Pressure dependence on the three-dimensional structu all-solid-state battery

Journal of Materials Chemistry A 10, 16602-16609 DOI: 10.1039/d2ta02378d

Citation Report

#	Article	IF	CITATIONS
1	Phase Transformation and Microstructural Evolution of CuS Electrodes in Solid‧tate Batteries Probed by In Situ 3D Xâ€Ray Tomography. Advanced Energy Materials, 2023, 13, .	19.5	3
2	In Situ Atomic Force Microscopy and Xâ€ray Computed Tomography Characterization of Allâ€Solidâ€State Lithium Batteries: Both Local and Overall. Energy Technology, 2023, 11, .	3.8	2
3	Toward the Practical and Scalable Fabrication of Sulfideâ€Based Allâ€Solidâ€State Batteries: Exploration of Slurry Process and Performance Enhancement Via the Addition of LiClO ₄ . Advanced Functional Materials, 2023, 33, .	14.9	6
4	Surface Degeneration of Li ₃ PS ₄ –Lil Glass-Ceramic Electrolyte by Exposure to Humidity-Controlled Air and Its Recovery by Thermal Treatment. Electrochemistry, 2023, 91, 057004-057004.	1.4	4
5	Toward <i>Operando</i> Structural, Chemical, and Electrochemical Analyses of Solid-State Batteries Using Correlative Secondary Ion Mass Spectrometry Imaging. Analytical Chemistry, 2023, 95, 9932-9939.	6.5	1
6	Challenges and opportunities of practical sulfide-based all-solid-state batteries. ETransportation, 2023, 18, 100272.	14.8	5
7	Mechanical Investigations of Composite Cathode Degradation in All-Solid-State Batteries. ACS Applied Energy Materials, 2023, 6, 9615-9623.	5.1	1
8	Direct tracking of reaction distribution in an all-solid-state battery using operando scanning electron microscopy with energy dispersive X-ray spectroscopy. Journal of the Ceramic Society of Japan, 2023, 131, 651-658.	1.1	0
9	Machine learning super-resolution of laboratory CT images in all-solid-state batteries using synchrotron radiation CT as training data. Energy and Al, 2023, 14, 100305.	10.6	0
10	Design of Highâ€Entropy Tape Electrolytes for Compressionâ€Free Solidâ€State Batteries. Advanced Materials, 0, , .	21.0	0
11	Thin, Highly Ionic Conductive, and Mechanically Robust Frameâ€Based Solid Electrolyte Membrane for Allâ€Solidâ€State Li Batteries. Advanced Energy Materials, 2024, 14, .	19.5	0
12	Modeling and simulation of a composite solid-state battery: The effects of stack pressure on electrochemical and mechanical behavior. Journal of Energy Storage, 2024, 78, 110051.	8.1	0
13	Functionalized Electrode Additive for Simultaneously Reinforcing Chemoâ€Mechanical Properties of Millimeterâ€Thick Dryâ€Electrode for Highâ€Energy Allâ€Solidâ€State Batteries. Advanced Energy Materials, 0, , .	19.5	1
14	A short review of the effect of external pressure on the batteries. Monatshefte Für Chemie, 2024, 155, 221-226.	1.8	0
15	An Industrial Perspective and Intellectual Property Landscape on Solid-State Battery Technology with a Focus on Solid-State Electrolyte Chemistries. Batteries, 2024, 10, 24.	4.5	0
16	Multiphysics modeling of the influence of initial pressure on mechanical and electrochemical performance of all-solid-state batteries. Journal of Energy Storage, 2024, 82, 110431.	8.1	0
17	Fabrication pressures and stack pressures in solid-state battery. EScience, 2024, , 100247.	41.6	0
18	Detection of a Cobalt-Containing Interphase at the Li ₆ PS ₅ Cl-NMC111 Interface by In Situ μXANES and EIS. Journal of the Electrochemical Society, 2024, 171, 030501.	2.9	0

#	Article	IF	CITATIONS
	Pressure Effects and Countermeasures in Solidâ€State Batteries: A Comprehensive Review. Advanced Energy Materials, 2024, 14, .	19.5	0