Dietary Sodium Bicarbonate and Magnesium Oxide for Cows: Effects of Production, Acid-Based Metabolism, an

Journal of Dairy Science 65, 712-731 DOI: 10.3168/jds.s0022-0302(82)82259-5

Citation Report

#	Article	IF	CITATIONS
1	Addition of Sodium Bicarbonate to Calf Starter Rations Varying in Protein Percent. Journal of Dairy Science, 1983, 66, 2149-2160.	3.4	8
2	Buffer Requirements for Maintenance of pH during Fermentation of Individual Feeds in Continuous Cultures. Journal of Dairy Science, 1983, 66, 1881-1890.	3.4	33
3	Effects of 1.2% Sodium Bicarbonate with Two Ratios of Corn Silage:Grain on Milk Production, Rumen Fermentation, and Nutrient Digestion by Lactating Dairy Cows. Journal of Dairy Science, 1983, 66, 1290-1297.	3.4	42
4	Effect of Sodium Bicarbonate Addition to Alfalfa Hay-Based Diets on Digestibility of Dietary Fractions and Rumen Characteristics. Journal of Dairy Science, 1984, 67, 2344-2355.	3.4	24
5	Digesta Passage Measured by Markers in Dairy Cows Fed Two Ratios of Corn Silage:Grain with 0 or 1.2% Sodium Bicarbonate. Journal of Dairy Science, 1984, 67, 1953-1964.	3.4	14
6	Response of Milking Cows Fed a High Concentrate, Low Roughage Diet Plus Sodium Bicarbonate, Magnesium Oxide, or Magnesium Hydroxide. Journal of Dairy Science, 1984, 67, 2532-2545.	3.4	37
7	Influence of Dietary Sodium and Potassium Bicarbonate and Total Potassium on Heat-Stressed Lactating Dairy Cows. Journal of Dairy Science, 1984, 67, 2546-2553.	3.4	68
8	Functional Specific Gravity of Ground Hay Samples in Ionic Solutions. Journal of Dairy Science, 1985, 68, 848-856.	3.4	11
9	Dietary Sodium Bicarbonate for High-Producing Holstein Cows over Complete Lactations. Journal of Dairy Science, 1985, 68, 140-146.	3.4	10
10	Addition of Buffers to High Quality Alfalfa Hay-Based Diets for Dairy Cows in Early Lactation. Journal of Dairy Science, 1985, 68, 1722-1731.	3.4	16
11	Nutritional Requirements and Economics of Lowering Feed Costs. Journal of Dairy Science, 1985, 68, 1579-1584.	3.4	15
12	Milk Production, Nutrient Digestion, and Rate of Digesta Passage in Dairy Cows Fed Long or Chopped Alfalfa Hay Supplemented with Sodium Bicarbonate,. Journal of Dairy Science, 1985, 68, 868-880.	3.4	38
13	Response of Dairy Cows to Sodium Bicarbonate and Limestone in Early Lactation. Journal of Dairy Science, 1985, 68, 646-660.	3.4	54
14	Rumen Liquid Dilution Rate in Dairy Cows Fed Once Daily: Effects of Diet and Sodium Bicarbonate Supplementation. Journal of Dairy Science, 1985, 68, 1171-1180.	3.4	33
15	Dietary Magnesium Oxide Interactions with Sodium Bicarbonate on Cows in Early Lactation. Journal of Dairy Science, 1985, 68, 881-890.	3.4	30
16	Eating and Resting Salivation in Early Lactation Dairy Cows. Journal of Dairy Science, 1986, 69, 1282-1292.	3.4	81
17	Effects of Sodium Bicarbonate with Three Ratios of Hay Crop Silage to Concentrate for Dairy Cows. Journal of Dairy Science, 1986, 69, 2671-2680.	3.4	9
18	Sodium Bicarbonate and Alfalfa Hay Additions to Wheat Silage Diets Fed to Lactating Dairy Cows. Journal of Dairy Science, 1986, 69, 2321-2333.	3.4	9

		Citation Report		
#	Article		IF	Citations
19	Chemical Factors Involved in Ruminal Fiber Digestion. Journal of Dairy Science, 1986, 69	, 2755-2766.	3.4	580
20	A Naturally Occurring Mineral as a Buffer in the Diet of Lactating Dairy Cows. Journal of Science, 1986, 69, 111-123.	Dairy	3.4	24
21	Effects of Sodium Bicarbonate, Magnesium Oxide, and a Commercial Buffer Mixture in E Cows Fed Hay Crop Silage. Journal of Dairy Science, 1986, 69, 1595-1603.	arly Lactation	3.4	26
22	Effect of pH and Energy Spilling on Bacterial Protein Synthesis by Carbohydrate-Limited Mixed Rumen Bacteria. Journal of Dairy Science, 1986, 69, 2941-2947.	Cultures of	3.4	172
23	Responses of Lactating Cows to Dietary Sodium Source and Quantity and Potassium Qu Heat Stress. Journal of Dairy Science, 1986, 69, 99-110.	lantity During	3.4	69
24	Effect of Sodium Bicarbonate and Sodium Bentonite on Digestion, Solid and Liquid Flow Fermentation Characteristics of Forage Sorghum Silage-Based Diets Fed to Steers. Journ Science, 1986, 63, 923-932.	, and Ruminal al of Animal	0.5	19
25	Effects of Diet Concentrate Level and Sodium Bicarbonate on Site and Extent of Forage in the Gastrointestinal Tract of Wethers. Journal of Animal Science, 1986, 62, 1388-139		0.5	24
26	Effect of Yeast Culture and Aspergillus oryzae Fermentation Extract on Ruminal Charact Nutrient Digestibility. Journal of Dairy Science, 1987, 70, 2063-2068.	eristics and	3.4	224
27	Comparison of buffers on rumen functions, turnover rate and gastric secretions in Holst Animal Feed Science and Technology, 1987, 17, 257-270.	ein steers.	2.2	1
28	Effect of Mineral Salts, Carbachol, and Pilocarpine on Nutrient Digestibility and Ruminal Characteristics in Cattle. Journal of Dairy Science, 1987, 70, 592-600.		3.4	21
29	Effects of Potassium Carbonate and Sodium Bicarbonate on Rumen Function in Lactatin Cows. Journal of Dairy Science, 1987, 70, 81-90.	g Holstein	3.4	29
30	Potassium Carbonate as a Potassium Source and Dietary Buffer for Lactating Holstein C Hot Weather. Journal of Dairy Science, 1987, 70, 309-320.	ows During	3.4	31
31	Simultaneous Measures of Rates of Ruminal Digestion and Passage of Feeds for Predicti Nitrogen and Dry Matter Digestion in Lactating Dairy Cows. Journal of Animal Science, 1	on of Ruminal 987, 64, 565-577.	0.5	42
32	Trona and Sodium Bicarbonate in Beef Cattle Diets: Effects on pH and Volatile Fatty Acio Concentrations. Journal of Animal Science, 1987, 65, 309-316.		0.5	22
33	Effect of sodium bicarbonate on milk yield and milk composition of goats and on rumen of kids. Small Ruminant Research, 1988, 1, 37-47.	fermentation	1.2	13
34	Dietary Buffering Requirements of the Lactating Dairy Cow: A Review. Journal of Dairy So 3246-3266.	:ience, 1988, 71,	3.4	253
35	Modeling of Rumen Water Kinetics and Effects of Rumen pH Changes. Journal of Dairy S 1178-1188.	cience, 1988, 71,	3.4	75
36	Sodium Sesquicarbonate for Early Lactation Dairy Cows Fed Corn Silage-Based Diets. Jou Science, 1988, 71, 381-387.	irnal of Dairy	3.4	23

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
37	Forage pH Effects on Intake in Early Lactation Dairy Cows. Journal of Dairy Science, 1988, 71, 1198-1203.	3.4	13
38	Effects of Limestone on Starch Digestion in Holstein Steers. Journal of Dairy Science, 1988, 71, 754-761.	3.4	4
39	Effects of Feeding Synthetic Zeolite A and Sodium Bicarbonate on Milk Production Nutrient Digestion, and Rate of Digesta Passage in Dairy Cows. Journal of Dairy Science, 1988, 71, 946-953.	3.4	33
40	Efficacy of Simulated, Slow Release Sodium Bicarbonate in Stabilizing Ruminal Milieu and Acid-Base Status in Lactating Dairy Cattle. Journal of Dairy Science, 1988, 71, 1823-1829.	3.4	8
41	Effect of Sodium Bicarbonate and Magnesium Oxide in an Alfalfa-Based Total Mixed Ration Fed to Early Lactating Dairy Cattle. Journal of Dairy Science, 1988, 71, 159-163.	3.4	14
42	Sodium Bicarbonate for Early Lactation Cows Fed Corn Silage or Hay Crop Silage-Based Diets. Journal of Dairy Science, 1988, 71, 373-380.	3.4	9
43	Impact of Forage Fiber Content on Digestion and Digesta Passage in Lactating Dairy Cows. Journal of Dairy Science, 1988, 71, 1556-1565.	3.4	69
44	Effects of a New Multielement Buffer on Production, Ruminal Environment, and Blood Minerals of Lactating Dairy Cows. Journal of Dairy Science, 1988, 71, 1573-1586.	3.4	15
45	Influence of Major Minerals on Rumen Microbiota. Journal of Nutrition, 1988, 118, 249-260.	2.9	75
46	Ruminal Degradation and Outflow of Amino Acids in Cows. Transboundary and Emerging Diseases, 1989, 36, 55-63.	0.6	9
47	Effects of Rumen-Mate® on Lactational Performance of Holsteins Fed a High Grain Diet. Journal of Dairy Science, 1989, 72, 1831-1841.	3.4	4
48	Effect of Yeast Culture and Sodium Bicarbonate on Milk Yield and Composition in Dairy Cows. Journal of Dairy Science, 1989, 72, 1929-1932.	3.4	34
49	The Potential of a Phyllosilicate (Palabora Vermiculite) as Buffer in Dairy Cattle Diets. Journal of Dairy Science, 1989, 72, 964-971.	3.4	3
50	Effects of Sodium Bicarbonate and Sodium Sesquicarbonate on Animal Performance, Ruminal Metabolism, and Systemic Acid-Base Status. Journal of Dairy Science, 1989, 72, 2039-2045.	3.4	17
51	Effect of Reactivity Rate and Particle Size of Magnesium Oxide on Magnesium Availability, Acid-Base Balance, Mineral Metabolism, and Milking Performance of Dairy Cows. Journal of Dairy Science, 1989, 72, 462-470.	3.4	29
52	Efficacy of supplemental dietary neutralizing agents for lactating dairy cows. A review. Animal Feed Science and Technology, 1989, 23, 277-303.	2.2	31
54	Effect of Type and Site of Acid Neutralization on Voluntary Intake of Corn Silage by Dairy Heifers. Journal of Dairy Science, 1990, 73, 1571-1577.	3.4	4
55	Lactational Responses to and In Vitro Ruminal Solubility of Magnesium Oxide or Magnesium Chelate. Journal of Dairy Science, 1990, 73, 413-424.	3.4	9

CITATION REPORT

#	Article	IF	CITATIONS
56	Role of Magnesium in the Dietary Cation-Anion Balance Equation for Ruminants. Journal of Dairy Science, 1991, 74, 1866-1873.	3.4	21
57	Controlled Ruminal Infusion of Sodium Bicarbonate. 1. Influence of Postfeeding Infusion Interval on Ruminal Milieu. Journal of Dairy Science, 1991, 74, 1675-1683.	3.4	9
58	Controlled Ruminal Infusion of Sodium Bicarbonate. 2. Effects of Dietary and Infused Buffer on Ruminal Milieu. Journal of Dairy Science, 1991, 74, 3496-3504.	3.4	8
59	Differentiation of the effects of protein status and acid-base balance on the appetite of sheep for lucerne silage. Journal of Agricultural Science, 1992, 118, 249-257.	1.3	4
60	Ruminal Buffers: Temporal Effects on Buffering Capacity and pH of Ruminal Fluid from Cows Fed a High Concentrate Diet. Journal of Dairy Science, 1992, 75, 1069-1077.	3.4	24
61	Effects of bicarbonate on rumen degradability of concentrate and grass hay in Angora goats. Small Ruminant Research, 1992, 9, 117-123.	1.2	6
62	Influence of Sorghum Grain Processing on Performance of Lactating Dairy Cows. Journal of Dairy Science, 1993, 76, 575-581.	3.4	50
63	Manipulation of Dietary Cation-Anion Difference on Nutritionally Related Production Diseases, Productivity, and Metabolic Responses of Dairy Cows. Journal of Dairy Science, 1994, 77, 1437-1450.	3.4	90
64	The Effects of Changing Ration Ingredients on Acid-Base Status, Renal Function, and Macromineral Metabolism. Journal of Dairy Science, 1995, 78, 2024-2039.	3.4	20
65	Dietary Cation-Anion Difference, Acid-Base Status, Mineral Metabolism, Renal Function, and Milk Production of Lactating Cows. Journal of Dairy Science, 1995, 78, 2259-2284.	3.4	37
66	Manipulation of ruminal fermentation. , 1997, , 523-632.		146
67	Effect of Dietary Forage Concentration and Buffer Addition on Duodenal Flow of Trans-C18:1 Fatty Acids and Milk Fat Production in Dairy Cows. Journal of Dairy Science, 1997, 80, 2104-2114.	3.4	196
68	Effect of Anionic Salts in Prepartum Diets Based on Alfalfa. Journal of Dairy Science, 1997, 80, 2866-2875.	3.4	80
69	Critical analysis of N balance experiments with lactating cows. Livestock Science, 1997, 52, 113-122.	1.2	111
70	Effects of Buffers on Milk Fatty Acids and Mammary Arteriovenous Differences in Dairy Cows Fed Ca Salts of Fatty Acids. Journal of Dairy Science, 1998, 81, 2001-2010.	3.4	10
71	Calculation of the buffering capacity of bicarbonate in the rumen and in vitro Journal of Animal Science, 1998, 76, 1702.	0.5	86
72	Net alkali requirement of foods of different acidogenicities in a continuous culture system. BSAP Occasional Publication, 1998, 22, 154-156.	0.0	0
73	Influence of Carbohydrate Source and Buffer on Rumen Fermentation Characteristics, Milk Yield, and Milk Composition in Early-Lactation Holstein Cows. Journal of Dairy Science, 1999, 82, 2486-2496.	3.4	86

#	Article	IF	CITATIONS
74	Influence of Carbohydrate Source and Buffer on Rumen Fermentation Characteristics, Milk Yield, and Milk Composition in Late-Lactation Holstein Cows. Journal of Dairy Science, 2001, 84, 1707-1716.	3.4	39
75	Effect of dietary sodium bicarbonate supplementation on fermentation characteristics and ciliate protozoal population in rumen of lambs. Small Ruminant Research, 2003, 47, 203-212.	1.2	36
76	A new methodology for studying the performance of products against ruminal acidosis. Journal of the Science of Food and Agriculture, 2003, 83, 1607-1612.	3.5	5
77	Effects of Dietary Cation-Anion Difference on Intake, Milk Yield, and Blood Components of the Early Lactation Cow. Journal of Dairy Science, 2005, 88, 4384-4392.	3.4	24
78	Statistical evaluation of early- and mid-lactation dairy cow responses to dietary sodium bicarbonate addition. Animal Feed Science and Technology, 2005, 119, 43-54.	2.2	43
79	Effect of Dietary Cation-Anion Difference and Dietary Crude Protein on Performance of Lactating Dairy Cows During Hot Weather. Journal of Dairy Science, 2007, 90, 1842-1850.	3.4	20
80	Effect of Dietary Strong Ions on Chewing Activity and Milk Production in Lactating Dairy Cows. Journal of Dairy Science, 2007, 90, 5610-5618.	3.4	8
81	Application of strong ion difference theory to urine and the relationship between urine pH and net acid excretion in cattle. American Journal of Veterinary Research, 2009, 70, 915-925.	0.6	34
82	Effects of sodium sesquicarbonate on dry matter intake and production of milk and milk components by Holstein cows. Journal of Dairy Science, 2009, 92, 3354-3363.	3.4	10
83	Effects of Supplementation of Natural Zeolite on Intake, Digestion, Ruminal Fermentation, and Lactational Performance of Dairy Cows1. The Professional Animal Scientist, 2010, 26, 647-654.	0.7	32
84	Dietary cation anion difference: Impact on productive and reproductive performance in animal agriculture. African Journal of Biotechnology, 2010, 9, 7976-7988.	0.6	5
85	Corn silage versus corn silage:alfalfa hay mixtures for dairy cows: Effects of dietary potassium, calcium, and cation-anion difference. Journal of Dairy Science, 2011, 94, 5105-5110.	3.4	13
86	Development and evaluation of equations in the Cornell Net Carbohydrate and Protein System to predict nitrogen excretion in lactating dairy cows. Journal of Dairy Science, 2012, 95, 2004-2014.	3.4	44
87	Is subacute ruminal acidosis a pH related problem? Causes and tools for its control. Animal Feed Science and Technology, 2012, 172, 42-50.	2.2	80
88	Fecal starch as an indicator of total-tract starch digestibility by lactating dairy cows. Journal of Dairy Science, 2014, 97, 1862-1871.	3.4	40
89	Impact of barley form on equine total tract fibre digestibility and colonic microbiota. Animal, 2015, 9, 1943-1948.	3.3	12
90	The effect of buffering dairy cow diets with limestone, calcareous marine algae, or sodium bicarbonate on ruminal pH profiles, production responses, and rumen fermentation. Journal of Dairy Science, 2015, 98, 5506-5514.	3.4	45
91	Intake, milk production, ruminal, and feed efficiency responses to dietary cation-anion difference by lactating dairy cows. Journal of Dairy Science, 2015, 98, 8973-8985.	3.4	38

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
92	Evaluation of different types of calcined magnesites as feed supplement in small ruminant. Small Ruminant Research, 2017, 149, 188-195.	1.2	3
93	A 100-Year Review: Metabolic modifiers in dairy cattle nutrition. Journal of Dairy Science, 2017, 100, 10113-10142.	3.4	34
94	Effects of magnesium source and monensin on nutrient digestibility and mineral balance in lactating dairy cows. Journal of Dairy Science, 2018, 101, 1152-1163.	3.4	18
95	Diet Supplementation With Pomegranate Peel Extract Altered Odorants Emission From Fresh and Incubated Calves' Feces. Frontiers in Sustainable Food Systems, 2018, 2, .	3.9	11
96	Modulation of rumen pH by sodium bicarbonate and a blend of different sources of magnesium oxide in lactating dairy cows submitted to a concentrate challenge. Journal of Dairy Science, 2018, 101, 9777-9788.	3.4	22
97	The effect of calcareous marine algae, with or without marine magnesium oxide, and sodium bicarbonate on rumen pH and milk production in mid-lactation dairy cows. Journal of Dairy Science, 2019, 102, 8027-8039.	3.4	11
98	A comparative study of four rumen buffering agents on productive performance, rumen fermentation and meat quality in growing lambs fed a total mixed ration. Animal, 2019, 13, 2252-2259.	3.3	5
99	Effects of dietary supplementation of calcified seaweed extract with different levels of salt on performance, acid–base balance, and meat quality of growing lambs. Animal Production Science, 2020, 60, 553.	1.3	0
100	Liquid molasses interacts with buffers to affect ruminal fermentation, milk fatty acid profile, and milk fat synthesis in dairy cows fed high-concentrate diets. Journal of Dairy Science, 2020, 103, 4327-4339.	3.4	11
101	Effects of calcium carbonate, magnesium oxide and encapsulated sodium bicarbonate on measures of postâ€ruminal fermentation. Journal of Animal Physiology and Animal Nutrition, 2020, 104, 802-811.	2.2	1
102	Feeding Value Assessment of Substituting Cassava (Manihot esculenta) Residue for Concentrate of Dairy Cows Using an In Vitro Gas Test. Animals, 2021, 11, 307.	2.3	9
103	Supplementation of fruit peel pellet containing phytonutrients to manipulate rumen <scp>pH</scp> , fermentation efficiency, nutrient digestibility and microbial protein synthesis. Journal of the Science of Food and Agriculture, 2021, 101, 4543-4550.	3.5	11
105	Abomasal infusion of ground corn and ammonium chloride in early-lactating Holstein-Friesian dairy cows to induce hindgut and metabolic acidosis. Journal of Dairy Science, 2021, 104, 4174-4191.	3.4	19
106	Modulation of ruminal pH, milk fat secretion, and biohydrogenation intermediates by alkalizing agents in dairy cows fed starch-rich diets. Livestock Science, 2021, 248, 104485.	1.6	3
107	Enhanced Ruminal Fermentation Parameters and Altered Rumen Bacterial Community Composition by Formulated Rumen Buffer Agents Fed to Dairy Cows with a High-Concentrate Diet. Agriculture (Switzerland), 2021, 11, 554.	3.1	8
108	Effects of supplemental source of magnesium and inclusion of buffer on ruminal microbial fermentation in continuous culture. Journal of Dairy Science, 2021, 104, 7820-7829.	3.4	11
109	History of Dairy Farming. , 2022, , 1-29.		0
110	ANION–CATION BALANCE AND ITS EFFECT ON THE PERFORMANCE OF RUMINANTS. , 1991, , 163-179.		1

7

#	Article	IF	CITATIONS
111	Effect of anionic salts in concentrate mixture and magnesium intake on some blood and urine minerals and acid-base balance of dry pregnant cows on grass silage based feeding. Agricultural and Food Science, 1998, 7, 535-543.	0.9	2
112	Effects of Zeolite Supplementation on Dairy Cow Production and Ruminal Parameters – A Review. Annals of Animal Science, 2018, 18, 857-877.	1.6	29
113	Effects of Sodium Bicarbonate, Magnesium Oxide and Dried Sugar Beet Pulp in Diets of Dairy Cows on Milk Yield, Milk Composition and Rumen Fluid and Some Blood Parameters. Journal of Animal and Veterinary Advances, 2010, 9, 1570-1574.	0.1	5
114	Effects of Fiber Sources on Ruminal pH, Buffering Capacity and Digestibility in Sheep. Journal of the Korean Society of Grassland and Forage Science, 2005, 25, 177-184.	0.4	4
115	Physiological adaptations in early-lactation cows result in differential responses to calcium perturbation relative to nonlactating, nonpregnant cows. Journal of Dairy Science, 2022, 105, 904-920.	3.4	8
116	Effects of Sodium Bicarbonate and Vitamin Supplementation on Milk Production and Composition in Lactating Holstein Cows Under Heat Stress Condition. Journal of Animal Science and Technology, 2008, 50, 705-712.	2.5	0
117	Evaluation of the ruminal function of Belgian dairy cows suspected of subacute ruminal acidosis. Vlaams Diergeneeskundig Tijdschrift, 2017, 86, 16-23.	0.1	0
118	Effects of calcium–magnesium carbonate and calcium–magnesium hydroxide as supplemental sources of magnesium on microbial fermentation in a dual-flow continuous culture. Translational Animal Science, 2021, 5, txaa229.	1.1	3
119	Rumen Düzenleyicilerinin Tampon Özellikleri Kullanılarak İn Vitro Yöntemiyle Rumen Fermantasyonuna Etkisinin Belirlenmesi. European Journal of Science and Technology, 0, , .	0.5	0
120	Effect of dietary supplementation or cessation of magnesium-based alkalizers on milk fat output in dairy cows under milk fat depression conditions. Journal of Dairy Science, 2022, 105, 2275-2287.	3.4	2
121	Effects of replacing magnesium oxide with calcium-magnesium carbonate with or without sodium bicarbonate on ruminal fermentation and nutrient flow in vitro. Journal of Dairy Science, 2022, 105, 3090-3101.	3.4	7
122	Supplementing a blend of magnesium oxide to feedlot cattle: effects on ruminal, physiological, and productive responses. Journal of Animal Science, 2022, 100, .	0.5	5
125	Replacement of Maize Silage and Soyabean Meal with Mulberry Silage in the Diet of Hu Lambs on Growth, Gastrointestinal Tissue Morphology, Rumen Fermentation Parameters and Microbial Diversity. Animals, 2022, 12, 1406.	2.3	5
126	Effects of calcium-magnesium carbonate and calcium-magnesium hydroxide as supplemental sources of magnesium on ruminal microbiome. Translational Animal Science, 2022, 6, .	1.1	4
127	Performance, nutritional behavior, and carcass characteristics of feedlot lambs fed diets with non-forage fiber source or sodium bicarbonate. Tropical Animal Health and Production, 2022, 54, .	1.4	3
128	Production, physiological response, and calcium and magnesium balance of lactating Holstein cows fed different sources of supplemental magnesium with or without ruminal buffer. Journal of Dairy Science, 2023, 106, 990-1001.	3.4	2
129	Increasing buffering capacity enhances rumen fermentation characteristics and alters rumen microbiota composition of high-concentrate fed Hanwoo steers. Scientific Reports, 2022, 12, .	3.3	2
130	Effects on rumen pH and feed intake of a dietary concentrate challenge in cows fed rations containing pH modulators with different neutralizing capacity. Journal of Dairy Science, 2023, 106, 4580-4598	3.4	2

#ARTICLEIFCITATIONS131Can dietary magnesium sources and buffer change the ruminal microbiota composition and
fermentation of lactating dairy cows?. Journal of Animal Science, 2023, 101, .0.51132Effects of feed additives on rumen function and bacterial and archaeal communities during a starch
and fructose challenge. Journal of Dairy Science, 2023, ..3.41133Supplementation of feedlot lambs with magnesium oxide and sodium bicarbonate: Effects on
performance, nutrient digestibility, rumen environment, serum biochemistry and antioxidant indices.2.20

CITATION REPORT