Electron-Electron Umklapp Scattering in Organic Super

Physical Review Letters 48, 1039-1043 DOI: 10.1103/physrevlett.48.1039

Citation Report

#	Article	IF	CITATIONS
1	Influence of the Cooling Rate on the Superconducting Properties of the Organic Solid Di-Tetramethyltetraselenafulvalenium-Perchlorate,(TMTSF)2ClO4. Physical Review Letters, 1982, 49, 1346-1349.	7.8	86
2	Antiferromagnetic and structural instabilities in tetramethyltetrathiafulvalene thiocyanate [(TMTTF)S2CN]. Physical Review B, 1982, 26, 6322-6325.	3.2	64
3	Band-structure parameters of a series of tetramethyltetraselenafulvalene [(TMTSF)2X] compounds. Physical Review B, 1982, 26, 6888-6895.	3.2	90
4	Organic superconductors: The (TMTSF)2X family. Contemporary Physics, 1982, 23, 583-624.	1.8	56
5	Organic conductors and superconductors. Advances in Physics, 1982, 31, 299-490.	14.4	1,050
6	Effect of doping (TMTSF)2ClO4 with TMTTF - I. Ambient pressure results : a competition between the different possible ground states. Journal De Physique, 1982, 43, 1721-1729.	1.8	67
7	Low temperature metallic resistivity of the charge-transfer organic conductor (TMTSF)2PF6. Solid State Communications, 1983, 47, 247-250.	1.9	2
8	Design and Properties of Organic Metals. Molecular Crystals and Liquid Crystals, 1983, 96, 229-262.	0.8	26
9	Superconductivity and spin-density waves: organic superconductors. Journal of Physics C: Solid State Physics, 1983, 16, 3913-3932.	1.5	70
10	Quantum fluctuations in quasi-one-dimensional superconductors. Physical Review B, 1983, 27, 5856-5859.	3.2	68
11	Role of monovalent anions in organic superconductors. Physical Review B, 1983, 28, 2873-2876.	3.2	18
12	Optical and infrared properties of tetramethyltetraselenafulvalene [(TMTSF)2X] and tetramethyltetrathiafulvalene [(TMTTF)2X] compounds. Physical Review B, 1983, 28, 7019-7032.	3.2	164
13	Broken-Symmetry Band Structure of Ditetramethyltetraselenafulvalene-X[(TMTSF)2X]. Physical Review Letters, 1983, 50, 1005-1008.	7.8	32
14	Thermopower studies of a series of salts of tetramethyltetrathiafulvalene [(TMTTF)2X,X=Br,ÂClO4,ÂNO3,ÂSCN,ÂBF4,ÂAsF6,ÂandÂPF6]. Physical Review B, 1983, 28, 5856-5862.	3.2	43
15	X-ray evidence of a structural phase transition in di-tetramethyltetraselenafulvalenium perchlorate [(TMTSF)2ClO4], pristine and slightly doped. Physical Review B, 1983, 27, 5203-5206.	3.2	129
16	Long-range Coulomb interactions in quasi-one-dimensional conductors. Journal of Physics C: Solid State Physics, 1983, 16, 6769-6787.	1.5	59
17	First-Order Phase Transition Boundary between Superconducting and SDW Phases in the Bechgaard Salts. Journal of the Physical Society of Japan, 1983, 52, 1361-1372.	1.6	70
18	Cooperative phenomena in (TMTSF)2ClO4 : an NMR evidence. Journal De Physique (Paris), Lettres, 1984, 45, 755-765.	2.8	102

#	Article	IF	CITATIONS
19	Electrical conductivity and X-ray diffuse scattering study of the family of organic conductors (perylene)2M(mnt)2, (M=Pt, Pd, Au). Journal of Physics C: Solid State Physics, 1984, 17, 5197-5208.	1.5	64
20	Proton NMR linewidth and relaxation-rate study of an organic conductor with an antiferromagnetic ground state. Physical Review B, 1984, 30, 3639-3643.	3.2	8
21	Two-cutoff renormalization and quantum versus classical aspects for the one-dimensional electron-phonon system. Physical Review B, 1984, 29, 4230-4241.	3.2	115
22	Organic superconductors. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1984, 126, 431-440.	0.9	29
23	Anion size and the structural properties of (TMTSF) 2X salts: Intracolumnar effects. Solid State Communications, 1984, 51, 275-279.	1.9	7
24	Cavity size versus anion size in (TMTSF)2X salts: Possible implications for the uniqueness of (TMTSF)2C104. Solid State Communications, 1984, 50, 729-733.	1.9	17
25	Coexistence problem of magnetism and superconductivity. Applied Physics A: Solids and Surfaces, 1984, 35, 193-217.	1.4	46
26	Superconductivity in quasi one-dimensional metals and the optimal phonon frequency. Synthetic Metals, 1984, 9, 97-101.	3.9	1
27	Ground states and critical temperatures in quasi-one-dimensional systems. Physics Reports, 1985, 126, 245-371.	25.6	59
28	Organic Superconductors: Synthesis, Structure, Conductivity, and Magnetic Properties. Advances in Inorganic Chemistry, 1985, , 249-296.	1.0	44
29	Spin-orbit interaction effects in quasi-one-dimensional conductors. Journal of Physics C: Solid State Physics, 1985, 18, 2261-2274.	1.5	2
30	The Dimensionality Crossover in Quasi-1D Conductors. Molecular Crystals and Liquid Crystals, 1985, 119, 11-18.	0.8	37
31	Magnetic Instabilities in TMTTF Salts. Molecular Crystals and Liquid Crystals, 1985, 119, 311-315.	0.8	17
32	Lattice Stability and Magnetic Properties of Quasi-1D Materials: Theory and application to (TMTTF) ₂ x Compounds. Molecular Crystals and Liquid Crystals, 1985, 119, 287-292.	0.8	19
33	Phase Transitions in (Tmttf) ₂ BF ₄ . Molecular Crystals and Liquid Crystals, 1985, 119, 321-324.	0.8	2
34	Cooperative Phenomena in (TMTSF) ₂ ClO ₄ NMR Relaxation. Molecular Crystals and Liquid Crystals, 1985, 119, 45-51.	0.8	2
35	Pressure Induced Magnetic State in (TMTTF)2PF6. Molecular Crystals and Liquid Crystals, 1985, 119, 297-302.	0.8	33
36	Organic superconductors: structural aspects and design of new materials. Accounts of Chemical Research, 1985, 18, 261-267.	15.6	223

#	Article	IF	CITATIONS
37	Stability of Spin Density Waves in Quasi id Conductors : Application to (TMTSF)2-ClO4. Molecular Crystals and Liquid Crystals, 1985, 119, 97-103.	0.8	9
38	Anion Symmetry and the Separability of Structural Parameters for Tetramethyltetraselenafulvalenium Salts, (TMTSF) ₂ X. Molecular Crystals and Liquid Crystals, 1986, 136, 361-382.	0.8	11
39	The mechanisms of organic superconductivity. Synthetic Metals, 1986, 13, 21-27.	3.9	122
40	Superconducting and magnetic instabilities in(TMTSF)2X and (BEDT-TTF)2conductors. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1986, 143, 329-333.	0.9	1
41	On the magnetic-field-induced SDW phase in the Bechgaard salts. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1986, 143, 439-443.	0.9	4
42	The role of kinetic interchain coupling in quasi-1D conductors. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1986, 143, 450-452.	0.9	20
43	Importance of one-dimensional correlations in the phase diagram of the (TMTTF)2-(TMTSF)2-X salts. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1986, 143, 453-455.	0.9	24
44	Dimensionality and nuclear magnetic resonance in organic conductors. Journal of Magnetism and Magnetic Materials, 1986, 54-57, 1249-1250.	2.3	7
45	Electrical conductivity of (perylene)2M(MNT)2(M=Pt, Au) under pressure. Journal of Physics C: Solid State Physics, 1986, 19, 4663-4672.	1.5	18
46	Spin-anisotropic electron-electron interactions in one-dimensional metals. Physical Review B, 1986, 33, 2066-2069.	3.2	28
47	Band-filling and magnetic-field effects on the phase diagram of one-dimensional conductors. Physical Review B, 1986, 33, 7777-7786.	3.2	10
48	Nuclear relaxation and antiferromagnetic critical effects in organic conductors. Physical Review B, 1986, 33, 7608-7614.	3.2	22
49	Solvable Two-Band Model of Fermions. Physical Review Letters, 1986, 57, 1370-1373.	7.8	50
50	A 13C NMR study of the interplay between the spin-peierls and antiferromagnetic ground states in (TMTTF)2PF6 under pressure. Synthetic Metals, 1987, 19, 289-294.	3.9	63
51	Mechanism for longitudinal nesting in the antiferromagnetic transition of the bechgaard salts. Synthetic Metals, 1987, 19, 333-338.	3.9	3
52	Nuclear relaxation in organic conductors as a probe of electronic correlations. Synthetic Metals, 1987, 19, 57-62.	3.9	10
53	77Se NMR spin-lattice relaxation rate properties in the (TMTSF)2X series under pressure: cooperative phenomena and SDW transition. Synthetic Metals, 1987, 19, 277-282.	3.9	43
54	New conductor based on perylene and metal-bis(1,1-dithio 2,2-dicyanoethylene). Synthetic Metals, 1987, 19, 389-392.	3.9	5

#	Article	IF	CITATIONS
55	Evolution of the spin-Peierls transition in the (TMTTF)2X salts (X=AsF6,PF6,Br) under pressure. Synthetic Metals, 1987, 19, 69-74.	3.9	13
56	Contrasted structural properties of organic superconductors. Synthetic Metals, 1987, 19, 237-243.	3.9	7
57	Zur Theorie niederdimensionaler Leiter. Acta Polymerica, 1987, 38, 326-329.	0.9	0
58	Transport properties of (DMDCNQI)2Ag at normal and applied pressure. Solid State Communications, 1988, 68, 909-914.	1.9	14
59	Microwave conductivity and dielectric constant of (TMTTF)2X,X = SCN, ReO4, SbF6. Synthetic Metals, 1988, 27, 23-28.	3.9	0
60	An NMR analysis of magnetic correlations and dimensionality in organic conductors. Synthetic Metals, 1988, 27, 65-70.	3.9	4
61	Spin-peierls and antiferromagnetic transition temperatures in (TMTTF)2PF6: EPR and NMR measurements and theory. Synthetic Metals, 1988, 27, 123-128.	3.9	16
62	Physical properties of the quasi-one dimensional substituted perylene cation radical salt. Synthetic Metals, 1988, 27, 405-410.	3.9	7
63	Pressure-temperature phase diagram of (DMDCNQI)2Ag: A comparative study with related compounds. Synthetic Metals, 1988, 27, 333-338.	3.9	8

		CITATION RE	PORT	
#	Article		IF	Citations
73	Organic conductors and superconductors: A comparative survey. Phase Transitions, 1989, 14, 26	1-274.	1.3	1
74	A hidden low-temperature phase in the organic conductor (TMTSF)2ReO4. Journal of Physics Condensed Matter, 1989, 1, 4451-4456.		1.8	18
75	Phase transition of (DMET)2Au(CN)2at 180 K. Journal of Physics Condensed Matter, 1989, 1, 882	.3-8828.	1.8	5
76	A survey of the physics of organic conductors and superconductors. Physica Scripta, 1989, T27, 1	30-135.	2.5	19
77	Polarons and orthorhombic to tetragonal transition in La2CuO4. Physica Scripta, 1989, T27, 78-8	1.	2.5	6
78	High Resolution X-Ray Scattering Study of the Anion Ordering Phase Transition of (TMTSF)2ClO4. Journal of the Physical Society of Japan, 1990, 59, 2036-2053.		1.6	35
79	NMR and EPR Approaches to Magnetic Properties of (TMTTF) 2 Br. Europhysics Letters, 1990, 12,	453-458.	2.0	10
80	Recalculation of 4kFcorrelations in one-dimensional systems. Physical Review B, 1990, 42, 1015-1	.017.	3.2	2
81	Crystallographic and electronic structures of the organic conducting salts (DMtTCF)2X (Cî—»S O Synthetic Metals, 1990, 38, 13-36.	R Se).	3.9	4
82	The pressure dependence of antiferromagnetic critical temperature in correlated organic conductors. Synthetic Metals, 1991, 43, 3253-3257.		3.9	0
83	Electron-electron interactions and 4kF localization in the Bechgaard salts and their sulfur analogs: A spectroscopic outlook. Synthetic Metals, 1991, 42, 1653-1656.	:	3.9	2
84	(TMTSF)3Ta2F11: Synthesis, structural chemistry, electronic structure and physical properties. Synthetic Metals, 1991, 42, 1939-1942.		3.9	7
85	NMR study of (TMTTF)2Br. Synthetic Metals, 1991, 42, 1735-1739.		3.9	2
86	Exact solution of the extended hubbard model for 3/4 filled systems: a valence bond study of the localization in organic conductors. Synthetic Metals, 1991, 43, 3463-3466.		3.9	0
87	The Physics of Organic Superconductors. Science, 1991, 252, 1509-1514.		12.6	403
88	Material properties of low-dimensional charge-transfer salts. I. Charge fluctuations in systems with stronger electronic correlations. Chemical Physics, 1991, 155, 27-47.	n	1.9	11
89	Material properties of low-dimensional charge-transfer salts. II. Mode-softening, Peierls transitions and van Hove singularities. Chemical Physics, 1991, 155, 49-61.	;	1.9	3
90	Organic Conductors and Organic Superconductivity. Physica Scripta, 1991, T39, 37-44.		2.5	25

#	Article	IF	CITATIONS
91	Exceptional solidâ€state properties of organic 2:1 donor–acceptor metals with integral charge transfer. Journal of Chemical Physics, 1991, 94, 5631-5642.	3.0	12
92	Misfit layer compounds family (MS) _{<i>n</i>} TS ₂ (M = Sn, Pb, Bi, rare earth) Tj ETQq1 1	0.784314 1.3	rgBT /Overlo
93	Organic conductors and superconductors. Physica B: Condensed Matter, 1992, 177, 339-347.	2.7	3
94	Analysis of static and dynamic electron and spin properties within the interaction space of the one-dimensional Hubbard chain; a path-integral quantum Monte Carlo approach. Chemical Physics, 1993, 176, 109-134.	1.9	6
95	Physical Features of Low Dimensional Organic Super-conductors. Molecular Crystals and Liquid Crystals, 1993, 230, 101-131.	0.3	17
96	Superconducting and dielectric instabilities inTl2Mo6Se6: Unusual transport properties and unsaturating critical field. Physical Review B, 1994, 49, 8931-8943.	3.2	30
97	Electronic interactions in the organic conductors (TMTSF)2X(X=ClO4andPF6) and (TMTTF)2X(X=Br) Tj ETQq0 0	0 rgBT /Ov	erlock 10 Tf
98	Enhanced charge localization in the organic alloys [(TMTSF)1â^'x(TMTTF)x]2ReO4. Physical Review B, 1994, 50, 7136-7139.	3.2	31
99	(TMTTF)2Br: The First Organic Superconductor in the (TMTTF)2X family. Advanced Materials, 1994, 6, 762-765.	21.0	20
100	Organic superconductors. Solid State Communications, 1994, 92, 89-100.	1.9	40
101	Correlations, dimensionality and instabilities in organic superconductors. Physica B: Condensed Matter, 1995, 206-207, 559-564.	2.7	1
102	Commensurate and Incommensurate Spin-Density Waves and a Modified Phase Diagram of the Bechgaard Salts. Physical Review Letters, 1995, 75, 2408-2411.	7.8	46
103	Disorder and electronic properties of substituted perylene radical-cation salts. Physical Review B, 1995, 52, 4108-4122.	3.2	12
104	Confinement in Bechgaard Salts: Anomalous Magnetoresistance and Nuclear Relaxation. Physical Review Letters, 1995, 74, 5272-5275.	7.8	52
105	(TM)2X organic superconductors: interplay between 1-D charge localization and higher dimensionality cross-over. Synthetic Metals, 1995, 70, 719-725.	3.9	20
106	Electronic state of the organic salt(Dlâ^DCNQI)2Ag, where DI-DCNQI is 2,5-diiodo-N,N′-dicyanoquinonediimine. Physical Review B, 1996, 54, R17276-R17279.	3.2	61
107	Phase transitions in organic conductors and superconductors — the role of external and internal pressure. Phase Transitions, 1996, 57, 81-103.	1.3	3
108	Antiferromagnetic Phases of One-Dimensional Quarter-Filled Organic Conductors. Journal of the Physical Society of Japan, 1997, 66, 1249-1252.	1.6	240

ARTICLE

Renormalization-group approach to the metal-insulator transitions in (DCNQI) 2M(DCNQI) Tj ETQq0 0 0 rgBT /Overlock 10 Tf $\frac{50}{20}$ 742 Td (

110	X-ray evidence of charge density wave modulations in the magnetic phases of (TMTSF)2PF6 and (TMTTF)2Br. Synthetic Metals, 1997, 85, 1523-1528.	3.9	117
111	Galvanomagnetic properties of quasi-ID organic conductors (TMTSF)2NO3 and (TMTTF)2Br. Synthetic Metals, 1997, 85, 1535-1536.	3.9	1
112	A Valence-Bond/Hartree-Fock method to determine the extended Hubbard parameters in organic conductors. Synthetic Metals, 1997, 85, 1627-1628.	3.9	14
113	Mott transition in quasi-one-dimensional electron systems at quarter filling. Synthetic Metals, 1997, 85, 1635-1636.	3.9	2
114	Fluctuations of SDW states of organic conductors with quarter-filled band. Synthetic Metals, 1997, 85, 1767-1768.	3.9	0
115	Organic superconductors: Reduced dimensionality and correlation effects. Synthetic Metals, 1997, 84, 19-24.	3.9	29
116	Examination of the antiferromagnetic ground state of the bechgaard salts. Synthetic Metals, 1997, 86, 1937-1940.	3.9	12
117	Charge Fluctuations in One-Dimensional Quarter-Filled Spin Density Wave States with Dimerization. Journal of the Physical Society of Japan, 1997, 66, 3244-3250.	1.6	21
118	Effect of umklapp scattering on the magnetic-field-induced spin-density waves in quasi-one-dimensional organic conductors. Physical Review B, 1998, 58, 8773-8792.	3.2	6
119	Confinement of interchain hopping by umklapp scattering in two coupled chains. Physical Review B, 1998, 57, R15040-R15043.	3.2	30
120	On-chain electrodynamics of metallic(TMTSF)2Xsalts: Observation of Tomonaga-Luttinger liquid response. Physical Review B, 1998, 58, 1261-1271.	3.2	197
121	Sign Reversals of the Quantum Hall Effect and Helicoidal Magnetic-Field-Induced Spin-Density Waves in Quasi-One-Dimensional Organic Conductors. Physical Review Letters, 1998, 80, 3618-3621.	7.8	20
122	13CNMRMeasurements of the High-Magnetic-Field, Low-Temperature Phases of(TMTTF)2PF6. Physical Review Letters, 1998, 80, 5429-5432.	7.8	26
123	Antiferromagnetic Phase Transition and Crossover to Fermi Liquid Phase in a Weakly Coupled Half-Filled Chain System. Journal of the Physical Society of Japan, 1998, 67, 2590-2593.	1.6	23
124	Theoretical investigation of the phases of the organic insulator(TMTTF)2PF6. Physical Review B, 1999, 59, 4541-4544.	3.2	6
125	Confinement-deconfinement transition in two coupled chains with umklapp scattering. Physical Review B, 1999, 59, 12326-12337.	3.2	27
126	Anisotropy in the optical response of (TMTTF)2X (X=PF6 and Br) Bechgaard salts. Solid State Communications, 1999, 111, 507-512.	1.9	9

#	Article	IF	CITATIONS
127	Title is missing!. Journal of Low Temperature Physics, 1999, 117, 1741-1745.	1.4	3
128	Effects of dimerization and interchain one-particle hopping in a weakly coupled dimerized chain system at quarter filling. Synthetic Metals, 1999, 103, 1833-1834.	3.9	1
129	Renormalization-group study of competition between density waves and pairing in quasi-one-dimensional electron systems. Synthetic Metals, 1999, 103, 2216-2217.	3.9	0
130	Commensurate-Incommensurate Transition in SDW States of Quasi-One-Dimensional Organic Conductors. Journal of the Physical Society of Japan, 1999, 68, 2395-2404.	1.6	5
131	Spin-Density-Wave Phase Transitions in Quasi-One-Dimensional Dimerized Quarter-Filled Organic Conductors. Journal of the Physical Society of Japan, 1999, 68, 2790-2801.	1.6	18
132	Theoretical Study on the Charge Gap of Organic Conductor - Bechgaard Salts Journal of the Physical Society of Japan, 1999, 68, 1809-1812.	1.6	10
133	Effects of dimerization on spin, charge and hopping correlation functions in quasi-one-dimensional organic conductors. Physica B: Condensed Matter, 2000, 284-288, 515-516.	2.7	2
134	Charge Gap and Interchain Correlation in Quasi-One-Dimensional Dimerized Organic Conductors. Molecular Crystals and Liquid Crystals, 2000, 341, 543-548.	0.3	1
135	Charge ordering phase transition in the quasi-one-dimensional conductor (TMTTF)2AsF6. Journal of Physics Condensed Matter, 2000, 12, L435-L440.	1.8	29
137	Quantum phase transitions and collapse of the Mott gap in thed=1+εdimensional Hubbard model with2kFumklapp scattering. Physical Review B, 2000, 62, 2377-2387.	3.2	4
138	Anisotropic Optical Spectra ofPrBa2Cu4O8: Possible Tomonaga-Luttinger Liquid Response of the Quasi-One-Dimensional Metallic CuO Double Chains. Physical Review Letters, 2000, 85, 5428-5431.	7.8	36
139	Electron spin resonance studies on the organic linear-chain compounds(TMTCF)2Xâ€,(C=S,Se;X=PF6,AsF6,ClO4,Br). Physical Review B, 2000, 61, 511-521.	3.2	111
140	Dielectric response of the charge-induced correlated state in the quasi-one-dimensional conductor(TMTTF)2PF6. Physical Review B, 2000, 62, 1753-1756.	3.2	103
141	Charge Ordering in the TMTTF Family of Molecular Conductors. Physical Review Letters, 2000, 85, 1698-1701.	7.8	250
142	Crossover from Quarter-Filling to Half-Filling in a One-Dimensional Electron System with a Dimerized and Quarter-Filled Band. Journal of the Physical Society of Japan, 2001, 70, 1460-1463.	1.6	45
143	Charge gap and dimensional crossovers in quasi-one-dimensional organic conductors. Journal of Physics and Chemistry of Solids, 2001, 62, 99-104.	4.0	10
144	Spectral Function of a Quarter-Filled One-Dimensional Charge Density Wave Insulator. Physical Review Letters, 2002, 88, 096403.	7.8	22
145	Competition and coexistence of bond and charge orders in(TMTTF)2AsF6. Physical Review B, 2002, 66, .	3.2	105

ARTICLE IF CITATIONS Organic conductors and superconductors. Advances in Physics, 2002, 51, 293-479. 14.4 96 146 Weakly coupled one-dimensional Mott insulators. Physical Review B, 2002, 65, . 147 3.2 Renormalization of the hopping parameters in quasi-one-dimensional conductors in the presence of a 148 1.5 4 magnetic field. European Physical Journal B, 2003, 34, 33-39. A Genuine Quarter-Filled Band Mott Insulator, (EDT-TTF-CONMe2)2AsF6: Where the Chemistry and 149 54 Physics of Weak Intermolecular Interactions Act in Unison. Advanced Materials, 2003, 15, 1251-1254. Low-frequency dielectric permittivity of (DI-DCNQI)2Ag in the charge-ordered state. Journal of Physics 150 1.8 6 Condensed Matter, 2004, 16, 7107-7112. Quantum self-consistent approach to the charge gap of the quasi-one-dimensional organic conductors. Solid State Communications, 2004, 129, 443-448. Memory-function approach to the normal-state optical properties of the Bechgaard salt (TMTSF)2PF6. 152 2.7 7 Physica B: Condensed Matter, 2004, 344, 27-40. 19F nuclear magnetic resonance study of the anisotropic anionic motions in the (TMTSF)2PF6 organic 153 2.4 superconductor. Current Applied Physics, 2004, 4, 452-454. 154 Study of Molecular Conductors by X-ray Diffuse Scattering. Chemical Reviews, 2004, 104, 5609-5634. 47.7 10 Organic Conductors:Â From Charge Density Wave TTFâ[~]TCNQ to Superconducting (TMTSF)2PF6. Chemical Reviews, 2004, 104, 5565-5592. Toward Systematic Understanding of Diversity of Electronic Properties in Low-Dimensional 156 47.7 344 Molecular Solids. Chemical Reviews, 2004, 104, 5005-5036. Direct superconducting pairing: a quantum statistical finite-temperature analysis. Computational and Theoretical Chemistry, 2005, 722, 21-39. 1.5 Modification of the charge ordering transition in the quasi-one-dimensional conductor (TMTTF)2SbF6 158 1.9 14 under pressure. Solid State Communications, 2005, 136, 262-267. One Dimensional Organic Superconductors., 2005, , 183-230. 159 NMR evidence for very slow carrier density fluctuations in the organic metal(TMTSF)2ClO4. Physical 160 3.2 11 Review B, 2005, 72, . Triplet Superconducting Pairing and Density-Wave Instabilities in Organic Conductors. Physical 69 Review Letters, 2005, 95, 247001. Victor J. Emery and recent applications of his ideas. Synthetic Metals, 2005, 152, 309-312. 162 3.9 1 Superconductivity and antiferromagnetism in quasi-one-dimensional organic conductors (Review) Tj ETQq1 1 0.784314 rgBT_Overloo

#	Article	IF	CITATIONS
164	Theoretical Aspects of Charge Ordering in Molecular Conductors. Journal of the Physical Society of Japan, 2006, 75, 051009.	1.6	156
165	Transport and Optics in Quasi-One-Dimensional Organic Conductors. Journal of the Physical Society of Japan, 2006, 75, 051004.	1.6	23
166	The spin-ladder and spin-chain system (La,Y,Sr,Ca)14Cu24O41: Electronic phases, charge and spin dynamics. Physics Reports, 2006, 428, 169-258.	25.6	96
167	NMR observation of critical dynamics in the (TMTSF)2PF6 organic superconductor. Solid State Communications, 2006, 139, 9-11.	1.9	1
168	Decoupled critical dynamics of theTMTSFdonor molecules in(TMTSF)2Xorganic superconductors. Physical Review B, 2006, 73, .	3.2	0
169	Superconducting pairing and density-wave instabilities in quasi-one-dimensional conductors. Physical Review B, 2006, 73, .	3.2	39
170	Diffuse X-ray scattering studies of molecular conductors. Annual Reports on the Progress of Chemistry Section C, 2007, 103, 223.	4.4	2
171	Role of Interchain Hopping in the Magnetic Susceptibility of Quasi-One-Dimensional Electron Systems. Journal of the Physical Society of Japan, 2007, 76, 014709.	1.6	14
172	Study on the competition between density waves, singlet, and triplet pairing superconductivity in organic conductors (TMTSF)2X. Journal of Physics and Chemistry of Solids, 2008, 69, 3289-3292.	4.0	0
173	Study on the competition between density waves, singlet, and triplet pairing superconductivity in an organic conductor. Physica B: Condensed Matter, 2008, 403, 1162-1164.	2.7	1
174	The development of organic conductors: Organic superconductors. Solid State Sciences, 2008, 10, 1692-1700.	3.2	5
175	Anomalous nuclear spin-lattice relaxation rate and superconductivity in the Bechgaard salts. Journal of Physics: Conference Series, 2008, 132, 012017.	0.4	1
176	Link between antiferromagnetism and superconductivity probed by nuclear spin relaxation in organic conductors. Physical Review B, 2009, 80, .	3.2	45
177	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mo stretchy="false">[<mml:mi>EDT</mml:mi><mml:mtext mathvariant="normal">â^<mml:mi>TTF</mml:mi><mml:mtext mathvariant="normal">â^<mml:mi>TF</mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml< td=""><td>7.8 msub><m< td=""><td>31 ml·msub> «</td></m<></td></mml<></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mtext </mml:mtext </mml:mo 	7.8 msub> <m< td=""><td>31 ml·msub> «</td></m<>	31 ml·msub> «
178	stretchy="false">16/mml:mos.cmml:mns2c/mml:mnscmml:mi>Xc/mml:mi>c/mml:math>,cmml:ma Low-frequency dielectric response in the quasi-one-dimensional organic conductor (TMTSF)2PF6. Current Applied Physics, 2009, 9, 524-527.	th 2.4	2
179	Mechanism for the Singlet to Triplet Superconductivity Crossover in Quasi-One-Dimensional Organic Conductors. Journal of the Physical Society of Japan, 2009, 78, 104702.	1.6	10
180	Linear-T scattering and pairing from antiferromagnetic fluctuations in the (TMTSF)2X organic superconductors. European Physical Journal B, 2010, 78, 23-36.	1.5	19
181	Phase diagram of quarter-filled band organic salts, , and Br. Physica B: Condensed Matter, 2010, 405, S82-S85.	2.7	3

#	Article	IF	CITATIONS
182	Interfering antiferromagnetism and superconductivity in quasi-one-dimensional organic conductors. Physica B: Condensed Matter, 2010, 405, S89-S91.	2.7	7
183	Electrodynamics of electron-doped iron pnictide superconductors: Normal-state properties. Physical Review B, 2010, 82, .	3.2	99
184	Organic Superconductivity. Contemporary Concepts of Condensed Matter Science, 2011, 4, 149-216.	0.5	2
185	Involvement of weak CH···X hydrogen bonds in metalâ€toâ€semiconductor regime change in oneâ€dimensional organic conductors (<i>o</i> â€DMTTF) ₂ X (X = Cl, Br, and I): combined IR and Raman studies. Journal of Raman Spectroscopy, 2011, 42, 1518-1527.	2.5	15
186	Superconductivity and antiferromagnetism as interfering orders in organic conductors. Comptes Rendus Physique, 2011, 12, 532-541. 3. org/1998/Math/MathML	0.9	11
187	display='inline'> <mml:msup><mml:mn>13</mml:mn></mml:msup> C NMR study of the magnetic properties of the quasi-one-dimensional conductor (TMTTF) <mml:math xmlns:mml="http://www.w3.org/1998/Math/Math/ML" display="inline"><mml:msub></mml:msub></mml:math /> <mml:mn>2</mml:mn> SbF <mml:math< td=""><td>3.2</td><td>22</td></mml:math<>	3.2	22
188	Phase diagram of the correlated quarter-filled-band organic salt series (o-DMTTF)2X(XÂ=ÂCl, Br, I). Physical Review B, 2011, 84, .	3.2	22
189	Tuning the Magnetic Dimensionality by Charge Ordering in the Molecular TMTTF Salts. Physical Review Letters, 2012, 108, 096402.	7.8	36
190	Extended quantum criticality of low-dimensional superconductors near a spin-density-wave instability. Physical Review B, 2012, 85, .	3.2	26
191	Magnetic and Electric Properties of Organic Conductors Probed by 13C-NMR Using Selective-Site Substituted Molecules. Crystals, 2012, 2, 1034-1057.	2.2	11
192	Structural Aspects of the Bechgaard and Fabre Salts: An Update. Crystals, 2012, 2, 466-520.	2.2	54
193	Structural properties of solid solutions of the nonâ€dimerized, 3/4â€filled conductors (<i>o</i> â€DMTTF) ₂ X (X = Cl, Br, I). Physica Status Solidi (B): Basic Research, 2012, 249, 9	43-946.	6
194	Approaching Large U d High-T c Cuprates from the Covalent Side. Journal of Superconductivity and Novel Magnetism, 2012, 25, 669-676.	1.8	13
195	Organic Superconductors: When Correlations and Magnetism Walk in. Journal of Superconductivity and Novel Magnetism, 2012, 25, 633-655.	1.8	19
196	Bond and charge ordering in low-dimensional organic conductors. Physica B: Condensed Matter, 2012, 407, 1762-1770.	2.7	38
197	Charge-ordering transition in (TMTTF)2X explored via dilatometry. Journal of Physics Condensed Matter, 2013, 25, 343201.	1.8	17
198	Infrared and Raman spectroscopic studies of the charge localization in oneâ€dimensional organic metals (DMtTTF) ₂ X (X = ReO ₄ , ClO ₄) with regular organic stack Journal of Raman Spectroscopy, 2013, 44, 1765-1776.	s. 2.5	6
199	Role of electron-phonon interaction in a magnetically driven mechanism for superconductivity. Physical Review B, 2014, 90, .	3.2	6

#	Article	IF	CITATIONS
200	Thermoelectric Properties of Tetrathiotetracene Iodide Crystals: Modeling and Experiment. Journal of Electronic Materials, 2014, 43, 3740-3745.	2.2	13
201	Characterization of the quasi-one-dimensional compounds δ-(EDT-TTF-CONMe2)2X, X=AsF6 and Br by vibrational spectroscopy and density functional theory calculations. Journal of Chemical Physics, 2014, 140, 064504.	3.0	1
202	Electrical transport near quantum criticality in low-dimensional organic superconductors. Physical Review B, 2015, 92, .	3.2	6
203	Fractionally Charged Solitons in "1100―Charge Order Backgrounds. Journal of the Physical Society of Japan, 2015, 84, 034707.	1.6	0
204	Donor–anion interactions at the charge localization and charge ordering transitions of (TMTTF) ₂ AsF ₆ probed by NEXAFS. Physical Chemistry Chemical Physics, 2015, 17, 19202-19214.	2.8	13
205	Seebeck coefficient in correlated low-dimensional organic metals. Physical Review B, 2016, 94, .	3.2	13
206	Horizontally aligned carbon nanotube arrays: growth mechanism, controlled synthesis, characterization, properties and applications. Chemical Society Reviews, 2017, 46, 3661-3715.	38.1	153
207	Superconducting and density-wave instabilities of low-dimensional conductors with a Zeeman coupling to a magnetic field. Physical Review B, 2017, 95, .	3.2	2
208	Development of high-porosity resorcinol formaldehyde aerogels with enhanced mechanical properties through improved particle necking under CO 2 supercritical conditions. Journal of Colloid and Interface Science, 2017, 485, 65-74.	9.4	49
209	Peierls and Spin-Peierls Instabilities in the Per2[M(mnt)2] Series of One-Dimensional Organic Conductors; Experimental Realization of a 1D Kondo Lattice for M = Pd, Ni and Pt. Magnetochemistry, 2017, 3, 13.	2.4	11
210	Influence of carrier lifetime on quantum criticality and superconducting Tc of (TMTSF) 2ClO4. Physical Review B, 2018, 98, .	3.2	0
211	Donor–anion interactions in quarter-filled low-dimensional organic conductors. Materials Horizons, 2018, 5, 590-640.	12.2	47
212	Crystal Structures and Electrical Resistivity of Three Exotic TMTSF Salts with I 3 â^'': Determination of Valence by DFT and MP2 Calculations. Crystals, 2020, 10, 1119.	2.2	2
213	One-Dimensional Alternating Extended Hubbard Model at Quarter-Filling and Its Applications to Structural Instabilities of Organic Conductors. Crystals, 2020, 10, 942.	2.2	4
214	Emergence of charge loop current in the geometrically frustrated Hubbard model: A functional renormalization group study. Physical Review B, 2021, 103, .	3.2	11
215	Multiple fermion scattering in the weakly coupled spin-chain compound YbAlO3. Nature Communications, 2021, 12, 3599.	12.8	13
216	<i>d</i> - and <i>p</i> -wave Quantum Liquid Crystal Orders in Cuprate Superconductors, <i>le</i> -(BEDT-TTF) ₂ X, and Coupled Chain Hubbard Models: Functional-renormalization-group Analysis. Journal of the Physical Society of Japan, 2021, 90, 111012.	1.6	5
217	Organic Superconductors. Progress in Inorganic Chemistry, 0, , 183-220.	3.0	53

~				
CITI	ΔTIC	ין אר	FD(NDT
	ATTC	יו אוכ	KEP(JR.

#	Article	IF	CITATIONS
218	One-Dimensional Correlations in Organic Superconductors : Magnetism and Superconductivity. , 1987, , 103-133.		4
219	Recent Developments in Organic Superconductors. NATO ASI Series Series B: Physics, 1990, , 85-89.	0.2	1
220	Optical Studies of the Interplay Between Electron-Lattice and Electron-Electron Interactions in Organic Conductors and Superconductors. NATO ASI Series Series B: Physics, 1990, , 129-142.	0.2	2
221	Magnetic Properties of Bechgaard Salts and Related Compounds Role of the Electronic Localization. NATO ASI Series Series B: Physics, 1987, , 201-218.	0.2	7
222	Electronic Correlations in Organic Conductors and Superconductors. NATO ASI Series Series B: Physics, 1987, , 155-183.	0.2	11
223	Basic Ideas in the Theory of Organic Conductors. NATO ASI Series Series B: Physics, 1987, , 47-59.	0.2	4
224	Historical Approach to Organic Superconductivity. Springer Series in Materials Science, 2008, , 3-16.	0.6	7
225	Energy and Dielectric Relaxations in Bechgaard–Fabre Salts. Springer Series in Materials Science, 2008, , 277-312.	0.6	3
226	Ferroelectricity and Charge Ordering in Quasi-1D Organic Conductors. Springer Series in Materials Science, 2008, , 313-355.	0.6	13
227	Interacting Electrons in Quasi-One-Dimensional Organic Superconductors. Springer Series in Materials Science, 2008, , 357-412.	0.6	21
228	From Luttinger to Fermi Liquids in Organic Conductors. Springer Series in Materials Science, 2008, , 719-743.	0.6	3
229	La Tour des Sels de Bechgaard. Springer Series in Materials Science, 2008, , 49-87.	0.6	10
230	Organic Superconductors. Springer Series in Solid-state Sciences, 1984, , 136-148.	0.3	2
231	Organic Superconductivity: The Role of Low Dimensionality and Magnetism. Springer Series in Solid-state Sciences, 1990, , 113-140.	0.3	2
232	Quasi One-Dimensional Organic Conductors: Dimensional Crossover and Some Puzzles. , 2002, , 81-102.		10
233	Ground State Properties of Conducting Trichalcogenides. , 1985, , 1-40.		7
234	The Normal Phase of Quasi-One-Dimensional Organic Superconductors. , 1999, , 206-261.		17
235	The role of Coulomb screening in quasi one-dimensional conductors. Journal De Physique, 1983, 44, 185-199.	1.8	33

#	Article	IF	CITATIONS
236	X-ray study of the anion ordering transition in di (tetramethyltetraselenafulvalen)-ium perchlorate (TMTSF)2ClO4 : quenching and irradiation effects. Journal De Physique, 1985, 46, 1521-1532.	1.8	38
237	Superconductivity, localization and crystallographic phase transition in La(2-x)SrXCuO(4-y). Journal De Physique, 1987, 48, 1181-1186.	1.8	39
238	Electron mechanism for the tilting transition in La2-x SrxCuO4. Journal De Physique, 1988, 49, 153-158.	1.8	16
239	The ubiquity of the new organic conductor ditetramethyldithiadiselenafulvalene-hexafluorophosphate (TMDTDSF)2PF6. Journal De Physique, 1989, 50, 2727-2739.	1.8	30
240	1H-NMR relaxation measurements in the organic conductors : (TMTTF)2Br and (TMTTF)2PF6. Journal De Physique (Paris), Lettres, 1982, 43, 755-761.	2.8	31
241	Phase diagram and critical temperatures of nearly half-filled quasi one-dimensional conductors. Journal De Physique (Paris), Lettres, 1983, 44, 403-409.	2.8	5
242	Shubnikov-de Haas oscillations in an organic conductor tetramethyltetraselenafulvalene-2,5-dimethyl-7,7', 8,8' tetracyanoquinodimethane (TMTSF-DMTCNQ). Journal De Physique (Paris), Lettres, 1983, 44, 285-293.	2.8	4
243	Spin effects in quasi-one-dimensional conductors under magnetic field. Journal De Physique (Paris), Lettres, 1984, 45, 533-542.	2.8	34
244	On the theory of phase transitions in organic superconductors. Journal De Physique (Paris), Lettres, 1985, 46, 111-116.	2.8	51
245	Fermi surface electron–hole instability of the (TMTSF) ₂ PF ₆ Bechgaard salt revealed by the first-principles Lindhard response function. Journal of Physics Condensed Matter, 2020, 32, 345701.	1.8	4
246	Effect of Anion Lattice on SDW States in Quarter-Filled Organic Conductors. Journal of the Physical Society of Japan, 1996, 65, 1792-1798.	1.6	9
247	Dimensionality Effects on the Charge Gap in the Dimerized Hubbard Model at Quarter Filling: the Density-Matrix and Perturbative Renormalization-Group Approaches. Journal of the Physical Society of Japan, 2000, 69, 2107-2112.	1.6	3
248	Superconductivity and Magnetism in Quasi-One-Dimensional Two-Band Systems Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 1998, 7, 490-492.	0.0	1
249	Electronic Phases of Low-Dimensional Conductors. Lecture Notes in Physics, 2002, , 235-270.	0.7	0
250	Theory of the SDW and Superconducting Phases in the Bechgaard Salts. Springer Series in Solid-state Sciences, 1984, , 149-166.	0.3	3
251	THE ROLE OF KINETIC INTERCHAIN COUPLING IN QUASI-1D CONDUCTORS. , 1986, , 450-452.		0
252	SUPERCONDUCTING AND MAGNETIC INSTABILITIES IN(TMTSF)2X AND (BEDT-TTF)2 CONDUCTORS. , 1986, , 329-333.		0
253	ON THE MAGNETIC-FIELD-INDUCED SDW PHASE IN THE BECHGAARD SALTS. , 1986, , 439-443.		0

#	Article	IF	CITATIONS
254	IMPORTANCE OF ONE-DIMENSIONAL CORRELATIONS IN THE PHASE DIAGRAM OF THE (TMTTF)2-(TMTSF)2-X SALTS. , 1986, , 453-455.		0
255	Energy Scale in Organic Conductors and the Problem of Superconductivity in the Bechgaard Salts. NATO ASI Series Series B: Physics, 1987, , 139-142.	0.2	0
256	The Origin of Pairing Interaction in Organic Superconductors. , 1987, , 159-170.		0
257	135 K Crystallographic and Electronic Structure of (TMTTF)2SbF6. NATO ASI Series Series B: Physics, 1990, , 163-168.	0.2	0
258	Spin Density Wave and Reentrant Superconducting Phases. Springer Series in Solid-state Sciences, 1990, , 68-98.	0.3	0
259	Antiferromagnetic Transitions in (DMET)2X and (DMPT)2X. Springer Proceedings in Physics, 1990, , 242-246.	0.2	0
260	Recent Developments in Organic Superconductors. Springer Proceedings in Physics, 1990, , 2-7.	0.2	1
261	NMR Evidence for the Existence of 1D Paramagnons in Organic Conductors. Springer Proceedings in Physics, 1990, , 68-72.	0.2	0
262	A Hidden Low-Temperature Phase in the Organic Conductor (TMTSF)2ReO4. Springer Proceedings in Physics, 1990, , 64-67.	0.2	0
263	High Tc Superconductors: A Conservative View. NATO ASI Series Series B: Physics, 1991, , 365-376.	0.2	30
264	Low Dimensional Molecular Conductors: Various Aspects of their Physical Properties. NATO ASI Series Series B: Physics, 1991, , 759-769.	0.2	0
265	Organic Superconductors and Spin Density Waves. NATO ASI Series Series B: Physics, 1996, , 141-169.	0.2	1
266	Magnetic Properties of Organic Conductors and Superconductors. , 1996, , 473-502.		0
267	Required nearest-neighbor Coulomb interactions for a charge-ordered phase transition in (TMTTF)2MF6 with inversion symmetry breaking in crystal. Chemical Physics Letters, 2022, 787, 139254.	2.6	1
268	Spin-Peierls, Spin-Ladder and Kondo Coupling in Weakly Localized Quasi-1D Molecular Systems: An Overview. Magnetochemistry, 2023, 9, 57.	2.4	2
269	Structural Approach to Charge Density Waves in Low-Dimensional Systems: Electronic Instability and Chemical Bonding. Reports on Progress in Physics, 0, , .	20.1	0
270	Quasi one-dimensional organic conductors: from Fröhlich conductivity and Peierls insulating state to magnetically-mediated superconductivity, a retrospective. Comptes Rendus Physique, 2024, 25, 17-178.	0.9	0