End-to-end design of wearable sensors

Nature Reviews Materials 7, 887-907

DOI: 10.1038/s41578-022-00460-x

Citation Report

#	Article	IF	CITATIONS
1	Materials for Wearable Sensors. , 2022, 2, .		0
2	An Outline of Wearable Gadgets. International Journal of Scientific Research in Science, Engineering and Technology, 2022, , 393-400.	0.1	O
3	Wearable, antibacterial, and self-healable modular sensors for monitoring joints movement ultra-sensitively. European Polymer Journal, 2022, 180, 111617.	2.6	3
4	A Comprehensive Review of the Recent Developments in Wearable Sweat-Sensing Devices. Sensors, 2022, 22, 7670.	2.1	12
5	A Soft Wearable Microfluidic Patch with Finger-Actuated Pumps and Valves for On-Demand, Longitudinal, and Multianalyte Sweat Sensing. ACS Sensors, 2022, 7, 3169-3180.	4.0	18
6	Face masks as a platform for wearable sensors. Nature Electronics, 2022, 5, 719-720.	13.1	4
7	Past, Present and Future of Research on Wearable Technologies for Healthcare: A Bibliometric Analysis Using Scopus. Sensors, 2022, 22, 8599.	2.1	13
8	User Experience of Wearable Technologies: A Comparative Analysis of Textile-Based and Accessory-Based Wearable Products. Applied Sciences (Switzerland), 2022, 12, 11154.	1.3	5
9	Copper laser patterning on a flexible substrate using a cost-effective 3D printer. Scientific Reports, 2022, 12, .	1.6	2
10	Wearable Eâ€Skin Microgrid with Batteryâ€Based, Selfâ€Regulated Bioenergy Module for Epidermal Sweat Sensing. Advanced Energy Materials, 2023, 13, .	10.2	10
11	Application of Piezoelectric PLLA Braided Cord as Wearable Sensor to Realize Monitoring System for Indoor Dogs with Less Physical or Mental Stress. Micromachines, 2023, 14, 143.	1.4	3
12	Emerging Wearable Chemical Sensors Enabling Advanced Integrated Systems toward Personalized and Preventive Medicine. Analytical Chemistry, 2023, 95, 490-514.	3.2	18
13	Flexible two-dimensional MXene-based antennas. Nanoscale Horizons, 2023, 8, 309-319.	4.1	1
14	Challenges of Emerging Wearable Sensors for Remote Monitoring toward Telemedicine Healthcare. Analytical Chemistry, 2023, 95, 1773-1784.	3.2	14
15	Calculations of adsorption-dependent refractive indices of metal-organic frameworks for gas sensing applications. Optics Express, 2023, 31, 7947.	1.7	2
16	A review on the recent advancements in nanomaterials for <scp>nonenzymatic</scp> lactate sensing. Bulletin of the Korean Chemical Society, 2023, 44, 407-419.	1.0	2
17	Dual Structural Design of Platinumâ€Nickel Hydrogels for Wearable Glucose Biosensing with Ultrahigh Stability. Small, 2023, 19, .	5.2	12
18	Biophysical Properties of Bifunctional Phage-Biosensor. Viruses, 2023, 15, 299.	1.5	O

#	ARTICLE	IF	CITATIONS
19	Humidityâ€Resistant, Broadâ€Range Pressure Sensors for Garmentâ€Integrated Health, Motion, and Grip Strength Monitoring in Natural Environments. Advanced Materials Technologies, 2023, 8, .	3.0	4
20	Carbon-based electrochemical biosensors as diagnostic platforms for connected decentralized healthcare. Sensors & Diagnostics, 2023, 2, 529-558.	1.9	5
21	Feasibility of conductive embroidered threads for I ² C sensors in microcontroller-based wearable electronics. Flexible and Printed Electronics, 2023, 8, 015016.	1.5	1
22	Epidermal Wearable Biosensors for Monitoring Biomarkers of Chronic Disease in Sweat. Biosensors, 2023, 13, 313.	2.3	6
23	Boost the voltage of a magnetoelastic generator via tuning the magnetic induction layer resistance. Nano Energy, 2023, 109, 108298.	8.2	5
24	Emerging tetrapyrrole porous organic polymers for chemosensing applications. Coordination Chemistry Reviews, 2023, 482, 215078.	9.5	8
25	Polymer networks which locally rotate to accommodate stresses, torques, and deformation. Journal of the Mechanics and Physics of Solids, 2023, 175, 105289.	2.3	2
26	Multiplexed electrochemical assays for clinical applications. Current Opinion in Electrochemistry, 2023, 39, 101256.	2.5	8
27	A review: Recent advancements in sensor technology for non-invasive neonatal health monitoring. Biosensors and Bioelectronics: X, 2023, 14, 100332.	0.9	2
28	A wearable electrochemical fabric for cytokine monitoring. Biosensors and Bioelectronics, 2023, 232, 115301.	5.3	5
29	Highly accurate multimodal monitoring of lactate and urea in sweat by soft epidermal optofluidics with single-band Raman scattering. Sensors and Actuators B: Chemical, 2023, 387, 133814.	4.0	11
30	Graphene-Based Field-Effect Transistors in Biosensing and Neural Interfacing Applications: Recent Advances and Prospects. Analytical Chemistry, 2023, 95, 2590-2622.	3.2	13
31	Airâ€Permeable Textile Bioelectronics for Wearable Energy Harvesting and Active Sensing. Advanced Materials Technologies, 2023, 8, .	3.0	5
32	Toward Dynamic Detection of Circulating Tumor Cells Exploiting Specific Molecular Recognition Elements. Chemosensors, 2023, 11, 99.	1.8	1
33	Printable Epsilonâ€Type Structure Transistor Arrays with Highly Reliable Physical Unclonable Functions. Advanced Materials, 2023, 35, .	11.1	12
34	3Dâ€Printed Microinjection Needle Arrays via a Hybrid DLPâ€Direct Laser Writing Strategy. Advanced Materials Technologies, 2023, 8, .	3.0	13
35	Functional microneedles for wearable electronics. , 2023, 2, .		8
36	Liquid metal-assisted hydrothermal preparation of cobalt disulfide on the polymer tape surface for flexible sensor. Nano Research, 0 , , .	5.8	1

#	Article	IF	Citations
37	Wearable sweat analysis to determine biological age. Trends in Biotechnology, 2023, 41, 1113-1116.	4.9	6
38	Flexible, Permeable, and Recyclable Liquidâ€Metalâ€Based Transient Circuit Enables Contact/Noncontact Sensing for Wearable Human–Machine Interaction. Small Methods, 2023, 7, .	4.6	26
39	End-User Assessment of an Innovative Clothing-Based Sensor Developed for Pressure Injury Prevention: A Mixed-Method Study. International Journal of Environmental Research and Public Health, 2023, 20, 4039.	1,2	3
40	PubMed indexation for the European Heart Journal – Digital Health: a small step for the European Heart Journal family, a giant leap in the digital future of cardiovascular disease management. European Heart Journal Digital Health, 2023, 4, 63-64.	0.7	0
41	Emerging Biosensors Based on Noble Metal Selfâ€Assembly for In Vitro Disease Diagnosis. Advanced NanoBiomed Research, 2023, 3, .	1.7	1
42	Eco-Friendly, Low-Cost, and Flexible Cotton Fabric for Capacitive Touchscreen Devices Based on Graphite. Crystals, 2023, 13, 403.	1.0	1
43	Flexible Organic Transistors for Biosensing: Devices and Applications. Advanced Materials, 0, , .	11.1	21
44	Waterâ€Resistant Conductive Gels toward Underwater Wearable Sensing. Advanced Materials, 2023, 35, .	11.1	22
45	A Systematic Review on the Advanced Techniques of Wearable Point-of-Care Devices and Their Futuristic Applications. Diagnostics, 2023, 13, 916.	1.3	8
47	Recent Advances in Nanomaterials Used for Wearable Electronics. Micromachines, 2023, 14, 603.	1.4	5
48	Personality in Daily Life: Multi-Situational Physiological Signals Reflect Big-Five Personality Traits. IEEE Journal of Biomedical and Health Informatics, 2023, , 1-11.	3.9	3
49	Technology Roadmap for Flexible Sensors. ACS Nano, 2023, 17, 5211-5295.	7.3	238
50	Strain and Pressure Sensors Based on MWCNT/PDMS for Human Motion/Perception Detection. Polymers, 2023, 15, 1386.	2.0	8
51	Advanced Electronic Packaging Technology: From Hard to Soft. Materials, 2023, 16, 2346.	1.3	2
52	On-body hypoxia monitor based on lactate biosensors with a tunable concentration range. Journal of Electroanalytical Chemistry, 2023, 935, 117330.	1.9	1
54	Recent advances in the material design for intelligent wearable devices. Materials Chemistry Frontiers, 2023, 7, 3278-3297.	3.2	12
55	Skin-Interfaced Wearable Sweat Sensors for Precision Medicine. Chemical Reviews, 2023, 123, 5049-5138.	23.0	85
56	Giant Humidity Effect of 2D Perovskite on Paper Substrate: Optoelectronic Performance and Mechanical Flexibility. Advanced Optical Materials, 2023, 11 , .	3.6	1

#	Article	IF	CITATIONS
57	Biocompatible Materialâ€Based Flexible Biosensors: From Materials Design to Wearable/Implantable Devices and Integrated Sensing Systems. Small, 2023, 19, .	5.2	17
58	Naturally sourced hydrogels: emerging fundamental materials for next-generation healthcare sensing. Chemical Society Reviews, 2023, 52, 2992-3034.	18.7	41
59	Selective Detection of Toxic C1 Chemicals Using a Hydroxylamine-Based Chemiresistive Sensor Array. ACS Sensors, 2023, 8, 1585-1592.	4.0	2
60	MXeneâ€Based Flexible Sensors: Materials, Preparation, and Applications. Advanced Materials Technologies, 2023, 8, .	3.0	7
61	Highly stretchable, deformation-stable wireless powering antenna for wearable electronics. Nano Energy, 2023, 112, 108461.	8.2	6
71	Programming bacterial adhesion to functionalized surfaces through cellular display of recombinant nanobodies. Methods in Microbiology, 2023, , .	0.4	0
72	Aqueous Batteries for Human Body Electronic Devices. ACS Energy Letters, 2023, 8, 2904-2918.	8.8	9
79	Wearable Sensor: An Emerging Data Collection Tool for Plant Phenotyping. Plant Phenomics, 2023, 5, .	2.5	5
80	Fiber Bragg Grating based Wearable Device for Monitoring Respiratory Activity., 2023,,.		1
81	Design, fabrication and assembly considerations for electronic systems made of fibre devices. Nature Reviews Materials, 2023, 8, 552-561.	23.3	10
101	Flexible Microfluidics for Raman Measurements on Skin., 2023,,.		1
104	Smart textiles for self-powered biomonitoring. , 2023, 1, .		38
109	Digital health for aging populations. Nature Medicine, 2023, 29, 1623-1630.	15.2	27
110	Opportunities and challenges for sweat-based monitoring of metabolic syndrome via wearable technologies. , 2023, 2, .		5
118	Progress in self-powered sensors—Moving toward artificial intelligent and neuromorphic system. Nano Research, 2023, 16, 11801-11821.	5.8	6
119	Sustainable electronic textiles towards scalable commercialization. Nature Materials, 2023, 22, 1294-1303.	13.3	15
121	A Feasibility Study on Textile Electrodes for Transcutaneous Electrical Nerve Stimulation., 2023,,.		0
132	Infusing wearables. , 2023, , 131-143.		0

#	ARTICLE	IF	Citations
135	Recent advances in aggregation-induced emission (AIE)-based chemosensors for the detection of organic small molecules. Materials Chemistry Frontiers, 2023, 7, 5561-5660.	3.2	2
136	Engineering carbon nanomaterials toward high-efficiency bioelectrocatalysis for enzymatic biofuel cells: a review. Materials Chemistry Frontiers, 2023, 7, 5806-5825.	3.2	2
140	Wearable flexible microfluidic sensing technologies., 2023, 1, 950-971.		7
142	Sustainable stretchable batteries for next-generation wearables. Journal of Materials Chemistry A, 0, ,	5.2	0
151	Skin-interfaced colorimetric microfluidic devices for on-demand sweat analysis. Npj Flexible Electronics, 2023, 7, .	5.1	6
159	Wearable biosensor platform: design and healthcare commercial values. , 2024, , 201-225.		0
164	Sensors for in situ monitoring of oral and dental health parameters in saliva. Clinical Oral Investigations, 2023, 27, 5719-5736.	1.4	0
166	Exploring the Potential of Bluetooth Low Energy for Wireless Sensing and On-Board Computation in Remote Health Monitoring. , 2023, , .		0
175	An Investigation of a Replay Attack on LoRaWAN Wearable Devices. , 2023, , .		1
185	Anti-freezing Multifunctional Conductive Hydrogels: From Structure Design to Flexible Electronic Devices. Materials Chemistry Frontiers, 0, , .	3.2	0
186	Design of a Wrist-Worn Device for Simultaneous Detection of ECG and Cardiac Pulse: A Preliminary Study. IFMBE Proceedings, 2024, , 357-364.	0.2	0
203	Continuous Glucose Monitoring in Ultra Trail Running During Performance and Recovery., 2023,,.		O
220	Implantable Electrochemical Microsensors for In Vivo Monitoring of Animal Physiological Information. Nano-Micro Letters, 2024, 16, .	14.4	2
222	Artificial intelligence-powered electronic skin. Nature Machine Intelligence, 2023, 5, 1344-1355.	8.3	4
224	AdVanced and pERSonalized heAlThcare through Integrated WearabLe sEnsors (VERSATILE). Materials Advances, 0, , .	2.6	0
241	Lipid vesicle-based molecular robots. Lab on A Chip, 2024, 24, 996-1029.	3.1	0
255	Stretchable interfaces come in from the cold. Nature Electronics, 2024, 7, 4-5.	13.1	0
256	2.4 GHz Ultra-Low Power Direct Digital-to-RF CMOS Transmitter for Biosensing Applications. , 2023, , .		0

#	Article	IF	CITATIONS
264	Applications and wearables for disease monitoring. , 2024, , 167-180.		О
267	An End-to-End Model for Mental Disorders Detection by Spontaneous Physical Activity Data. , 2023, , .		0
268	Emerging electrochemical humidity sensors for zero power consumption and self-powered humidity detection: a perspective. Journal of Materials Chemistry A, 0 , , .	5. 2	0
271	Wearable sweat chloride sensors: materials, fabrication and their applications. Analytical Methods, 2024, 16, 1439-1453.	1.3	0
278	Wireless real-time monitoring of oestradiol in sweat. Nature Nanotechnology, 2024, 19, 271-272.	15.6	0