Loudness, annoyance, and noisiness produced by single

Journal of the Acoustical Society of America 72, 62-73 DOI: 10.1121/1.388025

Citation Report

#	Article	IF	CITATIONS
1	Growth rate of loudness, annoyance, and noisiness as a function of tone location within the noise spectrum. Journal of the Acoustical Society of America, 1984, 75, 209-218.	1.1	64
2	Perceived magnitude of twoâ€ŧoneâ€noise complexes: Loudness, annoyance, and noisiness. Journal of the Acoustical Society of America, 1985, 77, 1497-1504.	1.1	36
3	Why can a decrease in dB(A) produce an increase in loudness?. Journal of the Acoustical Society of America, 1987, 82, 1700-1705.	1.1	63
4	Meaningful Noise Measurement and Effective Noise Reduction. Noise Control Engineering Journal, 1987, 29, 66.	0.3	19
5	Loudness of Impulse and Community Noises. Journal of Low Frequency Noise Vibration and Active Control, 1988, 7, 98-103.	2.9	2
6	Reconciling Fechner and Stevens: Toward a unified psychophysical law. Behavioral and Brain Sciences, 1989, 12, 251-267.	0.7	342
7	A Simplified Method for Loudness Level Calculation of Environmental Noise. Noise Control Engineering Journal, 1989, 33, 125.	0.3	1
8	Is a unified psychophysical law realistic?. Behavioral and Brain Sciences, 1989, 12, 267-268.	0.7	41
9	Integration psychophysics. Behavioral and Brain Sciences, 1989, 12, 268-269.	0.7	34
10	The fickle measuring instrument. Behavioral and Brain Sciences, 1989, 12, 269-270.	0.7	1
11	To resolve Fechner versus Stevens: Settle the dispute concerning "ratios―and "differences― Behavioral and Brain Sciences, 1989, 12, 270-271.	0.7	3
12	About assumptions and exponents. Behavioral and Brain Sciences, 1989, 12, 271-271.	0.7	1
13	Unifying psychophysics: And what if things are not so simple?. Behavioral and Brain Sciences, 1989, 12, 271-273.	0.7	32
14	Jnds and ROCs. Behavioral and Brain Sciences, 1989, 12, 273-274.	0.7	0
15	Psychophysical law: The need for more than one level of explanation. Behavioral and Brain Sciences, 1989, 12, 274-275.	0.7	1
16	Are the power exponents of magnitude estimation functions too high?. Behavioral and Brain Sciences, 1989, 12, 275-275.	0.7	0
17	Is Stevens's power law valid?. Behavioral and Brain Sciences, 1989, 12, 276-276.	0.7	0
18	Psychophysics: On the possibility of another approach. Behavioral and Brain Sciences, 1989, 12, 276-277.	0.7	30

#	Article	IF	Citations
19	Experimental evidence for Fechner's and Stevens's laws. Behavioral and Brain Sciences, 1989, 12, 277-281.	0.7	45
20	On various ways of establishing a psychophysical function empirically. Behavioral and Brain Sciences, 1989, 12, 281-282.	0.7	0
21	Psychophysical laws: A call for deregulation. Behavioral and Brain Sciences, 1989, 12, 282-282.	0.7	0
22	G and S go fishing. Behavioral and Brain Sciences, 1989, 12, 282-283.	0.7	0
23	Rubber scales and partial quantification. Behavioral and Brain Sciences, 1989, 12, 283-284.	0.7	4
24	Nineteenth-century attempts to decide between psychophysical laws. Behavioral and Brain Sciences, 1989, 12, 284-285.	0.7	29
25	The Fechner-Stevens law is the law of transmission of information. Behavioral and Brain Sciences, 1989, 12, 285-285.	0.7	5
26	Psychophysical law: Some doubts about unification. Behavioral and Brain Sciences, 1989, 12, 286-286.	0.7	0
27	Uncertain size of exponent when judging without familiar units. Behavioral and Brain Sciences, 1989, 12, 286-288.	0.7	9
28	Magnitude scales, category scales, and number scales. Behavioral and Brain Sciences, 1989, 12, 288-288.	0.7	0
29	Conjuring Fechner's spirit. Behavioral and Brain Sciences, 1989, 12, 288-290.	0.7	29
30	On the origin and function of the psychophysical transformation. Behavioral and Brain Sciences, 1989, 12, 290-291.	0.7	0
31	Unified psychophysics: Wouldn't it be loverly…. Behavioral and Brain Sciences, 1989, 12, 292-292.	0.7	1
32	Sensory scaling: Unanswered questions. Behavioral and Brain Sciences, 1989, 12, 293-294.	0.7	61
33	Fantasies in psychophysical scaling: Do category estimates reflect the true psychophysical scale?. Behavioral and Brain Sciences, 1989, 12, 294-295.	0.7	0
34	Option 4: Forswear the psychophysical law. Behavioral and Brain Sciences, 1989, 12, 295-296.	0.7	1
35	Sensory magnitudes and their physical correlates. Behavioral and Brain Sciences, 1989, 12, 296-297.	0.7	4
36	Unity and diversity of neurelectric and psychophysical functions: The invariance question. Behavioral and Brain Sciences, 1989, 12, 297-298.	0.7	29

3

#	Article	IF	CITATIONS
37	Psychophysics and metaphysics. Behavioral and Brain Sciences, 1989, 12, 298-299.	0.7	63
38	Psychophysical law: Keep it simple. Behavioral and Brain Sciences, 1989, 12, 299-320.	0.7	66
39	Is there really only one representation for stimulus intensity?. Behavioral and Brain Sciences, 1989, 12, 290-290.	0.7	29
40	Low Frequency Noise and Annoyance in Working Environments. Journal of Low Frequency Noise Vibration and Active Control, 1990, 9, 61-65.	2.9	10
41	A Signal Processing Scheme for Output Limitation. Acta Oto-Laryngologica, 1990, 109, 230-235.	0.9	4
42	Adverse effects of aircraft noise. Environment International, 1990, 16, 315-338.	10.0	16
43	Relation between the growth of loudness and highâ€frequency excitation. Journal of the Acoustical Society of America, 1994, 96, 2655-2663.	1.1	26
44	Noise in the office: Part II — The scientific basis (knowledge base) for the guide. International Journal of Industrial Ergonomics, 1994, 14, 93-118.	2.6	29
45	Annoyance and Discomfort during Exposure to High-Frequency Noise from an Ultrasonic Washer. Perceptual and Motor Skills, 1995, 81, 819-827.	1.3	5
46	Exposure levels, tonal components, and noise annoyance in working environments. Environment International, 1995, 21, 265-275.	10.0	104
47	Magnitude Estimation Scaling of Annoyance in Response to Rock Music: Effects of Sex and Listeners' Preference. Perceptual and Motor Skills, 1997, 84, 663-670.	1.3	11
48	Cross-Modality Matching: A Tool for Measuring Loudness in Sensorineural Impairment. Ear and Hearing, 1999, 20, 193-213.	2.1	22
49	Noise in the office: Part II – The scientific basis (knowledge base) for the guide. Elsevier Ergonomics Book Series, 2000, 1, 371-396.	0.1	0
50	Assessing noise annoyance: an improvement-oriented approach. Ergonomics, 2000, 43, 1920-1938.	2.1	30
51	Incorporation of loudness measures in active noise control. Journal of the Acoustical Society of America, 2001, 109, 591-599.	1.1	9
52	Thresholds of Discomfort for Complex Stimuli. Journal of Speech, Language, and Hearing Research, 2002, 45, 1016-1026.	1.6	15
53	Annoyance of bandpass-filtered noises in relation to the factor extracted from autocorrelation function (L). Journal of the Acoustical Society of America, 2004, 116, 3275-3278.	1.1	29
54	Relationship between loudness perception and noise indices in Valdivia, Chile. Applied Acoustics, 2006, 67, 892-900.	3.3	1

#	Article	IF	CITATIONS
55	Implications of human performance and perception under tonal noise conditions on indoor noise criteria. Journal of the Acoustical Society of America, 2008, 124, 218-226.	1.1	25
56	Using beamforming and binaural synthesis for the psychoacoustical evaluation of target sources in noise. Journal of the Acoustical Society of America, 2008, 123, 910-924.	1.1	27
57	A comparison of the temporal weighting of annoyance and loudness. Journal of the Acoustical Society of America, 2009, 126, 3168-3178.	1.1	38
58	Semantic evaluations of noise with tonal components in Japan, France, and Germany: A cross-cultural comparison. Journal of the Acoustical Society of America, 2009, 125, 850-862.	1.1	8
59	Annoyance of Time-Varying Road-Traffic Noise. Archives of Acoustics, 2010, 35, .	0.8	17
60	End level bias on direct loudness ratings of increasing sounds. Journal of the Acoustical Society of America, 2010, 128, EL163-EL168.	1.1	9
61	Annoyance from industrial noise: Indicators for a wide variety of industrial sources. Journal of the Acoustical Society of America, 2010, 128, 1128.	1.1	36
62	Total annoyance from an industrial noise source with a main spectral component combined with a background noise. Journal of the Acoustical Society of America, 2011, 130, 189-199.	1.1	20
63	A Laboratory Study on Total Noise Annoyance Due To Combined Industrial Noises. Acta Acustica United With Acustica, 2012, 98, 286-300.	0.8	14
64	Design of a decision error model for reliability of jury evaluation and its experimental verification. Applied Acoustics, 2013, 74, 789-802.	3.3	1
65	Cognition, Information Processing, and Psychophysics. , 0, , .		50
66	From Sonic Environment to Soundscape. , 2015, , 17-41.		15
67	Perceptual space, pleasantness and periodicity of multi-tone sounds. Journal of the Acoustical Society of America, 2015, 138, 288-298.	1.1	6
68	Are Rising Sounds Always Louder? Influences of Spectral Structure and Intensity-Region on Loudness Sensitivity to Intensity-Change Direction. Acta Acustica United With Acustica, 2015, 101, 1083-1093.	0.8	6
69	Neurally Based Measurement and Evaluation of Environmental Noise. Mathematics for Industry, 2015, ,	0.4	10
70	A robust asymmetry in loudness between rising- and falling-intensity tones. Attention, Perception, and Psychophysics, 2015, 77, 907-920.	1.3	12
71	Subjective dominance as a basis for selecting frequency weightings. Journal of the Acoustical Society of America, 2016, 140, 843-854.	1.1	6
72	Sound quality evaluation of air-conditioner noise based on factors of the autocorrelation function. Applied Acoustics, 2017, 124, 11-19.	3.3	32

#	Article	IF	CITATIONS
73	Global loudness of rising- and falling-intensity tones: How temporal profile characteristics shape overall judgments. Journal of the Acoustical Society of America, 2017, 142, 256-267.	1.1	1
74	Psychophysiological Evidence of an Autocorrelation Mechanism in the Human Auditory System. , 0, , .		0
75	Combined road traffic, railway and aircraft noise sources: Total noise annoyance model appraisal from field data. Applied Acoustics, 2021, 180, 108127.	3.3	9
76	Signal Processing Model of Human Auditory System. Mathematics for Industry, 2015, , 5-50.	0.4	1
77	Loudness. , 2004, , 317-345.		3
78	A psychoacoustical study to investigate the perceived unpleasantness of infrasound combined with audio-frequency sound. Acta Acustica, 2020, 4, 20.	1.0	7
80	Noise Annoyance Caused by Amplitude Modulated Sounds Resembling the Main Characteristics of Temporal Wind Turbine Noise. Archives of Acoustics, 2016, 41, 221-232.	0.8	9
81	Emotional Reactions to Tonal and Noise Components of Environmental Sounds. Psychology, 2013, 04, 1051-1058.	0.5	3
82	Design of Decision Error Model for Reliability of Sound Quality Analysis and Its Experimental Verification. Transactions of the Korean Society for Noise and Vibration Engineering, 2012, 22, 605-618.	0.4	1
83	Annoyance of Noise. Mathematics for Industry, 2015, , 167-202.	0.4	0
84	Effect of tonality in loudness perception: Vacuum cleaner and shaver examples. Acoustical Science and Technology, 2020, 41, 369-372.	0.5	2
85	Acoustic Retrofit Approach of an Apartment Living Room Using Multi-Perforated Gypsum Boards in Terms of Heavy-Weight Impact Sounds. Sustainability, 2022, 14, 5007.	3.2	2
86	The influence of the reference level on loudness and preference judgements for spectrally manipulated fan sounds. Journal of the Acoustical Society of America, 2024, 155, 1735-1746.	1.1	0