 367-371		14
959	Investigation of the size-effect in cobalt-ferrite nanoparticles using photoacoustic spectroscopy. 2005 , 125, 505-508		5
958	Segregation in In x Ga1Ik As/GaAs StranskiRrastanow layers grown by metalBrganic chemical vapour deposition. 2005 , 85, 3857-3870		10
957	Single dot spectroscopy of GaN/AlN self-assembled quantum dots. 2005,		
956	Terahertz quantum cascade laser emitting at 160 th in strong magnetic field. 2005,		

955	Three-Modal Size Distribution of Self-assembled InAs Quantum Dots. <i>Japanese Journal of Applied Physics</i> , 2005 , 44, 2037-2040	1.4	4
954	Room-Temperature Preperation of InGaAsN Quantum Dot Lasers Grown by MOCVD. 2005 , 8, G57		10
953	Self-Assembled InAs Quantum-Dot Chains on Self-Formed GaAs Mesa-Stripes by Molecular Beam Epitaxy. <i>Japanese Journal of Applied Physics</i> , 2005 , 44, 7690-7693	1.4	7
952	InAs Quantum Dot Lasers with Extremely Low Threshold Current Density (7 A/cm2/Layer). <i>Japanese Journal of Applied Physics</i> , 2005 , 44, L1103-L1104	1.4	23
951	Effect of Nitrogen Incorporation into InAs layer in InAs/InGaAs Self-Assembled Quantum Dots. Japanese Journal of Applied Physics, 2005 , 44, 6395-6398	1.4	0
950	Control of Self-Formed GaAs Nanoholes Combined with Embedded InAs Quantum Dots. <i>Japanese Journal of Applied Physics</i> , 2005 , 44, 2672-2675	1.4	4
949	Growth, Fabrication, and Operating Characteristics of Ultra-Low Threshold Current Density 1.3 µm Quantum Dot Lasers. <i>Japanese Journal of Applied Physics</i> , 2005 , 44, 2520-2522	1.4	11
948	Optical Properties of Zinc Oxide Quantum Dots Embedded Films by Metal Organic Chemical Vapor Deposition. 2005 , 891, 1		
947	Comparison between Electron Beam and Near-Field Light on the Luminescence Excitation of GaAs/AlGaAs Semiconductor Quantum Dots. <i>Japanese Journal of Applied Physics</i> , 2005 , 44, 1820-1824	1.4	3
946	Comparison of Lasing Characteristics of GaInNAs Quantum Dot Lasers and GaInNAs Quantum Well Lasers. 2005 , 891, 1		
945	Electronic Structures and Carrier Correlation in Single Pair of Coupled Quantum Dots. <i>Japanese Journal of Applied Physics</i> , 2005 , 44, 2647-2651	1.4	4
944	Temperature-Dependent Photoluminescence in Coupling Structures of CdSe Quantum Dots and a ZnCdSe Quantum Well. 2005 , 22, 1518-1521		1
943	Growth of high optical quality InAs quantum dots in InAlGaAsIhP double heterostructures. 2005 , 23, 1125		2
942	Site-controlled InAs quantum dots on GaAs patterned using self-organized nano-channel alumina template. 2005 , 23, 1232		4
941	Molecular beam epitaxial growth of AlGaAsInGaAsIGaAs planar superlattice structures on vicinal (111)B GaAs and their transport properties. 2005 , 23, 1162		7
940	Pulse oscillation of self-organized In0.53Ga0.47As quantum wire lasers grown on (775)B InP substrates by molecular beam epitaxy. 2005 , 23, 2526		2
939	Temperature-Dependent Photoluminescence of Self-Assembled (In,Ga)As Quantum Dots on GaAs (100): Carrier Redistribution through Low-Energy Continuous States. <i>Japanese Journal of Applied Physics</i> , 2005 , 44, 6829-6832	1.4	15
938	Self-assembled quantum-dot molecules by molecular-beam epitaxy. 2005 , 23, 1217		24

Molecular beam epitaxy growth of novel double-layer InAs quantum dot structures and their optical properties. **2005**, 23, 1240

936			
935	Enhanced photoluminescence intensity in modulation doped p-InAs quantum dots grown by molecular beam epitaxy.		1
934	Extended wavelength emission to 1.3th in nitrided InAstaAs self-assembled quantum dots. 2005 , 97, 024306		10
933	Observation of the biexponential ground-state decay time behavior in InAs self-assembled quantum dots grown on misoriented substrates. <i>Applied Physics Letters</i> , 2005 , 86, 211112	3.4	10
932	N incorporation into InGaAs cap layer in InAs self-assembled quantum dots. 2005 , 98, 113525		4
931	Integration of an InGaAs quantum-dot laser with a passive waveguide using selective-area MOCVD. 2005 ,		
930	Room-temperature excitonic absorption in quantum wires. <i>Applied Physics Letters</i> , 2005 , 87, 223119	3.4	11
929	Effects of strain and confinement on the emission wavelength of InAs quantum dots due to a GaAs1Nx capping layer. 2005 , 71,		29
928	Depth distribution of traps in Aufi-GaAs Schottky diodes with embedded InAs quantum dots. 2005 , 97, 064506		6
927	InAsNtaAs(N) quantum-dot and InGaNAstaAs quantum-well emitters: A comparison. <i>Applied Physics Letters</i> , 2005 , 86, 233107	3.4	16
926	Wavelength-tunable (1.55-th region) InAs quantum dots in InGaAsPIhP (100) grown by metal-organic vapor-phase epitaxy. 2005 , 98, 013503		52
925	Characteristics of InGaAs quantum dots grown on tensile-strained GaAs1⊠Px. 2005 , 97, 093518		12
924	Real-space Green tensors for stress and strain in crystals with cubic anisotropy. 2005 , 98, 033534		4
923	Deformation profile in GaN quantum dots: Medium-energy ion scattering experiments and theoretical calculations. 2005 , 72,		24
922	Controlling the properties of InGaAs quantum dots by selective-area epitaxy. <i>Applied Physics Letters</i> , 2005 , 86, 113102	3.4	21
921	Temperature-dependent luminescence of InP quantum dots coupled with an InGaP quantum well and of InP quantum dots in a quantum well. <i>Applied Physics Letters</i> , 2005 , 87, 201110	3.4	6
920	Site-controlled InAs quantum dots regrown on nonlithographically patterned GaAs. <i>Applied Physics Letters</i> , 2005 , 86, 153114	3.4	13

919	Complex quantum dot arrays formed by combination of self-organized anisotropic strain engineering and step engineering on shallow patterned substrates. 2005 , 97, 014304		24
918	Technology transfer of (Ga)InP-quantum dots.		
917	Thermal quenching of luminescence from buried and surface InGaAs self-assembled quantum dots with high sheet density. 2005 , 98, 084305		23
916	Fabrication of InAs quantum dots in AlAstaAs DBR pillar microcavities for single photon sources. 2005 , 97, 073507		16
915	Exciton absorption properties of coherently coupled exciton-biexciton systems in quantum dots. 2005 , 71,		22
914	Strong photoabsorption by a single-quantum wire in waveguide-transmission spectroscopy. <i>Applied Physics Letters</i> , 2005 , 86, 243101	3.4	17
913	Size and density control of InAs quantum dots by selective MOVPE growth using narrow stripe mask array. 2005 ,		1
912	Ordering mechanism of stacked CdSeInSxSe1II quantum dots: A combined reciprocal-space and real-space approach. 2005 , 72,		9
911	Feasibility of High Speed Operation of 1.55 /spl mu/m Quantum Dot Laser Diode.		
910	The influence of p-doping on the temperature sensitivity of 1.3 /spl mu/m quantum dot lasers. 2005 ,		
909	Growth modes in heteroepitaxy of InGaN on GaN. 2005, 97, 013707		93
908	Carrier-confinement effects in nanocolumnar GaNAlxGa1NN quantum disks grown by molecular-beam epitaxy. 2005 , 72,		49
907	Interface alloy mixing effect in the growth of self-assembled InP quantum dots on InAlGaP matrices by metalorganic chemical-vapor deposition. 2005 , 98, 063501		3
906	Tracing deeply buried InAs©aAs quantum dots using atomic force microscopy and wet chemical etching. <i>Applied Physics Letters</i> , 2005 , 86, 063111	3.4	5
905	Mechanism of emission-wavelength extension in nitrided InAs/GaAs quantum dots.		
904	Photon correlation studies of single GaN quantum dots. <i>Applied Physics Letters</i> , 2005 , 87, 051916	3.4	62
903	Growth mechanism of InAs quantum dots on GaAs by metal-organic chemical-vapor deposition. 2005 , 97, 053510		15
902	Colloidal quantum dot active layer electroluminescence in a solid GaN matrix. 2005 , 891, 1		

901	Fabrication and Characterization of Molybdenum Oxide Nanofibers by Electrospinning. 2005 , 900, 1		1
900	Strain compensation effect on stacked InAs self-assembled quantum dots embedded in GaNAs layers. 2005 , 891, 1		
899	GaN quantum dots: from basic understanding to unique applications. 2005, 10, 61-68		6
898	Formation of self-assembled InAs/GaAs quantum dots with an ultranarrow photoluminescence linewidth of /spl sim/11 meV by rapid thermal annealing.		
897	Quantum dots for lasers, amplifiers and computing. 2005 , 38, 2055-2058		123
896	Recent Progress in Dilute Nitride Quantum Dots. 2005 , 157-178		
895	Effective generation lifetime depth profile in InAs quantum dots grown on InAlAs/InP(0 0 1). 2005 , 20, 514-518		7
894	Controlled nucleation of InAs/GaAs and InGaAs/GaAs quantum dots for optoelectronic device integration.		
893	Modulation efficiency of traveling-wave Mach-Zehnder electro-optic quantum dot modulator. 2005,		1
892	Room-temperature defect tolerance of band-engineered InAs quantum dot heterostructures. 2005 , 98, 053512		13
891	Effect of gain saturation and nonradiative recombination on the thermal characteristics of InAs/GaAs 1.3 /spl mu/m quantum dot lasers. 2005 ,		
890	Single mode performance of a single mode injection locked quantum dot laser. 2005,		
889	Structural and Luminescence Properties of InAs Quantum Dots: Effect of Nitrogen Exposure on Dot Surfaces. <i>Japanese Journal of Applied Physics</i> , 2005 , 44, L1512-L1515	1.4	6
888			
887	Room temperature continuous wave lasing in InAs quantum-dot microdisks with air cladding. 2005 , 13, 1615-20		35
886	Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gb sddirectly modulated lasers and 40 Gb sdsignal-regenerative amplifiers. 2005 , 38, 2126-2134		177
885	Quantum dot molecules for photovoltaic cell application.		1
884	Characterization of electron emission from relaxed InAs quantum dots capped with InGaAs. 2005 , 98, 013716		15

(2006-2005)

883	Engineering laser gain spectrum using electronic vertically coupled InAs-GaAs quantum dots. 2005 , 17, 1590-1592		23
882	Improved temperature performance of 1.31-th quantum dot lasers by optimized ridge waveguide design. 2005 , 17, 1785-1787		6
881	Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp. 2005 , 38, 2112-2118		74
880	InP based lasers and optical amplifiers with wire-/dot-like active regions. 2005, 38, 2088-2102		101
879	Exciton in a quantum wire in the presence of parallel and perpendicular magnetic fields. 2005, 71,		36
878	Modeling room-temperature lasing spectra of 1.3-th self-assembled InAstaAs quantum-dot lasers: Homogeneous broadening of optical gain under current injection. 2005 , 97, 043523		109
877	Evidence of lateral coupling in long wavelength vertically stacked InAs/GaAs(001) quantum dots. 2005 , 30, 101-105		1
876	Comparison of InAs quantum dot lasers emitting at 1.55 μ m under optical and electrical injection. 2005 , 20, 459-463		30
875	1.28th lasing from stacked InAstaAs quantum dots with low-temperature-grown AlGaAs cladding layer by metalorganic chemical vapor deposition. <i>Applied Physics Letters</i> , 2005 , 86, 053107	3.4	48
874	Electron transport due to inhomogeneous broadening and its potential impact on modulation speed in p-doped quantum dot lasers. 2005 , 38, 2119-2125		24
873	size and density control of InAs quantum dots by selective MOVPE growth employing stripe mask array and composition-varied GaInAs layer. 2005 ,		1
872	Optical properties of InAs G aAs surface quantum dots. <i>Applied Physics Letters</i> , 2005 , 86, 031914	3.4	47
871	Tuning of g-factor in self-assembled In(Ga)As quantum dots through strain engineering. 2005, 71,		45
870	New physics and devices based on self-assembled semiconductor quantum dots. 2005 , 38, 2059-2076		122
869	Role of thermal hopping and homogeneous broadening on the spectral characteristics of quantum dot lasers. 2005 , 98, 104506		18
868	Ground-state lasing of stacked InAstaAs quantum dots with GaP strain-compensation layers grown by metal organic chemical vapor deposition. <i>Applied Physics Letters</i> , 2006 , 88, 221107	3.4	18
867	Stacking and polarization control of wavelength-tunable (1.55th region) InAsIhGaAsPIhP (100) quantum dots. <i>Applied Physics Letters</i> , 2006 , 88, 063105	3.4	33
866	Thermal quenching of photoluminescence from InAsIh0.53Ga0.23Al0.24AsIhP quantum dashes with different sizes. <i>Applied Physics Letters</i> , 2006 , 89, 151902	3.4	21

865	Hydrogenic impurities in parabolic quantum-well wires in a magnetic field. 2006, 99, 123713		25
864	Optical and structural properties of InAs quantum dots emitting near 1.5 th grown on a GaAs substrate with an InxGa1-xAS metamorphic buffer layer. 2006 ,		
863	Growth of GaN Quantum Dots Using [(C/sub 2/H/sub 5/)/sub 4/]Si by Plasma Assisted MOCVD. 2006 ,		
862	Polarized cathodoluminescence study of InP nanowires by transmission electron microscopy. <i>Applied Physics Letters</i> , 2006 , 88, 153106	3.4	21
861	Electronic structures in single pair of InAs GaAs coupled quantum dots with various interdot spacings. 2006 , 99, 033522		11
860	The energy level spacing from InAsCaAs quantum dots: Its relation to the emission wavelength, carrier lifetime, and zero dimensionality. 2006 , 99, 096101		25
859	Characteristics of 1.3th quantum-dot lasers with high-density and high-uniformity quantum dots. <i>Applied Physics Letters</i> , 2006 , 89, 171122	3.4	24
858	?Wavelength-tunable and high-temperature lasing in ZnMgO nanoneedles. <i>Applied Physics Letters</i> , 2006 , 89, 081107	3.4	19
857	Lasing of wavelength-tunable (1.55th region) InAsIhGaAsPIhP (100) quantum dots grown by metal organic vapor-phase epitaxy. <i>Applied Physics Letters</i> , 2006 , 89, 073115	3.4	59
856	Characteristics of 1.3-ft Quantum Dots Laser with a High Density and a High Uniformity QD. 2006,		
855	Integration of quantum dot optoelectronic devices using selective-area MOCVD. 2006,		
854	Size Dependence of Quantized Energy Levels in Quantum Dash Structures. 2006,		
853	Fermi's golden rule, nonequilibrium electron capture from the wetting layer, and the modulation response in P-doped quantum-dot lasers. 2006 , 42, 324-330		21
852	Theoretical and experimental study of optical gain, refractive index change, and linewidth enhancement factor of p-doped quantum-dot lasers. 2006 , 42, 942-952		118
851	Observation and Modeling of a Room-Temperature Negative Characteristic Temperature 1.3-\$mu\$m p-Type Modulation-Doped Quantum-Dot Laser. 2006 , 42, 1259-1265		33
850	High density InAstaAs quantum dots with enhanced photoluminescence intensity using antimony surfactant-mediated metal organic chemical vapor deposition. <i>Applied Physics Letters</i> , 2006 , 89, 183124	1 ^{3.4}	39
849	High uniformity of self-organized InAs quantum wires on InAlAs buffers grown on misoriented InP(001). <i>Applied Physics Letters</i> , 2006 , 88, 123104	3.4	3
848	Hole emission processes from InAs quantum dots grown on p-type InAlAs/InP(0 0 1). 2006 , 21, 311-315		5

847	1.3-th InAs quantum-dot laser with high dot density and high uniformity. 2006 , 18, 619-621	24
846	InAs-InAlGaAs quantum dot DFB lasers based on InP [001]. 2006 , 18, 595-597	15
845	Temperature sensitivity of InGaAs quantum-dot lasers grown by MOCVD. 2006 , 18, 989-991	8
844	. 2006 , 18, 965-967	15
843	Integration of an InGaAs quantum-dot laser with a low-loss passive waveguide using selective-area epitaxy. 2006 , 18, 1648-1650	7
842	Epitaxial growth and optical properties of semiconductor quantum wires. 2006 , 99, 121301	80
841	Full configuration interaction approach to the few-electron problem in artificial atoms. 2006, 124, 124102	141
840	Relationship between electron-LO phonon and electron-light interaction in quantum dots. 2012 , 85,	2
839	1.3 th InAs/GaAs quantum dot lasers on Si substrates by low-resistivity, Au-free metal-mediated wafer bonding. 2012 , 112, 033107	12
838	Effects of Sb/As Interdiffusion on Optical Anisotropy of GaSb Quantum Dots in GaAs Grown by Droplet Epitaxy. <i>Japanese Journal of Applied Physics</i> , 2012 , 51, 115201	
837	IIIN quantum dot lasers on Si substrates by wafer bonding. 2012 ,	
836	Growth of InAs quantum dot laser structures on silicon. 2012 ,	
835	Nanophotonics for datacom and telecom applications. 2012,	1
834	GaAs-Based Quantum Dot Lasers. 2012 , 86, 371-417	24
833	Experimental Research on Carrier Redistribution in InAs/GaAs Quantum Dots. 2012, 29, 097201	
832	Highly efficient quantum dot micropillar lasers. 2012 , 117-153	
831	Stacking-layer-number dependence of highly stacked InAs quantum dot laser diodes fabricated using strain-compensation technique. 2012 ,	
830	Long-wavelength quantum dot FP and DFB lasers for high temperature applications. 2012,	5

829	. 2012 , 100, 1604-1643		32
828	IIIN Semiconductor Nanowires on Si by Selective-Area Metal-Organic Vapor Phase Epitaxy. 2012 , 67-101		3
827	Effect of lattice constant on band-gap energy and optimization and stabilization of high-temperature In x Ga1 \mathbb{N} quantum-dot lasers. 2012 , 33, 387-394		15
826	Selective area heteroepitaxy of InP nanopyramidal frusta on Si for nanophotonics. 2012 ,		
825	Advances in quantum dot lasers for telecom and silicon photonics applications. 2012,		
824	The dependence of the characteristic temperature of highly stacked InAs quantum dot laser diodes fabricated using a strain-compensation technique on stacking layer number. 2012,		2
823	High-Speed Low-Noise InAs/InAlGaAs/InP 1.55-\$mu{rm m}\$ Quantum-Dot Lasers. 2012, 24, 809-811		21
822	Temperature dependent empirical pseudopotential theory for self-assembled quantum dots. 2012 , 24, 475302		3
821	Investigation of the radiative lifetime in coreBhell CdSe/ZnS and CdSe/ZnSe quantum dots. 2012 , 407, 3313-3319		26
820	Self-assembled Quantum Dots: From Stranski K rastanov to Droplet Epitaxy. 2012 , 127-200		4
819	Optical properties of hybrid quantum dot/quantum well active region based on GaAs system. 2012 , 112, 063103		2
818	Electrical and optical properties of Si doped GaAs (631) layers studied as a function of the growth temperature. 2012 , 347, 77-81		3
817	. IEEE Journal of Selected Topics in Quantum Electronics, 2012 , 18, 1818-1829	3	26
816	Controlled suppression of the photoluminescence superlinear dependence on excitation density in quantum dots. 2012 , 7, 551		4
815	Quantum dots for lasers and light-emitting diodes. 2012,		
814	1.55 µm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser. 2012 , 2, 477		52
813	Self-Assembly of Quantum Dot-Disk Nanostructures via Growth Kinetics Control. 2012 , 12, 1180-1184		15
812	Electron Raman scattering in a cylindrical quantum dot. 2012 , 33, 052001		7

811	Improvement of temperature-stability in a quantum well laser with asymmetric barrier layers. Applied Physics Letters, 2012 , 100, 021107 3.4	22
810	III-V/Si hybrid photonic devices by direct fusion bonding. 2012 , 2, 349	274
809	Improvement of temperature stability in columnar quantum dots by introducing side barriers with larger bandgap energy for semiconductor optical amplifiers. 2012 ,	
808	Device characteristics of long-wavelength lasers based on self-organized quantum dots. 2012 , 46, 1225-1250	42
807	Photoluminescence from GaAs nanodisks fabricated by using combination of neutral beam etching and atomic hydrogen-assisted molecular beam epitaxy regrowth. <i>Applied Physics Letters</i> , 2012 , 101, 113 108	15
806	Linewidth enhancement factor of InAs/InP quantum dot lasers around 1.5th. 2012 , 285, 4372-4375	12
805	All-optical Switches based-on GaAs/AlAs Quantum Dots Vertical Cavities. 2012 , 32, 461-467	
804	Effect of spacer layer thickness on multi-stacked InGaAs quantum dots grown on GaAs (311)B substrate for application to intermediate band solar cells. 2012 , 111, 074305	18
803	Quantum Dots: Optics, Electron Transport and Future Applications. 2012,	29
802	Optical Properties of Solids. 2012 , 257-340	
801	A Detailed Investigation of the Growth Conditions of Gallium Nitride Nanorods by Hydride Vapor Phase Epitaxy. <i>Japanese Journal of Applied Physics</i> , 2012 , 51, 01AF05	2
800	InP-Based Quantum Dot Lasers. 2012, 86, 419-453	4
799	Improved Performance of 1.3-th Multilayer P-Doped InAs/InGaAs Quantum Dot Lasers Using Rapid Thermal Annealing. 2012 , 11, 231-235	2
798	Effect of asymmetric barrier layers in the waveguide region on the temperature characteristics of quantum-well lasers. 2012 , 46, 1027-1031	6
797	Optical anisotropy in self-assembled InAs nanostructures grown on GaAs high index substrate. 2012 , 111, 24310-243107	11
796	Quantitative absorption spectra of quantum wires measured by analysis of attenuated internal emissions. <i>Applied Physics Letters</i> , 2012 , 100, 112101	5
795	Influence of p-doping on the temperature dependence of InAs/GaAs quantum dot excited state radiative lifetime. <i>Applied Physics Letters</i> , 2012 , 101, 183108	5
794	Si delta doping inside InAs/GaAs quantum dots with different doping densities. 2012 , 30, 041808	5

793	Quantum Dot Devices. 2012,		10
792	Growth of III☑ semiconductor quantum dots. 3-20		
791	Proposal of High Performance 1.55.MU.m Quantum Dot Heterostructure Laser Using InN. 2012 , E95-C, 255-261		7
790	Exciton states and excitonic absorption spectra in a cylindrical quantum wire under transverse electric field. 2012 , 85, 1		6
789	Band gap tunability of molecular beam epitaxy grown lateral composition modulated GaInP structures by controlling V/III flux ratio. <i>Applied Physics Letters</i> , 2012 , 101, 051903	3.4	9
788	Intersublevel spectroscopy on single InAs-quantum dots by terahertz near-field microscopy. 2012 , 12, 4336-40		40
787	High-field magneto-photoluminescence of semiconductor nanostructures. 2012 , 27, 179-96		20
786	Characterization of Wavelength-Tunable Quantum Dot External Cavity Laser for 1.3-\$mu\$m-Waveband Coherent Light Sources. <i>Japanese Journal of Applied Physics</i> , 2012 , 51, 02BG08	1.4	4
785	Electronic and optical properties of semiconductor and graphene quantum dots. 2012, 7, 328-352		50
784	Optical investigation of InAs/InP(1 0 0) quantum dots grown by gas source molecular beam epitaxy. 2012 , 55, 205-209		5
783	Comparison of luminescence properties of bilayer and multilayer InAs/GaAs quantum dots. 2012 , 47, 130-134		12
782	Effects of p-type doping on the optical properties of InAs/GaAs quantum dots. 2012 , 152, 435-439		10
781	Simulation of output power and optical gain characteristics of self-assembled quantum-dot lasers: Effects of homogeneous and inhomogeneous broadening, quantum dot coverage and phonon bottleneck. 2012 , 44, 2436-2442		13
780	Luminescence properties of InAs quantum dots formed by a modified self-assembled method. 2012 , 132, 1759-1763		10
779	Design Considerations for High-Power Single Spatial Mode Operation. 2013 , 101-210		
778	Effect of band parameters on interband optical absorption in quantum wire structure of low band gap IIIIV semiconductors. 2013 , 12, 265-274		1
777	The developments of InP-based quantum dot lasers. 2013 , 60, 216-224		10
776	Advances in IIII semiconductor photonics: Nanostructures and integrated chips. 2013,		2

775	Carrier relaxation dynamics in InAs/GaInAsP/InP(001) quantum dashes emitting near 1.55 th. Applied Physics Letters, 2013 , 103, 083104	ŀ	21
774	Preferential nucleation and growth of InAs/GaAs(0 0 1) quantum dots on defected sites by droplet epitaxy. 2013 , 69, 638-641		3
773	Fundamentals of Photonic Crystals for Telecom Applications Photonic Crystal Lasers. 2013, 155-173		
772	Electronic structure, morphology and emission polarization of enhanced symmetry InAs quantum-dot-like structures grown on InP substrates by molecular beam epitaxy. 2013 , 114, 094306		25
771	1240-nm distributed-feedback lasers with high-density InAs/GaAs quantum dots. 2013 ,		
770	Effect of Sb incorporation on the electronic structure of InAs quantum dots. 2013 , 88,		6
769	Grazing Incidence Diffraction Anomalous Fine Structure in the Study of Structural Properties of Nanostructures. 2013 , 311-359		2
768	Quantum size effects in GaAs nanodisks fabricated using a combination of the bio-template technique and neutral beam etching. 2013 , 24, 285301		28
767	Theoretical analysis of multilevel intermediate-band solar cells using a drift diffusion model. 2013 , 113, 243102		6
766	Gain Measurement of Highly Stacked InGaAs Quantum Dot Laser with Hakki P aoli Method. Japanese Journal of Applied Physics, 2013 , 52, 04CG13	-	4
765 	Development of molecular beam epitaxy technology for IIIIV compound semiconductor heterostructure devices. 2013 , 31, 050814		6
764	One-phonon resonant electron Raman scattering in a cylindrical GaAs/AlAs quantum dot. 2013 , 44, 752-75	7	2
763	Characterization of 24 stacked InGaAs quantum dot laser fabricated by ultrahigh-rate MBE growth technique. 2013 ,		
762	Semiconductor nanocrystals in sol-gel derived matrices. 2013 , 15, 13694-704		6
761	Droplet epitaxy of nanostructures. 2013 , 95-111		12
760	Molecular beam epitaxy: fundamentals, historical background and future prospects. 2013 , 1-46		7
759	Enhancing device characteristics of 1.3th emitting InAs/GaAs quantum dot lasers through dot-height uniformity study. 2013 , 571, 153-158		6
758	High-power InP quantum dot based semiconductor disk laser exceeding 1.3 W. <i>Applied Physics Letters</i> , 2013 , 102, 092101		24

757	. 2013 , 49, 389-394	6
756	Modulation Properties of Self-Injected Quantum-Dot Semiconductor Diode Lasers. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2013 , 19, 1900812-1900812	27
755	Photoluminescence of antimony sprayed indium arsenide quantum dots for novel photovoltaic devices. 2013 , 113, 093102	7
754	On the physics of semiconductor quantum dots for applications in lasers and quantum optics. 2013 , 37, 109-184	93
753	High modal gain 1.5 th InP based quantum dot lasers: dependence of static properties on the active layer design. 2013 ,	
75 ²	Quantum Structures of Advanced Materials. 2013 , 1-38	
751	Progress in infrared photodetectors since 2000. 2013 , 13, 5054-98	156
75°	As flux dependence on RHEED transients during InAs quantum dot growth. 2013 , 378, 41-43	3
749	Molecular beam epitaxial growths of high-optical-gain InAs quantum dots on GaAs for long-wavelength emission. 2013 , 378, 459-462	26
748	Photoluminescence Characterization of Structural and Electronic Properties of Semiconductor Quantum Wells. 2013 , 509-556	1
747	The structural, electronic and optical properties of GaSb/GaAs nanostructures for charge-based memory. 2013 , 46, 264001	37
746	Red Emitting VCSEL. 2013 , 379-401	
745	Influence of exciton spin relaxation on the photoluminescence spectra of semimagnetic quantum dots. 2013 , 87,	12
744	Formation and optical properties of multi-stack InGaAs quantum dots embedded in GaAs nanowires by selective metalorganic chemical vapor deposition. 2013 , 370, 299-302	4
743	Growth of GaSb quantum dots on GaAs (311)A. 2013 , 378, 475-479	6
742	In situ STM observations of step structures in a trench around an InAs QD at 300 LC. 2013 , 378, 44-46	2
741	Growth of high-density 1.06-th InGaAs/GaAs quantum dots for high gain lasers by molecular beamepitaxy. 2013 , 378, 627-630	9
740	Fabrication of low-density self-assembled InAs quantum dots on InP(311)B substrate by molecular beam epitaxy. 2013 , 378, 450-453	6

739	Influence of nanomechanical force on the electronic structure of InAs/GaAs quantum dots. 2013 , 22, 047305	
738	Self-organized InGaAs/GaAs quantum dot arrays for use in high-efficiency intermediate-band solar cells. 2013 , 46, 024002	35
737	MOVPE GROWTH OF THE InP BASED MID-IR EMISSION QUANTUM DOT STRUCTURES. 2013 , 01, 1350002	
736	The impact of substrate miscut on the morphology of InGaN epitaxial layers subjected to a growth interruption. 2013 , 113, 063503	7
735	Electronic Structure of Elongated In_{0.3}Ga_{0.7}As/GaAs Quantum Dots. 2013 , 124, 809-812	
734	Broad-Band Electroluminescence from Highly Stacked InAs Quantum Dot at Telecom-Band. 2013 , 871, 269-273	1
733	Formation of InAs/AlGaAs/GaAs Nanowire Structures by Self-Organized Rod Growth on InAs Quantum Dots and Their Transport Properties. 2013 , 6, 045003	2
732	Quantum Confinement Effects in Dynamically Screened Quasi-One-Dimensional Systems. 2013, 30, 067201	1
731	Principles of semiconductor lasers. 2013 , 3-55	
730	Advanced self-assembled indium arsenide (InAs) quantum-dot lasers. 2013 , 272-315	2
729	High-Temperature 1.3 µm InAs/GaAs Quantum Dot Lasers on Si Substrates Fabricated by Wafer Bonding. 2013 , 6, 082703	29
728	InAs quantum well islands IA novel structure for photon up-conversion from the near IR to the visible. 2013 ,	1
727	InP quantum dot based semiconductor disk laser emitting at 655 nm. 2013,	
726	MBE synthesis of InAs/GaAs quantum dots and their characterisation. 2013,	
725	Effect of SCH/barrier layer thickness on K-factor of quantum dot lasers. 2013,	
724	Excitation power dependence of the Purcell effect in photonic crystal microcavity lasers with quantum wires. <i>Applied Physics Letters</i> , 2013 , 102, 201105	11
723	Enhancement of Valence Band Mixing in Individual InAs/GaAs Quantum Dots by Rapid Thermal Annealing. <i>Japanese Journal of Applied Physics</i> , 2013 , 52, 125001	9
722	1.3-Iµm Quantum Dot Distributed Feedback Laser with Half-Etched Mesa Vertical Grating Fabricated by Cl2Dry Etching. <i>Japanese Journal of Applied Physics</i> , 2013 , 52, 06GE03	2

721	Thermal Conductive Properties of a Semiconductor Laser on a Polymer Interposer. <i>Japanese Journal of Applied Physics</i> , 2013 , 52, 04CG05	1
720	Modal Gain and Photoluminescence Investigation of Two-State Lasing in GaAs-Based 1.3 µm InAs/InGaAs Quantum Dot Lasers. 2013 , 6, 102702	11
719	Photoluminescence of high-density and sub-20-nm GaAs nanodisks fabricated with a neutral beam etching process and MOVPE regrowth for high performance QDs devices. 2013 ,	1
718	Impact of GaNAs strain compensation layer on the electronic structure of InAs/GaAs quantum dots. 2013 , 22, 017304	
717	Theoretical characteristics of 1.55th InN based quantum dot laser. 2013,	
716	Optical gain and lasing in colloidal quantum dots. 199-232	3
715	Optoelectronic Devices. 2013 , 265-274	
714	Optical characteristics of GaAs quantum nanodisks arrays by using neutral beam top-down process. 2014 ,	
713	First demonstration of athermal silicon optical interposers with quantum dot lasers operating up to 125 LC. 2014 ,	
712	Enhanced current injection from a quantum well to a quantum dash in magnetic field. 2014 , 16, 083029	4
711	Athermal silicon optical interposers with quantum dot lasers operating from 25 to 125fC. 2014 , 50, 1377-13	78
710	A New Method of Dam Crack Safe-Monitoring Based on the Markov Chain. 2014 , 638-640, 722-725	
709	Fabrication of InGaAs quantum nanodisks array by using bio-template and top-down etching processes. 2014 ,	
708	1.3 Jim InAs/GaAs Quantum-Dot Laser Monolithically Grown on Si Substrates Using InAlAs/GaAs Dislocation Filter Layers. 2014 ,	2
707	Quantum GaAs Nanodisk Light Emitting Diode Fabricated by Ultimate Top-Down Neutral Beam Etching. 2014 ,	
706	Magneto-optical absorption in semiconducting spherical quantum dots: Influence of the dot-size, confining potential, and magnetic field. 2014 , 4, 127151	7
705	Surface-emitting red, green, and blue colloidal quantum dot distributed feedback lasers. 2014 , 22, 18800-6	32
704	Enhancing optical characteristics of InAs/InGaAsSb quantum dot structures with long-excited state emission at 1.31 fh. 2014 , 22, 18860-9	12

703	Quantum control study of ultrafast optical responses in semiconductor quantum dot devices. 2014 , 22, 30815-25		1
702	Photoluminescence characterization in silicon nanowire fabricated by thermal oxidation of nano-scale Si fin structure. 2014 , 22, 1997-2006		2
701	Three-region characteristic temperature in p-doped quantum dot lasers. <i>Applied Physics Letters</i> , 2014 , 104, 041102	3.4	8
700	Nonlinear optical spectra having characteristics of Fano interferences in coherently coupled lowest exciton biexciton states in semiconductor quantum dots. 2014 , 4, 107124		
699	III-V Compound Semiconductor Optoelectronic Devices. 2014 , 1-26		
698	Highly uniform, multi-stacked InGaAs/GaAs quantum dots embedded in a GaAs nanowire. <i>Applied Physics Letters</i> , 2014 , 105, 103104	3.4	20
697	A semiconductor optical amplifier comprising highly stacked InAs quantum dots fabricated using the strain-compensation technique. <i>Japanese Journal of Applied Physics</i> , 2014 , 53, 04EG02	1.4	10
696	Metal organic chemical vapor deposition growth of high density InAs/Sb:GaAs quantum dots on Ge/Si substrate and its electroluminescence at room temperature. <i>Japanese Journal of Applied Physics</i> , 2014 , 53, 04EH05	1.4	6
695	Integration of Emission-Wavelength-Controlled InAs Quantum Dots for Ultra-Broadband Near-Infrared Light Source. 2014 , 4, 26		17
694	Near-infrared superluminescent diode using stacked self-assembled InAs quantum dots with controlled emission wavelengths. <i>Japanese Journal of Applied Physics</i> , 2014 , 53, 04EG10	1.4	17
693	Experimental and theoretical study of localization of electrons by deformed potential well in quantum dots. 2014 , 8, 083090		2
692	Molecular beam epitaxial growth of GaSb/GaAs quantum dots on Ge substrates. 2014 , 401, 441-444		11
691	Emission of InAs quantum dots embedded in InGaAs/InAlGaAs/GaAs quantum wells. 2014 , 149, 1-6		6
690	Effects of the carrier relaxation lifetime and inhomogeneous broadening on the modulation response of InGaAs/GaAs self-assembled quantum-dot lasers. <i>Journal of the Korean Physical Society</i> , 2014 , 64, 16-22	0.6	7
689	Size-dependent electronic and optical properties of an exciton in CdSe/CdSe/CdS multilayer spherical quantum dot. 2014 , 116, 1371-1377		12
688	A review of external cavity-coupled quantum dot lasers. 2014 , 46, 623-640		9
687	MBE growth of P-doped 1.3 th InAs quantum dot lasers on silicon. 2014 , 32, 02C108		17
686	. 2014 , 32, 1144-1158		9

685	Hilon implantation induced ten-fold increase of photoluminescence efficiency in single layer InAs/GaAs quantum dots. 2014 , 153, 109-117		7
684	Characterization and Analysis of 1.3-th InAs/InGaAs Self-Assembled Quantum Dot Lasers. 2014 , 13, 446-451		3
683	Impact of capping layer type on emission of InAs quantum dots embedded in InGaAs/InxAlyGazAs/GaAs quantum wells. 2014 , 115, 014305		1
682	Room-temperature Bose-Einstein condensation of cavity exciton-polaritons in a polymer. 2014 , 13, 247	-52	429
681	Tuning of polarization sensitivity in closely stacked trilayer InAs/GaAs quantum dots induced by overgrowth dynamics. 2014 , 25, 055207		7
680	Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot. 2014 , 14, 982-6		285
679	All quantum dot mode-locked semiconductor disk laser emitting at 655 nm. <i>Applied Physics Letters</i> , 2014 , 105, 082107	3.4	13
678	Dynamic characteristics of undoped and p-doped Fabry-Perot InAs/InP quantum dash based ridge waveguide lasers for access/metro networks. <i>Applied Physics Letters</i> , 2014 , 105, 141113	3.4	6
677	Droplet epitaxial growth of highly symmetric quantum dots emitting at telecommunication wavelengths on InP(111)A. <i>Applied Physics Letters</i> , 2014 , 104, 143106	3.4	21
676	InAs/GaAs quantum dot lasers metal-stripe-bonded onto SOI substrate. 2014,		1
675	High quality InP nanopyramidal frusta on Si. 2014 , 16, 4624-4632		4
674	Anharmonicity-assisted multiphonon transitions between distant levels in semiconductor quantum dots. 2014 , 90,		3
673	Carrier Escape and the Ideality Factor in Quantum Dot p-n Junctions. 2014 , 50, 213-219		
672	Matrix elements of intraband transitions in quantum dot intermediate band solar cells: the influence of quantum dot presence on the extended-state electron wave-functions. 2014 , 29, 045014		6
671	InAs/GaAs Quantum-Dot Superluminescent Light-Emitting Diode Monolithically Grown on a Si Substrate. 2014 , 1, 638-642		46
670	Effect of thermal treatment on the optical and the structural properties of In0.5Ga0.5As quantum dots. <i>Journal of the Korean Physical Society</i> , 2014 , 64, 1375-1379	0.6	1
669	Whispering-gallery mode microcavity quantum-dot lasers. 2014 , 44, 189-200		24
668	Photonic switching devices based on semiconductor nano-structures. 2014 , 47, 133001		26

667	Suppression of dislocations by Sb spray in the vicinity of InAs/GaAs quantum dots. 2014 , 9, 278	7
666	Electronic structure in the crossover regimes in lower dimensional structures. 2014 , 64, 224-233	2
665	Study of phonons in self-assembled InAs quantum dots embedded in an InGaAlAs matrix. 2014 , 57, 1-5	1
664	Quantum Dot Semiconductor Disk Lasers. 2014 , 95-120	
663	Semiconductor Quantum-Dot Saturable Absorber Mirrors for Mode-Locking Solid-State Lasers. 2014 , 121-170	
662	Droplet Epitaxy. 2014 , 53, 157-164	
661	Group IV Light Sources to Enable the Convergence of Photonics and Electronics. 2014, 1,	27
660	Near-threshold relaxation dynamics of a quantum dot laser. 2014 ,	1
659	Quantum Dot Technologies. 2014 , 7-42	O
658	Colloidal and Epitaxial Quantum Dot Infrared Photodetectors: Growth, Performance, and Comparison. 2014 , 1-26	2
657	Narrow line-width photoluminescence spectrum of GaAs nanodisks fabricated using bio-template ultimate top-down processes. 2014 ,	1
656	ExcitonMott Physics in Two-Dimensional Electron⊞ole Systems: Phase Diagram and Single-Particle Spectra. 2014 , 83, 084702	20
655	Cavity length dependence on lasing characteristics of double-capped QDs laser. 2015,	1
654	Microscopic mechanism underlying double-state lasing in an InAs/GaAs quantum dot laser diode elucidated using coupled rate equations and the spontaneous emission recorded from a window structure. 2015 , 23, 31682-90	2
653	Light-emitting devices based on top-down fabricated GaAs quantum nanodisks. 2015, 5, 9371	25
652	Stimulated Emission: Could the Laser Have Been Built More than 80 Years Ago?. 2015 , 28-55	
651	Dynamic characteristics of two-state lasing quantum dot lasers under large signal modulation. 2015 , 5, 107115	8
650	Coexistence of type-I and type-II band alignments in In0.46Al0.54As/Ga0.46Al0.54As self-assembled quantum dots. <i>Applied Physics Letters</i> , 2015 , 107, 183107	4 3

649	Broadband control of emission wavelength of InAs/GaAs quantum dots by GaAs capping temperature. 2015 , 118, 154301	15
648	Direct observation of strain in InAs quantum dots and cap layer during molecular beam epitaxial growth using in situ X-ray diffraction. 2015 , 118, 185303	6
647	Injection-seeded optoplasmonic amplifier in the visible. 2014 , 4, 6168	12
646	Shape Dependent Structural Stability, Electronic and Optical Properties of CdO Nanowire. 2015,	1
645	Monte Carlo model incorporating many-body effects for determining the gain spectra of quantum dot lasers. 2015 , 8, 122102	2
644	Quantum Dot Laser for a Light Source of an Athermal Silicon Optical Interposer. 2015 , 2, 355-364	3
643	Unlocking Spectral Versatility from Broadly Tunable Quantum Dot Lasers. 2015, 2, 719-744	5
642	Critical evaluation of the colossal Seebeck coefficient of nanostructured rutile MnO2. 2015 , 27, 115302	5
641	Ultra-compact wavelength-tunable quantum-dot laser with silicon-photonics double ring filter. 2015 , 8, 062701	14
640	Athermal silicon optical interposers operating up to 125°C. 2015 ,	
639	Optical I/O core transmitter with high tolerance to optical feedback using quantum dot laser. 2015,	6
638	Optical effects of Si-delta doping of GaAs spacer layer on the vertical coupled multi-stacked InAs/InGaAs/GaAs intermediate-band solar cells. 2015 , 12, 642	2
637	1.3-th Quantum-dot lasers integrated with spot-size converter for improved coupling efficiency to waveguide. 2015 ,	
636	Exciton Polarization in Carbon Nanotubes. 2015 , 58, 678-682	
635	Microdisk lasers based on GaInNAsSb/GaAsN quantum well active region. 2015 , 643, 012040	0
634	Theory of Quantum-Dot Optical Devices. 2015 , 13-51	
633	Fabrication of InGaN/GaN nanodisk structure by using bio-template and neutral beam etching process. 2015 ,	
632	Growth and optical properties of GaSb/GaAs type-II quantum dots with and without wetting layer. Japanese Journal of Applied Physics, 2015 , 54, 04DH01	9

631	Low-Threshold near-Infrared GaAsAlGaAs CoreBhell Nanowire Plasmon Laser. 2015 , 2, 165-171		75
630	Nano-fabrication and related optical properties of InGaN/GaN nanopillars. 2015 , 26, 075302		9
629	Quantum Dots. 2015 , 169-219		1
628	One-Dimensional Nature of InAs/InP Quantum Dashes Revealed by Scanning Tunneling Spectroscopy. 2015 , 15, 4488-97		6
627	An Inexpensive Co-Intercalated Layered Double Hydroxide Composite with Electron Donor-Acceptor Character for Photoelectrochemical Water Splitting. 2015 , 5, 12170		14
626	MetalBrganic∏apor phase epitaxy of InGaN quantum dots and their applications in light-emitting diodes. 2015 , 24, 067303		12
625	Direct Observation of Two-Step Photon Absorption in an InAs/GaAs Single Quantum Dot for the Operation of Intermediate-Band Solar Cells. 2015 , 15, 4483-7		23
624	Theoretical and experimental study of NbO2nanoslice formation. 2015 , 48, 305302		7
623	Suppression of photoluminescence from wetting layer of InAs quantum dots grown on (311)B GaAs with AlAs cap. 2015 , 425, 106-109		5
622	Room-temperature lasing in a single nanowire with quantum dots. 2015 , 9, 501-505		132
622	Room-temperature lasing in a single nanowire with quantum dots. 2015 , 9, 501-505 Excitation transfer in stacked quantum dot chains. 2015 , 30, 055005		132
621	Excitation transfer in stacked quantum dot chains. 2015 , 30, 055005 Locality and lateral modulations of quantum well states in Ag(100) thin films studied using a		
621	Excitation transfer in stacked quantum dot chains. 2015, 30, 055005 Locality and lateral modulations of quantum well states in Ag(100) thin films studied using a scanning tunneling microscope. 2015, 637-638, 58-62 First Demonstration of Athermal Silicon Optical Interposers With Quantum Dot Lasers Operating		3
621 620 619	Excitation transfer in stacked quantum dot chains. 2015, 30, 055005 Locality and lateral modulations of quantum well states in Ag(100) thin films studied using a scanning tunneling microscope. 2015, 637-638, 58-62 First Demonstration of Athermal Silicon Optical Interposers With Quantum Dot Lasers Operating up to 125 °C. 2015, 33, 1223-1229 Low-noise four-wavelength simultaneous oscillation of a 1.3-fit external-cavity quantum-dot laser.		3 2 57
621620619618	Excitation transfer in stacked quantum dot chains. 2015, 30, 055005 Locality and lateral modulations of quantum well states in Ag(100) thin films studied using a scanning tunneling microscope. 2015, 637-638, 58-62 First Demonstration of Athermal Silicon Optical Interposers With Quantum Dot Lasers Operating up to 125 °C. 2015, 33, 1223-1229 Low-noise four-wavelength simultaneous oscillation of a 1.3-fit external-cavity quantum-dot laser. 2015, InAs/GaAs Quantum Dot Lasers on Silicon-on-Insulator Substrates by Metal-Stripe Wafer Bonding.	1.4	32571
621620619618617	Excitation transfer in stacked quantum dot chains. 2015, 30, 055005 Locality and lateral modulations of quantum well states in Ag(100) thin films studied using a scanning tunneling microscope. 2015, 637-638, 58-62 First Demonstration of Athermal Silicon Optical Interposers With Quantum Dot Lasers Operating up to 125 °C. 2015, 33, 1223-1229 Low-noise four-wavelength simultaneous oscillation of a 1.3-fth external-cavity quantum-dot laser. 2015, InAs/GaAs Quantum Dot Lasers on Silicon-on-Insulator Substrates by Metal-Stripe Wafer Bonding. 2015, 27, 875-878 Progress in art and science of crystal growth and its impacts on modern society. <i>Japanese Journal of</i>	1.4	3 2 57 1 23

613	1.1-th InAs/GaAs quantum-dot light-emitting transistors grown by molecular beam epitaxy. 2015 , 40, 3747-9	0
612	Monolithically integrated quantum dot optical gain modulator with semiconductor optical amplifier for 10-Gb/s photonic transmission. 2015 ,	1
611	Monolithically integrated quantum dot optical modulator with Semiconductor optical amplifier for short-range optical communications. <i>Japanese Journal of Applied Physics</i> , 2015 , 54, 04DG01	5
610	Hopkins-Skellam index and origin of spatial regularity in InAs quantum dot formation on GaAs(001). 2015 , 117, 144305	9
609	Ground-state modulation-enhancement by two-state lasing in quantum-dot laser devices. <i>Applied Physics Letters</i> , 2015 , 106, 191102	11
608	Investigation of the electrical and optical properties of InAs/InGaAs dot in a well solar cell. 2015 , 15, 1318-1323	13
607	Room-temperature lasing in GaAs nanowires embedding multi-stacked InGaAs/GaAs quantum dots. 2015 ,	1
606	1.3 th External-Cavity Quantum-Dot Comb Laser for Temperature Control Free Operation. 2015,	
605	Quantum dot optoelectronic devices: lasers, photodetectors and solar cells. 2015 , 48, 363001	100
604	Study of GaAsSb/GaAs type-II quantum well with top InAs quantum dot layer using complementary spectroscopy techniques. <i>Japanese Journal of Applied Physics</i> , 2015 , 54, 091201	1
603	High-resolution X-ray diffraction in crystalline structures with quantum dots. 2015 , 58, 419-445	19
602	Ultrafast dynamic switching between two lasing states in quantum dot lasers. 2015,	
601	Fabrication of InAs quantum dot stacked structure on InP(311)B substrate by digital embedding method. 2015 , 432, 15-18	3
600	Theoretical Modeling of Relative Intensity Noise in p-Doped 1.3-th InAs/GaAs Quantum Dot Lasers. 2015 , 33, 234-243	6
599	Self-Assembly in Semiconductor Epitaxy: From Growth Mechanisms to Device Applications. 2015 , 1057-1099	7
598	Growth of Semiconductor Nanocrystals. 2015 , 749-793	1
597	Observability of localized magnetoplasmons in quantum dots: Scrutinizing the eligibility of far-infrared, Raman, and electron-energy-loss spectroscopies. 2016 , 6, 035014	1
596	Bibliography. 2016 , 131-161	O

595	Spectroscopy of optical gain in low threshold colloidal quantum dot laser media: dominance of single-exciton states at room temperature. 2016 , 6, 3776		2
594	Molecular Beam Epitaxy: An Overview. 2016 ,		
593	Control of wavelength and decay time of photoluminescence for InAs quantum dots grown on InP(311)B using the digital embedding method. 2016 , 253, 640-643		
592	Self-assembled formation of GaAsP nano-apertures above InAs/GaAs quantum dots by the thermal diffusion of phosphorus. 2016 , 253, 659-663		2
591	InAs/GaAs quantum dot lasers with GaP strain-compensation layers grown by molecular beam epitaxy. 2016 , 213, 958-964		7
590	III-nitride quantum dots for ultra-efficient solid-state lighting. 2016 , 10, 612-622		26
589	Evaluating the effects of nonlinear optical gain and thermal carrier escape on the performance of InGaAs/GaAs self-assembled quantum dot lasers. 2016 , 30, 1650121		
588	Amplified Spontaneous Emission from OrganicIhorganic Hybrid Lead Iodide Perovskite Single Crystals under Direct Multiphoton Excitation. 2016 , 4, 1053-1059		39
587	Inelastic light and electron scattering in parabolic quantum dots in magnetic field: Implications of generalized Kohn's theorem. 2016 , 113, 57005		
586	Superluminescent diode with a broadband gain based on self-assembled InAs quantum dots and segmented contacts for an optical coherence tomography light source. 2016 , 119, 083107		20
585	A hybrid silicon evanescent quantum dot laser. 2016 , 9, 092102		20
584	Optical anisotropy of InGaAs quantum wire arrays on vicinal (111)B GaAs. 2016 , 120, 134309		1
583	Heterogeneous quantum dot/silicon photonics-based wavelength-tunable laser diode with a 44 nm wavelength-tuning range. <i>Japanese Journal of Applied Physics</i> , 2016 , 55, 04EH11	1.4	8
582	Effect of lateral size and thickness on the electronic structure and optical properties of quasi two-dimensional CdSe and CdS nanoplatelets. 2016 , 119, 143107		25
581	Effects of substrate orientation on the growth of InSb nanostructures by molecular beam epitaxy. <i>Applied Physics Letters</i> , 2016 , 108, 193108	3.4	4
580	Estimation of exciton confinement in III-nitride quantum wires. 2016,		
579	Optical properties of quantum energies in GaAs quantum nanodisks produced using a bio-nanotemplate and a neutral beam etching technique. <i>Japanese Journal of Applied Physics</i> , 2016 , 55, 092101	1.4	1
578	Electronic properties of an exciton in CdTe/CdSe/CdTe/CdSe type-II nano-heterostructure. 2016 , 28, 475304		4

577	Improved optical properties of InAs quantum dots for intermediate band solar cells by suppression of misfit strain relaxation. 2016 , 120, 034301		12
576	Excitation power dependence of photoluminescence spectra of GaSb type-II quantum dots in GaAs grown by droplet epitaxy. 2016 , 6, 045312		2
575	The continuum state in photoluminescence of type-II In0.46Al0.54As/Al0.54Ga0.46As quantum dots. <i>Applied Physics Letters</i> , 2016 , 109, 183103	3.4	3
574	The effect of asymmetric barriers of GaAs quantum nanodisks light emitting diode. 2016 ,		
573	Coaxial GaAs-AlGaAs core-multishell nanowire lasers with epitaxial gain control. <i>Applied Physics Letters</i> , 2016 , 108, 011108	3.4	54
572	Emission-wavelength tuning of InAs quantum dots grown on nitrogen-Edoped GaAs(001). 2016 , 119, 194306		4
571	High-throughput exploration of thermoelectric and mechanical properties of amorphous NbO2 with transition metal additions. 2016 , 120, 045104		9
570	A Nanowire-Based Plasmonic Quantum Dot Laser. 2016 , 16, 2845-50		53
569	Vertically Well-Aligned ZnO Nanowire Arrays Directly Synthesized from Zn Vapor Deposition Without Catalyst. 2016 , 45, 2601-2607		4
568	. 2016 , 15, 557-562		6
567	Discrimination of Carrier Conduction Mechanisms of InP/InGaAsP/InAs/InP Laser Structure Through \$J\$ I\$V\$ I\$T\$ Measurements. 2016 , 63, 1866-1870		4
566	Rapid thermal annealing and modulation-doping effects on InAs/GaAs quantum dots photoluminescence dependence on excitation power. 2016 , 493, 53-57		2
565	NANOMATERIALS PROPERTIES. 2016, 2657-2706		
564	Large modulation bandwidth (13.1 GHz) of 1.3 pm-range quantum dot lasers with high dot density and thin barrier layer. 2016 ,		1
563	Spectroscopic and Device Aspects of Nanocrystal Quantum Dots. 2016 , 116, 10513-622		565
562	Coherent Control of the Exciton-Biexciton System in an InAs Self-Assembled Quantum Dot Ensemble. 2016 , 117, 157402		25
561	Fabrication of 3D Quantum Dot Array by Fusion of Biotemplate and Neutral Beam Etching II: Application to QD Solar Cells and Laser/LED. 2016 , 169-192		1
560	Towards monolithic integration of germanium light sources on silicon chips. 2016 , 31, 043002		41

559	Quantum dots lasers dynamics under the influence of double cavity external feedback. 2016 , 381, 140-145	3
558	Frequency noise analysis of 1.55 µm indium arsenide/indium phosphide quantum dot lasers: impact of non-linear gain and direct carrier transition. 2016 , 10, 134-141	O
557	Direct modulation of 1.3 th quantum dot lasers on silicon at 60 LC. 2016 , 24, 18428-35	23
556	Nanometer scale fabrication and optical response of InGaN/GaN quantum disks. 2016 , 27, 425401	3
555	Nanophotonic Devices Based on Semiconductor Quantum Nanostructures. 2016 , E99.C, 346-357	
554	Semiconductor quantum dots. 2016 , 20, 352-360	75
553	Artificial atoms based on correlated materials. 2016 , 79, 084508	12
552	Monolithically integrated quantum dot optical modulator with semiconductor optical amplifier for thousand and original band optical communication. <i>Japanese Journal of Applied Physics</i> , 2016 , 55, 04EC1 $^{6.4}$	1
551	Manipulating and trapping light with photonic crystals from fundamental studies to practical applications. 2016 , 4, 11032-11049	9
550	Electroluminescence at 1.3 µm from InAs/GaAs quantum dots monolithically grown on Ge/Si substrate by metal organic chemical vapor deposition. <i>Japanese Journal of Applied Physics</i> , 2016 , 1.4 55, 100304	2
549	Growing InGaAs quasi-quantum wires inside semi-rhombic shaped planar InP nanowires on exact (001) silicon. <i>Applied Physics Letters</i> , 2016 , 108, 242105	28
548	Dominant role of many-body effects on the carrier distribution function of quantum dot lasers. 2016 , 9, 032705	4
547	Characteristics of highly stacked InAs quantum-dot laser grown on vicinal (001)InP substrate. Japanese Journal of Applied Physics, 2016 , 55, 04EJ16	3
546	Optical properties of an indium doped CdSe nanocrystal: A density functional approach. 2016,	
545	A chip scale optical Tx/Rx based on silicon photonics from views of multi-mode transmission. 2016 ,	
544	Coupled-Double-Quantum-Dot Environmental Information Engines: A Numerical Analysis. 2016 , 85, 064003	4
543	Wet-Chemically Synthesized Colloidal Semiconductor Nanostructures as Optical Gain Media. 2016 , 17, 582-97	5
542	Patterned semiconductor inverted quantum dot photonic devices. 2016 ,	

541	Single Photons from a Hot Solid-State Emitter at 350 K. 2016 , 3, 543-546		61
540	Silicon Optical Interposers for High-Density Optical Interconnects. 2016 , 1-39		3
539	Linearly polarized single photons from small site-controlled GaN nanowire quantum dots. 2016,		3
538	1.5th quantum dot laser material with high temperature stability of threshold current density and external differential efficiency. 2016 ,		6
537	Electrically pumped continuous-wave IIIIV quantum dot lasers on silicon. 2016, 10, 307-311		497
536	Photonic Crystals. 2016 ,		4
535	Modeling of carrier dynamics in InGaAs/GaAs self-assembled quantum dot lasers. 2016 , 55, 2042-8		2
534	Growth of InGaAs/GaAs nanowire-quantum dots on AlGaAs/GaAs distributed Bragg reflectors for laser applications. 2017 , 468, 144-148		10
533	Selective growth of strained (In)GaAs quantum dots on GaAs substrates employing diblock copolymer lithography nanopatterning. 2017 , 465, 48-54		11
532	Effects of Sb-soak on InAs quantum dots grown on (001) and (113)B GaAs substrates. 2017 , 477, 221-224	i i	O
531	Modeling and simulation of the multi-population quantum-dot lasers based on equivalent circuit. 2017 ,		
530	Lasing in a single nanowire with quantum dots. 2017 ,		
529	Low-threshold room-temperature AlGaAs/GaAs nanowire/single-quantum-well heterostructure laser. <i>Applied Physics Letters</i> , 2017 , 110, 061104	3.4	13
528	Enhanced cavity-waveguide interaction in three-dimensional photonic crystals. 2017,		
527	A review on IIIIV corefinultishell nanowires: growth, properties, and applications. 2017, 50, 143001		48
526	Applications to Optical Communication. 2017 , 291-332		
525	Monolithically Integrated Electrically Pumped Continuous-Wave III-V Quantum Dot Light Sources on Silicon. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2017 , 23, 1-10	3.8	26
524	Measurement of Ambipolar Diffusion Coefficient of Photoexcited Carriers with Ultrafast Reflective Grating-Imaging Technique. 2017 , 4, 1440-1446		8

523	Development of Quantum Dot Lasers for Data-Com and Silicon Photonics Applications. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2017 , 23, 1-7	3.8	42
522	Anomalous temperature dependence of photoluminescence spectra from InAs/GaAs quantum dots grown by formationdissolutiondegrowth method. 2017 , 26, 068103		
521	Coherent Light Emitters From Solution Chemistry: Inorganic IIIVI Nanocrystals and Organometallic Perovskites. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2017 , 23, 1-14	3.8	
520	Vertically coupled double-microdisk lasers composed of InGaAs quantum dots-in-a-well active layers. 2017 , 121, 203107		2
519	Atomistic behaviour of (nB)-reconstructed areas of InAs©aAs(001) surface at the growth condition. 2017 , 477, 104-109		5
518	Emission and elastic strain study in GaAs/In0.15Ga0.85As/InxGa1NAs/GaAs quantum wells with embedded InAs quantum dots. 2017 , 28, 7126-7131		4
517	GaAsAlGaAs coreBhell nanowire lasers on silicon: invited review. 2017 , 32, 053001		35
516	Increase in the emission wavelength (over 1800 nm) of InAs quantum dots grown on InP substrates using a dot-in-well structure. 2017 , 254, 1600490		
515	Photoluminescence and time-resolved photoluminescence studies of lateral carriers transfer among InAs/GaAs quantum dots. 2017 , 49, 1		2
514	Correlation between size distribution and luminescence properties of spool-shaped InAs quantum dots. 2017 , 32, 055013		4
513	Dynamic characteristics of 20-layer stacked QD-SOA with strain compensation technique by ultrafast signals using optical frequency comb. 2017 , 214, 1600557		6
512	Probing silicon quantum dots by single-dot techniques. 2017 , 28, 072002		35
511	Demonstration of lasing oscillation in a plasmonic microring resonator containing quantum dots fabricated by transfer printing. <i>Japanese Journal of Applied Physics</i> , 2017 , 56, 102001	1.4	4
510	Chiral topological excitons in a Chern band insulator. 2017 , 96,		4
509	Optoelectronic Devices and Materials. Springer Handbooks, 2017, 1-1	1.3	8
508	Next-generation mid-infrared sources. 2017 , 19, 123001		66
507	Electro-optical properties of phosphorene quantum dots. 2017 , 96,		27
506	Defect annihilation-mediated enhanced activation energy of GaAs 0.979 N 0.021 -capped InAs/GaAs quantum dots by H 🛘 on implantation. 2017 , 639, 73-77		2

505	Temperature dependence of excitonic emission in [(CH3)2NH2]3[Bil6] organic[horganic natural self assembled bimodal quantum dots. 2017 , 73, 89-94		2
504	Managing Green Emission in Coupled InGaN QWDDs Nanostructures via Nanoengineering. 2017 , 121, 22523-22530		2
503	Influence of carrier localization at the core/shell interface on the temperature dependence of the Stokes shift and the photoluminescence decay time in CdTe/CdS type-II quantum dots. 2017 , 96,		13
502	Influence of GaAsSb structural properties on the optical properties of InAs/GaAsSb quantum dots. 2017 , 94, 7-14		2
501	1550-nm InGaAsP multi-quantum-well structures selectively grown on v-groove-patterned SOI substrates. <i>Applied Physics Letters</i> , 2017 , 111, 032105	3.4	46
500	Optical anisotropy of InGaAs quantum dot arrays aligned along multiatomic steps on vicinal GaAs(111)B. 2017 , 122, 204304		1
499	Effect of Sb and As spray on emission characteristics of InAs quantum dots with AlAs capping layer. 2017 , 50, 405104		1
498	Quantum Wells, Superlattices, and Band-Gap Engineering. Springer Handbooks, 2017, 1-1	1.3	12
497	Strain Balancing of Metal-Organic Vapour Phase Epitaxy InAs/GaAs Quantum Dot Lasers. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2017 , 23, 1-8	3.8	4
406	10//O		
496	UV/Ozone-assisted bonding for InAs/GaAs quantum dot lasers on Si. 2017 ,		1
495	Adaptive Distributed Laser Charging for Efficient Wireless Power Transfer. 2017,		15
495	Adaptive Distributed Laser Charging for Efficient Wireless Power Transfer. 2017,	1.4	
495 494	Adaptive Distributed Laser Charging for Efficient Wireless Power Transfer. 2017, Progress in quantum dots for advanced photonics. 2017, Photoluminescence emission from GaAs nanodisks in GaAs/AlGaAs nanopillar arrays fabricated by	1.4	15
495 494 493	Adaptive Distributed Laser Charging for Efficient Wireless Power Transfer. 2017, Progress in quantum dots for advanced photonics. 2017, Photoluminescence emission from GaAs nanodisks in GaAs/AlGaAs nanopillar arrays fabricated by neutral beam etching. <i>Japanese Journal of Applied Physics</i> , 2017, 56, 050308 Investigation of the effect of surface passivation on microdisk lasers based on InGaAsN/GaAs	1.4	3
495 494 493 492	Adaptive Distributed Laser Charging for Efficient Wireless Power Transfer. 2017, Progress in quantum dots for advanced photonics. 2017, Photoluminescence emission from GaAs nanodisks in GaAs/AlGaAs nanopillar arrays fabricated by neutral beam etching. Japanese Journal of Applied Physics, 2017, 56, 050308 Investigation of the effect of surface passivation on microdisk lasers based on InGaAsN/GaAs quantum well active region. 2017, 917, 052002 Extremely stable temperature characteristics of 1550-nm band, p-doped, highly stacked	ŕ	15 3 1
495 494 493 492 491	Adaptive Distributed Laser Charging for Efficient Wireless Power Transfer. 2017, Progress in quantum dots for advanced photonics. 2017, Photoluminescence emission from GaAs nanodisks in GaAs/AlGaAs nanopillar arrays fabricated by neutral beam etching. Japanese Journal of Applied Physics, 2017, 56, 050308 Investigation of the effect of surface passivation on microdisk lasers based on InGaAsN/GaAs quantum well active region. 2017, 917, 052002 Extremely stable temperature characteristics of 1550-nm band, p-doped, highly stacked quantum-dot laser diodes. Japanese Journal of Applied Physics, 2017, 56, 04CH07	ŕ	15 3 1

487	Electrically pumped continuous-wave 1.3 pm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates. 2017 , 25, 4632-4639		75	
486	Near-infrared hybrid plasmonic multiple quantum well nanowire lasers. 2017 , 25, 9358-9367		9	
485	Thresholdless quantum dot nanolaser. 2017 , 25, 19981-19994		43	
484	O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si. 2017 , 25, 26853-26860		44	
483	Nanopillar quantum well lasers directly grown on silicon and emitting at silicon-transparent wavelengths. 2017 , 4, 717		37	
482	Quantum dot semiconductor optical amplifier: role of second excited state on ultrahigh bit-rate signal processing. 2017 , 56, 3599-3607		9	
481	Low Threshold Room Temperature Amplified Spontaneous Emission in 0D, 1D and 2D Quantum Confined Systems. 2018 , 8, 3962		8	
480	Single-Mode Near-Infrared Lasing in a GaAsSb-Based Nanowire Superlattice at Room Temperature. 2018 , 18, 2304-2310		48	
479	Fabrication of InAs quantum ring nanostructures on GaSb by droplet epitaxy. 2018, 492, 71-76		6	
478	Detuning dependence of Rabi oscillations in an InAs self-assembled quantum dot ensemble. 2018 , 97,		5	
477	Optical emission of GaN/AlN quantum-wires - the role of charge transfer from a nanowire template. <i>Nanoscale</i> , 2018 , 10, 5591-5598	7.7	8	
476	Influence of CdTe thickness on structural and optical properties of CdTe/ZnTe quantum dots on Si substrates. <i>Journal of the Korean Physical Society</i> , 2018 , 72, 294-299	0.6	3	
475	Quantum dot semiconductor optical amplifier: investigation of amplified spontaneous emission and noise figure in the presence of second excited state. 2018 , 50, 1		6	
474	Thermal escape and carrier dynamics in multilayer CdTe/ZnTe quantum dots. 2018 , 735, 2119-2122		3	
473	Polarization Dependence of Photoluminescence from InAs Quantum Dots Grown on InP(311)B Substrates Using Digital Embedding Method. 2018 , 215, 1700418		1	
472	Decoherence of spin states induced by Rashba spinBrbit coupling. 2018 , 93, 025102		3	
471	Effect of a Phonon Bottleneck on Exciton and Spin Generation in Self-Assembled In1⊠GaxAs Quantum Dots. 2018 , 9,		3	
470	Self-assembled InN quantum dots on side facets of GaN nanowires. 2018 , 123, 164302		9	

469	Tunable Dual-Wavelength Heterogeneous Quantum Dot Laser Diode With a Silicon External Cavity. 2018 , 36, 219-224		8
468	Perspective: The future of quantum dot photonic integrated circuits. 2018 , 3, 030901		117
467	Coarsening process of high-density InAs quantum dots on Sb-irradiated GaAs. <i>Japanese Journal of Applied Physics</i> , 2018 , 57, 045601	1.4	1
466	Vertical strain-induced dot size uniformity and thermal stability of InAs/GaAsN/GaAs coupled quantum dots. 2018 , 748, 601-607		2
465	Oscillator strength and quantum-confined Stark effect of excitons in a thin PbS quantum disk. 2018 , 32, 1750266		3
464	Low-temperature InGaAs oxidation using oxygen neutral beam. <i>Japanese Journal of Applied Physics</i> , 2018 , 57, 070305	1.4	
463	Low-Noise Characteristics on 1.3-th-Wavelength Quantum-Dot DFB Lasers Under External Optical Feedback. 2018 ,		5
462	Demonstration of Photovoltaic Effects in Hybrid Type-I InAs/GaAs Quantum Dots and Type-II GaSb/GaAs Quantum Dots. 2018 ,		1
461	Comparative study of the operative experience of surgical residents before and after 80-hour work week restrictions. 2018 , 95, 233-239		3
460	Room temperature lasing in injection microdisks with InGaAsN/GaAs quantum well active region. 2018 , 1124, 081048		1
459	Polarization Diversity Circuit Using Photonic Crystal Waveplates for 1.2-th Quantum Dot Semiconductor Optical Amplifiers. 2018 ,		
458	Stimulated emission and lasing. 188-209		
457	Lasers. 278-341		1
456	Two dimensional photonic crystal nanocavities with InAs/GaAs quantum dot active regions embedded by MBE regrowth. <i>Japanese Journal of Applied Physics</i> , 2018 , 57, 08PD03	1.4	1
455	Universal Ratio of Coulomb Interaction to Geometric Quantization in (In, Ga)As/GaAs Quantum Dots. 2018 , 60, 1629-1634		
454	Molecular Beam Epitaxy of IVI/I Semiconductors: Fundamentals, Low-dimensional Structures, and Device Applications. 2018 , 211-276		1
453	Tuning the Emission Directionality of Stacked Quantum Dots. 2018, 5, 4838-4845		7
452	The influence of inhomogeneities and defects on novel quantum well and quantum dot based infrared-emitting semiconductor lasers. 2018 , 33, 113002		5

451	III <mark>I</mark> V quantum-dot lasers monolithically grown on silicon. 2018 , 33, 123002	22
450	Silicon Photonic Biosensors Using Label-Free Detection. 2018 , 18,	124
449	Tuning Lasing Emission toward Long Wavelengths in GaAs-(In,Al)GaAs Core-Multishell Nanowires. 2018 , 18, 6292-6300	33
448	Droplet Epitaxy of Nanostructures. 2018 , 293-314	8
447	Persistent High Polarization of Excited Spin Ensembles During Light Emission in Semiconductor Quantum-Dot-Well Hybrid Nanosystems. 2018 , 10,	5
446	Nanowirequantum-dot lasers on flexible membranes. 2018 , 11, 065002	3
445	Improved performance of 1.3-th InAs/GaAs quantum dot lasers by direct Si doping. <i>Applied Physics Letters</i> , 2018 , 113, 011105	14
444	Advanced Photonic Crystal Nanocavity Quantum Dot Lasers. 2018 , E101.C, 553-560	O
443	Temperature stability of static and dynamic properties of 1.55 μ m quantum dot lasers. 2018 , 26, 6056-6066	33
442	All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001). 2018 , 26, 11568-11576	68
441	Interdot spin transfer dynamics in laterally coupled excited spin ensemble of high-density InGaAs quantum dots. <i>Applied Physics Letters</i> , 2018 , 113, 023104	7
440	Interdot spacing dependence of electronic structure and properties of multistacked InGaAs quantum dots fabricated without strain compensation technique. <i>Japanese Journal of Applied</i> 1.4 <i>Physics</i> , 2018 , 57, 06HE08	3
439	Monolithic quantum-dot distributed feedback laser array on silicon. 2018 , 5, 528	50
438	Droplet Epitaxy for III-V Compound Semiconductor Quantum Nanostructures on Lattice Matched Systems. <i>Journal of the Korean Physical Society</i> , 2018 , 73, 190-202	4
437	Size anisotropy inhomogeneity effects in state-of-the-art quantum dot lasers. <i>Applied Physics Letters</i> , 2018 , 113, 012105	1
436	Semiconductor nanostructures for flying q-bits and green photonics. 2018 , 7, 1245-1257	12
435	Optical properties of parabolic quantum wires in the presence of electron-electron interactions: An Euler-Lagrange variational application. 2018 , 172, 353-358	3
434	Advances and prospects of lasers developed from colloidal semiconductor nanostructures. 2018 , 60, 1-29	28

433	Monolayer Transition Metal Dichalcogenides as Light Sources. 2018 , 30, e1707627		46
432	Transfer-printed quantum-dot nanolasers on a silicon photonic circuit. 2018 , 11, 072002		14
431	Ultra-Low Timing Jitter of Quantum Dash Semiconductor Comb Lasers With Self-Injection Feedback Locking. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2019 , 25, 1-7	3.8	10
430	Photoluminescence of InGaAs/GaAs Quantum Nanodisk in Pillar Fabricated by Biotemplate, Dry Etching, and MOVPE Regrowth. 2019 , 1, 1945-1951		1
429	Molecular beam deposition of high-density InAs quantum dots on SiOx films. <i>Japanese Journal of Applied Physics</i> , 2019 , 58, SDDF07	1.4	
428	Impact of quantum dots on III-nitride lasers: a theoretical calculation of threshold current densities. <i>Japanese Journal of Applied Physics</i> , 2019 , 58, SCCC31	1.4	2
427	Recent progress in epitaxial growth of IIIIV quantum-dot lasers on silicon substrate. 2019 , 40, 101302		15
426	Energies of coherently strained quantum wires on a substrate. 2019 , 302, 113715		
425	Temperature-Dependent Photoluminescence in CdTe/ZnTe Triple Quantum Dots. <i>Journal of the Korean Physical Society</i> , 2019 , 74, 173-176	0.6	2
424	Temperature-Dependent Lasing of CsPbI Triangular Pyramid. 2019 , 10, 7056-7061		8
423	Structural and Optical Characteristics of InAs QDs Stacked on GaAs Substrate by Molecular Beam Epitaxy. 2019 , 18, 744-750		
422	Characterization of InGaN quantum dots grown by metalorganic chemical vapor deposition. 2019 , 34, 125002		4
421	The magneto-optics in quantum wires comprised of vertically stacked quantum dots: A calling for the magnetoplasmon qubits. 2019 , 127, 37004		2
420	Quantum dot lasers for silicon photonics. 2019 , 101, 91-138		6
419	Photoluminescence properties as a function of growth mechanism for GaSb/GaAs quantum dots grown on Ge substrates. 2019 , 126, 084301		2
418	Interdot carrier and spin dynamics in a two-dimensional high-density quantum-dot array of InGaAs with quantum dots embedded as local potential minima. 2019 , 34, 025001		3
417	Impact of InGaAs carrier collection quantum well on the performance of InAs QD active region lasers fabricated by diblock copolymer lithography and selective area epitaxy. 2019 , 34, 025012		3
416	III-nitride quantum dots as single photon emitters. 2019 , 34, 033001		22

415	2019, 55, 1-7		9
414	Valence Band Mixing in GaAs/AlGaAs Quantum Wells Adjacent to Self-Assembled InAlAs Antidots. Journal of Nanomaterials, 2019 , 2019, 1-7	3.2	2
413	Single dot photoluminescence excitation spectroscopy in the telecommunication spectral range. 2019 , 212, 300-305		6
412	Integration of III-V lasers on Si for Si photonics. 2019 , 66, 1-18		35
411	Infrared luminescence from N-polar InN quantum dots and thin films grown by metal organic chemical vapor deposition. <i>Applied Physics Letters</i> , 2019 , 114, 241103	3.4	12
410	Quantum dot microcavity lasers on silicon substrates. 2019 , 305-354		6
409	Bridging Two Worlds: Colloidal versus Epitaxial Quantum Dots. 2019 , 531, 1900039		18
408	Low sunlight concentration properties of InAs ultrahigh-density quantum-dot solar cells. <i>Japanese Journal of Applied Physics</i> , 2019 , 58, 071004	1.4	O
407	Investigation of Electronic and Optical Properties of CdZnO/ZnO/MgZnO Self-Assembled Quantum-Dot Lasers. 2019 , 43, 2643-2650		1
406	Droplet epitaxy of semiconductor nanostructures for quantum photonic devices. 2019 , 18, 799-810		82
405	Perovskite-Based Artificial Multiple Quantum Wells. 2019 , 19, 3535-3542		17
404	Twofold gain enhancement by elongation of QDs in polarization preserving QD-SOAs. 2019 , 34, 075003		O
403	. IEEE Journal of Selected Topics in Quantum Electronics, 2019 , 25, 1-15	3.8	26
402	A Review of High-Performance Quantum Dot Lasers on Silicon. 2019 , 55, 1-11		53
401	The electronic structures and optical gain of dilute nitride GaAs nanowires under uniaxial stress. 2019 , 12, 035003		1
400	History of MBE. 2019 , 1-21		
399	Applications of IIIIV Semiconductor Quantum Dots in Optoelectronic Devices. 2019, 150-167		
398	Molecular beam epitaxial growth of interdigitated quantum dots for heterojunction solar cells. 2019 , 512, 159-163		2

397 Acousto-electron Effects in the InAs/GaAs Heterostructure with InAs Quantum Dots. **2019**,

396	Microlasers based on GaAs and Si. 2019 , 1410, 012001	
395	Structural and Optical Characteristics of Nanoscale Semiconductor Lasers for Telecommunication and Biomedical Applications: A Review. 2019 , 594, 012002	2
394	Thermodynamic modelling of InAs/InP(0 0 1) growth towards quantum dots formation by metalorganic vapor phase epitaxy. 2019 , 509, 133-140	6
393	Optical transition and carrier relaxation in a type-II InAs/GaAsSb quantum dot layer. <i>Japanese Journal of Applied Physics</i> , 2019 , 58, 012004	1
392	Electromagnetic Engineered Mechanical Trapping Potential and the Conversion in Optomechanics. 2019 , 55, 1-7	
391	Proposal for Common Active 1.3- \$mu\$ m Quantum Dot Electroabsorption Modulated DFB Laser. 2019 , 31, 419-422	1
390	Light-Emitting Diodes. 2019 ,	3
389	Influence and its Optimal Design of Number of Stacked Layer in Quantum-Dot Lasers. 2019 , 216, 1800502	1
388	O-band InAs/GaAs quantum dot laser monolithically integrated on exact (0 0 1) Si substrate. 2019 , 511, 56-60	20
387	Technology and Droop Study for High Internal Quantum Efficiency. 2019 , 281-310	2
386	Abnormal Stranski-Krastanov Mode Growth of Green InGaN Quantum Dots: Morphology, Optical Properties, and Applications in Light-Emitting Devices. 2019 , 11, 1228-1238	37
385	Dynamics and spectral characteristics of quantum dot semiconductor lasers under optical injection-locking. 2020 , 95, 025802	4
384	MOCVD Growth and Characterization of InN Quantum Dots. 2020 , 257, 1900508	5
383	Advanced Technologies for Quantum Photonic Devices Based on Epitaxial Quantum Dots. 2020 , 3, 1900034	4
382	Temperature and concentration dependent Judd-Ofelt analysis of Y2O3:Eu3+ and YVO4:Eu3+. 2020 , 579, 411891	4
381	Lateral carrier transfer for high density InGaAs/GaAs surface quantum dots. 2020 , 218, 116870	4
380	Emission at 1.6 th from InAs Quantum Dots in Metamorphic InGaAs Matrix. 2020 , 257, 1900392	3

379	Generation of Non-Classical Light Using Semiconductor Quantum Dots. 2020, 3, 1900007	17
378	An electrically pumped surface-emitting semiconductor green laser. 2020 , 6, eaav7523	43
377	Regional Bandgap Tailoring of 1550 nm-Band InAs Quantum Dot Intermixing by Controlling Ion Implantation Depth. 2020 , 217, 1900521	2
376	Silicon photonic transceivers for application in data centers. 2020 , 41, 101301	3
375	Low-temperature transport in CdS disordered quantum wires: dephasing. 2020, 1	
374	The effect of cobalt ions doping on the optical properties of ZnS quantum dots according to photoluminescence intensity and crystalline structure. 2020 , 597, 412414	3
373	Interfacial chemistry and electronic structure of epitaxial lattice-matched TiN/Al0.72Sc0.28N metal/semiconductor superlattices determined with soft x-ray scattering. 2020 , 38, 053201	2
372	Laser, nanoparticles, and optics. 2020 , 47-65	
371	Analysis of low-threshold optically pumped III-nitride microdisk lasers. <i>Applied Physics Letters</i> , 2020 , 117, 121103	9
370	Photon-generated carrier transfer process from graphene to quantum dots: optical evidences and ultrafast photonics applications. 2020 , 4,	1
369	Low-threshold laser medium utilizing semiconductor nanoshell quantum dots. <i>Nanoscale</i> , 2020 , 12, 17426-717	7436
368	Circularly polarized luminescence of nanoassemblies via multi-dimensional chiral architecture control. <i>Nanoscale</i> , 2020 , 12, 19497-19515	25
367	1.3 th p-Modulation Doped InGaAs/GaAs Quantum Dot Lasers with High Speed Direct Modulation Rate and Strong Optical Feedback Resistance. 2020 , 10, 980	1
366	Intermittent growth for InAs quantum dot on GaAs(001). 2020 , 551, 125891	2
365	Accurate and efficient description of interacting carriers in quantum nanostructures by selected configuration interaction and perturbation theory. 2020 , 101,	1
364	Dual-comb-based asynchronous pump-probe measurement with an ultrawide temporal dynamic range for characterization of photo-excited InAs quantum dots. 2020 , 13, 062003	3
363	Progress in semiconductor quantum dots-based continuous-wave laser. 2020 , 63, 1382-1397	5
362	Influence of the excitation density and temperature on the optical properties of type I InAs/GaAsSb quantum dots. 2020 , 225, 117368	1

361	Progress in quantum-dot single photon sources for quantum information technologies: A broad spectrum overview. 2020 , 7, 021309	66
360	Graphene-Quantum-Dot-Mediated Semiconductor Bonding: A Route to Optoelectronic Double Heterostructures and Wavelength-Converting Interfaces. 2020 , 6, 28	1
359	The 1200 nm-Band InAs/GaAs Quantum Dot Intermixing by Dry Etching and Ion Implantation. 2020 , 217, 1900851	0
358	Deterministically fabricated solid-state quantum-light sources. 2020 , 32, 153003	23
357	Many-electron redistribution in n-doped semiconductor nanostructures under external electric field by using a center-of-mass approach. 2020 , 102,	2
356	On quantum-dot lasing at gain peak with linewidth enhancement factor $\mathbb{H}=0$. 2020 , 5, 026101	16
355	The influence of acoustic deformation on the recombination radiation in InAs/GaAs heterostructure with InAs quantum dots. 2020 , 119, 113988	0
354	Mid-infrared electroluminescence from type-II In(Ga)Sb quantum dots. <i>Applied Physics Letters</i> , 2020 , 116, 061103	4
353	Atomistic theory of electronic and optical properties of InAsP/InP nanowire quantum dots. 2020 , 101,	14
352	Fabrication of In(P)As Quantum Dots by Interdiffusion of P and As on InP(311)B Substrate. 2020 , 10, 90	1
351	Dynamics of pulse amplification in tapered-waveguide quantum-dot semiconductor optical amplifiers. 2020 , 207, 164396	2
350	The strain, energy band and photoluminescence of GaAs0.92Sb0lD8/Al0.3Ga0.7As multiple quantum wells grown on GaAs substrate. 2020 , 309, 113837	5
349	Controlled growth of InGaN quantum dots on photoelectrochemically etched InGaN quantum dot templates. 2020 , 540, 125652	2
348	Colloidal quantum wells for optoelectronic devices. 2020 , 8, 10628-10640	14
347	Nanostructured Metal Oxides and Devices. 2020,	1
346	Mobility and activation energy of lateral photocurrent of InAs quantum dot layers with ultrafast carrier relaxation. 2021 , 126, 114478	2
345	Spectroscopy of Nonradiative Recombination Levels by Two-Wavelength Excited Photoluminescence. 2021 , 258, 2000370	1
344	InAs/InP Quantum Dash Semiconductor Coherent Comb Lasers and their Applications in Optical Networks. 2021 , 39, 3751-3760	7

Terahertz Quantum Dot Intersublevel Photodetector. **2021**, 65-88

342	Multicarrier Dynamics in Quantum Dots. 2021 , 121, 2325-2372		28
341	Progress in Quantum Dot Infrared Photodetectors. 2021 , 1-74		1
340	Recent Progress in Heterogeneous III-V-on-Silicon Photonic Integration. 2021 , 2, 1-25		32
339	Effect of Sb composition on the band alignment of InAs/GaAsSb quantum dots. 2021 , 30, 017802		O
338	Optical Properties of Site-Selectively Grown InAs/InP Quantum Dots with Predefined Positioning by Block Copolymer Lithography. 2021 , 14,		2
337	Magneto-Optical Characterization of Trions in Symmetric InP-Based Quantum Dots for Quantum Communication Applications. 2021 , 14,		5
336	Impact of dislocations in InAs quantum dot with InGaAs strain-reducing layer structures on their optical properties. <i>Japanese Journal of Applied Physics</i> , 2021 , 60, 035507	1.4	О
335	Theoretical and Experimental Aspects of Current and Future Research on NbO2 Thin Film Devices. 2021 , 11, 217		1
334	Photoelectrochemical investigation of charge injection efficiency for quantum dot light-emitting diode. <i>Applied Physics Letters</i> , 2021 , 118, 063505	3.4	5
333	Colloidal quantum dot lasers. 2021 , 6, 382-401		52
332	InN Quantum Dots by Metalorganic Chemical Vapor Deposition for Optoelectronic Applications. 2021 , 8,		
331	Electric-Field-Effect Spin Switching with an Enhanced Number of Highly Polarized Electron and Photon Spins Using p-Doped Semiconductor Quantum Dots. 2021 , 6, 8561-8569		O
330	Quantum dot lasers⊞istory and future prospects. 2021 , 39, 020802		7
329	Encapsulation study of MOVPE grown InAs QDs by InP towards 1550[hm emission. 2021 , 557, 126010		1
328	Optical properties of coherent InAs/InGaAs quantum dash-in-a-well for strong 2 th emission enabled by ripening process. 2021 , 859, 157783		Ο
327	E-band InAs quantum dot laser on InGaAs metamorphic buffer layer with filter layer. 2021 , 57, 567		2
326	Emission wavelength control of InAs/GaAs quantum dots using an As2 source for near-infrared broadband light source applications. 2021 , 14, 055501		1

325	Submonolayer stacking growth of In(Ga)As nanostructures for optoelectronic applications: an alternative for Stranskikrastanov growth. <i>Japanese Journal of Applied Physics</i> , 2021 , 60, SB0804	0
324	. 2021 , 15, 8-22	3
323	1.5-th Indium Phosphide-Based Quantum Dot Lasers and Optical Amplifiers: The Impact of Atom-Like Optical Gain Material for Optoelectronics Devices. 2021 , 15, 23-36	2
322	Annealing-Induced Structural Evolution of InAs Quantum Dots on InP (111)A Formed by Droplet Epitaxy. 2021 , 21, 3947-3953	1
321	Hybrid strain-coupled multilayer SK and SML InAs/GaAs quantum dot heterostructure: Enabling higher absorptivity and strain minimization for enhanced optical and structural characteristics. 2021 , 233, 117899	3
320	Fast dynamics of low-frequency fluctuations in a quantum-dot laser with optical feedback. 2021 , 29, 17962-17975	1
319	Growth by MOCVD and photoluminescence of semipolar (202🖽) InN quantum dashes. 2021 , 563, 126093	2
318	IIIN Optoelectronic Devices Grown on Silicon. 1-32	
317	Cascade Electron Transfer Induces Slow Hot Carrier Relaxation in CsPbBr3 Asymmetric Quantum Wells. 2021 , 6, 2602-2609	4
316	Quantum tunneling in two-dimensional van der Waals heterostructures and devices. 2021 , 64, 2359-2387	5
315	Single-crystal halide perovskites: Opportunities and challenges. 2021 , 4, 2266-2308	8
314	Temperature dependence of electrical and optical characteristics of InAsP laser diode. 2021 , 1963, 012047	
313	Uncovering recent progress in nanostructured light-emitters for information and communication technologies. 2021 , 10, 156	6
312	Absorption properties of graphene quantum dots under ultrashort optical pulses. 2021, 104,	O
311	Metalorganic chemical vapor deposition of InN quantum dots and nanostructures. 2021 , 10, 150	O
310	InAs/InGaAs Quantum Dot Lasers on Multi-Functional Metamorphic Buffer Layers. 2021 , 29, 29378-29386	1
309	Perspectives on Advances in Quantum Dot Lasers and Integration with Si Photonic Integrated Circuits. 2021 , 8, 2555-2566	7
308	Prospects and challenges of colloidal quantum dot laser diodes. 2021 , 15, 643-655	18

307	Semiconductor quantum dots: Technological progress and future challenges. 2021, 373,	138
306	MBE Growth and Characterization of InAlGaAs/GaAs Quantum Dots. 2021,	O
305	Electronic and magnetic properties of many-electron complexes in charged InAsxP1☑ quantum dots in InP nanowires. 2021 , 104,	
304	E-Band InAs/GaAs Trilayer Quantum Dot Lasers. 2100419	
303	Review on GaAsSb nanowire potentials for future 1D heterostructures: Properties and applications. 2021 , 28, 102542	2
302	Growth-related photoluminescence properties of InSb/GaAs self-assembled quantum dots grown on (001) Ge substrates. 2021 , 271, 115309	
301	Effect of surface structural change on adsorption behavior on InAs wetting layer surface grown on GaAs(001) substrate. 2021 , 570, 126233	О
300	Emission directionality of electronic intraband transitions in stacked quantum dots. 2021, 104,	
299	Effect of thickness on the electronic structure and optical properties of quasi two-dimensional perovskite CsPbBr3 nanoplatelets. 2021 , 239, 118392	3
298	. 2021 , 57, 1-7	2
297	Impact of Quantum Dots on III-Nitride Lasers: A Theoretical Calculation on Linewidth Enhancement Factors. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2022 , 28, 1-7	8
296	Mid-infrared Vertical Cavity Surface Emitting Lasers based on the Lead Salt Compounds. 2006 , 265-301	6
295	Optoelectronic Devices and Materials. 2006 , 887-916	2
294	Quantum Wells, Superlattices, and Band-Gap Engineering. 2006, 1021-1040	5
293	Encyclopedia of Complexity and Systems Science. 2009 , 5745-5783	19
292	Concentration Evaluation in Nanometre-Sized InxGa1-xN Islands Using Transmission Electron Microscopy. 2008 , 17-20	1
291	Investigating the Capping of InAs Quantum Dots by InGaAs. 2008, 259-262	3
29 0	Quantum Dot Infrared Photodetectors. 2010 , 395-423	8

289	Fabrication of Atomically Controlled Nanostructures and Their Device Application. 1999 , 207-256	2
288	Prospects of High-Efficiency Quantum Boxes Obtained by Direct Epitaxial Growth. 1995 , 357-381	7
287	Semiconductor Nano-Structure Lasers: Fundamentals and Fabrications. 1995 , 647-673	2
286	Very large optical nonlinearity of semiconductor microcrystallites. 1995 , 831-837	1
285	Optical and Structural Properties of Nitride Based Nanostructures. 2020 , 135-201	1
284	Theory of Quantum Dot Lasers. 2002 , 299-316	3
283	Fabrication and Optical Characterization of Semiconductor Quantum Wires. 1988, 26-36	4
282	Quantum Boxes, Quantum Wires, and In-Plane Superlattices: Their Impact in Device Physics and Required Breakthroughs in Material Science. 1990 , 2-9	4
281	Recent Developments. 1999, 325-446	1
2 80	Dynamics of Carrier Relaxation in Self-Assembled Quantum Dots. 2002 , 245-293	2
279	Optical Materials. 2017 , 467-481	1
278	Diagnosing Semiconductor Nano-Materials and Devices. 1998 , 153-192	1
277	Few-electron liquid and solid phases in artificial molecules at high magnetic field. 2003, 361-371	2
276	Excitonic Composites. 2002, 385-402	1
275	MBE Growth of (In,Ga)As Self-Assembled Quantum Dots for Optoeletronic Applications. 1996 , 91-94	1
274	Prospects for Quantum Dot Structures Applications in Electronics and Optoelectronics. 1996 , 197-208	13
273	Quantum Dot Lasers. 2000 , 65-84	1
272	Fabrication of Quantum Wires and Dots and Nanostructure Characterization. 1995 , 197-205	1

(2020-1995)

271	In-Situ Etching and Molecular Beam Epitaxial Regrowth for Templated Sidewall Quantum Wires. 1995 , 377-386	1
270	Carrier Capture and Stimulated Emission in Quantum Wire Lasers Grown on Nonplanar Substrates. 1993 , 317-330	3
269	Statistical Approach for the Phonon Relaxation Bottlenecks in Quantum Boxes and Impact on Optoelectronic Devices. 1993 , 447-457	2
268	Quantum Well Lasers. 1992 , 123-141	1
267	Optical Properties of Strain-Induced Nanometer Scale Quantum Wires. 1993 , 337-349	2
266	InGaAs/GaAs Quantum Dot Lasers. 1997 , 315-330	1
265	Functional Nanoscale Devices. 1999 , 67-91	3
264	Optical and Electronic Processes in Semiconductor Materials for Device Applications. 2015 , 253-297	7
263	Quantum Dot Infrared Photodetectors by Metal-Organic Chemical Vapour Deposition. 2008, 620-658	1
262	QUANTUM WIRE SEMICONDUCTOR LASERS. 1993 , 461-500	3
261	ON THE (POOR) LUMINESCENT PROPERTIES OF QUANTUM DOTS : AN INTRINSIC EFFECT?. 1992 , 471-477	2
260	Molecular Beam Epitaxy. 1989 , 7, 217-330	4
259	From Ballistic Transport to Localization. 1992 , 863-975	1
258	Photonic Crystals. 2008 , 101-112	1
257	All-MBE grown InAs/GaAs quantum dot lasers with thin Ge buffer layer on Si substrates. 2021 , 54, 035103	7
256	Quantum Dot Lasers. 2003 ,	120
255	Quantum-dot edge-emitting lasers. 2003 , 130-154	2
254	Cross-sectional scanning tunneling microscopy of InAs/GaAs(001) submonolayer quantum dots. 2020 , 4,	5

253	Quantum-dot coherent comb lasers for terabit optical networking systems. 2019,	6
252	From Basic Physical Properties of InAs/InP Quantum Dots to State-of-the-Art Lasers for 1.55 µm Optical Communications. 2016 , 95-125	2
251	Electronic Structure Calculations of InP-Based Coupled Quantum Dot-Quantum Well Structures. 2016 , 129, A-97-A-99	2
250	Single longitudinal mode GaAs-based quantum dot laser with refractive index perturbation. 2020 , 59, 1648-1653	2
249	25 Gbps Direct Modulation in 1.3-th InAs/GaAs High-Density Quantum Dot Lasers. 2010 ,	8
248	Temperature-stable 10.3-Gb/s Operation of 1.3-Jim Quantum-dot DFB Lasers with GaInP/GaAs Gratings. 2009 ,	2
247	High-temperature continuous-wave operation of directly grown InAs/GaAs quantum dot lasers on on-axis Si (001). 2019 , 27, 2681-2688	27
246	High-speed and temperature-insensitive operation in 1.3-th InAs/GaAs high-density quantum dot lasers. 2009 ,	2
245	10.3-Gb/s Operation over a Wide Temperature Range in 1.3-th Quantum-dot DFB Lasers with High Modal Gain. 2010 ,	3
244	Synthesis and systematic optical investigation of selective area droplet epitaxy of InAs/InP quantum dots assisted by block copolymer lithography. 2019 , 9, 1738	3
243	Integrated dispersion compensated mode-locked quantum dot laser. 2020, 8, 1428	8
242	Quantum dot mode-locked frequency comb with ultra-stable 255 GHz spacing between 20˚LC and 120˚LC. 2020 , 8, 1937	2
241	Physics and applications of quantum dot lasers for silicon photonics. 2020 , 9, 1271-1286	17
240	Ordered quantum-dot arrays in semiconducting matrices. 1996 , 166, 423-428	11
239	Dvoinye geterostruktury: kontseptsiya i primeneniya v fizike, elektronike i tekhnologii. 2002 , 172, 1068	34
238	High-resolution X-ray diffraction in crystalline structures with quantum dots. 2015 , 185, 449-478	1
237	Luminescence Properties of InAlAs/AlGaAs Quantum Dots Grown by Modified Molecular Beam Epitaxy. 2014 , 23, 387-391	3
236	Application of quantum dot infrared photodetectors in space photoelectric systems. 2014 , 63, 148501	4

(2000-2011)

235	Impact of Dot-Size and Dot-Location Variations on Capacitance Voltage Characteristics and Flat-Band Voltage Shift of Quantum-Dot Non-Volatile Memory Cells. <i>Japanese Journal of Applied Physics</i> , 2011 , 50, 044301	1.4	6
234	Structural Changes Caused by Quenching of InAs/GaAs(001) Quantum Dots. <i>Japanese Journal of Applied Physics</i> , 2011 , 50, 04DH06	1.4	2
233	Structural Analysis of Si-Based Nanodot Arrays Self-Organized by Selective Etching of SiGe/Si Films. Japanese Journal of Applied Physics, 2011 , 50, 08LB11	1.4	7
232	A Detailed Investigation of the Growth Conditions of Gallium Nitride Nanorods by Hydride Vapor Phase Epitaxy. <i>Japanese Journal of Applied Physics</i> , 2012 , 51, 01AF05	1.4	3
231	Characterization of Wavelength-Tunable Quantum Dot External Cavity Laser for 1.3-µm-Waveband Coherent Light Sources. <i>Japanese Journal of Applied Physics</i> , 2012 , 51, 02BG08	1.4	18
230	Effects of Sb/As Interdiffusion on Optical Anisotropy of GaSb Quantum Dots in GaAs Grown by Droplet Epitaxy. <i>Japanese Journal of Applied Physics</i> , 2012 , 51, 115201	1.4	3
229	Optical Properties of Site-Controlled InGaAs Quantum Dots Embedded in GaAs Nanowires by Selective Metalorganic Chemical Vapor Deposition. <i>Japanese Journal of Applied Physics</i> , 2012 , 51, 11PE1	3 ·4	2
228	Nitride single photon sources. 2021 , 439-471		
227	Monolithic III V quantum dot lasers on silicon. 2021 , 20, 353-388		1
226	Physics and applications of semiconductor nanowire lasers. 2021 , 20, 389-438		
226	Physics and applications of semiconductor nanowire lasers. 2021, 20, 389-438 1550 nm-Band InAs/InGaAlAs Quantum Dot Distributed Feedback Lasers Grown on InP(311)B Substrate with Side-Wall Gratings Simultaneously Fabricated with a Ridge Waveguide. 2100453		
	1550 nm-Band InAs/InGaAlAs Quantum Dot Distributed Feedback Lasers Grown on InP(311)B		О
225	1550 nm-Band InAs/InGaAlAs Quantum Dot Distributed Feedback Lasers Grown on InP(311)B Substrate with Side-Wall Gratings Simultaneously Fabricated with a Ridge Waveguide. 2100453 Carrier dynamics and lasing behavior of InAs/GaAs quantum dot lasers with short cavity lengths.		0
225	1550 nm-Band InAs/InGaAlAs Quantum Dot Distributed Feedback Lasers Grown on InP(311)B Substrate with Side-Wall Gratings Simultaneously Fabricated with a Ridge Waveguide. 2100453 Carrier dynamics and lasing behavior of InAs/GaAs quantum dot lasers with short cavity lengths. 2021, 33, Tunable Graphene/Quantum-Dot Van der Waals Heterostructures aturable Absorber Plane Arrays		
225	1550 nm-Band InAs/InGaAlAs Quantum Dot Distributed Feedback Lasers Grown on InP(311)B Substrate with Side-Wall Gratings Simultaneously Fabricated with a Ridge Waveguide. 2100453 Carrier dynamics and lasing behavior of InAs/GaAs quantum dot lasers with short cavity lengths. 2021, 33, Tunable Graphene/Quantum-Dot Van der Waals Heterostructures\substacturable Absorber Plane Arrays by Two-Step Femtosecond and Nanosecond Laser Postprocessing. 2022, 3, 2100183		
225 224 223	1550 nm-Band InAs/InGaAlAs Quantum Dot Distributed Feedback Lasers Grown on InP(311)B Substrate with Side-Wall Gratings Simultaneously Fabricated with a Ridge Waveguide. 2100453 Carrier dynamics and lasing behavior of InAs/GaAs quantum dot lasers with short cavity lengths. 2021, 33, Tunable Graphene/Quantum-Dot Van der Waals Heterostructureslaturable Absorber Plane Arrays by Two-Step Femtosecond and Nanosecond Laser Postprocessing. 2022, 3, 2100183 Self-formed quantum dot structures and their potential device applications. 2000, 19-95		
225 224 223 222 221	1550 nm-Band InAs/InGaAlAs Quantum Dot Distributed Feedback Lasers Grown on InP(311)B Substrate with Side-Wall Gratings Simultaneously Fabricated with a Ridge Waveguide. 2100453 Carrier dynamics and lasing behavior of InAs/GaAs quantum dot lasers with short cavity lengths. 2021, 33, Tunable Graphene/Quantum-Dot Van der Waals Heterostructures\(\bar{B}\) aturable Absorber Plane Arrays by Two-Step Femtosecond and Nanosecond Laser Postprocessing. 2022, 3, 2100183 Self-formed quantum dot structures and their potential device applications. 2000, 19-95 Growth, characterization, and applications of self-assembled InGaAs quantum dots. 2000, 183-231 Fabrication of InGaAs Quantum Dots by SPEED Method and Its Photoluminescence Properties		

217	Formation and characterization of semiconductor nanostructures. 2001 , 13-64	
216	Lasers based on self-assembled InAs/GaAs and InP/InGaP quantum dots. 2001, 367-368	1
215	Heterostructure lasers: development of new physics and new technology. 2001 , 14-19	
214	Optimized growth procedure for self-organized InAs quantum dots. 2001 , 387-388	
213	Electronic properties of InAs/GaAs quantum dots. 2001 , 273-299	
212	Self-assembled quantum dots systems. 2001 , 233-251	2
211	Fabrication of compound-semiconductor quantum dots on a Si(111) substrate terminated by bilayer-GaSe. 2001 , 385-386	
210	Device Applications of Quantum Dots. 2002 , 457-480	1
209	Long-Wavelength InGaAs/GaAs Quantum Dot Lasers. 2002 , 317-337	1
208	High Power Quantum Dot Lasers. 2002 , 353-369	
207	The History of Heterostructure Lasers. 2002 , 3-22	0
207	The History of Heterostructure Lasers. 2002 , 3-22 InP/GaInP Quantum Dot Lasers. 2002 , 339-352	O
,		O
206	InP/GaInP Quantum Dot Lasers. 2002 , 339-352	O
206	InP/GaInP Quantum Dot Lasers. 2002, 339-352 Novel Device Applications of Stranski-Krastanov Quantum Dots. 2003, 112-151 Nanoscale Characterization of Nanostructures and Nanodevices by Scanning Probe Microscopy.	O
206	InP/GaInP Quantum Dot Lasers. 2002, 339-352 Novel Device Applications of Stranski-Krastanov Quantum Dots. 2003, 112-151 Nanoscale Characterization of Nanostructures and Nanodevices by Scanning Probe Microscopy. 2003, 191-211	0
206 205 204 203	InP/GaInP Quantum Dot Lasers. 2002, 339-352 Novel Device Applications of Stranski-Krastanov Quantum Dots. 2003, 112-151 Nanoscale Characterization of Nanostructures and Nanodevices by Scanning Probe Microscopy. 2003, 191-211 Introduction. 2003, 139-145 1.3 fh InAs/GaAs Quantum Dots Directly CappedWith GaAs Grown By Metal Organic Chemical	0

(2006-2003)

199	2003, 77-84	
198	Conclusions. 2003 , 264-264	
197	Fabrication techniques and methods for semiconductor quantum dots. 2003, 45-61	О
196	Power characteristics of quantum dot lasers. 2003 , 202-225	
195	Quantum dot vertical-cavity surface-emitting lasers. 2003 , 226-263	
194	Long-wavelength emitters on GaAs. 2003 , 155-201	
193	Introduction. 2003 , 3-44	
192	Structural and electronic properties of self-organized quantum dots. 2003 , 62-102	1
191	Optical gain and threshold characteristics of a self-organized quantum dot diode laser. 2003, 105-129	
190	Optimization of TEM Sample Preparation for the Microstructural Analysis of Nitride Semiconductors. 2003 , 13, 598-605	
189	A Study on Current Blocking Configuration of V-Groove Quantum Wire Laser. 2003, 16, 1268-1272	
188	Gallium arsenide and its ternary alloys (self-assembled quantum dots). 2004,	
187	Gallium arsenide and its ternary alloys (self-assembled quantum dots). 2004, 245-281	
186	Strain induced wavelength shift in self-assembled InAs/GaAs quantum dots grown by MOCVD. 2005 ,	
185	Growth of Nitride Quantum Dots. 2005 , 95-131	
184	Fabrication of self-organized GalnNAs quantum dots on GaAs (311)B by atomic hydrogen-assisted RF- molecular beam epitaxy. 2005 , 215-218	
183	Optical Properties of Hexagonal and Cubic GaN Self-Assembled Quantum Dots. 2005, 69-99	
182	Phase-Field Simulation of Shape Evolution and Bimodal Size Distribution of Self-Assembled Quantum Dots. 2006 , 55, 929-935	

181	Advances in Single Photon Sources Based on Semiconductor Quantum Dots. 2006 , 34, 749-755
180	Light Emission Control by Photonic Bandgap. 2006 , 34, 761-766
179	Strategies of Nanoscale Semiconductor Lasers. 2007 , 105-169
178	Temperature-dependent Morphology of Self-assembled InAs Quantum Dots Grown on Si Substrates. 2007 , 20, 864-868
177	Potential-Tailored Quantum Wells for High-Performance Optical Modulators/Switches. 2008, 263-274
176	Advanced Growth Techniques of InAs-system Quantum Dots for Integrated Nanophotonic Circuits. 2008 , 529-551
175	Light Emission Control by Photonic Bandgap. 2008 , 36, 170-173
174	References. 2008 , 499-527
173	Light-Matter Interaction in Quantum Dots with 2-D/3-D Photonic Crystal Nanocavity. 2009,
172	Superlattice and Quantum Well. 2010 , 283-339
171	Optical Properties of InAs Quantum Dots Grown by Using Indium Interruption Growth Technique. 2009, 18, 474-480
170	Advances in Nanophotonics with Quantum Dot. 2010 , 15, 66-70
169	Light-induced scattering in CdSe quantum dots. 2010,
168	Metalorganic Vapor-Phase Epitaxy of Diluted Nitrides and Arsenide Quantum Dots. 2010 , 1133-1152
167	Fabrication and luminescence characterization of two-dimensional GaAs-based photonic crystal nanocavities. 2010 , 59, 7073
167 166	·
,	nanocavities. 2010 , 59, 7073

High-output-power 10.3-Gb/s Operation of 1.27-ft Quantum-dot DFB Lasers for 10G-EPON. 2011, 163 Nanowire Quantum Dots. 162 99-th-long-cavity Laser Diode Using Highly Stacked InGaAs Quantum Dots. 2012, 161 Investigation of the temperature sensitivity of the long-wavelength InP-based laser. 2012, 61, 216802 160 Morphological Evaluation of Ge Nanoclusters by Spot Shape of Surface Electron Diffraction. 2012, 159 1 10.18-21 1.3 Im InAs/GaAs Quantum Dot Lasers on Si Rib Structures with Current Injection across 158 Direct-Bonded GaAs/Si Heterointerfaces. 2012, Introduction. 2012, 1-4 157 Nanophotonics Based on Semiconductor-Photonic Crystal/Quantum Dot and 156 Metal-/Semiconductor-Plasmonics. 2012, E95-C, 178-187 Quantum Dot Switches: Towards Nanoscale Power-Efficient All-Optical Signal Processing. 2012, 197-221 155 References. 177-198 154 Materials for Nanophotonics. 2012, 153 High-Performance Metamorphic In(Ga)As/GaAs Quantum Dot Lasers on GaAs and Si. 2012, 319-354 152 Cavity Quantum Electrodynamics in Semiconductors: Quantum Dot-Photonic Crystal Nanocavity 151 Coupled Systems. 2013, 41, 485 Fabrication of Ultrahigh-Density Self-assembled InAs Quantum Dots by Strain Compensation. 2013, 71-96 150 Introduction. 2014, 1-12 149 148 Fabrication of Ultra-Small Structures: Quantum Wires. 1988, 2-13 GaAs Quantum Well Wire Structures: Their Fabrication by Focused Ga Ion Beam Implantation and 147 Their Optical Properties. 1988, 45-55 Optical Spectroscopy on Two- and One-Dimensional Semiconductor Structures. 1989, 361-374 146 2

145	Real and Virtual Charge Polarizations in DC Biased Low-Dimensional Semiconductor Structures. 1989, 71-82
144	Quantum Wires and Related Lateral Superstructures. 1989, 65-74
143	Optical Emission from Quantum Wires. 1990 , 277-295
142	The Design and Basic Characteristics of Semiconductor Lasers. 1991 , 107-198
141	Progress in quantum-wire lasers. 1991,
140	Ultrafine AlGaAs/GaAs Quantum-Well Wire Fabrication by Combining Electron Beam Lithography and Two-Step Wet Chemical Etching. 1992 , 373-378
139	Photoluminescence Spectra of GaAs Quantum Wires in High Magnetic Fields. 1992 , 392-398
138	SEMICONDUCTOR QUANTUM WIRES GROWN BY OMCVD ON NONPLANAR SUBSTRATES. 1992 , 63-74 2
137	Observation of lasing in CuCl quantum dots. 1992 , 393-398
136	MOCVD Methods for Fabricating Semiconductor Nano-Structures. 1992 , 353-361
135	Optische Bauelemente. 1992 , 29-132
134	Quantum Dot Fabrication by Optical Lithography and Selective Etching. 1993 , 191-197
133	Optical Properties of Serpentine and Tilted Superlattices. 1993 , 331-339
132	Relaxation of Hot Carriers in Semiconductor Nanostructures. 1993 , 415-426
131	Towards Fully Quantized Optoelectronic Semiconductor Heterostructures: Quantum Boxes or Quantum Microcavities?. 1993 , 311-325
130	Quantum Wires and Quantum Dots for Fully Confined Semiconductor Lasers. 1994 , 199-207
129	Single-Mode Stimulated Emission in a Quantum-Wire Laser Fabricated by Cleaved-Edge Overgrowth. 1994 , 171-180
128	Electronic Transition and Scattering Processes in Quantum Structures and Their Control for Advanced Devices. 1994 , 37-38

Exciton Radiative Lifetime in GaAs Quantum Wires: Wire-Width Dependence. 1994, 140-144 127 Observation of InP and GaInAs Surfaces after (NH4)2Sx Treatment by a Scanning Tunneling 126 Microscope. 1994, 513-517 Direct Formation of GaAs-GaAlAs Quantum-Dot Structures by Droplet Epitaxy. 1994, 238-241 125 Fabrication of AlGaAs/GaAs Multi-QWRs with 15 nm Wire Width Using Two-Step Etching and MBE 124 Regrowth. 1994, 194-196 Spontaneous Spin Polarization Due to Electron Electron Interaction in Quantum Wires. 1994, 121-130 123 Selective Epitaxy for Ridge and Edge Quantum Wire Structures: Morphology and Purity Issues. 1995 122 , 271-282 Structural Investigations of the Direct Growth of (AlGa)As/GaAs-Quantum Wire Structures by 121 Metalorganic Vapour Phase Epitaxy. 1995, 301-312 Between One and Two Dimensions: Quantum Wires Arrays Grown on Vicinal Surfaces. 1995, 101-112 120 Structure and Optical Properties of Self-Ordered V-Groove Quantum Wires and Quantum Wells. 119 **1997**, 99-125 Fabrication of Quantum Dots for Semiconductor Lasers with Confined Electrons and Photons. 1997 118 , 303-313 Cleaved Edge Overgrowth and 1D Lasers. 1997, 127-155 117 Confined Electrons and Photons. 1998, 211-234 116 GaAs Micro Crystal Growth on A As-Terminated Si (001) Surface by Low Energy Focused Ion Beam. 115 **1998**, 536, 445 Quantum Dots Infrared Photodetectors (QDIP).. 1998, 133-140 114 Intraband Absorption Spectroscopy of Self-Assembled Quantum Dots. 1998, 141-146 113 Introduction. **1998**, 139-139 112 Toward Lasers of the Next Generation. 1998, 181-185 111 Self-Assembled In0.5Ga0.5As Quantum Dot Lasers with Doped Active Region. 1999, 110

109	Quantum Dots and the Expected Role in Femtosecond Devices. 1999 , 211-221	
108	High Speed Quantum Dot Lasers: Phonon Bottleneck Issue in Quantum Dot Lasers. 1999 , 175-183	
107	Optical and transport properties of superlattice quantum wires. 1999 ,	
106	Fabrication Technology of Semiconductor Nanometer Structures Towards Femtosecond Optoelectronics. 1999 , 234-244	
105	Surface diffusion processes of Ga and Al in MBE - formation of 10-nm scale GaAs ridge structures 1999 , 459-471	
104	Epitaxial Quantum Dot Infrared Photodetectors. 1-30	2
103	Wege in die Nanowelt. 2015 , 579-600	
102	Introduction. 2015 , 1-11	
101	Encyclopedia of Complexity and Systems Science. 2015 , 1-69	
100	Quantum dot lasers on silicon substrate for silicon photonic integration and their prospect. 2015 , 64, 204209	4
99	1.3-th InAs/GaAs Quantum Dot Lasers on Silicon-on-Insulator Substrates by Metal-Stripe Bonding. 2015 ,	
98	Effect of As pressure-modulated InAlAs superlattice on the morphology of InAs nanostructures grown on InAs/InAlAs/InP. 2015 , 64, 068101	
97	Theoretical Analysis of Temperature Characteristics of Coupled Quantum Dot Lasers. 2016,	
96	Lasing in a Single Nanowire with Quantum Dots Operating at Room Temperature. 2016 , 44, 502	
95	High-Performance Quantum-Dot Lasers. 2016 ,	
94	High-density Optical Interconnects with Integrated Quantum Dot Lasers. 2016 ,	
93	InP-Based Quantum Dot Lasers. 2017 ,	
92	Investigation of Carrier Conduction Mechanism over InAs/InP Quantum Dashes and InAs/GaAs Quantum Dots Based p-i-n Laser Heterostructures. 2017 , 05, 1-9	1

91	Thresholdless lasing with quantum dot gain. 2017 ,	
90	References. 2017 , 279-286	
89	Characteristics-improvement of QD semiconductor optical amplifier using rapid-thermal annealing process. 2018 ,	
88	Recent progress in nanowire quantum-dot lasers. 2018,	
87	Incorporating structural analysis in a quantum dot Monte-Carlo model. 2018,	
86	Electrospun Nanofibers prepared with CdTe QDs, CdTeSe QDs and CdTe/CdS Core-shell QDs. 119-124	
85	Growth of Semiconductor Self-assembled Quantum Dots by Molecular Beam Epitaxy and the Dynamics of Photo-excited Carriers. 2018 , 61, 315-324	
84	Advances in Quantum Dot Lasers for High Efficiency and High Output Power Operation. 2019 , 47, 210	
83	Ultra-Broadband Wavelength Tunable Quantum Dot (QD) Lasers and Related QD Devices for Further Photonic Network Communications. 2019 , 47, 583	
82	Resilience of state-of-the-art 1300nm In(Ga)As/GaAs quantum-dot lasers to external optical feedback (Withdrawal Notice). 2019 ,	
81	InP/AlGaInP quantum dot laser emitting at short wavelength of 660 nm. 2019 ,	
80	The effect of growth rate variation on structural and optical properties of self assembled InAs quantum dots. 2019 ,	
79	Optoelectronic Properties and Applications of Quantum Dots. 2019 , 503-536	
78	Toward scalable III-nitride quantum dot structures for quantum photonics. 2020 , 1-27	
77	Near-Infrared Electroluminescence of AlGaN Capped InGaN Quantum Dots Formed by Controlled Growth on Photoelectrochemical Etched Quantum Dot Templates.	2
76	InAs/GaAsSb in-plane ultrahigh-density quantum dot lasers.	Ο
75	Low temperature Fermi-Dirac distribution in InAsP quantum dot lasers. 2021 , 122, 111697	2
74	High temperature operation of quantum dot semiconductor optical amplifier for uncooled 80 Gbps data transmission. 2020 ,	

73 Heterostructure Photonic Devices. **2020**, 419-514

72	Optical Properties of Quantum Well Structures. 2020 , 129-154	
71	Monolithic PassiveActive Integration of Epitaxially Grown Quantum Dot Lasers on Silicon. 2100522	1
70	Structural properties of GaN quantum dots. 2005 , 3-12	
69	Site Control and Selective-Area Growth Techniques of In As Quantum Dots with High Density and High Uniformity. 2007 , 463-488	
68	Fabrication and physics of microcavity quantum wire lasers.	
67	Mutual information in coupled double quantum dots. 2020 , 2020, 093209	
66	InGaN quantum dots with short exciton lifetimes grown on polar c-plane by metal-organic chemical vapor deposition. 2020 , 7, 115903	O
65	Ultralow threshold blue quantum dot lasers: what the true recipe for success?. 2020 , 10, 23-29	3
64	Effect of as flux rate during growth interruption on the performances of InAs/InGaAsP/InP quantum dots and their lasers grown by metal-organic chemical vapor deposition. 2022 , 578, 126424	1
63	Optical information processing using dual state quantum dot lasers: complexity through simplicity. 2021 , 10, 238	2
62	Laser Characteristic and Strain Distribution Dependence on Embedding Layer Thickness of Quantum Dots Laser Diodes Grown on InP(311)B Substrate. 2100466	
61	加取的印刷加 As 阻. ℃见2022 , 57, 68	
60	Continuous Wavelength Characterization of 1.3 μ m Quantum Dot Mesa Diode. 2020 ,	
59	Influence of Double Feedback on Stationary States of Quantum Dots Lasers. 2022, 3-10	
58	Investigation into the InAs/GaAs quantum dot material epitaxially grown on silicon for O band lasers. 2022 , 43, 012301	1
57	Multi-wavelength 128 Gbit s 🛭 🖪 PAM4 optical transmission enabled by a 100 GHz quantum dot mode-locked optical frequency comb. 2022 , 55, 144001	0
56	High-Efficiency Quantum Dot Lasers as Comb Sources for DWDM Applications. 2022 , 12, 1836	O

Formation of an Oxide Surface Layer and Its Influence on the Growth of Epitaxial Silicon Nanowires. **2021**, 55, 771

54	Introduction. 2022, 1-17		
53	A large-scale single-mode array laser based on a topological edge mode. 2022,		2
52	Recent Progress of Quantum Dot Lasers Monolithically Integrated on Si Platform. 2022, 10,		1
51	Recent Developments of Quantum Dot Materials for High Speed and Ultrafast Lasers 2022, 12,		2
50	The role of wetting layer and QD-layers on the performance of 1.3‡m QD-VCSEL. 2022 , 128, 1		1
49	Near-infrared dual-wavelength surface-emitting light source using InAs quantum dots resonant with vertical cavity modes. <i>Japanese Journal of Applied Physics</i> , 2022 , 61, SD1003	1.4	
48	Quantum Communication Using Semiconductor Quantum Dots. 2100116		9
47	Low-threshold miniaturized core-shell GaAs/InGaAs nanowire/quantum-dot hybrid structure nanolasers. 2022 , 152, 108150		
46	Highlights of 10-years of Research in a Japanese Si Photonics Project. 2022 ,		
45	1.5-͡μm Indium Phosphide-based Quantum Dot Lasers and Optical Amplifiers. 2022 ,		
44	Hybrid Structure of Semiconductor Quantum Well Superlattice and Quantum Dot. 2022 , 325-341		
43	Active multi-mode interferometer semiconductor optical amplifier on quantum-dots toward high saturated output power under high temperature. <i>Japanese Journal of Applied Physics</i> ,	1.4	
42	Gain roll-off in cadmium selenide colloidal quantum wells under intense optical excitation 2022 , 12, 8016		2
41	An Energy-Efficient and Bandwidth-Scalable DWDM Heterogeneous Silicon Photonics Integration Platform. <i>IEEE Journal of Selected Topics in Quantum Electronics</i> , 2022 , 1-19	3.8	2
40	Solution-Processed Quantum-Dot Solar Cells. <i>Springer Handbooks</i> , 2022 , 1215-1266	1.3	O
39	Toward temperature-insensitive near-infrared optical gain using low-toxicity Ag2Se quantum dots. <i>Nanoscale</i> ,	7.7	О
38	Growth of InAs(Bi)/GaAs Quantum Dots under a Bismuth Surfactant at High and Low Temperature. <i>Journal of Nanomaterials</i> , 2022 , 2022, 1-9	3.2	O

37	Impact of low temperature cover layer growth of InAs/GaAs quantum dots on their optical properties. <i>Japanese Journal of Applied Physics</i> ,	1.4	O
36	Strain and built-in potentials in wurtzite polar and non-polar InGaN/GaN quantum wires. <i>Journal of the Korean Physical Society</i> ,	0.6	
35	Series on Semiconductor Science and Technology. 2003, i-i		
34	Copyright Page. 2003 , iv-iv		
33	Preface. 2003, vii-ix		
32	Advances of Semiconductor Mode-locked Laser for Optical Frequency Comb Generation. 2022,		O
31	Ultrafast electron dynamics of graphene quantum dots: High harmonic generation. 2022, 106,		0
30	Built-in potential and ground state switching in coupled InGaN/GaN quantum wires. 2022 , 356, 114949		O
29	Micro light-emitting diodes. 2022 , 5, 564-573		1
28	On-chip optical comb sources. 2022 , 7, 100901		O
27	Ultrafast valley polarization of graphene nanorings. 2022 , 106,		0
26	Recombination radiation of heteroepitaxial structures with InAs quantum dots grown on surface of (311)B GaAs by MBE. 2022 , 1096, 012032		O
25	InP-based \$1.3 mumathrm{m}\$ quantum dot laser. 2022 ,		O
24	Quantum Dot SiPh Hybrid Wavelength Tunable Laser Diode with 100 nm Tunable Range. 2022 ,		O
23	Advances in Quantum Dot Lasers - 40 Years of History. 2022 ,		О
22	Influence of indium content and carrier density on spontaneous emission spectra of wurtzite InGaN/GaN quantum wires with screening effects. 2023 , 360, 115038		O
21	Edge States and Strain-Driven Topological Phase Transitions in Quantum Dots in Topological Insulators. 2022 , 12, 4283		О
20	Fluoride ligand exchange for quantum dot light-emitting diodes with improved efficiency and stability. 2022 , 121, 231105		О

19	1.3-th InAs/GaAs quantum dot superluminescent diodes based on curved waveguide. 2022,	О
18	Edge emitting mode-locked quantum dot lasers. 2023 , 87, 100451	О
17	Extreme temperature operation for broad bandwidth quantum-dot based superluminescent diodes. 2023 , 122, 031104	0
16	Last 60th salute to the journal. 2023 , 122, 020401	О
15	Introduction. 2023 , 1-24	0
14	Fabrication of GaAs Quantum Wires (~ 10nm) by MOCVD Selective Growth. 1993 ,	О
13	One-dimensional Exciton Diffusion in GaAs Quantum Wires. 1995,	0
12	Fabrication of GaAs Quantum Dots Grown in Two-dimensional V-Grooves by MOCVD Selective Growth. 1995 ,	О
11	Realization of large subband separation and high power light output in GaAs/AlGaAs two-dimensional quantum well wire laser arrays. 1995 ,	0
10	Theoretical studies on electronic and optical properties of non-polar wurtzite InGaN/GaN quantum wires. 2023 , 150, 115706	О
9	Metamorphic InAs/InGaAs quantum dots for optoelectronic devices: A review. 2023, 276, 111996	О
8	Competitive Vertical Cavity and Edge Emitting Quantum Dot Lasers. 1998,	O
7	Self-assembly of Compound Semiconductor Quantum Dots For Optoelectronic Applications. 1997,	О
6	Vertical cavity surface emitting laser with self-assembled quantum dots. 1997,	О
5	Fabrication of Quantum Dots and Nano-scale Observation of Electron-Photon Interaction. 1995,	О
4	Anisotropic Etching of InGaN Thin Films with Photoelectrochemical Etching to Form Quantum Dots. 2023 , 16, 1890	О
3	Investigation of four-wave mixing in flared-waveguide quantum-dot semiconductor optical amplifiers. 2023 , 129,	O
2	Understanding of Argon Fluid Sensor Using Single Quantum Well Through K-P Model: A Bio-medical Application Using Semiconductor Based Quantum Structure. 2023 , 383-405	O

Quantum dot materials for mid-IR photodetection: opinion. **2023**, 13, 1328

О