The Deoxynivalenol Challenge

Journal of Agricultural and Food Chemistry 70, 9619-9624

DOI: 10.1021/acs.jafc.2c03690

Citation Report

#	Article	IF	CITATIONS
1	Maize stalk rot caused by Fusarium graminearum alters soil microbial composition and is directly inhibited by Bacillus siamensis isolated from rhizosphere soil. Frontiers in Microbiology, $0,13,13$	3.5	5
2	Suspected gut barrier disruptors and development of food allergy: Adjuvant effects and early immune responses. Frontiers in Allergy, 0, 3, .	2.8	3
3	Hazard characterisation for significant mycotoxins in food. Mycotoxin Research, 2023, 39, 81-93.	2.3	14
4	Lactational exposure to Deoxynivalenol causes mammary gland injury via inducing inflammatory response and impairing blood-milk barrier integrity in mice. Ecotoxicology and Environmental Safety, 2023, 255, 114773.	6.0	0
5	Two-Step Epimerization of Deoxynivalenol by Quinone-Dependent Dehydrogenase and Candida parapsilosis ACCC 20221. Toxins, 2023, 15, 286.	3.4	0
6	The mitigation mechanism of hesperidin on deoxynivalenol toxicity in grass carp hepatocytes via decreasing ROS accumulation and inhibiting JNK phosphorylation. Fish and Shellfish Immunology, 2023, 134, 108646.	3.6	6
7	Deoxynivalenol at No-Observed Adverse-Effect Levels Aggravates DSS-Induced Colitis through the JAK2/STAT3 Signaling Pathway in Mice. Journal of Agricultural and Food Chemistry, 2023, 71, 4144-4152.	5. 2	7
8	Contamination and Health Risk Assessment of Multiple Mycotoxins in Edible and Medicinal Plants. Toxins, 2023, 15, 209.	3.4	4
9	Development of a time-resolved immunochromatographic strip for rapid and quantitative determination of deoxynivalenol. Frontiers in Veterinary Science, 0 , 10 , .	2.2	0
10	"Lollipop" particle counting immunoassay based on antigen-powered CRISPR-Cas12a dual signal amplification for the sensitive detection of deoxynivalenol in the environment and food samples. Journal of Hazardous Materials, 2023, 455, 131573.	12.4	1
11	Effect of deoxynivalenol on inflammatory injury on the glandular stomach in chick embryos. Poultry Science, 2023, 102, 102870.	3.4	1
12	Rapid screening for resistance of maize inbred and hybrid lines against southern corn leaf blight. Journal of Phytopathology, 2023, 171, 452-469.	1.0	0
13	Climate Change and Food Allergy. Immunology and Allergy Clinics of North America, 2023, , .	1.9	O
14	Deoxynivalenol Induces Blood–Testis Barrier Dysfunction through Disrupting p38 Signaling Pathway-Mediated Tight Junction Protein Expression and Distribution in Mice. Journal of Agricultural and Food Chemistry, 2023, 71, 12829-12838.	5.2	1
15	The Role of Mycotoxins in Interactions between Fusarium graminearum and F. verticillioides Growing in Saprophytic Cultures and Co-Infecting Maize Plants. Toxins, 2023, 15, 575.	3.4	2
16	Evaluation of Statistical Treatment of Left-Censored Contamination Data: Example Involving Deoxynivalenol Occurrence in Pasta and Pasta Substitute Products. Toxins, 2023, 15, 521.	3.4	O
17	Dual RNA Sequencing of <i>Beauveria bassiana</i> -Infected <i>Spodoptera frugiperda</i> Reveals a Fungal Protease with Entomopathogenic and Antiphytopathogenic Activities. Journal of Agricultural and Food Chemistry, 2023, 71, 12757-12774.	5.2	1
18	Update on the state of research to manage Fusarium head blight. Fungal Genetics and Biology, 2023, 169, 103829.	2.1	4

#	Article	IF	CITATIONS
19	Deoxynivalenol induces endoplasmic reticulum stress-associated apoptosis via the IRE1/JNK/CHOP pathway in porcine alveolar macrophage 3D4/21 cells. Food and Chemical Toxicology, 2023, 180, 114033.	3.6	3
20	Metabolomics study reveals increased deoxycholic acid contributes to deoxynivalenol-mediated intestinal barrier injury. Life Sciences, 2024, 336, 122302.	4.3	O
21	Research progress in simultaneous detection of mycotoxins in traditional Chinese medicine. SHS Web of Conferences, 2023, 179, 05002.	0.2	0
22	Improvement of the sensitivity of lateral flow systems for detecting mycotoxins: Upâ€toâ€date strategies and future perspectives. Comprehensive Reviews in Food Science and Food Safety, 2024, 23, .	11.7	О
23	Natural Trichothecene Mycotoxins from a Rotten Moldy Apple Core-Derived <i>Trichothecium roseum</i> : Occurrence, Identification, and Potential Transfer to Commercial Apple Juice. ACS Food Science & Technology, 2024, 4, 118-125.	2.7	0
24	Carbon nanospheres bridging in perovskite quantum dots/BiOBr: An efficient heterojunction for high-performance photoelectrochemical sensing of deoxynivalenol. Carbon, 2024, 221, 118919.	10.3	0
25	Low-dose deoxynivalenol exposure inhibits hepatic mitophagy and hesperidin reverses this phenomenon by activating SIRT1. Journal of Hazardous Materials, 2024, 468, 133854.	12.4	0
26	Ferritinophagy Is Critical for Deoxynivalenol-Induced Liver Injury in Mice. Journal of Agricultural and Food Chemistry, 2024, 72, 6660-6671.	5.2	O
27	Deoxynivalenol Damages Corneal Epithelial Cells and Exacerbates Inflammatory Response in Fungal Keratitis. Mycopathologia, 2024, 189, .	3.1	0