Quantitative Kinetics of HO₂ Reactions with High-Order Dynamic Correlation, Anharmonicity, and I

Journal of the American Chemical Society 144, 19910-19920 DOI: 10.1021/jacs.2c07994

Citation Report

#	Article	IF	CITATIONS
1	New Reactions for the Formation of Organic Nitrate in the Atmosphere. ACS Omega, 2022, 7, 39671-39679.	3.5	4
2	Barrier heights, reaction energies and bond dissociation energies for RH + HO ₂ reactions with coupled-cluster theory, density functional theory and diffusion quantum Monte Carlo methods. Physical Chemistry Chemical Physics, 2022, 25, 341-350.	2.8	2
3	An unexpected feasible route for the formation of organosulfates by the gas phase reaction of sulfuric acid with acetaldehyde catalyzed by dimethylamine in the atmosphere. Environmental Science Atmospheres, 2023, 3, 672-682.	2.4	2
4	Reactions with criegee intermediates are the dominant gas-phase sink for formyl fluoride in the atmosphere. Fundamental Research, 2023, , .	3.3	5
5	Unimolecular Reactions of <i>E</i> -Glycolaldehyde Oxide and Its Reactions with One and Two Water Molecules. Research, 2023, 6, .	5.7	3
7	The atmospheric relevance of primary alcohols and imidogen reactions. Scientific Reports, 2023, 13, .	3.3	0
8	Theoretical Study on the Mechanisms, Kinetics, and Toxicity Evaluation of OH-Initiated Atmospheric Oxidation Reactions of Coniferyl Alcohol. Atmosphere, 2023, 14, 976.	2.3	0
9	DFT investigations on the mechanisms and kinetics for the DMS + O ₃ reaction. Journal of Physical Organic Chemistry, 2023, 36, .	1.9	0
10	Theoretical kinetic investigation of the multichannel mechanism of O(3P) atmospheric oxidation reaction of but-3-enal. Turkish Computational and Theoretical Chemistry, 0, , .	0.5	0
11	Hydroxy esters atmospheric degradation: OH and Cl reactivity, products distribution and fate of the alkoxy radicals formed. Chemosphere, 2023, 339, 139726.	8.2	0
12	Kinetics of Sulfur Trioxide Reaction with Water Vapor to Form Atmospheric Sulfuric Acid. Journal of the American Chemical Society, 2023, 145, 19866-19876.	13.7	6
13	Quantitative kinetics of the atmospheric reaction between isocyanic acid and hydroxyl radicals: post-CCSD(T) contribution, anharmonicity, recrossing effects, torsional anharmonicity, and tunneling. Physical Chemistry Chemical Physics, 0,	2.8	0