Towards organic electronics that learn at the body-mac

MRS Communications 12, 565-577 DOI: 10.1557/s43579-022-00269-3

Citation Report

#	Article	IF	CITATIONS
1	Vertical architecture improves performance of transistor family. Nature, 2023, 613, 444-445.	27.8	1
2	A new dithieno[3,2- <i>b</i> :2′,3′- <i>d</i>]thiophene derivative for high performance single crystal organic field-effect transistors and UV-sensitive phototransistors. RSC Advances, 2023, 13, 11706-11711.	3.6	Ο
3	Molecularly Hybridized Conduction in DPPâ€Based Donor–Acceptor Copolymers toward Highâ€Performance Ionoâ€Electronics. Small, 2023, 19, .	10.0	4
4	Electronic tissue technologies for seamless biointerfaces. Journal of Polymer Science, 2023, 61, 1707-1712.	3.8	1
5	Unraveling Polymer–Ion Interactions in Electrochromic Polymers for their Implementation in Organic Electrochemical Synaptic Devices. Advanced Functional Materials, 2023, 33, .	14.9	4
6	Polymer-Based Thermally Stable Chemiresistive Sensor for Real-Time Monitoring of NO ₂ Gas Emission. ACS Sensors, 2023, 8, 3687-3692.	7.8	3
7	Brainâ€Inspired Organic Electronics: Merging Neuromorphic Computing and Bioelectronics Using Conductive Polymers. Advanced Functional Materials, 0, , .	14.9	3
8	Recent advancements in implantable neural links based on organic synaptic transistors. Exploration, 0, , .	11.0	Ο
9	Organic synaptic transistors: Biocompatible neuromorphic devices for in-vivo applications. Organic Electronics, 2024, 127, 107014.	2.6	0
10	Revolutionizing Electronics and Technological Interventions in Semiconductor Devices. , 2023, , .		0
11	Ultrasoft and High-Adhesion Block Copolymers for Neuromorphic Computing. ACS Applied Materials & Interfaces, 2024, 16, 12897-12906.	8.0	0

TION RED