Blood Lipids and Their Distribution in Lipoproteins in H Different Levels of Sucrose

Journal of Nutrition 111, 1045-1057 DOI: 10.1093/jn/111.6.1045

Citation Report

#	Article	IF	CITATIONS
1	Serum insulin and glucose in hyperinsulinemic subjects fed three different levels of sucrose. American Journal of Clinical Nutrition, 1981, 34, 2348-2358.	4.7	93
2	Comparison of seven-day diet record with measured food intake of twenty-four subjects. Nutrition Research, 1982, 2, 263-273.	2.9	49
3	Effect of dietary sucrose and genotype on metabolic parameters of a new strain of genetically obese rat: LA/N-corpulent. Nutrition Research, 1983, 3, 217-228.	2.9	43
4	Effect of dietary protein level and kind of carbohydrate on growth and selected pathological and biochemical parameters in female BHE rats. Nutrition Research, 1983, 3, 719-732.	2.9	4
5	Serum lipids and cholesterol distribution in lipoproteins of exercise-trained female rats fed sucrose. Life Sciences, 1983, 33, 75-82.	4.3	9
6	Serum Uric Acid, Inorganic Phosphorus, and Glutamic-Oxalacetic Transaminase and Blood Pressure in Carbohydrate-Sensitive Adults Consuming Three Different Levels of Sucrose. Annals of Nutrition and Metabolism, 1983, 27, 425-435.	1.9	60
7	Blood lipid distribution of hyperinsulinemic men consuming three levels of fructose. American Journal of Clinical Nutrition, 1983, 37, 740-748.	4.7	149
8	Role of dietary fructose in the enhancement of mortality and biochemical changes associated with copper deficiency in rats. American Journal of Clinical Nutrition, 1983, 38, 214-222.	4.7	116
9	Blood Insulin, Glucose, Fructose and Gastric Inhibitory Polypeptide Levels in Carbohydrate-Sensitive and Normal Men Given a Sucrose or Invert Sugar Tolerance Test. Journal of Nutrition, 1983, 113, 1732-1736.	2.9	8
10	Seasonal variation in plasma glucose and hormone levels in adult men and women. American Journal of Clinical Nutrition, 1984, 40, 1352-1356.	4.7	50
11	Blood zinc, copper, insulin and glucose levels in carbohydrate-sensitive and normal men given a sucrose or invert sugar tolerance test. Nutrition Research, 1984, 4, 967-976.	2.9	5
12	The Effect of Sucrose Content in High and Low Carbohydrate Diets on Plasma Glucose, Insulin, and Lipid Responses in Hypertriglyceridemic Humans*. Journal of Clinical Endocrinology and Metabolism, 1984, 59, 636-642.	3.6	57
13	Effect of dietary sucrose on the SHR/N-corpulent rat: a new model for insulin-independent diabetes. American Journal of Clinical Nutrition, 1984, 39, 612-618.	4.7	97
14	Indices of copper status in humans consuming a typical American diet containing either fructose or starch. American Journal of Clinical Nutrition, 1985, 42, 242-251.	4.7	194
15	Metabolic effects of added dietary sucrose in individuals with noninsulin-dependent diabetes mellitus (NIDDM). Metabolism: Clinical and Experimental, 1985, 34, 962-966.	3.4	63
16	Modification of the United States' diet to effect changes in blood lipids and lipoprotein distribution. Atherosclerosis, 1985, 57, 179-188.	0.8	25
17	Effect of High-Carbohydrate Diet on Lipid Metabolism in Young Type I Diabetics: Transient Changes in High-Density Lipoprotein2and Lipoprotein Lipase. Pediatrics International, 1986, 28, 616-623.	0.5	1
18	Effects of sugars on Indices of glucose tolerance in humans. American Journal of Clinical Nutrition, 1986, 43, 151-159.	4.7	16

# 19	ARTICLE XI. Bibliography. Journal of Nutrition, 1986, 116, S117-S149.	IF 2.9	Citations 0
20	Carbohydrate tolerance and serum lipid responses to type of dietary carbohydrate and oral contraceptive use in young women Journal of the American College of Nutrition, 1986, 5, 45-53.	1.8	4
21	Nutritional management of diabetes mellitus: rationale, ethics and practicability Journal of the American College of Nutrition, 1986, 5, 9-30.	1.8	0
22	Dietary sugars and carbohydrate metabolism in type II diabetes Journal of the American College of Nutrition, 1987, 6, 385-396.	1.8	4
23	Deleterious metabolic effects of high-carbohydrate, sucrose-containing diets in patients with non-insulin-dependent diabetes mellitus. American Journal of Medicine, 1987, 82, 213-220.	1.5	148
24	Effect of variation in diet on lipoprotein metabolism in patients with diabetes mellitus. Diabetes/metabolism Reviews, 1987, 3, 669-689.	0.3	5
25	Copper-carbohydrate interaction in maternal, fetal and neonate rat. Neurotoxicology and Teratology, 1988, 10, 555-562.	2.4	12
26	Blood lipids, lipoproteins, apoproteins, and uric acid in men fed diets containing fructose or high-amylose cornstarch. American Journal of Clinical Nutrition, 1989, 49, 832-839.	4.7	117
27	Lipid metabolism in non-insulin-dependent diabetes: effects of long-term treatment with fructose-supplemented mixed meals. American Journal of Clinical Nutrition, 1989, 50, 1015-1022.	4.7	47
28	Day-long glucose, insulin, and fructose responses of hyperinsulinemic and nonhyperinsulinemic men adapted to diets containing either fructose or high-amylose cornstarch. American Journal of Clinical Nutrition, 1989, 50, 1008-1014.	4.7	49
29	Effects of Sucrose on Carbohydrate and Lipid Metabolism in NIDDM Patients. Diabetes Care, 1989, 12, 62-66.	8.6	19
30	Risk Factors for Coronary Artery Disease in Healthy Persons with Hyperinsulinemia and Normal Glucose Tolerance. New England Journal of Medicine, 1989, 320, 702-706.	27.0	756
31	Consequences of copper deficiency are not differentially influenced by carbohydrate source in young pigs fed a dired skim milk-based diet. Biological Trace Element Research, 1990, 25, 21-33.	3.5	11
32	Consequences of severe copper deficiency are independent of dietary carbohydrate in young pigs. American Journal of Clinical Nutrition, 1990, 52, 147-154.	4.7	9
33	Food carbohydrates and plasma lipidsâ€â€an update. American Journal of Clinical Nutrition, 1994, 59, 710S-718S.	4.7	69
34	Zinc, copper and selenium in reproduction. Experientia, 1994, 50, 626-640.	1.2	316
35	Effect of long-term consumption of amylose vs amylopectin starch on metabolic variables in human subjects. American Journal of Clinical Nutrition, 1995, 61, 334-340.	4.7	132
36	Dietary sugars and lipid metabolism in humans. American Journal of Clinical Nutrition, 1995, 62, 250S-263S.	4.7	126

CITATION REPORT

#	Article	IF	CITATIONS
37	Fructose metabolizing enzymes in the rat liver and metabolic parameters: Interactions between dietary copper, type of carbohydrates, and gender. Journal of Nutritional Biochemistry, 1995, 6, 373-379.	4.2	15
38	Health aspects of various digestible carbohydrates. Nutrition Research, 1995, 15, 1547-1573.	2.9	27
39	Resistant starch as energy Journal of the American College of Nutrition, 1996, 15, 248-254.	1.8	55
40	Dietary carbohydrates and insulin sensitivity: a review of the evidence and clinical implications. American Journal of Clinical Nutrition, 1997, 66, 1072-1085.	4.7	163
41	The Rat Corpulent (<i>cp</i>) Mutation Maps to the Same Interval on (<i>Pgm1â€Glut1</i>) Rat Chromosome 5 as the Fatty (<i>fa</i>) Mutation. Obesity, 1997, 5, 142-145.	4.0	11
42	Breath-hydrogen production and amylose content of the diet. American Journal of Clinical Nutrition, 1997, 65, 1783-1789.	4.7	10
43	Obesity Genes and Insulin Resistance Syndrome. Annals of the New York Academy of Sciences, 1997, 827, 35-49.	3.8	1
44	Relationship Between Changes in Dietary Sucrose and High Density Lipoprotein Cholesterol. Annals of Epidemiology, 1998, 8, 433-438.	1.9	25
45	Increased Expression of Complement Component C3 in the Plasma of Obese Zucker <i>fa</i> and LA/N <i>fe^f</i> Rats Compared with Their Lean Counterparts. Obesity, 1998, 6, 361-367.	4.0	9
46	Acute effects on insulin sensitivity and diurnal metabolic profiles of a high-sucrose compared with a high-starch diet. American Journal of Clinical Nutrition, 1998, 67, 1186-1196.	4.7	101
47	Acute effect of fructose on postprandial lipaemia in diabetic and non-diabetic subjects. British Journal of Nutrition, 1998, 80, 169-175.	2.3	72
48	Description of the Long-Term Lipogenic Effects of Dietary Carbohydrates in Male Fischer 344 Rats. Journal of Nutrition, 2000, 130, 3077-3084.	2.9	15
49	Ad libitum intake of low-fat diets rich in either starchy foods or sucrose: Effects on blood lipids, factor VII coagulant activity, and fibrinogen. Metabolism: Clinical and Experimental, 2000, 49, 731-735.	3.4	62
50	Diurnal metabolic profiles after 14 d of an ad libitum high-starch, high-sucrose, or high-fat diet in normal-weight never-obese and postobese women. American Journal of Clinical Nutrition, 2001, 73, 177-189.	4.7	66
51	Men at increased risk of coronary heart disease are not different from age- and weight-matched healthy controls in their postprandial triglyceride, nonesterified fatty acid, or incretin responses to sucrose. Metabolism: Clinical and Experimental, 2002, 51, 195-200.	3.4	6
52	Carbohydrate Intake Is Associated with Diet Quality and Risk Factors for Cardiovascular Disease in U.S. Adults: NHANES III. Journal of the American College of Nutrition, 2003, 22, 71-79.	1.8	61
53	Dietary Fructose: Implications for Dysregulation of Energy Homeostasis and Lipid/Carbohydrate Metabolism. Nutrition Reviews, 2005, 63, 133-157.	5.8	524
54	Determining the relationship between dietary carbohydrate intake and insulin resistance. Nutrition Research Reviews, 2005, 18, 222-240.	4.1	31

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
55	Interaction of Dietary Fatty Acids, Carbohydrates, and Lipids on Carbohydrate Metabolism. Food Additives, 2007, , 651-673.	0.1	0
56	Twenty-four-hour endocrine and metabolic profiles following consumption of high-fructose corn syrup-, sucrose-, fructose-, and glucose-sweetened beverages with meals. American Journal of Clinical Nutrition, 2008, 87, 1194-1203.	4.7	206
57	Fructose Consumption: Considerations for Future Research on Its Effects on Adipose Distribution, Lipid Metabolism, and Insulin Sensitivity in Humans. Journal of Nutrition, 2009, 139, 1236S-1241S.	2.9	93
58	Effect of Dietary Carbohydrate on the Metabolism of Patients with Non-insulin Dependent Diabetes Mellitus. Nutrition Reviews, 1986, 44, 65-73.	5.8	11
59	Consumption of Fructose and High Fructose Corn Syrup Increase Postprandial Triglycerides, LDL-Cholesterol, and Apolipoprotein-B in Young Men and Women. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E1596-E1605.	3.6	260
60	Consumption of Added Sugars and Indicators of Cardiovascular Disease Risk Among US Adolescents. Circulation, 2011, 123, 249-257.	1.6	228
61	Role of Fructose-Containing Sugars in the Epidemics of Obesity and Metabolic Syndrome. Annual Review of Medicine, 2012, 63, 329-343.	12.2	176
62	Adverse metabolic effects of dietary fructose. Current Opinion in Lipidology, 2013, 24, 198-206.	2.7	165
63	Dietary sugars and cardiometabolic risk: systematic review and meta-analyses of randomized controlled trials of the effects on blood pressure and lipids. American Journal of Clinical Nutrition, 2014, 100, 65-79.	4.7	417
64	Consumption of Fructose and High Fructose Corn Syrup Increase Postprandial Triglycerides, LDL-Cholesterol, and Apolipoprotein-B in Young Men and Women. , 2015, , 63-84.		0
65	A dose-response study of consuming high-fructose corn syrup–sweetened beverages on lipid/lipoprotein risk factors for cardiovascular disease in young adults. American Journal of Clinical Nutrition, 2015, 101, 1144-1154.	4.7	214
66	An in vivo invertebrate evaluation system for identifying substances that suppress sucrose-induced postprandial hyperglycemia. Scientific Reports, 2016, 6, 26354.	3.3	24
67	Migraine: A disorder of metabolism?. Medical Hypotheses, 2016, 97, 117-130.	1.5	17
68	Sugar consumption, metabolic disease and obesity: The state of the controversy. Critical Reviews in Clinical Laboratory Sciences, 2016, 53, 52-67.	6.1	494
69	Effects of free sugars on blood pressure and lipids: a systematic review and meta-analysis of nutritional isoenergetic intervention trials. American Journal of Clinical Nutrition, 2017, 105, 42-56.	4.7	34
70	Decreased sugar concentration in vegetable and fruit juices by growth of functional lactic acid bacteria. Drug Discoveries and Therapeutics, 2017, 11, 30-34.	1.5	7
71	Pathways and mechanisms linking dietary components to cardiometabolic disease: thinking beyond calories. Obesity Reviews, 2018, 19, 1205-1235.	6.5	60
72	Dietary sugars and cardiometabolic risk factors: a network meta-analysis on isocaloric substitution interventions. American Journal of Clinical Nutrition, 2020, 111, 187-196.	4.7	32

#	Article	IF	CITATIONS
73	Enterococcus faecalis YM0831 suppresses sucrose-induced hyperglycemia in a silkworm model and in humans. Communications Biology, 2019, 2, 157.	4.4	24
74	A Pilot Study Comparing the Effects of Consuming 100% Orange Juice or Sucrose-Sweetened Beverage on Risk Factors for Cardiometabolic Disease in Women. Nutrients, 2021, 13, 760.	4.1	3
75	Consuming Sucrose- or HFCS-sweetened Beverages Increases Hepatic Lipid and Decreases Insulin Sensitivity in Adults. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 3248-3264.	3.6	15
76	Causes for Concern and Opportunities for Enhanced Nutrition in the Modification of Dietary Carbohydrate Composition. , 1992, , 167-189.		1
77	Consuming fructose-sweetened, not glucose-sweetened, beverages increases visceral adiposity and lipids and decreases insulin sensitivity in overweight/obese humans. Journal of Clinical Investigation, 2009, 119, 1322-1334.	8.2	1,394
78	Dietary Fructose: Implications for Dysregulation of Energy Homeostasis and Lipid/Carbohydrate Metabolism. Nutrition Reviews, 2005, 63, 133-157.	5.8	280
79	A study of dietary intake of total sugars by elementary students in Jeju province. Journal of Nutrition and Health, 2015, 48, 81.	0.8	14
80	Health Aspects. ILSI Human Nutrition Reviews, 1988, , 65-81.	0.3	0
81	Biochemical Aspects. ILSI Human Nutrition Reviews, 1988, , 53-64.	0.3	0
82	Macronutrient Intake in Relation to Nutritional Standards. , 1991, , 139-158.		0
83	Sugars in human disease: a review of the evidence. , 1992, , 69-81.		0
84	Glucose homeostasis in three interstrains (LA/N-BN/Crl cp/cp; Zuc13M-BN/Crl fa/fa; and Zuc13m-LA/N) Tj ETQq1	1 0.78431	l4 rgBT /Ove
85	Dietary fructose consumption among US children and adults: the Third National Health and Nutrition Examination Survey. Medscape Journal of Medicine, 2008, 10, 160.	0.6	244
86	High versus low-added sugar consumption for the primary prevention of cardiovascular disease. The Cochrane Library, 2022, 2022, CD013320.	2.8	7
87	Tolerable upper intake level for dietary sugars. EFSA Journal, 2022, 20, e07074.	1.8	31
88	Important food sources of fructose-containing sugars and adiposity: A systematic review and meta-analysis of controlled feeding trials. American Journal of Clinical Nutrition, 2023, 117, 741-765.	4.7	11
89	Understanding the Impact of Added Sugar Consumption on Risk for Type 2 Diabetes. Journal of the California Dental Association, 2016, 44, 619-626.	0.1	4