Hofmeister Effectâ€Enhanced Hydration Chemistry of Solarâ€Driven Interfacial Desalination

Advanced Materials 35, DOI: 10.1002/adma.202207262

Citation Report

#	Article	IF	CITATIONS
1	A polyelectrolyte hydrogel coated loofah sponge evaporator based on Donnan effect for highly efficient solar-driven desalination. Chemical Engineering Journal, 2023, 462, 142265.	12.7	19
2	Recent strategies for constructing efficient interfacial solar evaporation systems. , 2023, 2, e9120062.		44
3	Bioinspired Nanofibrous Aerogel with Vertically Aligned Channels for Efficient Water Purification and Saltâ€Rejecting Solar Desalination. Advanced Functional Materials, 2023, 33, .	14.9	38
4	Thermal performance of novel form-stable disodium hydrogen phosphate dodecahydrate-based composite phase change materials for building thermal energy storage. Advanced Composites and Hybrid Materials, 2023, 6, .	21.1	35
5	Salt-resistant agarose-polyvinylpyrrolidone composite hydrogel with pitted-surface towards highly efficient water desalination and purification. Chemical Engineering Journal, 2023, 467, 143440.	12.7	11
6	Double-Plasma Ti ₃ C ₂ T _{<i>x</i>} /Ag@SiO ₂ Gel Micro-/Nanoporous Structures for Improved Water Transport and Efficient Solar Steam Generation. ACS Applied Energy Materials, 2023, 6, 5989-5996.	5.1	5
7	An ecofriendly and efficient wood-based polyoxovanadate solar evaporation generator. Science China Materials, 2023, 66, 3292-3299.	6.3	3
8	Synergistic NiO/Fe ₂ O ₃ heterostructure-enhanced electrocatalytic performance in dye-sensitized solar cells. CrystEngComm, 2023, 25, 4290-4298.	2.6	3
9	A Molecularly Engineered Zwitterionic Hydrogel with Strengthened Antiâ€Polyelectrolyte Effect: from Highâ€Rate Solar Desalination to Efficient Electricity Generation. Advanced Functional Materials, 2023, 33, .	14.9	18
10	Hofmeister Effects Shine in Nanoscience. Advanced Science, 2023, 10, .	11.2	8
11	Insight into the Charge-Ratio-Tuned Solar Vapor Generation of Polyion Complex Hydrogel/Coal Powder Composites. Polymers, 2023, 15, 2449.	4.5	0
12	Synergistic Dualâ€Mechanism Localized Heat Channeling and Spectrumâ€Tailored Liquid Metal Hydrogels for Efficient Solar Water Evaporation and Desalination. Small, 2023, 19, .	10.0	7
13	Rapid Fabrication of Porous Composite Hydrogels for Efficient Solar Vapor Generation. ACS Applied Polymer Materials, 0, , .	4.4	0
14	Recent advances in electrode interface modifications in perovskite solar cells. Materials Chemistry Frontiers, 0, , .	5.9	0
15	Simultaneous Solar-Thermal Desalination and Catalytic Degradation of Wastewater Containing Both Salt Ions and Organic Contaminants. ACS Applied Materials & Interfaces, 2023, 15, 41007-41018.	8.0	3
16	Multiscale Structural Nanocellulosic Triboelectric Aerogels Induced by Hofmeister Effect. Advanced Functional Materials, 2023, 33, .	14.9	11
17	A Hofmeister effect induced hydrogel electrolyte–electrode interfacial adhesion enhancement strategy for energy-efficient and mechanically robust redoxcapacitors. Journal of Materials Chemistry A, 2023, 11, 18135-18145.	10.3	1
18	Solutionâ€processed Dâ€Aâ€Ï€â€Aâ€D radicals for highly efficient photothermal conversion. Aggregate, 2024, 5,	. 9.9	1

# 19	ARTICLE Construction of a biomimetic wood structure with cellulose nanofiber/molybdenum disulfide hybrid aerogel for highly-efficient solar-driven interfacial evaporation. Desalination, 2023, 568, 117023.	IF 8.2	CITATIONS
20	A Selfâ€Adaptive and Regenerable Hydrogel Interfacial Evaporator with Adjustable Evaporation Area for Solar Water Purification. Small, 2024, 20, .	10.0	0
21	Bioinspired polydopamine hydrogels: Strategies and applications. Progress in Polymer Science, 2023, 146, 101740.	24.7	22
22	Configurations Manipulation of Electrospun Membranes Based on Highâ€Entropy Alloys–Enabled Highâ€Performance Solar Water Evaporation. Solar Rrl, 2023, 7, .	5.8	3
23	Enhancing solar steam generation in hydrogel evaporator by bio-based microfluidic component. Chemical Engineering Journal, 2023, 478, 146566.	12.7	3
24	High-Performance Carbon Black-Based Counter Electrodes for Copper (I)/(II)-Mediated Dye-Sensitized Solar Cells. ACS Sustainable Chemistry and Engineering, 2023, 11, 12166-12176.	6.7	5
25	Visible Light Locking in Mineral-Based Composite Phase Change Materials Enabling High Photothermal Conversion and Storage. ACS Applied Materials & Interfaces, 2023, 15, 49132-49145.	8.0	1
26	In situ growth of polydopamine modified ZIF-L arrays on air-laid paper as flexible evaporator for efficient solar desalination. Desalination, 2023, 565, 116832.	8.2	1
27	Selfâ€Assembled Nanofibrous Hydrogels with Tunable Porous Network for Highly Efficient Solar Desalination in Strong Brine. Advanced Functional Materials, 2023, 33, .	14.9	3
28	T-shape solar evaporator constructed with natural wood and Ti2O3 nanoparticles for water evaporation and desalination. Materials Today Sustainability, 2023, 24, 100538.	4.1	0
29	Amphibious Polymer Materials with High Strength and Superb Toughness in Various Aquatic and Atmospheric Environments. Advanced Materials, 2024, 36, .	21.0	5
30	Mesopore-enhanced graphene electrodes with modified hydrophilicity for ultrahigh capacitive deionization. Desalination, 2023, 567, 116984.	8.2	4
31	Flexible solid-state Zn-Co MOFs@MXene supercapacitors and organic ion hydrogel sensors for self-powered smart sensing applications. Nano Energy, 2023, 118, 108936.	16.0	4
32	Aerogel-based solar interface evaporation: Current research progress and future challenges. Desalination, 2024, 569, 117068.	8.2	2
33	Ionization Engineering of Hydrogels Enables Highly Efficient Salt-Impeded Solar Evaporation and Night-Time Electricity Harvesting. Nano-Micro Letters, 2024, 16, .	27.0	1
34	The manipulation of the interfacial evaporation property of graphene porous membranes. Molecular Physics, 0, , .	1.7	0
35	Making Nanofiber Membrane Stand on End to Construct Vertically Interfacial Evaporators for Efficient Solar Evaporation, Omnidirectional Solar Absorption, and Ultrahighâ€Salinity Brine Desalination. Small, 0, , .	10.0	0
36	Nature- Inspired sustainable solar evaporators for seawater desalination. Journal of Materials	10.3	0

CITATION REPORT

#	Article	IF	CITATIONS
37	Mass production of biodegradable porous foam for simultaneous solar evaporation and thermoelectricity generation. Journal of Materials Chemistry A, 2023, 11, 26784-26793.	10.3	3
38	High-efficiency solar-driven water purification enhanced by the in-plane temperature gradient and hydrated ions. Chemical Engineering Journal, 2024, 481, 148364.	12.7	0
39	Trapping waste metal ions in a hydrogel/coal powder composite for boosting sewage purification via solar-driven interfacial water evaporation with long-term durability. Chemical Engineering Journal, 2024, 481, 148524.	12.7	0
40	Salt-rejecting 3D cone flowing evaporator based on bilayer photothermal paper for high-performance solar seawater desalination. Journal of Colloid and Interface Science, 2024, 660, 370-380.	9.4	0
41	Facile Fabrication of Ultralow Density and Ultrahigh Solar Absorption Monolithic Phenolic Carbon Aerogel from Lignite for Solar Vapor Generation. ACS Sustainable Chemistry and Engineering, 2024, 12, 1286-1296.	6.7	0
42	Natural lignocellulosic kapok fiber/MXene constructed hydrogel evaporators for high efficiency solar steam generation. International Journal of Biological Macromolecules, 2024, 260, 129403.	7.5	0
43	Novel Three-Dimensional Cut Umbrella-like Evaporator with Four Angle-Adjustable Evaporation Surfaces in a Submersible Floatation State for Enhanced Seawater Desalination. ACS Sustainable Chemistry and Engineering, 2024, 12, 1446-1454.	6.7	0
44	Well-designed lamellar reduced graphene oxide-based foam for high-performance solar-driven water purification. Journal of Colloid and Interface Science, 2024, 660, 716-725.	9.4	0
45	Super stable evaporators based on upcycled self-healing adsorbents for wastewater regeneration. Environmental Science: Nano, 2024, 11, 1271-1282.	4.3	0
46	Cyanido-Bridged Bimetallic/rGO Electrodes for Dye-Sensitized Solar Cells and Battery-Type Supercapacitors. ACS Applied Nano Materials, 2024, 7, 2687-2701.	5.0	0
47	Inspired by Plant Transpiration: Fabrication of a Unique Micro–Nano-Structured Janus Evaporator Using Waste Cotton Fabric for Enhanced Efficiency and Salt Resistance. ACS Sustainable Chemistry and Engineering, 2024, 12, 2364-2374.	6.7	0
48	Bird's Nestâ€Shaped Sb ₂ WO ₆ /Dâ€Fru Composite for Multiâ€Stage Evaporator and Tandem Solar Lightâ€Heatâ€Electricity Generators. Small, 2024, 20, .	10.0	1
49	Superhydrophobic sand evaporator with core-shell structure for long-term salt-resistant solar desalination. Water Research, 2024, 253, 121290.	11.3	0
50	Spontaneous thermal energy transfer and anti-gravitational water pumping using Al ₂ O ₃ fiber-enhanced flexible nonwoven material as a high-performance and self-floating solar evaporator. Materials Horizons, 2024, 11, 2095-2105.	12.2	0
51	3D-Printed Liquid Metal-in-Hydrogel Solar Evaporator: Merging Spectrum-Manipulated Micro-Nano Architecture and Surface Engineering for Solar Desalination. ACS Nano, 0, , .	14.6	0
52	Foaming photothermal inks for direct-ink writing: hierarchical design and enhanced solar-powered interfacial evaporation. Journal of Materials Chemistry A, 2024, 12, 6592-6609.	10.3	1
53	Two-dimensional layered MBene membrane towards sustainable freshwater production from solar interfacial evaporation. Chemical Engineering Journal, 2024, 486, 150078.	12.7	0
54	How to reduce enthalpy in the interfacial solar water generation system for enhancing efficiency?. Nano Energy, 2024, 123, 109434.	16.0	0

CITATION REPORT

#	Article	IF	CITATIONS
55	Efficient Solarâ€Driven Interfacial Water Evaporator using Hydrogel Modified Carbonâ€Based Biomass with Abundant Microchannels. Small, 0, , .	10.0	0
56	Anisotropic MXene/Poly(vinyl alcohol) Composite Hydrogels with Vertically Oriented Channels and Modulated Surface Topography for Efficient Solar-Driven Water Evaporation and Purification. ACS Applied Materials & Interfaces, 2024, 16, 13060-13070.	8.0	0
57	Costâ€Effective 3Dâ€Printed Bionic Hydrogel Evaporator for Stable Solar Desalination. Advanced Science, 2024, 11, .	11.2	0