Volcanism on Mars

Reviews of Geophysics 19, 13-41 DOI: 10.1029/rg019i001p00013

Citation Report

#	Article	IF	CITATIONS
1	A Hertzian Quasi-Oval Fracture Model for Ring-Complexes. Journal of Geology, 1980, 88, 271-284.	1.4	2
2	Martian cratering revisited: Implications for early geologic evolution. Icarus, 1981, 48, 62-75.	2.5	15
3	Eruption mechanics on the Earth, Moon and Mars. Nature, 1981, 292, 493-494.	27.8	0
4	The geomorphology of Mars. Progress in Physical Geography, 1981, 5, 473-513.	3.2	35
5	Explosive volcanism on Hecates Tholus, Mars: Investigation of eruption conditions. Journal of Geophysical Research, 1982, 87, 9890-9904.	3.3	97
6	Martian volcanic materials: Preliminary thickness estimates in the Eastern Tharsis Region. Journal of Geophysical Research, 1982, 87, 9821-9828.	3.3	30
7	Tharsis volcanoes: Separation distances, relative ages, sizes, morphologies, and depths of burial. Journal of Geophysical Research, 1982, 87, 9829-9838.	3.3	8
8	Syrtis major: A lowâ€relief volcanic shield. Journal of Geophysical Research, 1982, 87, 9852-9866.	3.3	51
9	Evolution of the Tharsis Province of Mars: The importance of heterogeneous lithospheric thickness and volcanic construction. Journal of Geophysical Research, 1982, 87, 9755-9774.	3.3	125
10	Wind streaks in Tharsis and Elysium: Implications for sediment transport by slope winds. Journal of Geophysical Research, 1982, 87, 10025-10041.	3.3	40
11	Heterogeneous Growth of Meteorites and Planets, Especially the Earth and Moon. Journal of Geology, 1982, 90, 1-48.	1.4	57
12	Absence of silicic volcanism on Mars: Implications for crustal composition and volatile abundance. Journal of Geophysical Research, 1982, 87, 9881-9889.	3.3	53
13	A note against a smallâ€body origin for shergottites, nakhlites, and chassignites. Journal of Geophysical Research, 1982, 87, A401.	3.3	7
14	A comparison of volcanic eruption processes on Earth, Moon, Mars, Io and Venus. Nature, 1983, 302, 663-669.	27.8	201
15	Convective thinning of the lithosphere: A mechanism for rifting and mid-plate volcanism on Earth, Venus, and Mars. Tectonophysics, 1983, 94, 67-90.	2.2	52
16	The geology of the terrestrial planets. Reviews of Geophysics, 1983, 21, 160-172.	23.0	4
17	Volcanology. Reviews of Geophysics, 1983, 21, 1419-1435.	23.0	2
18	Convection. Reviews of Geophysics, 1983, 21, 1511-1520.	23.0	7

ARTICLE IF CITATIONS # The stability of ground ice in the equatorial region of Mars. Journal of Geophysical Research, 1983, 88, 19 3.3 142 2456-2474. The sedimentology of Mars: A review. New Astronomy Reviews, 1984, 27, 25-53. 0.3 The influences of planetary environments on the eruption styles of volcanoes. New Astronomy 21 0.3 6 Reviews, 1984, 27, 333-360. Elysium planitia, mars: Regional geology, volcanology, and evidence for volcano-ground ice interactions. Earth, Moon and Planets, 1984, 30, 149-173. Calderas: A planetary perspective. Journal of Geophysical Research, 1984, 89, 8391-8406. 23 3.3 71 Global and regional ridge patterns on Mars. Icarus, 1985, 63, 153-174. 2.5 25 Volcano/ground ice interactions in Elysium Planitia, Mars. Icarus, 1985, 64, 265-284. 2.583 Mars: Dual-polarization radar observations with extended coverage. Icarus, 1985, 62, 110-128. 2.5 26 Assessment of global and regional tectonic models for faulting in the ancient terrains of Mars. 27 3.3 22 Journal of Geophysical Research, 1985, 90, 7849-7860. Mars: Thickness of the lithosphere from the tectonic response to volcanic loads. Reviews of Geophysics, 1985, 23, 61-92 Effect of the greenhouse gases (CO₂, H₂O, SO₂) on Martian 29 3.3 65 paleoclimate. Journal of Geophysical Research, 1986, 91, 431-438. Linear volcanic features at Alba Patera, Mars ―PRobable spatter ridges. Journal of Geophysical 3.3 Research, 1986, 91, E159. Lava flows on Mars: Analysis of small surface features and comparisons with terrestrial analogs. $\mathbf{31}$ 3.3 43 Journal of Geophysical Research, 1986, 91, E193. Individual particles and Martian aeolian actionâ€"A review. Sedimentary Geology, 1986, 47, 167-189. 2.1 The stratigraphy of Mars. Journal of Geophysical Research, 1986, 91, E139. 33 3.3 484 Release of Juvenile Water on Mars: Estimated Amounts and Timing Associated with Volcanism. Science, 1987, 236, 1653-1654. Sequence, rheological properties, and effusion rates of volcanic flows at Alba Patera, Mars. Journal 35 3.3 52 of Geophysical Research, 1987, 92, E553. Effects of elevation and ridged plains thicknesses on Martian crater ejecta morphology. Journal of 3.3 Geophysical Research, 1987, 92, E561.

#	Article	IF	CITATIONS
37	Large-scale volcano-ground ice interactions on Mars. Icarus, 1987, 70, 385-408.	2.5	124
38	Comets, volcanism, the salt-rich regolith, and cycling of volatiles on Mars. Icarus, 1987, 71, 250-256.	2.5	10
39	Ring furrows: Inversion of topography in Martian highland terrains. Icarus, 1987, 71, 287-297.	2.5	11
40	Polygenic eruptions on Alba Patera, Mars. Bulletin of Volcanology, 1988, 50, 361-379.	3.0	81
41	Composite graben tectonics of Alba Patera on Mars. Earth, Moon and Planets, 1988, 42, 277-291.	0.6	5
42	Tharsis block tectonics on Mars. Earth, Moon and Planets, 1988, 41, 201-216.	0.6	2
43	Development of the Alba Patera volcano on Mars. Advances in Space Research, 1989, 9, 143-146.	2.6	2
44	Magma chamber -related development of Alba Patera on Mars. Earth, Moon and Planets, 1989, 45, 187-204.	0.6	4
45	Tectonics of Syrtis Major Planum on Mars. Earth, Moon and Planets, 1989, 46, 243-260.	0.6	7
46	The early environment and its evolution on Mars: Implication for life. Reviews of Geophysics, 1989, 27, 189-214.	23.0	220
47	Sequence and mechanisms of deformation around the Hellas and Isidis Impact Basins on Mars. Journal of Geophysical Research, 1989, 94, 17333-17357.	3.3	146
48	Recent water release in the Tharsis region of Mars. Icarus, 1990, 84, 362-373.	2.5	69
49	Volcanic flow development at Alba Patera, Mars. Icarus, 1990, 83, 453-493.	2.5	32
50	Young volcanic deposits in the Valles Marineris, Mars?. Icarus, 1990, 86, 476-509.	2.5	66
51	Perturbation analysis of convective instability of oceanic lithosphere and initiation of subduction zones. Journal of Geophysical Research, 1990, 95, 409-420.	3.3	12
52	Volcanic geology of Tyrrhena Patera, Mars. Journal of Geophysical Research, 1990, 95, 7133-7149.	3.3	152
53	Geodetic constraints on the composition of Mars. Journal of Geophysical Research, 1990, 95, 14131-14136.	3.3	19
54	Constraints on early events in Martian history as derived from the cratering record. Journal of Geophysical Research, 1990, 95, 14191-14201.	3.3	44

#	Article	IF	CITATIONS
55	The shallow structure of the Martian lithosphere in the vicinity of the ridged plains. Journal of Geophysical Research, 1990, 95, 14215-14230.	3.3	43
56	Resurfacing of the Martian Highlands in the Amenthes and Tyrrhena region. Journal of Geophysical Research, 1990, 95, 14265-14278.	3.3	65
57	Geochemical evolution of the Northern Plains of Mars: Early hydrosphere, carbonate development, and present morphology. Journal of Geophysical Research, 1990, 95, 14291-14300.	3.3	36
58	Origin and evolution of valleys on Martian volcanoes. Journal of Geophysical Research, 1990, 95, 14325-14344.	3.3	215
59	Emplacement of lava flow fields: Application of terrestrial studies to Alba Patera, Mars. Journal of Geophysical Research, 1990, 95, 14383-14397.	3.3	31
60	Dark materials in Valles Marineris: Indications of the style of volcanism and magmatism on Mars. Journal of Geophysical Research, 1990, 95, 14399-14413.	3.3	28
61	Spectral identification of geological units on the surface of Mars related to the presence of silicates from Earthâ€based nearâ€infrared telescopic chargeâ€coupled device imaging. Journal of Geophysical Research, 1990, 95, 14435-14446.	3.3	42
62	The origin of fluvial valleys and early geologic history, Aeolis Quadrangle, Mars. Journal of Geophysical Research, 1990, 95, 17289-17308.	3.3	24
63	Geomorphology and stratigraphy of Alba Patera, Mars. Journal of Geophysical Research, 1991, 96, 1907-1930.	3.3	22
64	Origin of periodically spaced wrinkle ridges on the Tharsis Plateau of Mars. Journal of Geophysical Research, 1991, 96, 15599-15616.	3.3	109
65	Chassigny petrogenesis: Melt compositions, intensive parameters and water contents of Martian (?) magmas. Geochimica Et Cosmochimica Acta, 1991, 55, 349-366.	3.9	169
66	Magma Generation on Mars: Amounts, Rates, and Comparisons with Earth, Moon, and Venus. Science, 1991, 254, 996-998.	12.6	175
67	The pattern of circumferential and radial eruptive fissures on the volcanoes of Fernandina and Isabela islands, Galapagos. Bulletin of Volcanology, 1991, 53, 259-275.	3.0	136
68	The Mars Observer laser altimeter investigation. Journal of Geophysical Research, 1992, 97, 7781-7797.	3.3	446
69	Thermal emission spectrometer experiment: Mars Observer mission. Journal of Geophysical Research, 1992, 97, 7719-7734.	3.3	266
70	Martian parent craters for the SNC meteorites. Journal of Geophysical Research, 1992, 97, 10213-10225.	3.3	36
71	Caldera subsidence and magma chamber depth of the Olympus Mons volcano, Mars. Journal of Geophysical Research, 1992, 97, 18295-18307.	3.3	50
72	Evolution of the Olympus Mons Caldera, Mars. Bulletin of Volcanology, 1992, 54, 347-360.	3.0	40

#	Article	IF	CITATIONS
73	Geologic evolution of the east rim of the Hellas basin Mars. Icarus, 1992, 100, 1-25.	2.5	106
74	Valley systems on Tyrrhena Patera, Mars: Earth-based radar measurements of slopes. Icarus, 1992, 96, 226-233.	2.5	5
75	Earth and Mars: Water inventories as clues to accretional histories. Icarus, 1992, 98, 61-71.	2.5	87
76	Chronology, Eruption Duration, and Atmospheric Contribution of the Martian Volcano Apollinaris Patera. Icarus, 1993, 104, 301-323.	2.5	108
77	Volcaniclastic aeolian dunes: terrestrial examples and application to martian sands. Journal of Arid Environments, 1993, 25, 271-297.	2.4	79
78	Volcanic geology of Hadriaca Patera and the eastern Hellas region of Mars. Journal of Geophysical Research, 1993, 98, 3431-3451.	3.3	136
79	A model for the hydrologic and climatic behavior of water on Mars. Journal of Geophysical Research, 1993, 98, 10973-11016.	3.3	620
80	Ice in the northern lowlands and southern highlands of Mars and its enrichment beneath the Elysium lavas. Journal of Geophysical Research, 1993, 98, 11079-11097.	3.3	12
81	Brittle strength of basaltic rock masses with applications to Venus. Journal of Geophysical Research, 1993, 98, 10883-10895.	3.3	140
82	Assumptions about the presence of natural glasses on Mars. Journal of Geophysical Research, 1993, 98, 18719-18725.	3.3	15
83	State of stress, faulting, and eruption characteristics of large volcanoes on Mars. Journal of Geophysical Research, 1993, 98, 23553-23579.	3.3	113
84	Aqueous geochemistry on early Mars. Geochimica Et Cosmochimica Acta, 1993, 57, 4619-4625.	3.9	33
85	Anhydrous partial melting of an iron-rich mantle I: subsolidus phase assemblages and partial melting phase relations at 10 to 30 kbar. Contributions To Mineralogy and Petrology, 1994, 115, 313-322.	3.1	78
86	Anhydrous partial melting of an iron-rich mantle II: primary melt compositions at 15 kbar. Contributions To Mineralogy and Petrology, 1994, 115, 323-338.	3.1	64
87	Mars: Review and analysis of volcanic eruption theory and relationships to observed landforms. Reviews of Geophysics, 1994, 32, 221.	23.0	313
88	Oxygenic photosynthesis and the oxidation state of Mars. Planetary and Space Science, 1995, 43, 123-128.	1.7	41
89	Geology and landscape evolution of the Hellas region of Mars. Journal of Geophysical Research, 1995, 100, 5407.	3.3	128
90	A preliminary thermal budget for lava tubes on the Earth and planets. Journal of Geophysical Research, 1995, 100, 20411-20420.	3.3	126

#	Article	IF	CITATIONS
91	Indications of sulfate minerals in the Martian soil from Earth-based spectroscopy. Journal of Geophysical Research, 1995, 100, 14433.	3.3	58
92	Age relations of Martian highland drainage basins. Journal of Geophysical Research, 1995, 100, 11765.	3.3	19
93	Long-term rotation and mantle dynamics of the Earth, Mars, and Venus. Journal of Geophysical Research, 1996, 101, 2253-2266.	3.3	27
94	Quantification of extraterrestrial lava flow effusion rates through laboratory simulations. Journal of Geophysical Research, 1996, 101, 16891-16900.	3.3	58
95	Calderas on Mars: characteristics, structure, and associated flank deformation. Geological Society Special Publication, 1996, 110, 307-348.	1.3	92
96	Fault-length statistics and implications of graben sets at Candor Mensa, Mars. Journal of Structural Geology, 1996, 18, 373-383.	2.3	35
97	Numerical Modeling of Ejecta Dispersal from Transient Volcanic Explosions on Mars. Icarus, 1996, 123, 284-295.	2.5	33
98	Geologic context of the Mars radar "Stealth―region in southwestern Tharsis. Journal of Geophysical Research, 1997, 102, 21545-21567.	3.3	48
99	Hydrothermal hydration of Martian crust: Illustration via geochemical model calculations. Journal of Geophysical Research, 1997, 102, 9135-9143.	3.3	72
100	Symmetries of volcanic distributions on Mars and Earth and their mantle plume dynamics. Journal of Geophysical Research, 1998, 103, 28587-28597.	3.3	6
101	Three dimensional models of Martian mantle convection with phase transitions. Geophysical Research Letters, 1998, 25, 229-232.	4.0	70
102	Erosion by flowing lava: Field evidence. Journal of Geophysical Research, 1998, 103, 27325-27345.	3.3	96
103	The long lava flows of Elysium Planita, Mars. Journal of Geophysical Research, 1998, 103, 19389-19400.	3.3	34
104	Evidence for igneous activity and implications for the origin of a fretted channel in southern Ismenius Lacus, Mars. Journal of Geophysical Research, 1998, 103, 31433-31443.	3.3	13
105	Geology of the Thaumasia region, Mars: plateau development, valley origins, and magmatic evolution. Planetary and Space Science, 1999, 47, 411-431.	1.7	185
106	Abiotic synthesis of polycyclic aromatic hydrocarbons on Mars. Journal of Geophysical Research, 1999, 104, 14033-14049.	3.3	64
107	Geology of the Uranius Group Volcanic Constructs: Uranius Patera, Ceraunius Tholus, and Uranius Tholus. Icarus, 2000, 143, 376-396.	2.5	23
108	Genesis of the Mars Pathfinder ?sulfur-free? rock from SNC parental liquids. Geochimica Et Cosmochimica Acta, 2000, 64, 2535-2547.	3.9	46

#	Article	IF	CITATIONS
109	Terrestrial analogs and thermal models for Martian flood lavas. Journal of Geophysical Research, 2000, 105, 15027-15049.	3.3	189
110	Remote Sensing of Active Volcanoes. Annual Review of Earth and Planetary Sciences, 2000, 28, 81-106.	11.0	55
111	Ancient Martian volcanoes in the Aeolis region: New evidence from MOLA data. Journal of Geophysical Research, 2001, 106, 17505-17513.	3.3	17
112	Latent outflow activity for western Tharsis, Mars: Significant flood record exposed. Journal of Geophysical Research, 2001, 106, 12301-12314.	3.3	51
113	Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars. Journal of Geophysical Research, 2001, 106, 23689-23722.	3.3	1,344
114	Icelandic pseudocraters as analogs to some volcanic cones on Mars. Journal of Geophysical Research, 2001, 106, 20527-20546.	3.3	97
115	Estimation of volcanic eruption conditions for a large flank event on Elysium Mons, Mars. Journal of Geophysical Research, 2001, 106, 20621-20628.	3.3	27
116	Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission. Journal of Geophysical Research, 2001, 106, 23429-23570.	3.3	747
117	Experimental simulation of early martian volcanic lightning. Advances in Space Research, 2001, 27, 201-206.	2.6	16
118	Modeling the Volcanism on Mars. Icarus, 2001, 150, 195-205.	2.5	20
119	Geology of the Reull Vallis Region, Mars. Icarus, 2001, 153, 89-110.	2.5	51
120	Geomorphologic Evidence for Liquid Water. Space Science Reviews, 2001, 96, 333-364.	8.1	38
121	The crust and mantle of Mars. Nature, 2001, 412, 220-227.	27.8	256
122	Rootless cones on Mars: a consequence of lava-ground ice interaction. Geological Society Special Publication, 2002, 202, 295-317.	1.3	54
123	Mars: a review and synthesis of general environments and geological settings of magma-H2O interactions. Geological Society Special Publication, 2002, 202, 27-57.	1.3	39
124	Volcanic plume heights on Mars: Limits of validity for convective models. Journal of Geophysical Research, 2002, 107, 16-1.	3.3	29
125	Geologic setting and origin of Terra Meridiani hematite deposit on Mars. Journal of Geophysical Research, 2002, 107, 18-1.	3.3	168
126	Granite: A Planetary Point of View. Gondwana Research, 2002, 5, 261-273.	6.0	26

#	Article	IF	CITATIONS
127	Tharsis Tholus: an unusual martian volcano. Icarus, 2003, 165, 223-241.	2.5	11
128	Resurfacing history of the northern plains of Mars based on geologic mapping of Mars Global Surveyor data. Journal of Geophysical Research, 2003, 108, .	3.3	184
129	Evolved lavas on Mars? Observations from southwest Arsia Mons and Sabancaya volcano, Peru. Journal of Geophysical Research, 2003, 108, .	3.3	45
130	Clues to the lithospheric structure of Mars from wrinkle ridge sets and localization instability. Journal of Geophysical Research, 2003, 108, .	3.3	95
131	Science from a Mars Airplane: The Aerial Regional-scale Environmental Survey (ARES) of Mars. , 2003, , .		27
132	Recent and episodic volcanic and glacial activity on Mars revealed by the High Resolution Stereo Camera. Nature, 2004, 432, 971-979.	27.8	433
133	COMPRESSIONAL STRUCTURES ON MARS. Annual Review of Earth and Planetary Sciences, 2004, 32, 435-464.	11.0	110
134	Morphometric properties of Martian volcanoes. Journal of Geophysical Research, 2004, 109, .	3.3	176
135	The Syrtis Major volcanic province, Mars: Synthesis from Mars Global Surveyor data. Journal of Geophysical Research, 2004, 109, .	3.3	155
136	Layering stratigraphy of eastern Coprates and northern Capri Chasmata, Mars. Icarus, 2005, 179, 1-23.	2.5	40
137	EARLY CRUSTAL EVOLUTION OF MARS. Annual Review of Earth and Planetary Sciences, 2005, 33, 133-161.	11.0	280
138	Discovery of a flank caldera and very young glacial activity at Hecates Tholus, Mars. Nature, 2005, 434, 356-361.	27.8	80
139	Morphology and geological structure of the western part of the Olympus Mons volcano on Mars from the analysis of the Mars Express HRSC imagery. Solar System Research, 2005, 39, 85-101.	0.7	26
140	Tectonic implications of Mars crustal magnetism. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14970-14975.	7.1	254
141	Nitrogen fixation on early Mars by volcanic lightning and other sources. Geophysical Research Letters, 2005, 32, .	4.0	37
142	Erosion by flowing Martian lava: New insights for Hecates Tholus from Mars Express and MER data. Journal of Geophysical Research, 2005, 110, .	3.3	40
143	Major episodes of the hydrologic history in the region of Hesperia Planum, Mars. Journal of Geophysical Research, 2005, 110, .	3.3	28
144	New observations of volcanic features on Mars from the THEMIS instrument. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	43

#	Article	IF	CITATIONS
145	Styles and timing of volatile-driven activity in the eastern Hellas region of Mars. Journal of Geophysical Research, 2005, 110, .	3.3	56
146	Flood lavas on Earth, Io and Mars. Journal of the Geological Society, 2006, 163, 253-264.	2.1	96
147	Volcanic processes as alternative mechanisms of landform development at a candidate crater-lake site near Tyrrhena Patera, Mars. Journal of Geophysical Research, 2006, 111, .	3.3	35
148	Alba Patera, Mars: Topography, structure, and evolution of a unique late Hesperian–early Amazonian shield volcano. Journal of Geophysical Research, 2006, 111, .	3.3	37
149	Formation of Aromatum Chaos, Mars: Morphological development as a result of volcano-ice interactions. Journal of Geophysical Research, 2006, 111, .	3.3	36
150	Geologically recent tectonic, volcanic and fluvial activity on the eastern flank of the Olympus Mons volcano, Mars. Geophysical Research Letters, 2006, 33, .	4.0	47
151	Avaliação de aspectos texturais e estruturais de corpos vulcânicos e subvulcânicos e sua relação com o ambiente de cristalização, com base em exemplos do Brasil, Argentina e Chile. Revista Escola De Minas, 2006, 59, 13-23.	0.1	16
152	Formation of a terraced fan deposit in Coprates Catena, Mars. Icarus, 2006, 184, 436-451.	2.5	33
153	The Olympus volcano on Mars: Geometry and characteristics of lava flows. Solar System Research, 2006, 40, 375-383.	0.7	12
154	Electrification of volcanic plumes. Surveys in Geophysics, 2006, 27, 387-432.	4.6	120
155	Mafic pyroclastic flows at Tyrrhena Patera, Mars: Constraints from observations and models. Journal of Volcanology and Geothermal Research, 2006, 155, 81-89.	2.1	35
156	Findings of the Mars Special Regions Science Analysis Group. Astrobiology, 2006, 6, 677-732.	3.0	104
157	Olympus Mons, Mars: Inferred changes in late Amazonian aged effusive activity from lava flow mapping of Mars Express High Resolution Stereo Camera data. Journal of Geophysical Research, 2007, 112, .	3.3	38
158	Trends in effusive style at the Tharsis Montes, Mars, and implications for the development of the Tharsis province. Journal of Geophysical Research, 2007, 112, .	3.3	89
159	Context Camera Investigation on board the Mars Reconnaissance Orbiter. Journal of Geophysical Research, 2007, 112, .	3.3	953
160	Topographic and morphologic characteristics of Reull Vallis, Mars: Implications for the history of the Reull Vallis fluvial system. Journal of Geophysical Research, 2007, 112, .	3.3	15
161	Dynamics and Thermal History of the Terrestrial Planets, the Moon, and Io. , 2007, , 299-348.		23
169	Water on the Terrestrial Planets 2007 271 420		0

#	Article	IF	CITATIONS
163	Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE). Journal of Geophysical Research, 2007, 112, .	3.3	1,253
164	Geochemistry of Martian soil and bedrock in mantled and less mantled terrains with gamma ray data from Mars Odyssey. Journal of Geophysical Research, 2007, 112, .	3.3	34
165	Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO). Journal of Geophysical Research, 2007, 112, .	3.3	796
166	Young lava flows on the eastern flank of Ascraeus Mons: Rheological properties derived from High Resolution Stereo Camera (HRSC) images and Mars Orbiter Laser Altimeter (MOLA) data. Journal of Geophysical Research, 2007, 112, .	3.3	60
167	Hadriaca Patera: Insights into its volcanic history from Mars Express High Resolution Stereo Camera. Journal of Geophysical Research, 2007, 112, .	3.3	38
168	The role of mud volcanoes in the evolution of Hecate Tholus Volcano on the surface of Mars. Acta Astronautica, 2007, 60, 719-722.	3.2	4
169	A description of surface features in north Tyrrhena Terra, Mars: Evidence for extension and lava flooding. Icarus, 2007, 191, 524-544.	2.5	51
170	Explosive volcanic eruptions on Mars: Tephra and accretionary lapilli formation, dispersal and recognition in the geologic record. Journal of Volcanology and Geothermal Research, 2007, 163, 83-97.	2.1	81
171	The imaging performance of the SRC on Mars Express. Planetary and Space Science, 2008, 56, 473-491.	1.7	38
172	Reinterpretation of Tractus Fossae region as an asymmetric rift system on Mars. Icarus, 2008, 198, 318-330.	2.5	6
173	Tyrrhena Patera: Geologic history derived from <i>Mars Express</i> High Resolution Stereo Camera. Journal of Geophysical Research, 2008, 113, .	3.3	42
174	A swarm of small shield volcanoes on Syria Planum, Mars. Journal of Geophysical Research, 2008, 113, .	3.3	32
175	Mars' crustal magnetization: a window into the past. , 2008, , 242-262.		10
176	Fissure eruptions in Tharsis, Mars: Implications for eruption conditions and magma sources. Journal of Volcanology and Geothermal Research, 2009, 185, 28-46.	2.1	36
177	Spatial and alignment analyses for a field of small volcanic vents south of Pavonis Mons and implications for the Tharsis province, Mars. Journal of Volcanology and Geothermal Research, 2009, 185, 96-102.	2.1	60
178	The topography and morphology of low shields and associated landforms of plains volcanism in the Tharsis region of Mars. Journal of Volcanology and Geothermal Research, 2009, 185, 69-95.	2.1	107
179	The global martian volcanic evolutionary history. Icarus, 2009, 201, 44-68.	2.5	243
180	Geologic context of in situ rocky exposures in Mare Serpentis, Mars: Implications for crust and regolith evolution in the cratered highlands. Icarus, 2009, 200, 446-462.	2.5	25

#	Article	IF	CITATIONS
181	Volcanic and structural history of the rocks exposed at Pickering Crater (Daedalia Planum, Mars). Icarus, 2009, 202, 453-461.	2.5	5
182	Minimum estimates of the amount and timing of gases released into the martian atmosphere from volcanic eruptions. Icarus, 2009, 204, 512-526.	2.5	95
183	The Circum-Hellas Volcanic Province, Mars: Overview. Planetary and Space Science, 2009, 57, 895-916.	1.7	83
184	Do ice caves exist on Mars?. Icarus, 2010, 209, 358-368.	2.5	50
185	Geology of Mars after the first 40 years of exploration. Research in Astronomy and Astrophysics, 2010, 10, 621-652.	1.7	11
186	The Mawrth Vallis Region of Mars: A Potential Landing Site for the Mars Science Laboratory (MSL) Mission. Astrobiology, 2010, 10, 687-703.	3.0	48
187	What we know about Mars from its impact craters. Bulletin of the Geological Society of America, 2010, 122, 644-657.	3.3	37
188	Late Noachian to Hesperian climate change on Mars: Evidence of episodic warming from transient crater lakes near Ares Vallis. Journal of Geophysical Research, 2010, 115, .	3.3	57
189	Dike indicators in the Hadriaca Patera–Promethei Terra region, Mars. Earth and Planetary Science Letters, 2010, 294, 466-478.	4.4	32
190	Geologic history of Mars. Earth and Planetary Science Letters, 2010, 294, 185-203.	4.4	538
191	Mineralogy of recent volcanic plains in the Tharsis region, Mars, and implications for platy-ridged flow composition. Earth and Planetary Science Letters, 2010, 294, 440-450.	4.4	42
192	The Circum-Hellas Volcanic Province, Mars: Assessment of wrinkle-ridged plains. Earth and Planetary Science Letters, 2010, 294, 492-505.	4.4	30
193	Surface-compositional properties of the Malea Planum region of the Circum-Hellas Volcanic Province, Mars. Earth and Planetary Science Letters, 2010, 294, 451-465.	4.4	17
194	Evidence for multiple ice deposits on the northeastern rim of Hellas basin, Mars. Earth and Planetary Science Letters, 2010, 294, 321-331.	4.4	20
195	3D structure of the Gusev Crater region. Earth and Planetary Science Letters, 2010, 294, 411-423.	4.4	29
196	Major episodes in the geologic history of western Promethei Terra, Mars. Journal of Geophysical Research, 2010, 115, .	3.3	13
197	Dark aeolian sediments in Martian craters: Composition and sources. Journal of Geophysical Research, 2011, 116, .	3.3	67
198	Explosive volcanic eruptions from linear vents on Earth, Venus, and Mars: Comparisons with circular vent eruptions. Journal of Geophysical Research, 2011, 116, .	3.3	24

#	Article	IF	CITATIONS
199	Lava–ground ice interactions in Elysium Planitia, Mars: Geomorphological and geospatial analysis of the Tartarus Colles cone groups. Journal of Geophysical Research, 2011, 116, .	3.3	48
200	Columbus crater and other possible groundwater-fed paleolakes of Terra Sirenum, Mars. Journal of Geophysical Research, 2011, 116, .	3.3	148
201	A volcanic origin for the outflow channels of Mars: Key evidence and major implications. Geomorphology, 2011, 132, 51-75.	2.6	133
202	Vertical and lateral collapse of Tharsis Tholus, Mars. Earth and Planetary Science Letters, 2011, 305, 445-455.	4.4	23
203	Segregation of olivine grains in volcanic sands in Iceland and implications for Mars. Earth and Planetary Science Letters, 2011, 310, 233-243.	4.4	49
204	The stratigraphy of the Amenthes region, Mars: Time limits for the formation of fluvial, volcanic and tectonic landforms. Icarus, 2011, 215, 128-152.	2.5	58
205	The volcanic history of Mars: High-resolution crater-based studies of the calderas of 20 volcanoes. Icarus, 2011, 211, 1179-1203.	2.5	149
206	A background to Mars exploration and research. Geological Society Special Publication, 2011, 356, 5-20.	1.3	7
207	An episodic slab-rollback model for the origin of the Tharsis rise on Mars: Implications for initiation of local plate subduction and final unification of a kinematically linked global plate-tectonic network on Earth. Lithosphere, 2012, 4, 553-593.	1.4	84
208	An inâ€situ record of major environmental transitions on early Mars at Northeast Syrtis Major. Geophysical Research Letters, 2012, 39, .	4.0	94
209	Extra-terrestrial igneous granites and related rocks: A review of their occurrence and petrogenesis. Lithos, 2012, 153, 3-24.	1.4	38
210	Ancient volcanism and its implication for thermal evolution of Mars. Earth and Planetary Science Letters, 2012, 323-324, 9-18.	4.4	61
211	Identification and mapping of dikes with relatively primitive compositions in Thaumasia Planum on Mars: Implications for Tharsis volcanism and the opening of Valles Marineris. Geophysical Research Letters, 2012, 39, .	4.0	11
212	Constraints on the history of openâ€basin lakes on Mars from the composition and timing of volcanic resurfacing. Journal of Geophysical Research, 2012, 117, .	3.3	46
213	Layered MegaBlocks in the central uplifts of impact craters. Icarus, 2012, 221, 710-720.	2.5	22
214	Major episodes of geologic history of Isidis Planitia on Mars. Icarus, 2012, 218, 24-46.	2.5	94
215	A unique volcanic field in Tharsis, Mars: Pyroclastic cones as evidence for explosive eruptions. Icarus, 2012, 218, 88-99.	2.5	81
216	Structural asymmetry in martian impact craters as an indicator for an impact trajectory. Icarus, 2012, 220, 194-204.	2.5	11

#	Article	IF	CITATIONS
217	A systematic mapping procedure based on the Modified Gaussian Model to characterize magmatic units from olivine/pyroxenes mixtures: Application to the Syrtis Major volcanic shield on Mars. Journal of Geophysical Research E: Planets, 2013, 118, 1632-1655.	3.6	33
218	Supervolcanoes within an ancient volcanic province in Arabia Terra, Mars. Nature, 2013, 502, 47-52.	27.8	123
219	Frozen Martian lahars? Evaluation of morphology, degradation and geologic development in the Utopia–Elysium transition zone. Planetary and Space Science, 2013, 85, 59-77.	1.7	17
220	The volcanic history of Syria Planum, Mars. Journal of Volcanology and Geothermal Research, 2013, 252, 1-13.	2.1	34
221	Long-Term Evolution of the Martian Crust-Mantle System. Space Science Reviews, 2013, 174, 49-111.	8.1	124
222	Crater-based dating of geological units on Mars: Methods and application for the new global geological map. Icarus, 2013, 225, 806-827.	2.5	75
223	The dual nature of the martian crust: Young lavas and old clastic materials. Icarus, 2013, 222, 188-199.	2.5	58
224	Multiple working hypotheses for the formation of compositional stratigraphy on Mars: Insights from the Mawrth Vallis region. Icarus, 2013, 226, 816-840.	2.5	53
225	Geomorphic signatures of glacial activity in the Alba Patera volcanic province: Implications for recent frost accumulation on Mars. Journal of Geophysical Research E: Planets, 2013, 118, 1609-1631.	3.6	9
226	An assemblage of lava flow features on Mercury. Journal of Geophysical Research E: Planets, 2013, 118, 1303-1322.	3.6	82
227	Hydrovolcanic tuff rings and cones as indicators for phreatomagmatic explosive eruptions on Mars. Journal of Geophysical Research E: Planets, 2013, 118, 1656-1675.	3.6	124
228	Exposures of olivineâ€rich rocks in the vicinity of Ares Vallis: Implications for Noachian and Hesperian volcanism. Journal of Geophysical Research E: Planets, 2013, 118, 916-929.	3.6	11
229	Planetary volcanism. , 2013, , 384-413.		4
232	Patera, Paterae. , 2014, , 1-3.		0
233	Circumferential graben and the structural evolution of Alba Mons, Mars. Icarus, 2014, 233, 114-125.	2.5	5
234	Morphologic characteristics of volcanic and sedimentary sequences on Mars. Solar System Research, 2014, 48, 130-138.	0.7	4
235	One million cubic kilometers of fossil ice in Valles Marineris: Relicts of a 3.5Gy old glacial landsystem along the Martian equator. Geomorphology, 2014, 204, 235-255.	2.6	82
236	The geological history of Nili Patera, Mars. Journal of Geophysical Research E: Planets, 2015, 120, 951-977.	3.6	63

#	Article	IF	CITATIONS
237	Global mapping and analysis of lunar wrinkle ridges. Journal of Geophysical Research E: Planets, 2015, 120, 978-994.	3.6	31
238	Volcanic Plain. , 2015, , 2269-2273.		0
239	Fluvial geomorphology on Earth-like planetary surfaces: A review. Geomorphology, 2015, 245, 149-182.	2.6	70
240	Planetary Tectonics and Volcanism: The Inner Solar System. , 2015, , 307-325.		10
241	Quantifying geological processes on Mars—Results of the high resolution stereo camera (HRSC) on Mars express. Planetary and Space Science, 2015, 112, 53-97.	1.7	63
242	Water on the Terrestrial Planets. , 2015, , 367-409.		7
243	The Mössbauer analysis of iron oxyhydroxides in soils of Earth and Mars. Lithology and Mineral Resources, 2015, 50, 270-298.	0.6	4
244	Magmatic controls on the genesis of Ni–Cu±(PGE) sulphide mineralisation on Mars. Ore Geology Reviews, 2015, 65, 400-412.	2.7	14
245	Evidence for Amazonian highly viscous lavas in the southern highlands on Mars. Earth and Planetary Science Letters, 2015, 415, 200-212.	4.4	19
246	Dynamics and Thermal History of the Terrestrial Planets, the Moon, and Io. , 2015, , 255-305.		30
247	Volcanism and tectonism across the inner solar system: an overview. Geological Society Special Publication, 2015, 401, 1-56.	1.3	46
248	Sulfur in the early martian atmosphere revisited: Experiments with a 3-D Global Climate Model. Icarus, 2015, 261, 133-148.	2.5	41
249	Thermal anomaly at the Earth's surface associated with a lavaÂtube. Journal of Volcanology and Geothermal Research, 2016, 325, 148-155.	2.1	5
250	Mars: a small terrestrial planet. Astronomy and Astrophysics Review, 2016, 24, 1.	25.5	22
251	A sedimentary origin for intercrater plains north of the Hellas basin: Implications for climate conditions and erosion rates on early Mars. Journal of Geophysical Research E: Planets, 2016, 121, 2239-2267.	3.6	25
252	What can thermal infrared remote sensing of terrestrial volcanoes tell us about processes past and present on Mars?. Journal of Volcanology and Geothermal Research, 2016, 311, 198-216.	2.1	10
253	Loess and life out of Earth?. Quaternary International, 2016, 399, 208-217.	1.5	6
254	The nature of terrains of different types on the surface of Venus and selection of potential landing sites for a descent probe of the Venera-D Mission. Solar System Research, 2017, 51, 1-19.	0.7	11

#	Article	IF	CITATIONS
255	Flank vents and graben as indicators of Late Amazonian volcanotectonic activity on Olympus Mons. Journal of Geophysical Research E: Planets, 2017, 122, 501-523.	3.6	15
256	Anoxic atmospheres on Mars driven by volcanism: Implications for past environments and life. Icarus, 2017, 290, 46-62.	2.5	24
257	Resurfacing event observed in Morpheos basin (Eridania Planitia) and the implications to the formation and timing of Waikato and Reull Valles, Mars. Planetary and Space Science, 2017, 140, 35-48.	1.7	4
258	The emplacement dynamics of pumice lobes ascertained from morphology and granulometry: Examples from the 1993 deposits at Lascar Volcano, Chile. Journal of Volcanology and Geothermal Research, 2017, 342, 79-90.	2.1	2
259	Plateaus and sinuous ridges as the fingerprints of lava flow inflation in the Eastern Tharsis Plains of Mars. Journal of Volcanology and Geothermal Research, 2017, 342, 29-46.	2.1	21
260	Ancient hydrothermal seafloor deposits in Eridania basin on Mars. Nature Communications, 2017, 8, 15978.	12.8	84
261	Low surface gravitational acceleration of Mars results in a thick and weak lithosphere: Implications for topography, volcanism, and hydrology. Icarus, 2017, 281, 103-114.	2.5	13
262	Areally Extensive Surface Bedrock Exposures on Mars: Many Are Clastic Rocks, Not Lavas. Geophysical Research Letters, 2018, 45, 1767-1777.	4.0	68
263	Windâ€Eroded Crater Floors and Intercrater Plains, Terra Sabaea, Mars. Journal of Geophysical Research E: Planets, 2018, 123, 445-467.	3.6	21
264	The Coevolution of Life and Environment on Mars: An Ecosystem Perspective on the Robotic Exploration of Biosignatures. Astrobiology, 2018, 18, 1-27.	3.0	64
265	The Generation of Barriers to Melt Ascent in the Martian Lithosphere. Journal of Geophysical Research E: Planets, 2018, 123, 47-66.	3.6	8
266	Formation of outflow channels on Mars: Testing the origin of Reull Vallis in Hesperia Planum by large-scale lava-ice interactions and top-down melting. Icarus, 2018, 305, 56-79.	2.5	12
267	Materials and design concepts for space-resilient structures. Progress in Aerospace Sciences, 2018, 98, 74-90.	12.1	58
268	Extraterrestrial lava lakes. Journal of Volcanology and Geothermal Research, 2018, 366, 74-95.	2.1	4
269	Cryovolcanic rates on Ceres revealed by topography. Nature Astronomy, 2018, 2, 946-950.	10.1	38
270	The Heat Flow and Physical Properties Package (HP3) for the InSight Mission. Space Science Reviews, 2018, 214, 1.	8.1	105
271	High-Resolution Topographic Analyses of Mounds in Southern Acidalia Planitia, Mars: Implications for Possible Mud Volcanism in Submarine and Subaerial Environments. Geosciences (Switzerland), 2018, 8, 152.	2.2	17
272	Principles of structural geology on rocky planets. Canadian Journal of Earth Sciences, 2019, 56, 1437-1457.	1.3	15

#	Article	IF	Citations
273	Geology of the northeastern flank of Apollinaris Mons, Mars: Constraints on the erosional history from morphology, topography, and crater populations. Icarus, 2019, 333, 385-403.	2.5	6
274	Glaciovolcanism in the Tharsis volcanic province of Mars: Implications for regional geology and hydrology. Planetary and Space Science, 2019, 169, 45-69.	1.7	13
275	Pre-mission InSights on the Interior of Mars. Space Science Reviews, 2019, 215, 1.	8.1	85
276	Space-native construction materials for earth-independent and sustainable infrastructure. Acta Astronautica, 2019, 155, 264-273.	3.2	18
277	Correlation Between Graben Orientation, Channel Direction Change, and Tectonic Loading: The Elysium Province, Mars. Journal of Geophysical Research E: Planets, 2019, 124, 652-680.	3.6	4
278	Basaltic Terrains in Idaho and Hawaiâ€~i as Planetary Analogs for Mars Geology and Astrobiology. Astrobiology, 2019, 19, 260-283.	3.0	25
279	Morphological and morphometric analysis of a topographic depression near Huygens basin, Mars: Identification of a putative endorheic playa. Geomorphology, 2020, 351, 106912.	2.6	9
280	Martian Ice Revealed by Modeling of Simple Terraced Crater Formation. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006108.	3.6	1
281	The Role of Meteorite Impacts in the Origin of Life. Astrobiology, 2020, 20, 1121-1149.	3.0	63
282	Geomorphological Analysis of ExoMars Candidate Landing Site Oxia Planum. Solar System Research, 2020, 54, 1-14.	0.7	24
283	An overview of explosive volcanism on Mars. Journal of Volcanology and Geothermal Research, 2021, 409, 107125.	2.1	29
284	Spectral and geological analyses of domes in western Arcadia Planitia, Mars: Evidence for intrusive alkali-rich volcanism and ice-associated surface features. Icarus, 2021, 357, 114111.	2.5	5
285	Syrtis Major and small highland volcanoes. , 2021, , 122-136.		0
286	The Circum-Hellas Province. , 2021, , 92-120.		Ο
287	The Surface Texture of Martian Lava Flows as Inferred from Their Decimeter- and Meter-scale Roughness. Planetary Science Journal, 2021, 2, 15.	3.6	4
288	Lava worlds: Cosmic cousins. , 2021, , 190-218.		Ο
289	Medusae Fossae Formation and the northern lowlands. , 2021, , 138-160.		1
290	Areography. , 2021, , 20-35.		0

#	Article	IF	CITATIONS
291	Volcanic Lateral Collapse Processes in Mafic Arc Edifices: A Review of Their Driving Processes, Types and Consequences. Frontiers in Earth Science, 2021, 9, .	1.8	12
292	The effects of magmatic evolution, crystallinity, and microtexture on the visible/near-infrared and thermal-infrared spectra of volcanic rocks. Icarus, 2021, 359, 114344.	2.5	11
293	Four decades of understanding Martian geomorphology: Revisiting Baker's â€`The geomorphology of Mars'. Progress in Physical Geography, 0, , 030913332110262.	3.2	4
294	Lava Flow Eruption Conditions in the Tharsis Volcanic Province on Mars. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006791.	3.6	14
295	Stratigraphic Evidence for Early Martian Explosive Volcanism in Arabia Terra. Geophysical Research Letters, 2021, 48, e2021GL094109.	4.0	17
296	Landform evolution of Tharsis Montes and Olympus Mons of Mars: Insights from morphometric, hypsometric and chronologic evidences. Journal of Earth System Science, 2021, 130, 1.	1.3	5
297	New Evidence to Support Zephyria Tholus as a Composite Volcano on Mars. Remote Sensing, 2021, 13, 3891.	4.0	0
298	Explosive vent sites on Mercury: Commonplace multiple eruptions and their implications. Icarus, 2021, 365, 114510.	2.5	9
299	Evidence for geologically recent explosive volcanism in Elysium Planitia, Mars. Icarus, 2021, 365, 114499.	2.5	39
300	The Elysium Province. , 2021, , 70-91.		0
300 301	The Elysium Province. , 2021, , 70-91. Weathering of Martian Surface Rocks. , 1986, , 191-223.		0
300 301 302	The Elysium Province., 2021, , 70-91. Weathering of Martian Surface Rocks., 1986, , 191-223. Long-Term Evolution of the Martian Crust-Mantle System. Space Sciences Series of ISSI, 2012, , 49-111.	0.0	0 6 4
300 301 302 303	The Elysium Province., 2021,, 70-91. Weathering of Martian Surface Rocks., 1986,, 191-223. Long-Term Evolution of the Martian Crust-Mantle System. Space Sciences Series of ISSI, 2012,, 49-111. Mesoscale Positive Relief Landforms, Mars., 2014,, 1-13.	0.0	0 6 4 1
300 301 302 303	The Elysium Province., 2021,, 70-91. Weathering of Martian Surface Rocks., 1986,, 191-223. Long-Term Evolution of the Martian Crust-Mantle System. Space Sciences Series of ISSI, 2012, , 49-111. Mesoscale Positive Relief Landforms, Mars., 2014,, 1-13. Volcanism on the Red Planet: Mars., 2000,, 75-112.	0.0	0 6 4 1 23
 300 301 302 303 304 305 	The Elysium Province., 2021,, 70-91. Weathering of Martian Surface Rocks., 1986,, 191-223. Long-Term Evolution of the Martian Crust-Mantle System. Space Sciences Series of ISSI, 2012, , 49-111. Mesoscale Positive Relief Landforms, Mars., 2014,, 1-13. Volcanism on the Red Planet: Mars., 2000,, 75-112. 4.2.3.5 Planetary geology: Craters and chronology, Volcanism, Tectonics. Landolt-B☚ãˆ, rnstein - Group VI Astronomy and Astrophysics, 2009,, 345-433.	0.0	0 6 4 1 23 4
300 301 302 303 304 305	The Elysium Province., 2021,, 70-91. Weathering of Martian Surface Rocks., 1986,, 191-223. Long-Term Evolution of the Martian Crust-Mantle System. Space Sciences Series of ISSI, 2012,, 49-111. Mesoscale Positive Relief Landforms, Mars., 2014,, 1-13. Volcanism on the Red Planet: Mars., 2000,, 75-112. 4.2.3.5 Planetary geology: Craters and chronology, Volcanism, Tectonics. Landolt-Bâ [*] šâ [*] ,rnstein - Group VI Astronomy and Astrophysics, 2009,, 345-433. Experimental Simulation of Volcanic Lightning on Early Mars., 2000,, 293-296.	0.0	0 6 4 1 23 4 3
 300 301 302 303 304 305 307 308 	The Elysium Province., 2021, , 70-91. Weathering of Martian Surface Rocks., 1986, , 191-223. Long-Term Evolution of the Martian Crust-Mantle System. Space Sciences Series of ISSI, 2012, , 49-111. Mesoscale Positive Relief Landforms, Mars., 2014, , 1-13. Volcanism on the Red Planet: Mars., 2000, , 75-112. 4.2.3.5 Planetary geology: Craters and chronology, Volcanism, Tectonics. Landolt-Bâ°šâ°, rnstein - Group VI Astronomy and Astrophysics, 2009, , 345-433. Experimental Simulation of Volcanic Lightning on Early Mars., 2000, , 293-296. Geomorphologic Evidence for Liquid Water. Space Sciences Series of ISSI, 2001, , 333-364.	0.0	0 6 4 1 23 4 3 3

#	Article	IF	CITATIONS
310	Convective Thinning of the Lithosphere: A Mechanism for Rifting and Mid-Plate Volcanism on Earth, Venus, and Mars. Developments in Geotectonics, 1983, 19, 67-90.	0.3	2
312	Terrestrial planets fractionated synchronously with accretion, but Earth progressed through subsequent internally dynamic stages whereas Venus and Mars have been inert for more than 4 billion years. Special Paper of the Geological Society of America, 0, , 123-156.	0.5	4
317	The Origin and Evolution of Volcanism at Martian Highland Paterae: A Review of the Current State of Knowledge. , 2021, , 231-266.		0
318	Explosive Volcanism on Mars. , 2021, , 183-230.		0
319	Volcanic Eruptions on Mars, Lava Flow Morphology, and Thermodynamics. , 2021, , 71-94.		1
320	Volcanic Cone. , 2014, , 1-10.		0
321	Volcanic Plain. , 2014, , 1-6.		0
322	Lava Tube. , 2014, , 1-7.		1
325	SCIENTIFIC RATIONALE AND TECHNICAL ELEMENTS OF FUTURE MARS EXPLORATION IN ESA. , 1991, , 69-83.		0
326	Highland Patera. , 2015, , 926-930.		0
327	Mesoscale Positive Relief Landforms (Mars). , 2015, , 1351-1362.		0
328	Patera, Paterae. , 2015, , 1522-1524.		0
329	Volcanic Cone. , 2015, , 2261-2268.		0
330	Lava Tube. , 2015, , 1181-1186.		0
331	Evaluating Flatâ€Crater Floor Fill Compositions and Morphologies: Insight into Formation Processes. Journal of Geophysical Research E: Planets, 2021, 126, e2021JE006919.	3.6	2
332	Recognition of Sedimentary Rock Occurrences in Satellite and Aerial Images of Other Worlds—Insights from Mars. Remote Sensing, 2021, 13, 4296.	4.0	9
333	Subsurface structure of the Martian Elysium Rise revealed by gravitational field separation. Icarus, 2022, 372, 114738.	2.5	1
334	Petrologic Evolution of Martian Volcanism and Clues from Meteorites. , 2021, , 51-69.		0

#	Article	IF	CITATIONS
335	Effusive silicate volcanism: Observations and processes. , 2022, , 5-75.		1
336	Explosive volcanism in Noctis Fossae on Mars. Icarus, 2022, 375, 114851.	2.5	4
339	Magnetometric Surveys for the Non-Invasive Surface and Subsurface Interpretation of Volcanic Structures in Planetary Exploration, a Case Study of Several Volcanoes in the Iberian Peninsula. Remote Sensing, 2022, 14, 2039.	4.0	2
340	Martian volcanism: Current state of knowledge and known unknowns. Chemie Der Erde, 2022, 82, 125886.	2.0	3
341	Probable ice-rich deposits on north-facing slopes in Alba Patera, Mars. Icarus, 2022, 383, 115063.	2.5	0
342	Constraints on the Emplacement of Martian Nakhlite Igneous Rocks and Their Source Volcano From Advanced Microâ€Petrofabric Analysis. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	2
343	New Insights Into Subsurface Stratigraphy Northwest of Ascraeus Mons, Mars, Using the SHARAD and MARSIS Radar Sounders. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	8
344	Distribution and Morphology of Lava Tube Systems on the Western Flank of Alba Mons, Mars. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	3
345	Inception and Evolution of La Corona Lava Tube System (Lanzarote, Canary Islands, Spain). Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	2
346	A shallow salt pond analog for aqueous alteration on ancient Mars: Spectroscopy, mineralogy, and geochemistry of sediments from Antarctica's Dry Valleys. American Mineralogist, 2022, , .	1.9	0
347	Noble gas evolution of the martian atmosphere in the last 4 Gyr recorded by regolith breccia NWA 8114. Geochimica Et Cosmochimica Acta, 2022, 336, 372-393.	3.9	0
348	Geomorphological and morphometric characteristics of the volcanic edifices along a volcanic alignment of Tharsis on Mars. Geomorphology, 2022, 414, 108385.	2.6	1
349	Quantifying Subâ€Meter Surface Heterogeneity on Mars Using Offâ€Axis Thermal Emission Imaging System (THEMIS) Data. Earth and Space Science, 2022, 9, .	2.6	1
350	The effects of unsteady effusion rates on lava flow emplacement: Insights from laboratory analogue experiments. Journal of Volcanology and Geothermal Research, 2022, 432, 107674.	2.1	2
351	Planetary Caves: A Solar System View of Processes and Products. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	3
352	Volcanic craters and cones in central Kachchh mainland, western India: Potential analogue for the Martian studies?. Journal of Earth System Science, 2022, 131, .	1.3	1
354	Longâ€Lived and Continual Volcanic Eruptions, Tectonic Activity, Pit Chains Formation, and Boulder Avalanches in Northern Tharsis Region: Implications for Late Amazonian Geodynamics and Seismoâ€Tectonic Processes on Mars. Journal of Geophysical Research E: Planets, 2023, 128, .	3.6	3
355	Investigating the igneous petrogenesis of Martian volcanic rocks using augite quantitative textural analysis of the Yamato nakhlites. Meteoritics and Planetary Science, 2023, 58, 63-84.	1.6	2

#	Article	IF	CITATIONS
356	The geology of Eden Patera, a typeâ€example of plains style caldera complexes on Mars. Journal of Geophysical Research E: Planets, 0, , .	3.6	0
357	Not Every Circle Is a Crater: Kettle Hole Size Distributions and Their Implications in Planetary Surface Age Dating. Geosciences (Switzerland), 2023, 13, 18.	2.2	0
358	Spectral reflectance properties of nontronite exposed to Mars-like surface conditions and low-temperature heating (<300°C). Icarus, 2023, 395, 115448.	2.5	1
359	Lava Tube. , 2022, , 1-7.		0
360	Heat-induced changes in molecular biosignatures and the influence of Mars-relevant minerals. International Journal of Astrobiology, 0, , 1-18.	1.6	0
361	The cooling models of Earth's early mantle. Acta Geochimica, 0, , .	1.7	0
362	Dynamic development of the Athabasca Valles outflow system from volcanic facies and 15 m scale roughness. Icarus, 2023, , 115691.	2.5	0
364	Interaction between a Martian Regolith Simulant and Fungal Organic Acids in the Biomining Perspective. Journal of Fungi (Basel, Switzerland), 2023, 9, 976.	3.5	0
365	Evolution of the Geological Environment and Exploration for Life on Mars. Journal of Earth Science (Wuhan, China), 2023, 34, 1626-1628.	3.2	1
366	Diverse volcanism and crustal recycling on early Mars. Nature Astronomy, 2024, 8, 456-462.	10.1	0