Stress-state dependence of slip in Titanium-6Al-4V and

Acta Metallurgica 29, 951-968 DOI: 10.1016/0001-6160(81)90049-3

Citation Report

#	Article	IF	Citations
2	Analysis of Micrographs in TEM, STEM, HREM and SEM. , 1984, , 113-152.		1
3	slip in titanium polycrystals at room temperature. Scripta Metallurgica, 1986, 20, 1581-1586.	1.2	65
4	Computer simulation of dislocation cores in h.c.p. metals III. The effect of applied shear strain. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1986, 53, 205-220.	0.6	31
5	Computer simulation of dislocation cores in h.c.p. metals II. Core structure in unstressed crystals. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1986, 53, 181-204.	0.6	53
6	Computer simulation of dislocation cores in h.c.p. metals I. Interatomic potentials and stacking-fault stability. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1986, 53, 163-179.	0.6	78
7	c-Component dislocations in Zr-2.5 wt% Nb Alloy. Journal of Nuclear Materials, 1987, 149, 51-56.	2.7	35
8	The formation of c-component defects in zirconium alloys during neutron irradiation. Journal of Nuclear Materials, 1987, 150, 169-181.	2.7	105
9	Description of the yielding of a single crystal with cpu symmetry by a tensor-polynomial condition. Soviet Physics Journal (English Translation of Izvestiia Vysshykh Uchebnykh Zavedenii, Fizika), 1989, 32, 327-331.	0.0	7
10	Evolution of the Bauschinger effect in tension and compression in Zircaloy-2. Acta Metallurgica, 1989, 37, 529-539.	2.1	26
11	Atomistic study of â"ã€^ <ovl>1</ovl> <ovl>1</ovl> 23〉{10 <ovl>1</ovl> 1} dislocations in h.c.p. crystals. I. Structure of the dislocation cores. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1990, 62, 525-543.	0.6	28
12	Atomistic study of â"ã€^ <ovl>1</ovl> <ovl>1</ovl> 23〉{10 <ovl>1</ovl> 1} dislocations in h.cp. crystals. II. Motion of the dislocations. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1990, 62, 545-556.	0.6	16
13	Plastic Deformation Mechanisms in α Titanium. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 1990, 76, 495-502.	0.4	13
14	Deformation twinning in h.c.p. metals and alloys. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1991, 63, 987-1000.	0.6	283
15	A generalized model of grain boundary diffusion. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1991, 64, 1239-1249.	0.6	19
16	ã€^ <ovl>1</ovl> <ovl>1</ovl> 23〉{10 <ovl>1</ovl> 1} slip in zirconium. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1991, 63, 1077-1084.	0.6	44
17	Core structure of â"ã€^11 <ovl>2</ovl> 0〉 screw dislocations on basal and prismatic planes in h.c.p. metals: An atomistic study. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1991, 63, 1059-1075.	0.6	67
18	Dislocation dissociation and locking in intermetallics. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1992, 65, 1095-1102.	0.6	7
19	Effects of Elastic Anisotropy on the Properties of a+c Dislocations in H.C.P. Metals. Materials Transactions, JIM, 1992, 33, 1130-1137.	0.9	11

ITATION REDO

#	Article	IF	CITATIONS
20	Texture and pyramidal slip in Ti, Zr and their alloys. Scripta Metallurgica Et Materialia, 1992, 27, 1859-1863.	1.0	45
21	Structure of dislocation cores in metallic materials and its impact on their plastic behaviour. Progress in Materials Science, 1992, 36, 1-27.	32.8	203
22	The motion of non-basal dislocations in ice crystals. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1994, 69, 1-10.	0.6	10
23	Two-dimensional sections of the yield locus of a Tiî—,6%Alî—,4%V alloy with a strong transverse-type crystallographic α-texture. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1995, 201, 103-110.	5.6	45
24	Deformation of the O and α2phases in the Ti-Al-Nb system. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1995, 72, 1559-1587.	0.6	43
25	TEM observations of fatigue damage accumulation at the surface of the near-α titanium alloy IMI 834. Acta Materialia, 1996, 44, 3453-3463.	7.9	47
26	An <i>in-situ</i> transmission electron microscopy study of pyramidal slip in Ti ₃ Al: II. Fine structure of dislocations and dislocation loops. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1997, 76, 1013-1032.	0.6	25
27	An in-situ transmission electron microscopy study of pyramidal slip in Ti3Al: I. Geometry and kinetics of glide. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 1997, 76, 995-1011.	0.6	27
28	CYCLIC DEFORMATION BEHAVIOUR OF AN α∫β TITANIUM ALLOY—II. INTERNAL STRESSES AND MICROMECHAN MODELLING. Acta Materialia, 1997, 45, 2703-2714.	ШÇ,9	23
29	Plastic deformation of hafnium under uniaxial compression. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1997, 28, 1479-1487.	2.2	29
30	CYCLIC DEFORMATION BEHAVIOUR OF AN α/β TITANIUM ALLOY—I. MICROMECHANISMS OF PLASTICITY UNDI VARIOUS LOADING PATHS. Acta Materialia, 1997, 45, 2685-2701.	ER _{7.9}	74
31	Modelling and prediction of mechanical properties for materials with hexagonal symmetry (zinc,) Tj ETQq1 1 0.78	4314 rgB ⁻	T /Qyerlock 1
32	Cyclic softening of the Ti-10V-2Fe-3Al titanium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 224, 146-156.	5.6	37
33	Single and duplex creep tests at intermediate temperatures on Ni3Al. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 233, 26-32.	5.6	1
34	Plastic deformation of a Ti-6% Al-4% V alloy with a strong transverse-type crystallographic α-texture at elevated temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 234-236, 869-872.	5.6	19
35	Study on the microstructure and formability of commercially pure titanium in two-temperature deep drawing. Journal of Materials Processing Technology, 1999, 95, 65-70.	6.3	25
36	Dislocation structure and crystallite size distribution in hexagonal nanomaterials from X-ray peak profile analysis. International Journal of Materials Research, 2002, 93, 694-698.	0.8	4
37	Plastic Deformation Behavior of Ni ₃ X(X=Nb, Ti, Sn) Type HCP-Based Intermetallics with the Geometrically Close-Packed Structure. Materials Research Society Symposia Proceedings, 2002, 753, 1.	0.1	2

#	Article	IF	CITATIONS
39	Contrast factors of dislocations in the hexagonal crystal system. Journal of Applied Crystallography, 2002, 35, 556-564.	4.5	209
40	Local texture and fatigue crack initiation in a Ti-6Al-4V titanium alloy. Fatigue and Fracture of Engineering Materials and Structures, 2002, 25, 527-545.	3.4	161
41	A study of active deformation systems in titanium alloys: dependence on alloy composition and correlation with deformation texture. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 344, 20-30.	5.6	264
42	Computer programANIZCfor the calculation of diffraction contrast factors of dislocations in elastically anisotropic cubic, hexagonal and trigonal crystals. Journal of Applied Crystallography, 2003, 36, 160-162.	4.5	226
43	Nanostructures in Ti processed by severe plastic deformation. Journal of Materials Research, 2003, 18, 1908-1917.	2.6	225
44	Dislocation structure and crystallite size distribution in plastically deformed Ti determined by X-ray peak profile analysis. International Journal of Materials Research, 2003, 94, 1185-1188.	0.8	14
45	Microstructural parameters from X-ray diffraction peak broadening. Scripta Materialia, 2004, 51, 777-781.	5.2	771
46	The evolution of non-basal dislocations as a function of deformation temperature in pure magnesium determined by X-ray diffraction. Acta Materialia, 2004, 52, 2889-2894.	7.9	202
47	Stamping formability of pure titanium sheets. Journal of Materials Processing Technology, 2005, 170, 181-186.	6.3	93
48	Evolution of dislocation density and character in hot rolled titanium determined by X-ray diffraction. Materials Characterization, 2005, 55, 66-74.	4.4	58
49	Deformation Modes and Anomalous Strengthening of Ni ₃ X -Type Intermetallic Compounds with the Geometrically Close-Packed Structure. Materials Science Forum, 2005, 502, 145-150.	0.3	5
50	Observation of tension–compression asymmetry in α and titanium alloys. Philosophical Magazine, 2005, 85, 279-295.	1.6	67
51	Burgers Vector Populations in hot rolled titanium determined by X-ray Peak Profile Analysis. Zeitschrift Für Kristallographie, Supplement, 2006, 2006, 99-104.	0.5	2
52	Mechanical twinning and texture evolution in severely deformed Ti–6Al–4V at high temperatures. Acta Materialia, 2006, 54, 3755-3771.	7.9	169
53	Deformation behavior in Zr702 processed by equal-channel angular pressing at room temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 423, 180-183.	5.6	7
54	Subgrain Size-Distributions, Dislocation Structures, Stacking- and Twin Faults and Vacancy Concentrations in SPD Materials Determined by X-Ray Line Profile Analysis. Materials Science Forum, 2006, 503-504, 133-140.	0.3	8
55	TEM Investigation of Dislocations in Hot Deformed Mg-Al-Zn Alloy. Materials Science Forum, 2007, 550, 259-264.	0.3	2
56	Grain to grain slip activity in plastically deformed Zr determined by X-ray micro-diffraction line profile analysis. Acta Materialia, 2007, 55, 1117-1127.	7.9	81

#	Article	IF	CITATIONS
57	Effect of microtexture on fatigue cracking in Ti–6Al–4V. Acta Materialia, 2007, 55, 5655-5665.	7.9	133
58	Anisotropic behavior of a Ti–6Al–4V sheet during cold rolling: Evidence of macroscopic shearing. Journal of Materials Processing Technology, 2008, 198, 86-92.	6.3	12
59	Slip and fatigue crack formation processes in an α/β titanium alloy in relation to crystallographic texture on different scales. Acta Materialia, 2008, 56, 3951-3962.	7.9	307
60	The use of X-ray diffraction to determine slip and twinning activity in commercial-purity (CP) titanium. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 493, 79-85.	5.6	38
61	Anisotropy of Young's modulus and tensile properties in cold rolled α′ martensite Ti–V–Sn alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 486, 503-510.	5.6	25
62	On the mechanisms of fatigue facet nucleation in titanium alloys. Fatigue and Fracture of Engineering Materials and Structures, 2008, 31, 949-958.	3.4	165
63	The role of anisotropy in the response of the titanium alloy Ti–6Al–4V to shock loading. Journal of Applied Physics, 2008, 104, 073531.	2.5	36
64	TEM of C-component Dislocations Associated with Pyramidal Slip Activity in Hexagonal α2-Ti3Al. Materials Research Society Symposia Proceedings, 2008, 1128, 40501.	0.1	Ο
66	Deformation modes and anisotropy in magnesium alloy AZ31. International Journal of Materials Research, 2009, 100, 556-563.	0.3	45
67	Anisotropy in the plastic flow properties of single-crystal α titanium determined from micro-cantilever beams. Acta Materialia, 2009, 57, 5693-5705.	7.9	257
68	On the shock compression of polycrystalline metals. Journal of Materials Science, 2009, 44, 3319-3343.	3.7	54
69	Crystal plasticity modeling of slip activity in Ti–6Al–4V under high cycle fatigue loading. International Journal of Plasticity, 2009, 25, 1066-1082.	8.8	201
70	Evolution of interphase and intergranular stresses in Zr–2.5Nb during room temperature deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 501, 166-181.	5.6	39
71	Modeling the room temperature deformation of a two-phase zirconium alloy. Acta Materialia, 2009, 57, 407-419.	7.9	61
72	THE ROLE OF TRANSMISSION ELECTRON MICROSCOPY IN ASSESSING SHOCK PLASTICITY. , 2009, , .		0
73	Characterization of the microstructure in random and textured polycrystals and single crystals by diffraction line profile analysis. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 528, 112-121.	5.6	150
74	Burgers vector population, dislocation types and dislocation densities in single grains extracted from a polycrystalline commercial-purity Ti specimen by X-ray line-profile analysis. Scripta Materialia, 2010, 63, 69-72.	5.2	42
75	Effective values of critical resolved shear stress for slip in polycrystalline magnesium and other hcp metals. Scripta Materialia, 2010, 63, 737-740.	5.2	385

#	Article	IF	CITATIONS
76	Deformation mode in biomedical Co–27% Cr–5% Mo alloy consisting of a single hexagonal close-packed structure. Scripta Materialia, 2010, 63, 1092-1095.	5.2	32
77	The effect of crystal orientation on the indentation response of commercially pure titanium: experiments and simulations. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 466, 695-719.	2.1	155
78	Cyclic deformation response and micromechanisms of Ti alloy Ti–5Al–5V–5Mo–3Cr–0.5Fe. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 8723-8732.	5.6	77
79	Geometrically necessary dislocation density distributions in Ti–6Al–4V deformed in tension. Acta Materialia, 2011, 59, 6489-6500.	7.9	113
80	Microstructure and mechanical properties of as-cast Zr–Nb alloys. Acta Biomaterialia, 2011, 7, 4278-4284.	8.3	156
81	Phenomenological and crystal plasticity approaches to describe the mechanical behaviour of Ti6Al4V titanium alloy. International Journal of Material Forming, 2011, 4, 205-215.	2.0	12
82	Slip Transfer Across Hetero-Interfaces in Two-Phase Titanium Aluminum Intermetallics. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 605-612.	2.2	8
83	Experimental characterization and elasto-plastic modeling of the quasi-static mechanical response of TA-6V at room temperature. International Journal of Solids and Structures, 2011, 48, 1277-1289.	2.7	77
84	Grain-boundary activated pyramidal dislocations in nano-textured Mg by molecular dynamics simulation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 5411-5420.	5.6	42
85	Texture development in friction stir welds. Science and Technology of Welding and Joining, 2011, 16, 288-294.	3.1	238
86	Transmission electron microscopy of deformed Ti–6Al–4 V micro-cantilevers. Philosophical Magazine, 2012, 92, 3290-3314.	1.6	19
87	Twinning and its role in wrought magnesium alloys. , 2012, , 105-143.		14
88	X-ray line profiles analysis of plastically deformed metals. Comptes Rendus Physique, 2012, 13, 293-306.	0.9	46
89	Microstructure characterization of Ti–6Al–4V titanium laser weld and its deformation. Transactions of Nonferrous Metals Society of China, 2012, 22, 2118-2123.	4.2	13
90	Geometrically necessary dislocation density distributions in cyclically deformed Ti–6Al–4V. Acta Materialia, 2012, 60, 5516-5525.	7.9	61
91	Stress fields and geometrically necessary dislocation density distributions near the head of a blocked slip band. Acta Materialia, 2012, 60, 5773-5782.	7.9	180
92	Local deformation patterns in Ti–6Al–4V under tensile, fatigue and dwell fatigue loading. International Journal of Fatigue, 2012, 43, 111-119.	5.7	80
93	Relations between twin and slip in parent lattice due to kinematic compatibility at interfaces. International Journal of Solids and Structures, 2012, 49, 1355-1364.	2.7	6

#	Article	IF	CITATIONS
94	Experimental and numerical study of TA-6V mechanical behavior in different monotonic loading conditions at room temperature. Procedia IUTAM, 2012, 3, 100-114.	1.2	11
95	Methodology for estimating the critical resolved shear stress ratios of α-phase Ti using EBSD-based trace analysis. Acta Materialia, 2013, 61, 7555-7567.	7.9	184
96	Residual elastic stress–strain field and geometrically necessary dislocation density distribution around nano-indentation in TA15 titanium alloy. Transactions of Nonferrous Metals Society of China, 2013, 23, 7-13.	4.2	30
97	Dislocation densities and prevailing slip-system types determined by X-ray line profile analysis in a textured AZ31 magnesium alloy deformed at different temperatures. Journal of Applied Crystallography, 2013, 46, 55-62.	4.5	19
98	An experimental investigation into the micro-mechanics of spall initiation and propagation in Ti–6Al–4V during shock loading. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 578, 331-339.	5.6	32
99	Mobilities and dislocation energies of planar faults in an ordered A3BÂ(D019) structure. Bulletin of Materials Science, 2013, 36, 677-686.	1.7	1
100	Evolution and Prediction of Texture in Commercially Pure Warm Rolled Titanium. Materials Science Forum, 2013, 758, 99-105.	0.3	0
101	Microscopic mechanism of plastic deformation in a polycrystalline Co–Cr–Mo alloy with a single hcp phase. Acta Materialia, 2014, 64, 1-11.	7.9	30
102	Formation and slip of pyramidal dislocations in hexagonal close-packed magnesium single crystals. Acta Materialia, 2014, 71, 319-332.	7.9	145
103	ã€^c+a〉 Dislocations in deformed Ti–6Al–4V micro-cantilevers. Acta Materialia, 2014, 76, 127-134.	7.9	41
104	Slip band–grain boundary interactions in commercial-purity titanium. Acta Materialia, 2014, 76, 1-12.	7.9	258
105	Deformation and strength of Ti–6Al–4V alloyed with B at cryogenic temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 611, 45-57.	5.6	36
106	Initiation and accommodation of primary twins in high-purity titanium. Acta Materialia, 2014, 71, 293-305.	7.9	99
107	Characterising the Effects of Strain Rate, Crystallographic Texture and Direction of Loading on the Mechanical Behaviour of Ti-6Al-4V. Journal of Dynamic Behavior of Materials, 2015, 1, 462-471.	1.7	14
108	ã€^a〉 Prismatic, ã€^a〉 basal, and ã€^c+a〉 slip strengths of commercially pure Zr by micro-cantilever to Materialia, 2015, 96, 249-257.	ests, Acta 7.9	139
109	Quantitative Analysis of Dynamic Softening Behaviors Induced by Dynamic Recrystallization for Ti-10V-2Fe-2Al Alloy. High Temperature Materials and Processes, 2015, 34, .	1.4	10
110	On rate-dependent polycrystal deformation: the temperature sensitivity of cold dwell fatigue. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471, 20150214.	2.1	52
111	Mechanical behavior and texture prediction of Ti-6Al-4V based on elastic viscoplastic self-consistent modelling. IOP Conference Series: Materials Science and Engineering, 2015, 82, 012027.	0.6	6

щ		IF	CITATIONS
#	ARTICLE	IF	CHATIONS
112	Energy. Acta Metallurgica Sinica (English Letters), 2015, 28, 876-882.	2.9	13
113	On the mechanistic basis of deformation at the microscale in hexagonal close-packed metals. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471, 20140881.	2.1	128
114	Examination of the distribution of the tensile deformation systems in tension and tension-creep of Ti-6Al-4V (wt.%) at 296ÂK and 728ÂK. Philosophical Magazine, 2015, 95, 691-729.	1.6	51
115	Orientation dependent deformation by slip and twinning in magnesium during single crystal indentation. Acta Materialia, 2015, 91, 267-288.	7.9	78
116	Origin of the reversed yield asymmetry in Mg-rare earth alloys at high temperature. Acta Materialia, 2015, 92, 265-277.	7.9	39
117	Deformation processes in polycrystalline Zr by molecular dynamics simulations. Journal of Nuclear Materials, 2015, 462, 147-159.	2.7	25
118	Preparation of weak-textured commercially pure titanium by electron beam melting. Additive Manufacturing, 2015, 8, 105-109.	3.0	41
119	Incipient slip and long range plastic strain localization in microtextured Ti-6Al-4V titanium. Acta Materialia, 2016, 114, 164-175.	7.9	137
120	Onset of plasticity in zirconium in relation with hydrides precipitation. Acta Materialia, 2016, 114, 126-135.	7.9	16
121	Mechanism and energetics of 〈c + a〉 dislocation cross-slip in hcp metals. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 11137-11142.	7.1	93
122	Energetics of dislocation transformations in hcp metals. Acta Materialia, 2016, 119, 203-217.	7.9	52
123	Study of plastic deformation mechanisms in TA15 titanium alloy by combination of geometrically necessary and statistically-stored dislocations. International Journal of Materials Research, 2016, 107, 1073-1081.	0.3	1
124	Local deformation mechanisms of two-phase Ti alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 649, 39-47.	5.6	75
125	Anisotropic and asymmetrical yielding and its evolution in plastic deformation: Titanium tubular materials. International Journal of Plasticity, 2017, 90, 177-211.	8.8	67
126	Effect of nanoscale α2 precipitation on strain localisation in a two-phase Ti-alloy. Acta Materialia, 2017, 129, 72-82.	7.9	75
127	Stacking faults and the -surface on first-order pyramidal planes in -titanium. Philosophical Magazine, 2017, 97, 1129-1143. An atomic-scale modeling and experimental study of complimate	1.6	21
128	xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si0029.gif" overflow="scroll"> <mml:mrow><mml:mo stretchy="false">ã€<mml:mi>c</mml:mi><mml:mo>+</mml:mo><mml:mi>a</mml:mi>a</mml:mo stretchy="false">ã€dislocations in Mg_Materials Science & amp:</mml:mrow>	5.6	32
129	Engineering A: Structural Materials: Pronerties. Microstructure and Processing, 2017, 695, 270-278. Solute hydrogen and hydride phase implications on the plasticity of zirconium and titanium alloys: a review and some recent advances. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160417.	3.4	28

	Сітатіо	CITATION REPORT	
# 130	ARTICLE Investigation of the shear response and geometrically necessary dislocation densities in shear	IF 8.8	Citations
131	The influence of mechanical constraints introduced by Î ² annealed microstructures on the yield strength and ductility of Ti-6Al-4V. Journal of the Mechanics and Physics of Solids, 2017, 103, 179-198.	4.8	42
132	Combination of in-situ SEM tensile test and FFT-based crystal elasticity simulations of Ti-6Al-4V for an improved description of the onset of plastic slip. Mechanics of Materials, 2017, 109, 1-10.	3.2	35
133	overflow="scroll"> <mml:mrow><mml:mn>11</mml:mn><mml:mrow><mml:mover accent="true"><mml:mn>2</mml:mn><mml:mo>A⁻</mml:mo></mml:mover </mml:mrow><mml:mn>2twins in titanium: A combined experimental and modelling investigation of the local state of deformation. Acta Materialia. 2017, 126, 221-235.</mml:mn></mml:mrow>	រml:mn <i>sឲ្</i> mml:	m r⁄9 w>
134	On cold dwell facet fatigue in titanium alloy aero-engine components. International Journal of Fatigue, 2017, 97, 177-189.	5.7	76
135	In situ SEM study of tensile deformation of a near-β titanium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 708, 574-581.	5.6	58
136	Evolution of dislocation density in a hot rolled Zr–2.5Nb alloy with plastic deformation studied by neutron diffraction and transmission electron microscopy. Philosophical Magazine, 2017, 97, 2888-2914.	1.6	16
137	High-Resolution Single-Grain Diffraction of Polycrystalline Materials. Synchrotron Radiation News, 2017, 30, 35-40.	0.8	5
138	On slip initiation in equiaxed $\hat{l} \pm / \hat{l}^2$ Ti-6Al-4V. Acta Materialia, 2017, 136, 288-302.	7.9	79
139	Ab initio modeling of dislocation core properties in metals and semiconductors. Acta Materialia, 2017, 124, 633-659.	7.9	221
140	Comprehensive first-principles study of stable stacking faults in hcp metals. Acta Materialia, 2017, 123, 223-234.	7.9	139
141	An Experimental Study on Evolution of Grainâ€Scale Stress/Strain and Geometrical Necessary Dislocations in Advanced TA15 Titanium Alloy during Uniaxial Tension Deformation. Advanced Engineering Materials, 2017, 19, 1600306.	3.5	3
142	ECCI, EBSD and EPSC characterization of rhombohedral twinning in polycrystalline α-alumina deformed in a D-DIA apparatus. Journal of Applied Crystallography, 2017, 50, 1691-1704.	4.5	4
143	Characterization of deformation in primary α phase and crack initiation and propagation of TC21 alloy using in-situ SEM experiments. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 725, 33-42.	5.6	55
144	Determining the strengths of HCP slip systems using harmonic analyses of lattice strain distributions. Acta Materialia, 2018, 144, 92-106.	7.9	42
145	Orientation and strain rate dependent tensile behavior of single crystal titanium nanowires by molecular dynamics simulations. Journal of Materials Science and Technology, 2018, 34, 864-877.	10.7	33
146	Plastic deformation mechanisms of biomedical Co–Cr–Mo alloy single crystals with hexagonal close-packed structure. Scripta Materialia, 2018, 142, 111-115.	5.2	24
147	Micrographic Digital Image Correlation Coupled with Microlithography: Case Study of Strain Localization and Subsequent Cracking at an FIB Notch Tip in a Laminated Ti-6Al-4V Alloy. Experimental Mechanics, 2018, 58, 381-386.	2.0	12

#	Article	IF	CITATIONS
148	Influence of alloy element partitioning on strength of primary α phase in Ti-6Al-4V alloy. Journal of Materials Science and Technology, 2018, 34, 782-787.	10.7	45
149	Short crack growth behavior and its transitional interaction with 3D microstructure in Ti-6Al-4V. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 738, 229-237.	5.6	14
150	A tomographic TEM study of tension-compression asymmetry response of pyramidal dislocations in a deformed Zr-2.5Nb alloy. Scripta Materialia, 2018, 153, 94-98.	5.2	17
151	Separating macro- (Type I) and micro- (Type II+III) residual stresses by ring-core FIB-DIC milling and eigenstrain modelling of a plastically bent titanium alloy bar. Acta Materialia, 2018, 156, 43-51.	7.9	38
152	Grain-scale Stress and GND Density Distributions around Slip Traces and Phase Boundaries in a Titanium Alloy. Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 674-679.	1.0	1
153	Concurrent operation of âŸ câ€ ⁻ +â€ ⁻ a⟩ slip and twinning under cyclic loading of Ti-6Al-4V. Scripta Materialia, 2018, 157, 30-33.	5.2	29
154	Structural evolutions of metallic materials processed by severe plastic deformation. Materials Science and Engineering Reports, 2018, 133, 1-59.	31.8	401
155	Optimization of VPSC Model Parameters for Two-Phase Titanium Alloys: Flow Stress Vs Orientation Distribution Function Metrics. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 3624-3636.	2.2	13
156	The effect of strain path changes on texture evolution and deformation behavior of Ti6Al4V subjected to accumulative angular drawing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 764, 138168.	5.6	7
157	Oxygen effects on crystal plasticity of Titanium: A multiscale calibration and validation framework. Acta Materialia, 2019, 176, 19-32.	7.9	19
158	Quantitative Analysis on Light Elements Solution Strengthening in Pure Titanium Sintered Materials by Labusch Model Using Experimental Data. Materials Transactions, 2019, 60, 263-268.	1.2	43
159	Asymmetrical response of edge pyramidal dislocations in HCP zirconium under tension and compression: A molecular dynamics study. Computational Materials Science, 2019, 170, 109183.	3.0	8
160	In situ characterization of a high work hardening Ti-6Al-4V prepared by electron beam melting. Acta Materialia, 2019, 179, 224-236.	7.9	39
161	Slip-stimulated grain boundary sliding in Ti-6Al-4†V at room temperature. Materialia, 2019, 5, 100189.	2.7	28
162	Identification of active slip mode in a hexagonal material by correlative scanning electron microscopy. Acta Materialia, 2019, 175, 376-393.	7.9	38
163	On microstructural homogenization and mechanical properties optimization of biomedical Co-Cr-Mo alloy additively manufactured by using electron beam melting. Additive Manufacturing, 2019, 28, 215-227.	3.0	38
164	In situ EBSD investigation of deformation processes and strain partitioning in bi-modal Ti-6Al-4V using lattice rotations. Acta Materialia, 2019, 171, 261-274.	7.9	72
165	A criterion for general description of anisotropic hardening considering strength differential effect with non-associated flow rule. International Journal of Plasticity, 2019, 121, 76-100.	8.8	77

#	Article	IF	CITATIONS
166	Deformation Inhomogeneity. , 2019, , 29-83.		0
167	Uncovering the influence of metallic and non-metallic impurities on the ideal shear strength and ductility of Ti: An ab-initio study. Journal of Alloys and Compounds, 2019, 788, 413-421.	5.5	14
168	An evidence of pseudo-elasticity in a caliber rolled Ti 6Al 4V alloy and its effect on tension-compression flow asymmetry. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 754, 650-658.	5.6	7
169	Nonbasal Slip Systems Enable a Strong and Ductile Hexagonal-Close-Packed High-Entropy Phase. Physical Review Letters, 2019, 122, 075502.	7.8	83
170	Fatigue behavior, microstructural evolution, and fatigue life model based on dislocation annihilation of an Fe-Ni-Cr alloy at 700â€Â°C. International Journal of Plasticity, 2019, 118, 105-129.	8.8	20
171	Predicting the Tensile Behavior of Ti-6.6Al-3.3Mo-1.8Zr-0.29Si Alloy via the Temperature-Dependent Crystal Plasticity Method. Materials, 2019, 12, 3138.	2.9	0
172	Dependences of Grain Size and Strain-Rate on Deformation Behavior of Commercial Purity Titanium Processed by Multi-Directional Forging. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2019, 83, 465-473.	0.4	2
173	Deformation banding in a precipitation hardened aluminum alloy during simple shear deformation. Scripta Materialia, 2019, 162, 300-305.	5.2	19
174	Analysis of deformation mechanisms operating under fatigue and dwell-fatigue loadings in an α/β titanium alloy. International Journal of Fatigue, 2020, 131, 105341.	5.7	35
175	A finite element methodology to incorporate kinematic activation of discrete deformation twins in a crystal plasticity framework. Computer Methods in Applied Mechanics and Engineering, 2020, 358, 112653.	6.6	18
176	Tension–compression asymmetry of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si3.svg"><mml:mrow><mml:mo>ã€^</mml:mo><mml:mi>c</mml:mi><mml:mo linebreak="goodbreak">+<mml:mi>a</mml:mi><mml:mo>〉</mml:mo></mml:mo </mml:mrow></mml:math> slip in Ti–6Al. Scripta Materialia, 2020, 178, 119-123.	5.2	21
177	Characterization and Modeling of Room-Temperature Compressive Creep Behavior of a Near $\hat{I}\pm$ TA31 Titanium Alloy. Metals, 2020, 10, 1190.	2.3	3
178	Dislocation structures representing individual slip systems within the α phase of a Ti–6Al–4V alloy deformed in tension. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 797, 140225.	5.6	16
179	Predicting dwell fatigue life in titanium alloys using modelling and experiment. Nature Communications, 2020, 11, 5868.	12.8	63
180	Deformation processes near a crack initiation site under dwell-fatigue loading of Ti-6Al-4V. MATEC Web of Conferences, 2020, 321, 11074.	0.2	0
181	Microplasticity at Room Temperature in α/β Titanium Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 4931-4969.	2.2	40
182	Measurement Modulus of Elasticity Related to the Atomic Density of Planes in Unit Cell of Crystal Lattices. Materials, 2020, 13, 4380.	2.9	45
183	On the slip and twinning mechanisms on first order pyramidal plane of magnesium: Molecular dynamics simulations and first principal studies. Materials and Design, 2020, 191, 108648.	7.0	18

#	Article	IF	CITATIONS
184	High-cycle fatigue of a titanium alloy: the role of microstructure in slip irreversibility and crack initiation. Journal of Materials Science, 2020, 55, 12476-12487.	3.7	15
185	Remarkable increase in high-cycle fatigue resistance in a titanium alloy with a fully lamellar microstructure. International Journal of Fatigue, 2020, 138, 105724.	5.7	16
186	Hot Rolled Ti6321 Alloy Sheets With Different Initial Microstructures: Microstructure, Mechanical Properties, and Anisotropy Characteristics. Frontiers in Materials, 2020, 7, .	2.4	3
187	Introduction of Mille-Feuille-Like α/β Layered Structure into Ti–Mo Alloy. Materials Transactions, 2020, 61, 856-861.	1.2	8
188	Effect of heat treatment on the tensile behavior of selective laser melted Ti-6Al-4V by in situ X-ray characterization. Acta Materialia, 2020, 189, 93-104.	7.9	88
189	Dynamic mechanical properties and failure characteristics of electron beam melted Ti-6Al-4V under high strain rate impact loadings. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 793, 139794.	5.6	33
190	The Formation of \$\$ left{ {10ar{1}2} ight} \$\$ Deformation Twin in Hybrid TiB-TiC Reinforced Titanium Matrix Composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 350-363.	2.2	1
191	Modeling the role of local crystallographic correlations in microstructures of Ti-6Al-4V using a correlated structure visco-plastic self-consistent polycrystal plasticity formulation. Acta Materialia, 2021, 203, 116502.	7.9	28
192	Orientation Dependence of the Micro-Pillar Compression Strength in an Electron Beam Melted Ti–6Al–4V Alloy. Acta Metallurgica Sinica (English Letters), 2021, 34, 476-484.	2.9	4
193	Slip Activity During Low-Stress Cold Creep Deformation in a Near-Î ^t Titanium Alloy. SSRN Electronic Journal, 0, , .	0.4	0
194	Transmission electron microscopy investigation of the dislocation structure in a Ti-6Al-4V alloy subjected to an early stage of cyclic deformation. Materials Characterization, 2021, 172, 110896.	4.4	11
195	The Plastic Deformation Mechanisms of hcp Single Crystals with Different Orientations: Molecular Dynamics Simulations. Materials, 2021, 14, 733.	2.9	8
196	Bayesian analysis reveals the impact of load partitioning on microstructural evolution in Ti-6Al-4V during in-situ tensile loading. Materialia, 2021, 15, 100993.	2.7	3
197	Microstructure-Based Estimation of Strength and Ductility Distributions for \$\$alpha +eta \$\$ Titanium Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 2411-2434.	2.2	9
198	Deformation Behaviour of a FAST Diffusion Bond Processed from Dissimilar Titanium Alloy Powders. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 3064-3082.	2.2	9
199	Effects of hydrogen as a solid solution element on the deformation behavior of a near-alpha titanium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 815, 141269.	5.6	15
200	The effect of temperature on slip in microtextured Ti-6Al-2Sn-4Zr-2Mo under dwell fatigue. International Journal of Fatigue, 2021, 147, 106173.	5.7	17
201	Shear localization behavior in hat-shaped specimen of near-α Tiâ~'6Alâ^'2Zrâ~'1Moâ~'1V titanium alloy loaded at high strain rate. Transactions of Nonferrous Metals Society of China, 2021, 31, 1641-1655.	4.2	8

#	Article	IF	CITATIONS
202	Predicting shear transmission across grain boundaries with an iterative stress relief model. Acta Materialia, 2021, 215, 116992.	7.9	7
203	Understanding the role of local texture variation on slip activity in a two-phase titanium alloy. Acta Materialia, 2021, 216, 117111.	7.9	19
204	Effects of strain rate and strain on microstructural evolution and mechanical properties of a Ti-10Âat.%Al alloy. Materials Characterization, 2021, 179, 111314.	4.4	6
205	Cold dwell fatigue analyses integrating crystal-level strain rate sensitivity and microstructural heterogeneity. International Journal of Fatigue, 2021, 151, 106398.	5.7	8
206	Mechanistic insights into interface-facilitated dislocation nucleation and phase transformation at semicoherent bimetal interfaces. International Journal of Plasticity, 2021, 146, 103105.	8.8	10
208	Texture and Microstructure of Ti-6Al-4V Alloys After High Temperature Rolling. , 1985, , 251-256.		3
209	Dislocations and Mechanisms Revealed by Computer Simulation. , 1989, , 3-12.		1
210	Static and dynamic shear-compression response of additively manufactured Ti6Al4V specimens with embedded voids. Mechanics of Materials, 2020, 147, 103413.	3.2	18
211	First principles high-throughput screening to enhance the ductility of lightweight magnesium alloys. Physical Review Materials, 2019, 3, .	2.4	1
212	Microstructural effect on strength–ductility balance and deformation mode of Ti–4.5Al–2Mo–1.6V–0.5Fe–0.3Si alloy. Keikinzoku/Journal of Japan Institute of Light Metals, 2016, 66, 531-537.	0.4	1
213	Tension-compression asymmetry and shear strength of titanium alloys. Acta Materialia, 2021, 221, 117392.	7.9	17
214	Analysis of a three-dimensional slip field in a hexagonal Ti alloy from in-situ high-energy X-ray diffraction microscopy data. Acta Materialia, 2021, 221, 117372.	7.9	6
215	Intergranular and Interphase Constraints in Zirconium Alloys. Journal of ASTM International, 2008, 5, 1-20.	0.2	1
216	New Type of Deformation Processing of Conventional Ti Alloys. Journal of the Japan Society for Technology of Plasticity, 2012, 53, 900-905.	0.3	0
217	Influence of Sn on Deformation Mechanisms During Room Temperature Compression of Binary Zr–Sn Alloys. , 2015, , 138-158.		0
218	A Comparative Study on the Substructure Evolution and Mechanical Properties of TIMETAL® 407 and Ti-64. MATEC Web of Conferences, 2020, 321, 11045.	0.2	2
219	Dependences of Grain Size and Strain-Rate on Deformation Behavior of Commercial Purity Titanium Processed by Multi-Directional Forging. Materials Transactions, 2020, 61, 2320-2328.	1.2	3
220	Fundamental Aspects. , 2007, , 15-52.		0

#	Article	IF	CITATIONS
221	Transformation plasticity in high strength, ductile ultrafine-grained FeMn alloy processed by heavy ausforming. International Journal of Plasticity, 2022, 148, 103151.	8.8	12
222	Slip activity during low-stress cold creep deformation in a near-α titanium alloy. Acta Materialia, 2022, 229, 117691.	7.9	22
223	Dislocation structures in a Ti–6Al–4V alloy subjected to cyclic tensile deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 836, 142700.	5.6	5
224	Dislocation structure and crystallite size distribution in plastically deformed Ti determined by X-ray peak profile analysis. International Journal of Materials Research, 2022, 94, 1185-1188.	0.3	0
225	Tensile behavior and deformation mechanism of a bimodal microstructure with microtextured region in Ti6242S alloy. Journal of Alloys and Compounds, 2022, 905, 164206.	5.5	3
226	Microstructure and Plastic Deformation on $\hat{f}'\hat{J'}$ Ti-10cr with Layered Structures. SSRN Electronic Journal, 0, , .	0.4	0
227	The Mechanical Behavior and Microstructure of Additively Manufactured Ti6AI4V for Different Material States and Loading Conditions. Journal of Dynamic Behavior of Materials, 0, , 1.	1.7	0
228	Simultaneous strength-ductility enhancement in as-cast Ti6Al4V alloy by trace Ce. Materials and Design, 2022, 215, 110491.	7.0	10
229	High-throughput characterization of the cyclic response of Ti-6Al-4V using spherical microindentation stress–strain protocols. International Journal of Fatigue, 2022, 161, 106921.	5.7	0
230	Plastic behavior and improved constitutive model of a laser-solid-formed alloy under the synergistic effects of temperature, strain rate, and stress state. Mechanics of Advanced Materials and Structures, 2023, 30, 3406-3418.	2.6	2
231	Statistical Analysis of the Distribution of the Schmid Factor in As-Built and Annealed Parts Produced by Laser Powder Bed Fusion. Crystals, 2022, 12, 743.	2.2	4
232	A titanium-nitrogen alloy with ultrahigh strength by ball milling and spark plasma sintering. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 848, 143465.	5.6	3
233	Potential Rink band formation on <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si7.svg" display="inline" id="d1e257"><mml:mrow><mml:mi>l±</mml:mi><mml:mo>/</mml:mo><mml:mi>l²</mml:mi></mml:mrow>two-phase Ti-10Cr alloy under compressive condition. Materials Science & amp; Engineering A:</mml:math>	n sl:e nath>	5
234	Loading direction dependence of asymmetric response of <c+a> pyramidal slip in rolled AZ31 magnesium alloy. Journal of Magnesium and Alloys, 2023, 11, 3634-3641.</c+a>	11.9	4
235	Strain mapping in fine scale multivariant $\hat{l}\pm$ structures in titanium alloys. Materials Characterization, 2022, 193, 112260.	4.4	2
236	Tensile Deformation Behaviors of Pure Ti with Different Grain Sizes Under Wide-Range of Strain Rate. SSRN Electronic Journal, 0, , .	0.4	0
237	Research Progress on Slip Behavior of α-Ti under Quasi-Static Loading: A Review. Metals, 2022, 12, 1571.	2.3	4
238	Micro-nano twins appearing in ultrafine-grained Ti–6Al–4V alloy induced by high-pressure water jet technology. Materials Research Express, 0, , .	1.6	Ο

#	Article	IF	CITATIONS
239	Design and comparison of the strength of propeller shaft for truck made of AA2024, AA7068, and Ti-6Al-4V using ANSYS. Materials Today: Proceedings, 2022, 69, 1442-1454.	1.8	1
240	High-Cycle Fatigue Behavior and Corresponding Microscale Deformation Mechanisms of Metastable Ti55511 Alloy with A Basket-Weave Microstructure. Materials, 2022, 15, 7144.	2.9	1
241	Internal fatigue crack propagation in a Ti-6Al-4V alloy: An in situ study. International Journal of Fatigue, 2023, 168, 107450.	5.7	5
242	Tensile Deformation Behaviors of Pure Ti with Different Grain Sizes under Wide-Range of Strain Rate. Materials, 2023, 16, 529.	2.9	2
243	<i>In situ</i> synchrotron X-ray multimodal experiment to study polycrystal plasticity. Journal of Synchrotron Radiation, 2023, 30, 379-389.	2.4	4
244	Enhancing microstructure refinement and strengthening efficiency of TiBw/near α-Ti composites by combining solid-solution treatment with hot processing. Composites Part B: Engineering, 2023, 257, 110696.	12.0	6
245	Correlated structure viscoplastic self-consistent polycrystal plasticity: Application to modeling strain rate sensitive deformation of Ti-6Al-4ÂV. International Journal of Plasticity, 2023, 163, 103571.	8.8	7
247	Modelling of dislocations, twins and crack-tips in HCP and BCC Ti. International Journal of Plasticity, 2023, 166, 103644.	8.8	4
248	The effect of orientation on the deformation behavior of Cr2AlC. Acta Materialia, 2023, 257, 119136.	7.9	1
249	Effect of sub-zero temperatures on activation of basal <a> slip, tension twinning and pyramidal <c+a> slip in magnesium using micropillar compression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2023, , 145636.</c+a>	5.6	0
250	Micromechanical analysis of anisotropy and asymmetry in pure titanium using electron backscatter diffraction and crystal plasticity finite element modeling. Journal of Materials Research and Technology, 2023, 27, 4088-4108.	5.8	0
251	Crystal Orientation and Dislocation Slip. Metals, 2023, 13, 1950.	2.3	0
253	Outstanding strength-ductility balance in a Ti–N alloy by tuning ball milling time. Journal of Materials Research and Technology, 2023, 27, 5128-5139.	5.8	1
254	Effect of texture on the mechanical and micromechanical properties of a dual-phase titanium alloy. Journal of Materials Research and Technology, 2023, 27, 6833-6846.	5.8	1
255	Fractional densities and character of dislocations in different slip modes from powder diffraction patterns. Journal of Nuclear Materials, 2024, 589, 154828.	2.7	0
256	First-principles study and its experimental verification on the strength and ductility of O/Si solid solution strengthened Ti alloys. Journal of Materials Research and Technology, 2023, 27, 7778-7786.	5.8	0
257	Superior strength-ductility combination in TiC/TC4 composites via In situ construction Ti2Cu nanoparticles. Carbon, 2024, 219, 118805.	10.3	1
258	Effects of grain size and β fraction on the deformation modes of a Ti-6Al-2Sn-4Zr-2Mo-Si alloy with equiaxed (αÂ+Âβ) microstructures: Slip trace analysis and multiscale simulation of polycrystal plasticity. Journal of Alloys and Compounds, 2024, 981, 173722.	5.5	0

#	Article	IF	CITATIONS
259	Deformation mechanisms and their role in the lack of ductility in the refractory-based high entropy alloy AlMo0.5NbTa0.5TiZr. Acta Materialia, 2024, 269, 119824.	7.9	0
260	Deformation mechanisms in the α phase of the Ti-6Al-2Sn-4Zr-2Mo titanium alloy: In situ experiments and simulations. International Journal of Plasticity, 2024, 175, 103947.	8.8	0
261	Understanding the Reversed Tension–Compression Asymmetry of an Extruded Mg-10Y Sheet from the Perspective of Slip Activity and Plastic Heterogeneity. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2024, 55, 1673-1689.	2.2	0