Glucose-induced insulin release depends on functional

Proceedings of the National Academy of Sciences of the Unite 79, 7322-7325

DOI: 10.1073/pnas.79.23.7322

Citation Report

#	Article	IF	CITATIONS
1	Collagen matrix promotes reorganization of pancreatic endocrine cell monolayers into islet-like organoids Journal of Cell Biology, 1983, 97, 935-939.	5.2	183
2	Mobilization of 45Ca from insulin-producing RINm5F cells attached to microcarriers. American Journal of Physiology - Endocrinology and Metabolism, 1984, 247, E719-E725.	3.5	4
3	Differential Effects of Age Versus Glycemic Stimulation on the Maturation of Insulin Stimulus-Secretion Coupling During Culture of Fetal Rat Islets. Diabetes, 1984, 33, 1028-1038.	0.6	67
4	Immunocytochemical localization of four hormones in the pancreas of the garter snake,Thamnophis sirtalis. The Anatomical Record, 1984, 208, 233-242.	1.8	37
5	Islet cell interactons with pancreatic B-cells. Experientia, 1984, 40, 1114-1126.	1.2	44
6	Isolation and transplantation of islet tissue. World Journal of Surgery, 1984, 8, 143-151.	1.6	30
7	The life story of the pancreatic B cell. Diabetologia, 1984, 26, 393-400.	6.3	102
8	Activity of prostaglandin biosynthetic pathways in rat pancreatic islets. Prostaglandins, 1984, 27, 925-938.	1.2	9
9	Effects of glucose and glucagon on the fructose 2,6-bisphosphate content of pancreatic islets and purified pancreatic B-cells. A comparison with isolated hepatocytes. Biochemical Journal, 1984, 221, 759-764.	3.7	42
10	Divergent effect of glucagon antibodies on arginine and glucose-stimulated insulin secretion in the rat. Diabetologia, 1985, 28, 441-444.	6.3	14
11	Insulin secretion from perifused rat pancreatic pseudoislets. In Vitro Cellular & Developmental Biology, 1985, 21, 421-427.	1.0	38
12	Adult rat pancreatic islet cells adherent to microcarrier beads: Evaluation of function and morphology. In Vitro Cellular & Developmental Biology, 1985, 21, 485-487.	1.0	4
13	Cyclic AMP potentiates glucoseâ€induced insulin release from mouse pancreatic islets without increasing cytosolic free Ca2. Acta Physiologica Scandinavica, 1985, 125, 639-647.	2.2	51
14	Regulation of Adenosine 3′,5′-Monophosphate Levels in the Pancreatic B Cell*. Endocrinology, 1985, 117, 834-840.	2.8	163
15	Structure-Function Relationships in Pancreatic Islets: Support for Intraislet Modulation of Insulin Secretion*. Endocrinology, 1985, 117, 2073-2080.	2.8	81
16	Structure, Function, and Immune Properties of Reassociated Islet Cells. Diabetes, 1985, 34, 898-903.	0.6	20
17	A New in Vitro Model for the Study of Pancreatic A and B Cells*. Endocrinology, 1985, 117, 806-816.	2.8	356
18	Interplay of Nutrients and Hormones in the Regulation of Insulin Release*. Endocrinology, 1985, 117, 824-833	2.8	296

#	Article	IF	CITATIONS
19	The capability for regulation of insulin secretion by somatostatin in purified pancreatic islet B cells during aging. Mechanisms of Ageing and Development, 1986, 33, 139-146.	4.6	12
20	The endocrine cells of the digestive system: amines, peptides, and modes of action. Anatomy and Embryology, 1986, 175, 151-162.	1.5	79
21	Functional Substructure of the Rat Somatotroph Immediate Release Pool: Definition by Responses to N ⁶ ,2′-O-Dibutyryl Cyclic Adenosine 3′,5′-Monophosphate, Potassium Ion, and/or Prostaglandin E ₁ . Endocrinology, 1986, 119, 2168-2176.	2.8	10
22	Spontaneous Reassociation of Dispersed Adult Rat Pancreatic Islet Cells Into Aggregates With Three-Dimensional Architecture Typical of Native Islets. Diabetes, 1987, 36, 783-790.	0.6	131
23	Effects of 2â€ketoisocaproate on insulin release and single potassium channel activity in dispersed rat pancreatic betaâ€cells Journal of Physiology, 1987, 385, 517-529.	2.9	59
24	Evidence for modulation of cell-to-cell electrical coupling by cAMP in mouse islets of Langerhans. FEBS Letters, 1987, 220, 342-346.	2.8	9
25	The biosociology of pancreatic B cells. Diabetologia, 1987, 30, 277-291.	6.3	166
26	Reversible morphological and functional abnormalities of RINm5F cells cultured on polystyrene sulfonate beads. Journal of Biomedical Materials Research Part B, 1987, 21, 585-601.	3.1	17
27	Quantitative immunocytochemical analysis of the endocrine pancreas of the Nile crocodile. American Journal of Anatomy, 1987, 178, 103-115.	1.0	16
28	Continuous flow electrophoretic separation of proteins and cells from mammalian tissues. Cell Biophysics, 1987, 10, 61-85.	0.4	36
29	Heterogeneities of the islets in the rabbit pancreas and the problem of ?paracrine? regulation of islet cells. Anatomy and Embryology, 1988, 178, 297-307.	1.5	23
30	Dynamics of insulin release by perifused insulin-producing tumoral cells: effects of glucose, forskolin, leucine, barium and theophylline. International Journal of Gastrointestinal Cancer, 1988, 3, 17-31.	0.4	4
31	Effect of arginine and glucagon on perifused purified beta cells. Biochemical and Biophysical Research Communications, 1988, 151, 948-953.	2.1	3
32	Beta cell contact and insulin release. Biochemical and Biophysical Research Communications, 1988, 153, 999-1005.	2.1	3
33	Secretion uncouples glucose inhibition of glucagon-producing cells resulting in a simultaneous stimulation of both glucagon and insulin release. Regulatory Peptides, 1988, 23, 315-322.	1.9	5
34	The gap junction: a channel for multiple functions?. European Journal of Clinical Investigation, 1988, 18, 444-453.	3.4	42
35	Calcitonin gene-related peptide and somatostatin inhibit insulin release from individual rat B cells. Molecular and Cellular Endocrinology, 1988, 57, 41-49.	3.2	45
36	The Pathology of the Endocrine Pancreas in Diabetes. , 1988, , .		12

#	ARTICLE	IF	CITATIONS
37	Interaction of Sulfonylureas With Pancreatic β-Cells: A Study With Glyburide. Diabetes, 1988, 37, 1090-1095.	0.6	37
38	Properties of single potassium channels modulated by glucose in rat pancreatic betaâ€cells Journal of Physiology, 1988, 400, 501-527.	2.9	128
39	Effects of Hyperglycemia on Function of Isolated Mouse Pancreatic Islets Transplanted Under Kidney Capsule. Diabetes, 1989, 38, 510-515.	0.6	96
40	Failure of glucose to elicit a normal secretory response in fetal pancreatic beta cells results from glucose insensitivity of the ATP-regulated K+ channels Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 4505-4509.	7.1	108
41	Secretion of Insulin During Aging. Journal of the American Geriatrics Society, 1989, 37, 983-990.	2.6	23
42	Direct effect of insulin and insulin-like growth factor-I on the secretory activity of rat pancreatic beta cells. Diabetologia, 1990, 33, 649-653.	6.3	78
43	Regulation of Insulin Secretion from \hat{l}^2 -Cell Lines Derived from Transgenic Mice Insulinomas Resembles that of Normal \hat{l}^2 -Cells [*] . Endocrinology, 1990, 126, 2815-2822.	2.8	113
44	Chronic exposure to glibenclamide impairs insulin secretion in isolated rat pancreatic islets. Journal of Endocrinological Investigation, 1991, 14, 287-291.	3.3	16
45	Biophysical properties of gap junctions between freshly dispersed pairs of mouse pancreatic beta cells. Biophysical Journal, 1991, 59, 76-92.	0.5	157
46	Model for synchronization of pancreatic beta-cells by gap junction coupling. Biophysical Journal, 1991, 59, 547-559.	0.5	168
47	Neuronal influence on hormone release from anglerfish islet cells. American Journal of Physiology - Endocrinology and Metabolism, 1991, 261, E444-E456.	3.5	10
48	Actively Synthesizing <i>β</i> -Cells Secrete Preferentially after Glucose Stimulation*. Endocrinology, 1991, 129, 3157-3166.	2.8	79
49	The endocrine pancreas of glucagon-and somatostatin-immunized rabbits. Cell and Tissue Research, 1991, 265, 251-260.	2.9	13
50	The endocrine pancreas of glucagon-and somatostatin-immunized rabbits. Cell and Tissue Research, 1991, 265, 261-273.	2.9	6
51	Glucose-Stimulated Insulin Release by Individual Pancreatic Cells: Potentiation by Glyburide. Experimental Biology and Medicine, 1991, 196, 203-209.	2.4	7
52	Functional Subpopulations of Individual Pancreatic B-Cells in Culture. Endocrinology, 1991, 128, 3193-3198.	2.8	76
53	Glucagon mediates arginine-induced somatostatin secretion from isolated rat pancreatic islets. Scandinavian Journal of Clinical and Laboratory Investigation, 1992, 52, 107-112.	1.2	7
54	Entrapment of Cultured Pancreas Islets in Three-Dimensional Collagen Matrices. Cell Transplantation, 1992, 1, 51-60.	2.5	23

#	Article	IF	CITATIONS
55	Isolated pancreatic islets of the rat: An immunohistochemical and morphometric study. The Anatomical Record, 1993, 237, 489-497.	1.8	17
56	Neo-islets obtained from rat pancreas do not contain passenger leukocytes. Bulletin of Experimental Biology and Medicine, 1993, 115, 549-551.	0.8	1
57	Calcium-independent potentiation of insulin release by cyclic AMP in single β-cells. Nature, 1993, 363, 356-358.	27.8	365
58	Pancreatic beta-cells are rendered glucose-competent by the insulinotropic hormone glucagon-like peptide-1(7-37). Nature, 1993, 361, 362-365.	27.8	561
59	Long-term culture of human pancreatic islets in an extracellular matrix: morphological and metabolic effects. Molecular and Cellular Endocrinology, 1993, 94, 9-20.	3.2	155
60	Why pancreatic islets burst but single beta cells do not. The heterogeneity hypothesis. Biophysical Journal, 1993, 64, 1668-1680.	0.5	160
61	THE METHODOLOGY FOR STUDYING COORDINATED CALCIUM CONCENTRATION CHANGES IN A PANCREATIC \hat{I}^2 CELL LINE. Journal of Basic and Clinical Physiology and Pharmacology, 1993, 4, 101-22.	1.3	0
62	Preservation of glucose-responsive islet beta-cells during serum-free culture Endocrinology, 1994, 134, 2614-2621.	2.8	38
63	Enterostatin inhibits insulin secretion from isolated perifused rat islets. Acta Diabetologica, 1994, 31, 160-163.	2.5	18
64	Activation of protein kinases and inhibition of protein phosphatases play a central role in the regulation of exocytosis in mouse pancreatic beta cells Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 4343-4347.	7.1	192
65	Magnitude and modulation of pancreatic β-cell gap junction electrical conductance in situ. Journal of Membrane Biology, 1995, 146, 163-176.	2.1	84
66	Glucagon improves insulin secretion from pig islets in vitro. Journal of Endocrinology, 1995, 147, 87-93.	2.6	24
67	Glucagon induces Ca2+-dependent increase of reduced pyridine nucleotides in mouse pancreatic β-cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 1996, 1310, 325-333.	4.1	4
68	Distribution of glucagon receptors on hormone-specific endocrine cells of rat pancreatic islets Endocrinology, 1996, 137, 5119-5125.	2.8	78
71	Islets of Langerhans Generate Wavelike Electric Activity Modulated by Glucose Concentration. Diabetes, 1996, 45, 595-601.	0.6	32
72	Long-Term Metabolic Control by Rat Islet Grafts Depends on the Composition of the Implant. Diabetes, 1996, 45, 1814-1821.	0.6	37
73	Fluorescence-activated cell sorted rat islet cells and studies of the insulin secretory process. Journal of Endocrinology, 1996, 149, 145-154.	2.6	47
74	Stable and diffusible pools of nucleotides in pancreatic islet cells Endocrinology, 1996, 137, 4671-4676.	2.8	87

#	Article	IF	CITATIONS
75	Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/NeuroD-deficient mice. Genes and Development, 1997, 11, 2323-2334.	5.9	904
76	Functional Comparison of Mouse, Rat, and Fish Islet Grafts Transplanted into Diabetic Nude Mice. General and Comparative Endocrinology, 1997, 106, 384-388.	1.8	34
77	Length of metabolic normalization after rat islet cell transplantation depends on endocrine cell composition of graft and on donor age. Diabetologia, 1997, 40, 1152-1158.	6.3	29
78	Pancreatic islets cultured on extracellular matrix: An excellent preparation for microfluorometry. Cytotechnology, 1998, 19, 255-268.	0.7	9
79	Would R.D. Lawrence have been interested in the regulation of insulin secretion from pancreatic \hat{l}^2 -cells?. , 1998, 15, 644-650.		0
80	Islet Allograft Rejection in Rats: A Time Course Study Characterizing Adhesion Molecule Expression, MHC Expression, and Infiltrate Immunophenotypes. Cell Transplantation, 1998, 7, 285-297.	2.5	4
81	L-Type and Dihydropyridine-Resistant Calcium Channel Trigger Exocytosis with Similar Efficacy in Single Rat Pancreatic β Cells. Biochemical and Biophysical Research Communications, 1998, 243, 878-884.	2.1	7
82	Islet Allograft Rejection in Rats: a Time Course Study Characterizing Adhesion Molecule Expression, Mhc Expression, and Infiltrate Immunophenotypes. Cell Transplantation, 1998, 7, 285-297.	2.5	7
83	Influence of cell number on the characteristics and synchrony of Ca2+oscillations in clusters of mouse pancreatic islet cells. Journal of Physiology, 1999, 520, 839-849.	2.9	104
84	Immunocytochemical Characterization of the Pancreatic Islet Cells of the Nile Tilapia (Oreochromis) Tj ETQq1 1	0.784314 1.8	rgBT /Overloc
85	Insulin release at the molecular level: Metabolic-electrophysiological modeling of the pancreatic beta-cells. IEEE Transactions on Biomedical Engineering, 2000, 47, 611-623.	4.2	26
86	Excitation Wave Propagation as a Possible Mechanism for Signal Transmission in Pancreatic Islets of Langerhans. Biophysical Journal, 2001, 80, 1195-1209.	0.5	59
87	Cell Therapy for Diabetes Using Piscine Islet Tissue. Cell Transplantation, 2001, 10, 125-143.	2.5	38
88	Neogenesis of β-Cells in Adult BETA2/NeuroD-Deficient Mice. Molecular Endocrinology, 2002, 16, 541-551.	3.7	62
89	Fast insulin secretion reflects exocytosis of docked granules in mouse pancreatic B-cells. Pflugers Archiv European Journal of Physiology, 2002, 444, 43-51.	2.8	245
90	Cellular Interaction Between Mouse Pancreatic α-Cell and β-Cell Lines: Possible Contact-Dependent Inhibition of Insulin Secretion. Experimental Biology and Medicine, 2003, 228, 1227-1233.	2.4	26
91	Factors Influencing Functional Survival of Microencapsulated Islet Grafts. Cell Transplantation, 2004, 13, 515-524.	2.5	53
92	Capacitance measurements of exocytosis in mouse pancreatic α-, β- and δ-cells within intact islets of Langerhans. Journal of Physiology, 2004, 556, 711-726.	2.9	137

#	Article	IF	CITATIONS
93	Production of Transgenic Tilapia with Brockmann Bodies Secreting [desThrB30] Human Insulin. Transgenic Research, 2004, 13, 313-323.	2.4	32
94	Functional identification and monitoring of individual ? and ? cells in cultured mouse islets of Langerhans. Acta Diabetologica, 2004, 41, 185-193.	2.5	26
95	Upregulation of the expression of tight and adherens junction-associated proteins during maturation of neonatal pancreatic islets in vitro. Journal of Molecular Histology, 2004, 35, 811-822.	2.2	24
96	Large dense-core vesicle exocytosis in pancreatic \$beta;-cells monitored by capacitance measurements. Methods, 2004, 33, 302-311.	3.8	38
97	Co-expression and regulation of connexins 36 and 43 in cultured neonatal rat pancreatic islets. Canadian Journal of Physiology and Pharmacology, 2005, 83, 142-151.	1.4	29
98	Preservation of glucose responsiveness in human islets maintained in a rotational cell culture system. Molecular and Cellular Endocrinology, 2005, 238, 39-49.	3.2	36
99	Overexpression of a dominant negative GIP receptor in transgenic mice results in disturbed postnatal pancreatic islet and beta-cell development. Regulatory Peptides, 2005, 125, 103-117.	1.9	51
100	How Noise and Coupling Induce Bursting Action Potentials in Pancreatic Î ² -Cells. Biophysical Journal, 2005, 89, 1534-1542.	0.5	37
101	Opposite effects of d-fructose on total versus cytosolic ATP/ADP ratio in pancreatic islet cells. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 773-780.	1.0	10
102	MIN6 β-cell–β-cell interactions influence insulin secretory responses to nutrients and non-nutrients. Biochemical and Biophysical Research Communications, 2006, 343, 99-104.	2.1	85
103	Morphological changes of isolated rat pancreatic islets: a structural, ultrastructural and morphometric study. Journal of Anatomy, 2006, 209, 381-392.	1.5	39
104	Direct regulation of insulin secretion by angiotensin II in human islets of Langerhans. Diabetologia, 2006, 49, 321-331.	6.3	47
105	The modulatory effect of leptin on the overall insulin production in ex-vivo normal rat pancreas. Canadian Journal of Physiology and Pharmacology, 2006, 84, 157-162.	1.4	5
106	Ca2+–Secretion Coupling Is Impaired in Diabetic Goto Kakizaki rats. Journal of General Physiology, 2007, 129, 493-508.	1.9	55
107	Cx36-Mediated Coupling Reduces Â-Cell Heterogeneity, Confines the Stimulating Glucose Concentration Range, and Affects Insulin Release Kinetics. Diabetes, 2007, 56, 1078-1086.	0.6	159
108	E-cadherin Interactions Regulate β-Cell Proliferation in Islet-like Structures. Cellular Physiology and Biochemistry, 2007, 20, 617-626.	1.6	58
109	Revascularization and remodelling of pancreatic islets grafted under the kidney capsule. Journal of Anatomy, 2007, 210, 565-577.	1.5	53
110	Effects of both glucose and IP3 concentrations on action potentials in pancreatic β-cells. European Biophysics Journal, 2007, 36, 187-197.	2.2	7

#	Article	IF	CITATIONS
111	Islet α-cells do not influence insulin secretion from β-cells through cell–cell contact. Endocrine, 2007, 31, 61-65.	2.2	27
112	RyR channels and glucose-regulated pancreatic β-cells. European Biophysics Journal, 2008, 37, 773-782.	2.2	8
113	Insulin secretion from human beta cells is heterogeneous and dependent on cell-to-cell contacts. Diabetologia, 2008, 51, 1843-1852.	6.3	115
114	A new conditional mouse mutant reveals specific expression and functions of connexin36 in neurons and pancreatic beta-cells. Experimental Cell Research, 2008, 314, 997-1012.	2.6	57
115	Long Lasting Synchronization of Calcium Oscillations by Cholinergic Stimulation in Isolated Pancreatic Islets. Biophysical Journal, 2008, 95, 4676-4688.	0.5	40
116	Cell coupling in mouse pancreatic \hat{l}^2 -cells measured in intact islets of Langerhans. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 3503-3523.	3.4	69
117	Optimal aggregation of dissociated islet cells for functional islet-like cluster. Journal of Biomaterials Science, Polymer Edition, 2008, 19, 441-452.	3.5	9
118	All together now: Exocytose or fail. Islets, 2009, 1, 78-80.	1.8	6
119	Explicit calcium bursting stochastic resonance. Biophysical Chemistry, 2009, 142, 40-45.	2.8	2
120	The physiology of rodent betaâ€cells in pancreas slices. Acta Physiologica, 2009, 195, 123-138.	3.8	19
121	Beneficial effects of intercellular interactions between pancreatic islet cells in blood glucose regulation. Journal of Theoretical Biology, 2009, 257, 312-319.	1.7	21
122	Oxygen consumption and diffusion in assemblages of respiring spheres: Performance enhancement of a bioartificial pancreas. Chemical Engineering Science, 2009, 64, 4470-4487.	3.8	60
123	Pancreatic islet transplantation. Diabetology and Metabolic Syndrome, 2009, 1, 9.	2.7	20
124	MIN6 Is Not a Pure Beta Cell Line but a Mixed Cell Line with Other Pancreatic Endocrine Hormones. Endocrine Journal, 2009, 56, 45-53.	1.6	45
125	Morphological changes of porcine islets of Langerhans after collagenase and HBSS infusion of the pancreas. Xenotransplantation, 2010, 17, 413-417.	2.8	3
126	Connexins: Key Mediators of Endocrine Function. Physiological Reviews, 2011, 91, 1393-1445.	28.8	145
127	Unperturbed islet α ell function examined in mouse pancreas tissue slices. Journal of Physiology, 2011, 589, 395-408.	2.9	61
128	α-cell loss from islet impairs its insulin secretion in vitro and in vivo. Islets, 2011, 3, 58-65.	1.8	4

#	Article	IF	Citations
129	A robust microfluidic in vitro cell perifusion system. , 2011, 2011, 8412-5.		2
130	A Microwell Cell Culture Platform for the Aggregation of Pancreatic Î ² -Cells. Tissue Engineering - Part C: Methods, 2012, 18, 583-592.	2.1	113
131	Damaging Loss of Self-Control by Stressed Â-Cells. Diabetes, 2012, 61, 267-269.	0.6	6
132	Cell-to-cell contact dependence and junctional protein content are correlated with in vivo maturation of pancreatic beta cells. Canadian Journal of Physiology and Pharmacology, 2012, 90, 837-850.	1.4	19
133	Connexin-dependent signaling in neuro-hormonal systems. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 1919-1936.	2.6	21
134	Diffusion into human islets is limited to molecules below 10kDa. Tissue and Cell, 2012, 44, 332-341.	2.2	14
135	The pancreatic beta cell surface proteome. Diabetologia, 2012, 55, 1877-1889.	6.3	22
136	Functional differences between aggregated and dispersed insulin-producing cells. Diabetologia, 2013, 56, 1557-1568.	6.3	37
137	Sustained function of alginate-encapsulated human islet cell implants in the peritoneal cavity of mice leading to a pilot study in a type 1 diabetic patient. Diabetologia, 2013, 56, 1605-1614.	6.3	190
138	Connexins and \hat{I}^2 -cell functions. Diabetes Research and Clinical Practice, 2013, 99, 250-259.	2.8	44
139	Protein-Mediated Interactions of Pancreatic Islet Cells. Scientifica, 2013, 2013, 1-22.	1.7	31
140	Influence of Internal Noise on Rhythmic Calcium Bursting. Applied Mechanics and Materials, 2013, 389, 17-20.	0.2	0
141	Mouse Pancreas Tissue Slice Culture Facilitates Long-Term Studies of Exocrine and Endocrine Cell Physiology in situ. PLoS ONE, 2013, 8, e78706.	2.5	37
142	Streptozotocin-Induced Diabetes Models: Pathophysiological Mechanisms and Fetal Outcomes. BioMed Research International, 2014, 2014, 1-11.	1.9	98
143	Neuronostatin inhibits glucose-stimulated insulin secretion via direct action on the pancreatic α-cell. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E1257-E1263.	3.5	19
144	Combination of microwell structures and direct oxygenation enables efficient and sizeâ€regulated aggregate formation of an insulinâ€secreting pancreatic βâ€cell line. Biotechnology Progress, 2014, 30, 178-187.	2.6	41
145	Controlled aggregation of primary human pancreatic islet cells leads to glucoseâ€responsive pseudoislets comparable to native islets. Journal of Cellular and Molecular Medicine, 2015, 19, 1836-1846.	3.6	64
146	Human Laminin Isotype Coating for Creating Islet Cell Sheets. Cell Medicine, 2015, 8, 39-46.	5.0	15

#	Article	IF	CITATIONS
147	Impact of Islet Size on Pancreatic Islet Transplantation and Potential Interventions to Improve Outcome. Cell Transplantation, 2015, 24, 11-23.	2.5	18
148	Role of Connexins and Pannexins in the Pancreas. Pancreas, 2015, 44, 1234-1244.	1.1	21
149	The Beta Cell in Its Cluster: Stochastic Graphs of Beta Cell Connectivity in the Islets of Langerhans. PLoS Computational Biology, 2015, 11, e1004423.	3.2	23
150	Fetal endocannabinoids orchestrate the organization of pancreatic islet microarchitecture. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E6185-94.	7.1	44
151	A Protocol to Enhance INS1E and MIN6 Functionality—The Use of Theophylline. International Journal of Molecular Sciences, 2016, 17, 1532.	4.1	7
152	Impact of islet architecture on β-cell heterogeneity, plasticity and function. Nature Reviews Endocrinology, 2016, 12, 695-709.	9.6	150
153	Increased Insulin Secretion from Insulin-Secreting Cells by Construction of Mixed Multicellular Spheroids. Pharmaceutical Research, 2016, 33, 247-256.	3.5	20
154	Rapid fabrication of functionalised poly(dimethylsiloxane) microwells for cell aggregate formation. Biomaterials Science, 2017, 5, 828-836.	5.4	17
155	A 4D view on insulin secretory granule turnover in the β ell. Diabetes, Obesity and Metabolism, 2017, 19, 107-114.	4.4	21
156	Biomimetic Surfaces Supporting Dissociated Pancreatic Islet Cultures. Colloids and Surfaces B: Biointerfaces, 2017, 159, 166-173.	5.0	6
157	Stem Cell-Derived Insulin-Producing \hat{I}^2 Cells to Treat Diabetes. Current Transplantation Reports, 2017, 4, 202-210.	2.0	1
158	A Global Approach for Quantitative Super Resolution and Electron Microscopy on Cryo and Epoxy Sections Using Self-labeling Protein Tags. Scientific Reports, 2017, 7, 23.	3.3	43
159	Integration of mesenchymal stem cells into islet cell spheroids improves long-term viability, but not islet function. Islets, 2017, 9, 87-98.	1.8	7
160	Heterogeneity of the Pancreatic Beta Cell. Frontiers in Genetics, 2017, 8, 22.	2.3	81
161	Paracrine Interactions within the Pancreatic Islet Determine the Glycemic Set Point. Cell Metabolism, 2018, 27, 549-558.e4.	16.2	150
162	Identifying novel therapeutic targets for diabetes through improved understanding of islet adhesion receptors. Current Opinion in Pharmacology, 2018, 43, 27-33.	3.5	8
163	Distinct Shift in Beta-Cell Glutaredoxin 5 Expression Is Mediated by Hypoxia and Lipotoxicity Both In Vivo and In Vitro. Frontiers in Endocrinology, 2018, 9, 84.	3.5	12
164	Cell Mass Increase Associated with Formation of Glucoseâ€Controlling β ell Mass in Deviceâ€Encapsulated Implants of hiPSâ€Đerived Pancreatic Endoderm. Stem Cells Translational Medicine, 2019, 8, 1296-1305.	3.3	11

#	Article	IF	CITATIONS
165	Endogenous Pancreatic Î ² Cell Regeneration: A Potential Strategy for the Recovery of Î ² Cell Deficiency in Diabetes. Frontiers in Endocrinology, 2019, 10, 101.	3.5	65
166	Synthetic poly(ethylene glycol)-based microfluidic islet encapsulation reduces graft volume for delivery to highly vascularized and retrievable transplant site. American Journal of Transplantation, 2019, 19, 1315-1327.	4.7	48
167	The Role of Alpha Cells in the Self-Assembly of Bioengineered Islets. Tissue Engineering - Part A, 2020, 27, 1055-1063.	3.1	3
168	Alpha cell regulation of beta cell function. Diabetologia, 2020, 63, 2064-2075.	6.3	55
169	Signaling Molecules Regulating Pancreatic Endocrine Development from Pluripotent Stem Cell Differentiation. International Journal of Molecular Sciences, 2020, 21, 5867.	4.1	11
170	β Cells Operate Collectively to Help Maintain Glucose Homeostasis. Biophysical Journal, 2020, 118, 2588-2595.	0.5	21
171	Engineered Biomaterials for Enhanced Function of Insulinâ€Secreting βâ€Cell Organoids. Advanced Functional Materials, 2020, 30, 2000134.	14.9	16
172	Cell Heterogeneity and Paracrine Interactions in Human Islet Function: A Perspective Focused in β-Cell Regeneration Strategies. Frontiers in Endocrinology, 2020, 11, 619150.	3.5	7
173	Harnessing the Endogenous Plasticity of Pancreatic Islets: A Feasible Regenerative Medicine Therapy for Diabetes?. International Journal of Molecular Sciences, 2021, 22, 4239.	4.1	3
174	Pancreatic β-cell heterogeneity in health and diabetes: classes, sources, and subtypes. American Journal of Physiology - Endocrinology and Metabolism, 2021, 320, E716-E731.	3.5	21
175	Cellulose-based scaffolds enhance pseudoislets formation and functionality. Biofabrication, 2021, 13, 035044.	7.1	13
176	Improvements in stem cell to beta-cell differentiation for the treatment of diabetes. Journal of Immunology and Regenerative Medicine, 2021, 12, 100043.	0.4	2
177	Altered islet prohormone processing: a cause or consequence of diabetes?. Physiological Reviews, 2022, 102, 155-208.	28.8	15
178	Pancreatic \hat{I}^2 -Cell Development and Regeneration. Cold Spring Harbor Perspectives in Biology, 2022, 14, a040741.	5.5	4
179	Communication of Islet Cells: Molecules and Functions. Growth Hormone, 2001, , 143-163.	0.2	4
180	Pancreatic Somatostatin. Advances in Experimental Medicine and Biology, 1985, 188, 403-423.	1.6	11
181	The Pathology of Type I (Juvenile) Diabetes. , 1985, , 337-365.		13
182	PACAP as Low as 10â^'13 M Raises Cytosolic Ca2+ Activity in Pancreatic B-Cells by Augmenting Ca2+ Influx Through L-Type Ca2+ Channels to Trigger Insulin Release. Advances in Experimental Medicine and Biology, 1997, 426, 165-171	1.6	10

#	Article	IF	CITATIONS
183	Glucose-Induced B-Cell Recruitment and the Expression of Hexokinase Isoenzymes. Advances in Experimental Medicine and Biology, 1997, 426, 259-266.	1.6	6
184	Reconstructing Islet Function In Vitro. Advances in Experimental Medicine and Biology, 1997, 426, 285-298.	1.6	20
185	Insulin Release and Islet Cell Junctions. , 1988, , 233-248.		2
186	Generating Pancreatic Endocrine Cells from Pluripotent Stem Cells. , 2014, , 1-37.		1
187	Separation of Pancreatic Islet Cells according to Functional Characteristics. , 1987, , 119-140.		2
188	Pituitary adenylate cyclase activating polypeptide is an extraordinarily potent intra-pancreatic regulator of insulin secretion from islet beta-cells Journal of Biological Chemistry, 1994, 269, 1290-1293.	3.4	224
189	Differences in glucose handling by pancreatic A- and B-cells Journal of Biological Chemistry, 1984, 259, 1196-1200.	3.4	90
190	Inhibition of ATP-regulated K+ channels precedes depolarization-induced increase in cytoplasmic free Ca2+ concentration in pancreatic beta-cells Journal of Biological Chemistry, 1987, 262, 5448-5454.	3.4	165
191	Metabolic concomitants in pure, pancreatic beta cells during glucose-stimulated insulin secretion Journal of Biological Chemistry, 1986, 261, 14057-14061.	3.4	46
192	Effects of sodium butyrate on proliferation-dependent insulin gene expression and insulin release in glucose-sensitive RIN-5AH cells Journal of Biological Chemistry, 1991, 266, 7542-7548.	3.4	19
194	Tumor necrosis factor-alpha modifies adhesion properties of rat islet B cells Journal of Clinical Investigation, 1993, 91, 1868-1876.	8.2	26
195	PAC1 receptor–deficient mice display impaired insulinotropic response to glucose and reduced glucose tolerance. Journal of Clinical Investigation, 2000, 105, 1307-1315.	8.2	175
196	Imaging Cyclic AMP Changes in Pancreatic Islets of Transgenic Reporter Mice. PLoS ONE, 2008, 3, e2127.	2.5	31
197	Autopoietic Influence Hierarchies in Pancreatic <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>β</mml:mi> Cells. Physical Review Letters, 2021, 127, 168101.</mml:math 	7.8	11
198	The Role of the Pancreas in the Induction of the Acute Catabolic State. Update in Intensive Care and Emergency Medicine, 1996, , 141-144.	0.6	0
199	Generating Pancreatic Endocrine Cells from Pluripotent Stem Cells. , 2015, , 1335-1373.		Ο
202	Deciphering the Complex Communication Networks That Orchestrate Pancreatic Islet Function. Diabetes, 2021, 70, 17-26.	0.6	21
204	An immunocytochemical and morphometric study of the rat pancreatic islets. Journal of Anatomy, 1995, 186 (Pt 3), 629-37.	1.5	70

#	Article	IF	CITATIONS
205	β-Cell Pathophysiology: A Review of Advanced Optical Microscopy Applications. International Journal of Molecular Sciences, 2021, 22, 12820.	4.1	5
206	Microtubules regulate pancreatic β-cell heterogeneity via spatiotemporal control of insulin secretion hot spots. ELife, 2021, 10, .	6.0	11
207	Crosstalk Communications Between Islets Cells and Insulin Target Tissue: The Hidden Face of Iceberg. Frontiers in Endocrinology, 2022, 13, 836344.	3.5	14
208	Intra-islet glucagon confers β-cell glucose competence for first-phase insulin secretion and favors GLP-1R stimulation by exogenous glucagon. Journal of Biological Chemistry, 2022, 298, 101484.	3.4	18
209	Notch-mediated Ephrin signaling disrupts islet architecture and \hat{I}^2 cell function. JCI Insight, 2022, 7, .	5.0	5
210	Development of scaffold-free vascularized pancreatic beta-islets in vitro models by the anchoring of cell lines to a bioligand-functionalized gelatine substrate. Journal of Materials Science: Materials in Medicine, 2022, 33, 37.	3.6	3
212	Insulin-degrading enzyme ablation in mouse pancreatic alpha cells triggers cell proliferation, hyperplasia and glucagon secretion dysregulation. Diabetologia, 2022, 65, 1375-1389.	6.3	3
213	Primary Cilia in Pancreatic \hat{l}^2 - and $\hat{l}\pm$ -Cells: Time to Revisit the Role of Insulin-Degrading Enzyme. Frontiers in Endocrinology, 0, 13, .	3.5	1
214	Mitoribosome insufficiency in \hat{l}^2 cells is associated with type 2 diabetes-like islet failure. Experimental and Molecular Medicine, 2022, 54, 932-945.	7.7	6
215	Pseudoislet Aggregation of Pancreatic Î ² -Cells Improves Glucose Stimulated Insulin Secretion by Altering Glucose Metabolism and Increasing ATP Production. Cells, 2022, 11, 2330.	4.1	2
216	A Century-long Journey From the Discovery of Insulin to the Implantation of Stem Cell–derived Islets. Endocrine Reviews, 2023, 44, 222-253.	20.1	13
217	Desmoglein-2 is important for islet function and \hat{I}^2 -cell survival. Cell Death and Disease, 2022, 13, .	6.3	2
218	Glucagon in type 2 diabetes: Friend or foe?. Diabetes/Metabolism Research and Reviews, 2023, 39, .	4.0	7
219	Autocrine Effects in White Adipose Tissue and Pancreatic Islets: Emergent Roles in the Regulation of Adipocyte and Pancreatic $\langle i \rangle \hat{l}^2 \langle j \rangle$ -cell Function. , 2011, , 10-43.		0
220	Longâ€ŧerm exercise preserves pancreatic islet structure and βâ€cell mass through attenuation of islet inflammation and fibrosis. FASEB Journal, 2023, 37, .	0.5	2
221	Both electrical and metabolic coupling shape the collective multimodal activity and functional connectivity patterns in beta cell collectives: A computational model perspective. Physical Review E, 2023, 108, .	2.1	1
222	Recent advances in the development of bioartificial pancreas using 3D bioprinting for the treatment of type 1 diabetes: a review. Exploration of Medicine, 0, , 886-922.	1.5	1