How About Bug-Triggering Paths? - Understanding and Vulnerability Detectors

IEEE Transactions on Dependable and Secure Computing

, 1-18

DOI: 10.1109/tdsc.2022.3192419

Citation Report

#	Article	IF	CITATIONS
1	<scp>VulGraB</scp> : <scp>Graph</scp> â€embeddingâ€based code vulnerability detection with biâ€directional gated graph neural network. Software - Practice and Experience, 0, , .	3.6	1
2	Improvements to code2vec: Generating path vectors using RNN. Computers and Security, 2023, 132, 103322.	6.0	0
3	Vulnerability Detection by Learning from Syntax-Based Execution Paths of Code. IEEE Transactions on Software Engineering, 2023, , 1-17.	5.6	1
4	Learning and Fusing Multi-View Code Representations for Function Vulnerability Detection. Electronics (Switzerland), 2023, 12, 2495.	3.1	1

 $_{5}$ Understanding and Tackling Label Errors in Deep Learning-Based Vulnerability Detection (Experience) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

6	Which2learn: A Vulnerability Dataset Complexity Measurement Method for Data-Driven Detectors. , 2023, , .		0
7	IVSign: Interpretable Vulnerability Signature via Code Embedding and Static Analysis. , 2023, , .		1
8	Static vulnerability detection based on class separation. Journal of Systems and Software, 2023, 206, 111832.	4.5	0
9	Code-aware fault localization with pre-training and interpretable machine learning. Expert Systems With Applications, 2024, 238, 121689.	7.6	0
10	When Less is Enough: Positive and Unlabeled Learning Model for Vulnerability Detection. , 2023, , .		0
11	Vulnerability Detection viaÂTypestate-Guided Code Representation Learning. Lecture Notes in Computer Science, 2023, , 291-297.	1.3	0
12	Vulnerability detection based on federated learning. Information and Software Technology, 2024, 167, 107371.	4.4	0
13	VDTriplet: Vulnerability detection with graph semantics using triplet model. Computers and Security, 2024, 139, 103732.	6.0	0
14	Dynamic Transitive Closure-Based Static Analysis through the Lens of Quantum Search. ACM Transactions on Software Engineering and Methodology, 0, , .	6.0	0