Statics and dynamics of skyrmions interacting with dise

Reviews of Modern Physics 94,

DOI: 10.1103/revmodphys.94.035005

Citation Report

#	Article	IF	CITATIONS
1	Dynamic transition of current-driven single-skyrmion motion in a room-temperature chiral-lattice magnet. Nature Communications, 2021, 12, 6797.	5.8	26
2	Configurable pixelated skyrmions on nanoscale magnetic grids. Communications Physics, 2021, 4, .	2.0	14
3	Skyrmion pinning energetics in thin film systems. Nature Communications, 2022, 13, .	5.8	25
4	Collective skyrmion motion under the influence of an additional interfacial spin-transfer torque. Scientific Reports, 2022, 12, .	1.6	8
5	Fundamental physics and applications of skyrmions: A review. Journal of Magnetism and Magnetic Materials, 2022, 563, 169905.	1.0	10
6	Chiral Spin Textures for Next-Generation Memory and Unconventional Computing. ACS Applied Electronic Materials, 2022, 4, 5088-5097.	2.0	4
7	Reversible Transformation between Isolated Skyrmions and Bimerons. Nano Letters, 2022, 22, 8559-8566.	4.5	17
8	Current-Induced Helicity Switching of Frustrated Skyrmions on a Square-Grid Obstacle Pattern. Journal of the Magnetics Society of Japan, 2022, , .	0.5	1
9	Driven particle dispersion in narrow disordered racetracks. Physical Review B, 2022, 106, .	1.1	0
10	Experimental Realization of a Skyrmion Circulator. Nano Letters, 2022, 22, 9638-9644.	4.5	1
11	Nonlinear dynamics, avalanches, and noise for driven Wigner crystals. Physical Review B, 2022, 106, .	1.1	6
12	Interaction between magnon and skyrmion: Toward quantum magnonics. Journal of Applied Physics, 2022, 132, .	1.1	7
13	Coherent correlation imaging for resolving fluctuating states of matter. Nature, 2023, 614, 256-261.	13.7	2
14	Pattern formation and transport for externally driven active matter on periodic substrates ^(a) . Europhysics Letters, 2023, 142, 37001.	0.7	3
15	Constructing coarse-grained skyrmion potentials from experimental data with Iterative Boltzmann Inversion. Communications Physics, 2023, 6, .	2.0	11
16	300â€īimesâ€Increased Diffusive Skyrmion Dynamics and Effective Pinning Reduction by Periodic Field Excitation. Advanced Materials, 2023, 35, .	11.1	4
17	Tailoring the escape rate of a Brownian particle by combining a vortex flow with a magnetic field. Journal of Chemical Physics, 2023, 158, 101101.	1.2	0
18	Topological Hall effect in three-dimensional centrosymmetric magnetic skyrmion crystals. Physical Review B, 2023, 107, .	1.1	1

CITATION REPORT

#	Article	IF	CITATIONS
19	Universal Quantum Computation Based on Nanoscale Skyrmion Helicity Qubits in Frustrated Magnets. Physical Review Letters, 2023, 130, .	2.9	19
20	Driven magnetic skyrmions in a narrow channel. European Physical Journal: Special Topics, 0, , .	1.2	1
21	Direct Observation of Magnetic Bubble Lattices and Magnetoelastic Effects in van der Waals Cr ₂ Ge ₂ Te ₆ . Advanced Functional Materials, 2023, 33, .	7.8	5
22	Dynamics of orbital skyrmions in a circular nanodisk. Physical Chemistry Chemical Physics, 2023, 25, 12050-12056.	1.3	1
23	Giant tunability of microwave responses for current-driven skyrmions in a tapered nanostructure with notches. Journal Physics D: Applied Physics, 0, , .	1.3	0
38	Control of skyrmion lattice order in the van der Waals ferromagnet Fe3GeTe2. , 2023, , .		0