A Review of the Fungi That Degrade Plastic

Journal of Fungi (Basel, Switzerland) 8, 772 DOI: 10.3390/jof8080772

Citation Report

#	Article	IF	CITATIONS
1	Investigation of environmental burden for waste plastic flotation recovery. Physics and Chemistry of the Earth, 2023, 129, 103328.	2.9	2
2	Microplastics and their interactions with microbiota. Heliyon, 2023, 9, e15104.	3.2	9
3	Potential impact of polyethylene microplastics on the growth of water spinach (Ipomoea aquatica F.): Endophyte and rhizosphere effects. Chemosphere, 2023, 330, 138737.	8.2	8
4	Polyhydroxyalkanoates (PHAs) synthesis and degradation by microbes and applications towards a circular economy. Journal of Environmental Management, 2023, 341, 118033.	7.8	12
5	Thermoplastic starch (TPS) bioplastic, the green solution for single-use petroleum plastic food packaging – A review. Enzyme and Microbial Technology, 2023, 168, 110260.	3.2	11
6	Fungal Bioremediation of the Plasticizer Hazardous Compound di-2-Ethylhexyl Phthalate (DEHP) in Urine and Blood Bags. , 2023, 47, 673-682.		0
7	Multivariate analysis of enriched landfill soil consortia provide insight on the community structural perturbation and functioning during low-density polyethylene degradation. Microbiological Research, 2023, 274, 127425.	5.3	3
8	Microplastics in soils during the COVID-19 pandemic: Sources, migration and transformations, and remediation technologies. Science of the Total Environment, 2023, 883, 163700.	8.0	5
9	Experimental evaluation of diesel blends mixed with municipal plastic waste pyrolysis oil on performance and emission characteristics of CI engine. Case Studies in Thermal Engineering, 2023, 47, 103074.	5.7	5
10	Plastisphere composition in a subtropical estuary: Influence of season, incubation time and polymer type on plastic biofouling. Environmental Pollution, 2023, 332, 121873.	7.5	4
11	Wood decay fungi show enhanced biodeterioration of low-density polyethylene in the absence of wood in culture media. PLoS ONE, 2023, 18, e0288133.	2.5	1
12	Ingestion preference and efficiencies of different polymerization types foam plastics by Tenebrio molitor larvae, associated with changes of both core gut bacterial and fungal microbiomes. Journal of Environmental Chemical Engineering, 2023, 11, 110801.	6.7	1
13	Mycelium Composites for Sustainable Development in Developing Countries: The Case for Africa. Advanced Sustainable Systems, 2024, 8, .	5.3	2
14	Phytoremediation of Microplastics: A Perspective on Its Practicality. , 2023, 3, 90-102.		0
15	HADEG: A curated hydrocarbon aerobic degradation enzymes and genes database. Computational Biology and Chemistry, 2023, 107, 107966.	2.3	2
16	History of marine mycology – a personal perspective. Botanica Marina, 2023, 66, 453-470.	1.2	0
17	Optimizing Eco-Friendly Degradation of Polyvinyl Chloride (PVC) Plastic Using Environmental Strains of Malassezia Species and Aspergillus fumigatus. International Journal of Molecular Sciences, 2023, 24, 15452.	4.1	1
18	Bacteria and Yeasts Isolated from the Environment in Biodegradation of PS and PVC Microplastics: Screening and Treatment Optimization. Environments - MDPI, 2023, 10, 207.	3.3	1

CITATION REPORT

#	Article	IF	CITATIONS
19	Organic waste-to-bioplastics: Conversion with eco-friendly technologies and approaches for sustainable environment. Environmental Research, 2024, 244, 117949.	7.5	1
20	Insight on recently discovered PET polyester-degrading enzymes, thermostability and activity analyses. 3 Biotech, 2024, 14, .	2.2	1
21	Plastiphily is linked to generic virulence traits of important human pathogenic fungi. Communications Earth & Environment, 2024, 5, .	6.8	0
22	Morphology, phylogeny, and polyurethane degrading ability of <i>Lasiodiplodia iraniensis</i> and <i>Mortierella alpina</i> . New Zealand Journal of Botany, 0, , 1-18.	1.1	0
23	Recent advances in nanotechnology-based modifications of micro/nano PET plastics for green energy applications. Chemosphere, 2024, 352, 141417.	8.2	0
24	Emerging Microplastics Alter the Influences of Soil Animals on the Fungal Community Structure in Determining the Litter Decomposition of a Deciduous Tree. Forests, 2024, 15, 488.	2.1	0
25	Current trends, limitations and future research in the fungi?. Fungal Diversity, 2024, 125, 1-71.	12.3	0