Probabilistic feasibility space of scaling up green hydrog

Nature Energy 7, 854-865 DOI: 10.1038/s41560-022-01097-4

Citation Report

#	Article	IF	CITATIONS
1	What can we learn from probabilistic feasibility assessments?. Joule, 2022, 6, 2450-2452.	24.0	1
2	Requirements for a maritime transition in line with the Paris Agreement. IScience, 2022, 25, 105630.	4.1	2
3	Advances in Power-to-Gas Technologies: Cost and Conversion Efficiency. SSRN Electronic Journal, 0, , .	0.4	0
4	Phasing out coal for 2 °C target requires worldwide replication of most ambitious national plans despite security and fairness concerns. Environmental Research Letters, 2023, 18, 014031.	5.2	10
5	Minimizing emissions from grid-based hydrogen production in the United States. Environmental Research Letters, 2023, 18, 014025.	5.2	23
6	Effects of lattice strain on hydrogen diffusion, trapping and escape in bcc iron from ab-initio calculations. International Journal of Hydrogen Energy, 2023, 48, 8198-8215.	7.1	6
7	Limited quantity and quality of steel supply in a zero-emission future. Nature Sustainability, 2023, 6, 336-343.	23.7	13
8	CO2-free hydrogen production via microwave-driven methane pyrolysis. International Journal of Hydrogen Energy, 2023, 48, 14565-14576.	7.1	23
9	Investment in wind-based hydrogen production under economic and physical uncertainties. Applied Energy, 2023, 337, 120881.	10.1	6
10	This really does change everything: attaining 1.5 °C needs all available mitigation levers. Environmental Research Letters, 2023, 18, 022001.	5.2	1
11	Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions. Applied Energy, 2023, 336, 120850.	10.1	33
12	The feasibility of climate action: Bridging the inside and the outside view through feasibility spaces. Wiley Interdisciplinary Reviews: Climate Change, 2023, 14, .	8.1	9
13	Thermal shock synthesis of carbon nanotubes supporting small-sized rhenium nanoparticles for efficient electrocatalytic hydrogen evolution. Rare Metals, 2023, 42, 2166-2173.	7.1	3
14	Unveiling the structural transformation and activity origin of heteroatom-doped carbons for hydrogen evolution. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	9
15	Barriers to powering past coal: Implications for a just energy transition in South Africa. Energy Research and Social Science, 2023, 101, 103122.	6.4	4
16	Hydrogen or Electric Drive—Inconvenient (Omitted) Aspects. Energies, 2023, 16, 4400.	3.1	0
17	Cost reduction in low-carbon hydrogen: effective but insufficient to mitigate carbon emissions. Discover Energy, 2023, 3, .	1.8	0
18	Carbon-Neutral Steel Production and Its Impact on the Economies of China, Japan, and Korea: A Simulation with E3ME-FTT:Steel. Energies, 2023, 16, 4498.	3.1	4

TATION REPO

#	Article	IF	CITATIONS
20	Modulation for RuO ₂ /TiO ₂ via Simple Synthesis to Enhance the Acidic Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2023, 11, 9489-9497.	6.7	6
21	Linking Cost Decline and Demand Surge in the Hydrogen Market: A Case Study in China. Energies, 2023, 16, 4821.	3.1	0
22	Endogenous learning for green hydrogen in a sector-coupled energy model for Europe. Nature Communications, 2023, 14, .	12.8	9
23	Probabilistic modelling of seasonal energy demand patterns in the transition from natural gas to hydrogen for an urban energy district. International Journal of Hydrogen Energy, 2023, , .	7.1	0
24	Hydrogen production paths in China based on learning curve and discrete choice model. Journal of Cleaner Production, 2023, 415, 137848.	9.3	10
25	Comparative analysis of global trends in low carbon hydrogen production towards the decarbonization pathway. International Journal of Hydrogen Energy, 2023, 48, 32191-32240.	7.1	9
26	Options for net zero emissions hydrogen from Victorian lignite. Part 2: Ammonia production. International Journal of Hydrogen Energy, 2023, 48, 37166-37182.	7.1	1
28	Highly Utilized Active Sites on Pt@Cu/C for Ethanol Electrocatalytic Oxidation in Alkali Metal Hydroxide Solutions. Advanced Functional Materials, 2023, 33, .	14.9	4
29	How to make climate-neutral aviation fly. Nature Communications, 2023, 14, .	12.8	11
30	Electrochemical and thermodynamic modeling and simulation of alkaline electrolyzer under different operating parameters. , 2023, , .		0
31	The potential role of a hydrogen network in Europe. Joule, 2023, 7, 1793-1817.	24.0	20
32	Online adaptive energy management strategy for fuel cell hybrid vehicles based on improved cluster and regression learner. Energy Conversion and Management, 2023, 292, 117388.	9.2	6
33	On the Cost Competitiveness of Blue and Green Hydrogen. SSRN Electronic Journal, 0, , .	0.4	1
34	Industrial and infrastructural conditions for production and export of green hydrogen and synthetic fuels in the MENA region: insights from Jordan, Morocco, and Oman. Sustainability Science, 0, , .	4.9	2
35	Bottomâ€up Synthesis of Singleâ€Crystalline Poly (Triazine Imide) Nanosheets for Photocatalytic Overall Water Splitting. Angewandte Chemie, 2023, 135, .	2.0	3
36	Bottomâ€up Synthesis of Singleâ€Crystalline Poly (Triazine Imide) Nanosheets for Photocatalytic Overall Water Splitting. Angewandte Chemie - International Edition, 2023, 62, .	13.8	17
37	Transient phase transition during the hydrogen evolution reaction. Energy and Environmental Science, 2023, 16, 3951-3959.	30.8	5
38	Anchoring Ru nanoclusters to defect-rich polymeric carbon nitride as a bifunctional electrocatalyst for highly efficient overall water splitting. Journal of Materials Chemistry A, 2023, 11, 18375-18386.	10.3	5

#	Article	IF	CITATIONS
39	A superhydrophilic NiFe electrode for industrial alkaline water electrolysis. International Journal of Hydrogen Energy, 2024, 49, 285-294.	7.1	1
40	Power sector effects of green hydrogen production in Germany. Energy Policy, 2023, 182, 113738.	8.8	3
41	Breaking down costs. Nature Energy, 2023, 8, 779-780.	39.5	0
42	Effect of Activating a Nickel–Molybdenum Catalyst in an Anion Exchange Membrane Water Electrolyzer. ACS Catalysis, 2023, 13, 11589-11597.	11.2	4
43	Molecular and Structural Insights into H ₂ Indicator Supraparticles: Lowering the Limit of Detection by Tuning Incorporated Catalyst Nanoparticles. Chemistry of Materials, 0, , .	6.7	0
44	Historical diffusion of nuclear, wind and solar power in different national contexts: implications for climate mitigation pathways. Environmental Research Letters, 2023, 18, 094066.	5.2	1
45	Review of sustainable energy carriers for aviation: Benefits, challenges, and future viability. Progress in Aerospace Sciences, 2023, 141, 100919.	12.1	8
46	Diversify or die: Strategy options for oil majors in the sustainable energy transition. Energy Research and Social Science, 2023, 104, 103253.	6.4	5
47	Wicked facets of the German energy transition – examples from the electricity, heating, transport, and industry sectors. International Journal of Sustainable Energy, 2023, 42, 1128-1181.	2.4	1
48	Nb ₂ O ₅ Nanostructures as Precursors of Cycling Catalysts for Hydrogen Storage in MgH ₂ . ACS Applied Nano Materials, 2023, 6, 14527-14539.	5.0	3
49	The impact of methane leakage on the role of natural gas in the European energy transition. Nature Communications, 2023, 14, .	12.8	3
50	Advances in benchmarking and round robin testing for PEM water electrolysis: Reference protocol and hardware. Applied Energy, 2023, 352, 121898.	10.1	0
52	Underground hydrogen storage prospects in the Kingdom of Saudi Arabia. Fuel, 2024, 357, 129665.	6.4	9
54	Nanosurface-induced construction of NiCoP–CoP heterostructure nanobristle electrodes for highly efficient alkaline hydrogen evolution reaction. Journal of Materials Chemistry A, 2023, 11, 22340-22346.	10.3	1
55	Probabilistic projections of granular energy technology diffusion at subnational level. , 2023, 2, .		3
56	From unlikely pairings to functional nanocomposites: FeTi–Cu as a model system. Materials Today Advances, 2023, 20, 100433.	5.2	1
57	Dataset on the adoption of historical technologies informs the scale-up of emerging carbon dioxide removal measures. Communications Earth & Environment, 2023, 4, .	6.8	2
59	Towards a systematic and knowledge-based requirements and conceptual engineering for modular electrolysis plants. Energy Informatics, 2023, 6, .	2.3	0

#	Article	IF	CITATIONS
60	Improving the photovoltage of Cu2O photocathodes with dual buffer layers. Nature Communications, 2023, 14, .	12.8	1
61	Policy Design for Diffusing Hydrogen Economy and Its Impact on the Japanese Economy for Carbon Neutrality by 2050: Analysis Using the E3ME-FTT Model. Energies, 2023, 16, 7392.	3.1	Ο
62	Towards a resilient and cost-competitive clean hydrogen economy: the future is green. Energy and Environmental Science, 2023, 16, 6094-6109.	30.8	1
63	Feasible supply of steel and cement within a carbon budget is likely to fall short of expected global demand. Nature Communications, 2023, 14, .	12.8	3
64	Perceived feasibility and potential barriersÂof a net-zero system transitionÂamong Japanese experts. Communications Earth & Environment, 2023, 4, .	6.8	0
65	Advances in power-to-gas technologies: cost and conversion efficiency. Energy and Environmental Science, 2023, 16, 6058-6070.	30.8	1
66	Near-term deployment of novel carbon removal to facilitate longer-term deployment. Joule, 2023, 7, 2653-2659.	24.0	2
67	Molybdate ion leaching and re-adsorption facilitate structural and electronic modulation of nickel–iron catalysts for seawater electrolysis. Inorganic Chemistry Frontiers, 0, , .	6.0	1
68	Doped TiO2-Supported IrO2 Electrocatalyst with High Activity and Durability toward the Acidic Oxygen Evolution Reaction. CrystEngComm, 0, , .	2.6	0
69	Spread in climate policy scenarios unravelled. Nature, 2023, 624, 309-316.	27.8	0
70	Application of Hydrogen as a Fuel in Domestic Appliances. , 2023, , .		0
71	Global transcontinental power pools for low-carbon electricity. Nature Communications, 2023, 14, .	12.8	0
72	Recalibration of CO2 storage in shale: prospective and contingent storage resources, and capacity. Energy, 2024, 290, 130067.	8.8	1
73	Towards a unified theory of domestic hydrogen acceptance: An integrative, comparative review. International Journal of Hydrogen Energy, 2024, 56, 498-524.	7.1	4
74	Defect Engineering of 1T' MX2 (M=Mo, W and X=S, Se) Transition Metal Dichalcogenide-Based Electrocatalyst for Alkaline Hydrogen Evolution Reaction. Journal of Physics Condensed Matter, 0, , .	1.8	0
75	Unveiling complexity of hydrogen integration: A multi-faceted exploration of challenges in the Dutch context. Journal of Cleaner Production, 2024, 434, 139927.	9.3	0
76	Exploring the Influence Mechanism of Porous Transport Layer Structure and Type on Performance in Proton Exchange Membrane Electrolyzer. Journal of the Electrochemical Society, 2023, 170, 124510.	2.9	0
77	Exploring the contours of consumer heterogeneity: Towards a typology of domestic hydrogen acceptance. Energy Research and Social Science, 2024, 108, 103401.	6.4	3

	CITATION R	CITATION REPORT	
#	ARTICLE Electronic configuration regulation of single-atomic Mn sites mediated by Mo/Mn clusters for an	IF	CITATIONS
78	efficient hydrogen evolution reaction. Chemical Science, 2024, 15, 1894-1905.	7.4	0
79	Selfâ€healable, Tolerant Superaerophobic Coating for Improving Electrochemical Hydrogen Production. Small, 0, , .	10.0	0
80	On the cost competitiveness of blueÂandÂgreenÂhydrogen. Joule, 2024, 8, 104-128.	24.0	3
81	Study of In-Situ Visualization and Two-Phase Flow Characteristics in Proton Exchange Membrane Electrolyzer. Springer Proceedings in Physics, 2024, , 182-194.	0.2	0
83	Assessing Challenges of 2D-Molybdenum Ditelluride for Efficient Hydrogen Generation in a Full-Scale Proton Exchange Membrane (PEM) Water Electrolyzer. ACS Sustainable Chemistry and Engineering, 2024, 12, 1276-1285.	6.7	0
84	On the future relevance of green hydrogen in Europe. Applied Energy, 2024, 358, 122586.	10.1	1
85	A meta-review of 54 studies on hydrogen heating. , 2024, 1, 100010.		0
86	Net-Zero Embodied Carbon in Buildings with Today's Available Technologies. Environmental Science & Technology, 2024, 58, 1793-1801.	10.0	0
88	Microporous transport layers facilitating low iridium loadings in polymer electrolyte water electrolysis. , 2024, 2, 585-602.		0
89	Questioning nuclear scale-up propositions: Availability and economic prospects of light water, small modular and advanced reactor technologies. Energy Research and Social Science, 2024, 110, 103448.	6.4	1
90	Hydrogen energy futures – foraging or farming?. Chemical Society Reviews, 2024, 53, 2258-2263.	38.1	2
91	Challenges and Opportunities in Green Hydrogen Adoption for Decarbonizing Hard-to-Abate Industries: A Comprehensive Review. IEEE Access, 2024, 12, 23363-23388.	4.2	0
92	Unlocking the resources of end-of-life ICEVs: Contributing platinum for green hydrogen production under the IEA-NZE scenario. Resources, Conservation and Recycling, 2024, 204, 107481.	10.8	0
93	Near-term infrastructure rollout and investment strategies for net-zero hydrogen supply chains. Renewable and Sustainable Energy Reviews, 2024, 194, 114314.	16.4	0
94	Distinct roles of direct and indirect electrification in pathways to a renewables-dominated European energy system. One Earth, 2024, 7, 226-241.	6.8	1
95	Green hydrogen credit subsidized renewable energy-hydrogen business models for achieving the carbon neutral future. International Journal of Hydrogen Energy, 2024, 60, 189-193.	7.1	0
97	Laser direct overall water splitting for H ₂ and H ₂ O ₂ production. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121, .	7.1	0
98	How hydrogen can decarbonize the chemical industry in China: A review based on the EIC–TER industrial assessment framework. International Journal of Hydrogen Energy, 2024, 60, 1345-1358.	7.1	Ο

#	Article	IF	CITATIONS
99	Forging a sustainable sky: Unveiling the pillars of aviation e-fuel production for carbon emission circularity. IScience, 2024, 27, 109154.	4.1	0
100	Future environmental impacts of global hydrogen production. Energy and Environmental Science, 2024, 17, 2157-2172.	30.8	0
101	Arming Amorphous NiMoO ₄ on Nickel Phosphide Enables Highly Stable Alkaline Seawater Oxidation. Small, 0, , .	10.0	0
102	Limited impact of hydrogen co-firing on prolonging fossil-based power generation under low emissions scenarios. Nature Communications, 2024, 15, .	12.8	0
103	Levelized costs and potential production of green hydrogen with wind and solar power in different provinces of mainland China. Journal of Renewable and Sustainable Energy, 2024, 16, .	2.0	0
104	A prospective life cycle assessment of global ammonia decarbonisation scenarios. Heliyon, 2024, 10, e27547.	3.2	0
105	Surface-derived phosphate layer on NiFe-layered double hydroxide realizes stable seawater oxidation at the current density of 1 AA°cmâ^2. Nano Research, 0, , .	10.4	0
106	A soft-contact hybrid electromagnetic–triboelectric nanogenerator for self-powered water splitting towards hydrogen production. Nano Research, 0, , .	10.4	0
107	Saltâ€nelt synthesis of poly(heptazine imide) in binary alkali metal bromides for enhanced visibleâ€light photocatalytic hydrogen production. , 0, , .		0
108	Ultra-fast green hydrogen production from municipal wastewater by an integrated forward osmosis-alkaline water electrolysis system. Nature Communications, 2024, 15, .	12.8	0
109	Dual Function of Naphthalenediimide Supramolecular Photocatalyst with Giant Internal Electric Field for Efficient Hydrogen and Oxygen Evolution. Small, 0, , .	10.0	0
110	Efficient and Stable Proton Exchange Membrane Water Electrolysis Enabled by Stress Optimization. ACS Central Science, 0, , .	11.3	Ο