Genotypic Differences in Behavioral, Physiological and Age-Related Hearing Loss in the Laboratory Mouse: Ori

International Journal of Audiology 19, 369-383 DOI: 10.3109/00206098009070071

Citation Report

#	Article	IF	CITATIONS
1	Age-related auditory loss in the Mongolian gerbil. Archives of Oto-rhino-laryngology, 1980, 228, 233-238.	0.5	44
2	Effects of neonatal thyroxine, genotype, and noise on the ear and audiogenic seizures Journal of Comparative and Physiological Psychology, 1981, 95, 418-424.	1.8	11
3	Increased Ototoxicity in Both Young and Old Mice. JAMA Otolaryngology, 1981, 107, 92-95.	1.2	59
4	Genetic Influences on Binaural Summation and Recovery Rate of the Brainstem Auditory Evoked Response. Acta Oto-Laryngologica, 1982, 93, 1-7.	0.9	10
5	Abnormal tonotopic organization in the ventral cochlear nucleus of the hearing-impaired DBA/2 mouse. Neuroscience Letters, 1982, 34, 13-17.	2.1	47
6	Age-related changes in sensitivity of the postpubertal ear to acoustic trauma. Hearing Research, 1982, 8, 285-294.	2.0	31
7	Hair cell counts in an age-graded series of rat cochleas. Hearing Research, 1982, 8, 249-262.	2.0	158
8	The cytoarchitecture of the dorsal cochlear nucleus in the 3-month- and 26-month-old C57BL/6 mouse: A golgi impregnation study. Journal of Comparative Neurology, 1982, 211, 115-138.	1.6	38
9	Influence of genotype and age on noise-induced auditory losses. Behavior Genetics, 1982, 12, 563-573.	2.1	40
10	Age-dependent changes of the compound action potential in the guinea pig. Archives of Oto-rhino-laryngology, 1983, 238, 179-187.	0.5	7
11	Age-dependent effects of acoustic deprivation on spherical cells of the rat anteroventral cochlear nucleus. Experimental Neurology, 1983, 80, 81-93.	4.1	63
12	Hyperthermia Increases Aminoglycoside Ototoxicity. Acta Oto-Laryngologica, 1983, 95, 323-327.	0.9	23
13	Lifelong Susceptibility to Acoustic Trauma: Changing Patterns of Cochlear Damage over the Life Span of the Mouse. International Journal of Audiology, 1983, 22, 372-383.	1.7	36
14	Disparity in the Cytocochleogram and the Electrocochleogram in Aging LP/J and A/J Inbred Mice. International Journal of Audiology, 1983, 22, 384-392.	1.7	16
15	Cochlear microphonics and action potentials mature and decline at diffent rates in the normal and pathologic mouse cochlea. Developmental Psychobiology, 1984, 17, 493-504.	1.6	13
16	Frequency difference limens of C57BL/6 and DBA/2 mice: relationship to auditory neuronal response properties and hearing impairment. Hearing Research, 1984, 16, 169-174.	2.0	15
17	Age-Related Cochlear Hair Cell Loss in the Chinchilla. Annals of Otology, Rhinology and Laryngology, 1985, 94, 75-80.	1.1	40
18	Projections from the anterior ventral cochlear nucleus to the central nucleus of the inferior colliculus in young and aging C57BL/6 mice. Journal of Comparative Neurology, 1985, 237, 545-551.	1.6	29

#	Article	IF	CITATIONS
19	Differences in patterns of pup care in mice V—Pup ultrasonic emissions and pup care behavior. Physiology and Behavior, 1985, 35, 167-174.	2.1	123
20	ON and OFF components of the auditory brainstem response have different frequency- and intensity-specific properties. Hearing Research, 1985, 18, 245-251.	2.0	29
21	Effects of Dietary Restriction on Presbyacusis in the Mouse ¹ . International Journal of Audiology, 1986, 25, 329-337.	1.7	25
22	Age-Related Hearing Loss in BDF1Mice as Evidenced by the Brainstem Auditory Evoked Potential1. International Journal of Audiology, 1986, 25, 363-372.	1.7	26
23	Genetic and Functional Analysis of the Otosclerosis-Like Condition of the LP/J Mouse1: Analyse génétique et fonctionnelle du modèle otoscléreux de la souris LP/J. International Journal of Audiology, 1987, 26, 44-55.	1.7	9
24	Aging and the auditory brainstem response in mice with severe or minimal presbycusis. Hearing Research, 1987, 30, 207-218.	2.0	176
25	Resting and pure tone evoked metabolic responses in the inferior colliculus of young adult and senescent rats. Neurobiology of Aging, 1987, 8, 171-178.	3.1	14
26	Morphometric analysis and fine structure of the vestibular epithelium of aged C57BL/6NNia mice. Hearing Research, 1987, 28, 87-96.	2.0	46
27	Morphometric study of the anteroventral cochlear nucleus of two mouse models of presbycusis. Journal of Comparative Neurology, 1987, 260, 472-480.	1.6	82
28	Theophylline-induced changes in the mouse brainstem auditory evoked potential. Neurotoxicology and Teratology, 1987, 9, 59-66.	2.4	11
29	Response properties of inferior colliculus neurons in middle-aged C57BL/6J mice with presbycusis. Hearing Research, 1988, 37, 15-27.	2.0	93
30	Response properties of inferior colliculus neurons in young and very old CBA/J mice. Hearing Research, 1988, 37, 1-14.	2.0	100
31	Age-related Auditory Brainstem Response (ABR) Threshold Changes in the Dancer Mouse Mutant. Acta Oto-Laryngologica, 1988, 106, 386-392.	0.9	8
32	Dietary Restriction and Presbyacusis: Periods of Restriction and Auditory Threshold Losses in the CBA/J Mouse. International Journal of Audiology, 1988, 27, 305-312.	1.7	32
33	Detuning of Cochlear Action Potential Tuning Curves at High Sound Pressure Levels: Influence of Temporal, Spectral and Intensity Variables. International Journal of Audiology, 1989, 28, 19-36.	1.7	6
34	Cochlear Hair Cell Stereocilia Loss in LP/J Mice with Bone Dysplasia of the Middle Ear. Annals of Otology, Rhinology and Laryngology, 1989, 98, 461-465.	1.1	1
35	Ultrastructural features of neurons in the C57BL/6J mouse anteroventral cochlear nucleus: Young mice versus old mice with chronic presbycusis. Neurobiology of Aging, 1989, 10, 295-303.	3.1	32
36	Variability in Genetically Induced Age-related Impairment of Auditory Brainstem Response Thresholds. Acta Oto-Laryngologica, 1990, 109, 353-360.	0.9	13

~			<u> </u>	
C	ITA'	τιον	I KF	PORT
\sim	11/1			

#	Article	IF	CITATIONS
37	Morphology of the octopus cell area of the cochlear nucleus in young and aging C57BL/6J and CBA/J mice. Journal of Comparative Neurology, 1990, 300, 61-81.	1.6	70
38	Age-related changes in auditory potentials of mongolian gerbil. Hearing Research, 1990, 46, 201-210.	2.0	152
39	Morphological correlates of aging in the chinchilla cochlea. Hearing Research, 1990, 48, 79-91.	2.0	97
40	Dietary restriction slows the abnormally rapid loss of spiral ganglion neurons in C57BL/6 mice. Hearing Research, 1990, 48, 275-279.	2.0	26
41	Auditory brainstem responses to tonal stimuli in young and aging rats. Hearing Research, 1990, 43, 171-179.	2.0	49
42	The effect of noise exposure on the aging ear. Hearing Research, 1991, 56, 173-178.	2.0	65
43	Comparison of the auditory sensitivity of neurons in the cochlear nucleus and inferior colliculus of young and aging C57BL/6J and CBA/J mice. Hearing Research, 1991, 53, 78-94.	2.0	104
44	Unusual morphology of the stria vascularis in pigmented strain 2/NCR guinea pigs. Hearing Research, 1991, 54, 39-44.	2.0	3
45	Age-related changes in cochleas of mongolian gerbils. Hearing Research, 1991, 54, 123-134.	2.0	110
46	Hereditary deafness occurring in cd/1 mice. Hearing Research, 1991, 57, 153-156.	2.0	41
47	Age-related Loss of Auditory Sensitivity in Two Mouse Genotypes. Acta Oto-Laryngologica, 1991, 111, 827-834.	0.9	195
48	Influence of Genotype and Age on Acute Acoustic Trauma and Recovery in CBA/Ca and C57BL/6J Mice. Acta Oto-Laryngologica, 1992, 112, 956-967.	0.9	54
49	Derived and enhanced compound action potentials at near-threshold levels: Forward masking increases sensitivity of audiograms and tuning curves. Hearing Research, 1992, 63, 12-18.	2.0	3
50	Suprathreshold comparisons of derived and enhanced compound action potentials. Hearing Research, 1992, 63, 90-96.	2.0	3
51	Auditory Brainstem Function of the F1Offspring of the Cross of CBA/CaJ and AU/SsJ Inbred Mice. International Journal of Audiology, 1992, 31, 190-195.	1.7	12
52	Incidence of otitis media in CBA/J and CBA/CaJ mice. Hearing Research, 1992, 59, 1-6.	2.0	39
53	The Mouse as a Model for Human Audition. International Journal of Audiology, 1992, 31, 181-189.	1.7	39
54	Auditory degeneration after exposure to toluene in two genotypes of mice. Archives of Toxicology, 1992, 66, 382-386.	4.2	9

#	Article	IF	CITATIONS
55	Morphology of the dorsal cochlear nucleus in C57BL/6J and CBA/J mice across the life span. Journal of Comparative Neurology, 1992, 321, 666-678.	1.6	60
56	Plasticity of auditory cortex associated with sensorineural hearing loss in adult C57BL/6J mice. Journal of Comparative Neurology, 1993, 329, 402-411.	1.6	174
57	Inner ear morphology in CBA/Ca and C57BL/6J mice in relationship to noise, age and phenotype. European Archives of Oto-Rhino-Laryngology, 1993, 250, 257-64.	1.6	19
58	Genetics of age-related hearing loss in mice: I. Inbred and F1 hybrid strains. Hearing Research, 1993, 65, 125-132.	2.0	230
59	Influence of Age on Noise-Induced Permanent Threshold Shifts in CBA/Ca and C57BL/6J Mice. International Journal of Audiology, 1993, 32, 195-204.	1.7	25
60	Auditory degeneration after acoustic trauma in two genotypes of mice. Hearing Research, 1993, 68, 19-27.	2.0	26
61	Auditory Abnormalities, Including 'Precocious Presbyacusis', in Myotonic Dystrophy. International Journal of Audiology, 1994, 33, 73-84.	1.7	16
62	Morphology of the inferior colliculus in C57BL/6J and CBA/J mice across the life span. Neurobiology of Aging, 1994, 15, 175-183.	3.1	37
63	Age-related hearing impairment in senescence-accelerated mouse (SAM). Hearing Research, 1994, 75, 27-37.	2.0	55
64	Morphology of the cochlear nucleus in CBA/J mice with chronic, severe sensorineural cochlear pathology induced during adulthood. Hearing Research, 1994, 74, 1-21.	2.0	41
65	Brainstem auditory evoked potentials characteristics in mice: The effect of genotype. Hearing Research, 1994, 81, 189-198.	2.0	5
66	Responses of inferior colliculus neurons in C57BL/6J mice with and without sensorineural hearing loss: Effects of changing the azimuthal location of an unmasked pure-tone stimulus. Hearing Research, 1994, 78, 115-131.	2.0	37
67	Sensorineural hearing loss alters recovery from short-term adaptation in the C57BL/6 mouse. Hearing Research, 1995, 88, 19-26.	2.0	48
68	Age-related changes in cochlear vascular conductance in mice. Hearing Research, 1995, 86, 189-194.	2.0	27
69	Synaptic loss in the central nucleus of the inferior colliculus correlates with sensorineural hearing loss in the C57BL/6 mouse model of presbycusis. Hearing Research, 1995, 89, 109-120.	2.0	56
70	Genetics of age-related hearing loss in mice. II. Strain differences and effects of caloric restriction on cochlear pathology and evoked response thresholds. Hearing Research, 1995, 88, 143-155.	2.0	113
71	Auditory brainstem responses of CBA/J mice with neonatal conductive hearing losses and treatment with GM1 ganglioside. Hearing Research, 1995, 87, 104-113.	2.0	5
72	Auditory function in the C3H/HeJ and C3H/HeSnJ mouse strains. Hearing Research, 1996, 96, 41-45.	2.0	23

#	Article	IF	Citations
73	Phenotypic patterns of distortion product otoacoustic emission in inbred and F1 hybrid hearing mouse strains. Hearing Research, 1996, 98, 18-21.	2.0	6
74	Cochlear spiral ganglion cell degeneration in wild-caught mice as a function of age. Hearing Research, 1996, 100, 101-106.	2.0	32
75	Morphological changes in the anteroventral cochlear nucleus that accompany sensorineural hearing loss in DBA/2J and C57BL/6J mice. Developmental Brain Research, 1996, 91, 218-226.	1.7	61
76	The behavioral salience of tones as indicated by prepulse inhibition of the startle response: relationship to hearing loss and central neural plasticity in C57BL/6J mice. Hearing Research, 1996, 99, 168-175.	2.0	86
77	Age-related decline of auditory function in the chinchilla (Chinchilla laniger). Hearing Research, 1997, 111, 114-126.	2.0	51
78	Distortion product otoacoustic emissions in the C57BL/6J mouse model of age-related hearing loss. Hearing Research, 1997, 112, 216-234.	2.0	64
79	A major gene affecting age-related hearing loss in C57BL/6J mice. Hearing Research, 1997, 114, 83-92.	2.0	349
80	Sound-induced seizures in serotonin 5-HT2c receptor mutant mice. Nature Genetics, 1997, 16, 387-390.	21.4	152
81	Glycine immunoreactivity and receptor binding in the cochlear nucleus of C57BL/6J and CBA/CaJ mice: Effects of cochlear impairment and aging. Journal of Comparative Neurology, 1997, 385, 405-414.	1.6	69
82	Inputs to a physiologically characterized region of the inferior colliculus of the young adult CBA mouse. Hearing Research, 1998, 115, 61-81.	2.0	44
83	The BALB/c mouse as an animal model for progressive sensorineural hearing loss. Hearing Research, 1998, 115, 162-174.	2.0	109
84	Exposure to an augmented acoustic environment alters auditory function in hearing-impaired DBA/2J mice. Hearing Research, 1998, 118, 101-113.	2.0	71
85	Genetics of age-related hearing loss in mice. IV. Cochlear pathology and hearing loss in 25 BXD recombinant inbred mouse strains. Hearing Research, 1998, 119, 27-36.	2.0	81
86	The role of micro-noise trauma in the etiology of aging-related changes in the inner ear. Hearing Research, 1998, 124, 132-145.	2.0	0
87	Changes in temporal acuity with age and with hearing impairment in the mouse: A study of the acoustic startle reflex and its inhibition by brief decrements in noise level. Journal of the Acoustical Society of America, 1998, 104, 1696-1704.	1.1	62
88	The effect of spatial separation of signal and noise on masking in the free field as a function of signal frequency and age in the mouse. Journal of the Acoustical Society of America, 1998, 104, 1689-1695.	1.1	21
89	Age-Related Changes in the Cochlea and Cochlear Nuclei of Dogs Journal of Veterinary Medical Science, 1998, 60, 41-48.	0.9	41
90	Age-Related Changes In Acetylcholinesterase Activity In The Efferent System Of The Cochlea Of C57bl/6 Mice. Microscopy and Microanalysis, 1999, 5, 1334-1335.	0.4	0

#	Article	IF	CITATIONS
91	Adaptation of 2f1–2f2 distortion product otoacoustic emission in young-adult and old CBA and C57 mice. Journal of the Acoustical Society of America, 1999, 105, 3399-3409.	1.1	29
92	Distortion product otoacoustic emissions in the CBA/J mouse model of presbycusis. Hearing Research, 1999, 134, 29-38.	2.0	25
93	Prolonged exposure to an augmented acoustic environment ameliorates age-related auditory changes in C57BL/6J and DBA/2J mice. Hearing Research, 1999, 135, 78-88.	2.0	78
94	A behavioral test of presbycusis in the bird auditory system. Hearing Research, 1999, 137, 68-76.	2.0	23
95	Age-related loss of distortion product otoacoustic emissions in four mouse strains. Hearing Research, 1999, 138, 91-105.	2.0	72
96	Low-frequency acoustic modulations generated by the high-frequency portion of the cochlea, noninvasively recorded from the scalp of mice (Mus musculus) Journal of Comparative Psychology (Washington, D C: 1983), 2000, 114, 22-35.	0.5	4
97	Behavioral assessments of auditory sensitivity in transgenic mice. Journal of Neuroscience Methods, 2000, 97, 59-67.	2.5	23
98	Effects of exposure to an augmented acoustic environment on auditory function in mice: roles of hearing loss and age during treatment. Hearing Research, 2000, 142, 79-88.	2.0	44
99	Neural plasticity in the mouse inferior colliculus: relationship to hearing loss, augmented acoustic stimulation, and prepulse inhibition. Hearing Research, 2000, 147, 275-281.	2.0	42
100	Vulnerability to noise-induced hearing loss in â€~middle-aged' and young adult mice: a dose–response approach in CBA, C57BL, and BALB inbred strains. Hearing Research, 2000, 149, 239-247.	2.0	112
101	Pattern of degeneration of the spiral ganglion cell and its processes in the C57BL/6J mouse. Hearing Research, 2000, 141, 12-18.	2.0	92
102	Hearing loss associated with the modifier of deaf waddler (mdfw) locus corresponds with age-related hearing loss in 12 inbred strains of mice. Hearing Research, 2001, 154, 45-53.	2.0	59
103	The total number of neurons and calcium binding protein positive neurons during aging in the cochlear nucleus of CBA/CaJ mice: a quantitative study. Hearing Research, 2001, 158, 102-115.	2.0	42
104	Animal Models of Presbycusis and the Aging Auditory System. , 2001, , 605-621.		6
105	Anatomical and Neurochemical Bases of Presbycusis. , 2001, , 531-547.		12
106	Galectine-1 expression in cochleae of C57BL/6 mice during aging. NeuroReport, 2001, 12, 3107-3110.	1.2	8
107	Age-related Histopathological Changes of the Stria Vascularis: An Experimental Model: Cambios histopatólogicos relacionados con la edad en la estrÃa vascular: Un modelo experimental. International Journal of Audiology, 2001, 40, 322-326.	1.7	20
108	Age, Noise, and Ototoxic Agents. , 2001, , 549-563.		3

	CITATION	CITATION REPORT	
#	Article	IF	Citations
109	Effects of Aging on C57BL/6J Mice: An Electrophysiological and Morphological Study. , 2002, 59, 106-111.		13
110	Age-Related Impairment in the 250-Millisecond Delay Eyeblink Classical Conditioning Procedure in C57BL/6 Mice. Learning and Memory, 2002, 9, 321-336.	1.3	33
111	Plastic Changes in the Central Auditory System After Hearing Loss, Restoration of Function, and During Learning. Physiological Reviews, 2002, 82, 601-636.	28.8	341
112	Sex- and age-related elevation of cochlear nerve envelope response (CNER) and auditory brainstem response (ABR) thresholds in C57BL/6 mice. Hearing Research, 2002, 170, 107-115.	2.0	56
113	Endocochlear potentials and compound action potential recovery: functions in the C57BL/6J mouse. Hearing Research, 2002, 172, 118-126.	2.0	41
114	Behavioral profiles of inbred strains on novel olfactory, spatial and emotional tests for reference memory in mice. Genes, Brain and Behavior, 2002, 1, 55-69.	2.2	244
115	Low-Frequency Tone Pips Elicit Exaggerated Startle Reflexes in C57BL/6J Mice with Hearing Loss. JARO - Journal of the Association for Research in Otolaryngology, 2003, 4, 495-504.	1.8	32
116	Long-term changes of response in the inferior colliculus of senescence accelerated mice after early sound exposure. Journal of the Neurological Sciences, 2003, 216, 143-151.	0.6	6
117	Auditory peripheral influences on calcium binding protein immunoreactivity in the cochlear nucleus during aging in the C57BL/6J mouse. Hearing Research, 2003, 179, 33-42.	2.0	42
118	Hyperthermia exacerbates and hypothermia protects from noise-induced threshold elevation of the cochlear nerve envelope response in the C57BL/6J mouse. Hearing Research, 2003, 179, 88-96.	2.0	28
119	The functional age of hearing loss in a mouse model of presbycusis. I. Behavioral assessments. Hearing Research, 2003, 183, 44-56.	2.0	40
120	The functional age of hearing loss in a mouse model of presbycusis. II. Neuroanatomical correlates. Hearing Research, 2003, 183, 29-36.	2.0	28
121	Generalisation of conditioned fear and its behavioural expression in mice. Behavioural Brain Research, 2003, 145, 89-98.	2.2	137
122	Eye Movements of the Murine P/Q Calcium Channel MutantRocker, and the Impact of Aging. Journal of Neurophysiology, 2004, 91, 2066-2078.	1.8	71
123	Age-dependent modifications of expression level of VEGF and its receptors in the inner ear. Experimental Gerontology, 2004, 39, 1253-1258.	2.8	31
124	Two types of afferent terminals innervate cochlear inner hair cells in C57BL/6J mice. Brain Research, 2004, 1016, 182-194.	2.2	37
125	Null Mutation of ?1D Ca2+ Channel Gene Results in Deafness but No Vestibular Defect in Mice. JARO - Journal of the Association for Research in Otolaryngology, 2004, 5, 215-26.	1.8	111
126	Effects of prolonged exposure to an augmented acoustic environment on the auditory system of middleâ€aged C57BL/6J mice: Cochlear and central histology and sex differences. Journal of Comparative Neurology, 2004, 472, 358-370.	1.6	40

#	Article	IF	CITATIONS
127	Age-related increases in calcium-binding protein immunoreactivity in the cochlear nucleus of hearing impaired C57BL/6J mice. Neurobiology of Aging, 2004, 25, 1085-1093.	3.1	49
128	Evaluating cochlear function and the effects of noise exposure in the B6.CAST+Ahl mouse with distortion product otoacoustic emissions. Hearing Research, 2004, 194, 87-96.	2.0	29
129	Age-related hearing loss and the ahl locus in mice. Hearing Research, 2004, 188, 21-28.	2.0	130
130	Males lose hearing earlier in mouse models of late-onset age-related hearing loss; females lose hearing earlier in mouse models of early-onset hearing loss. Hearing Research, 2004, 190, 141-148.	2.0	74
131	Cochlear function in mice with only one copy of the <i>prestin</i> gene. Journal of Physiology, 2005, 569, 229-241.	2.9	45
132	Hearing Loss and the Inferior Colliculus. , 2005, , 585-602.		1
133	Requirement of Nicotinic Acetylcholine Receptor Subunit β2 in the Maintenance of Spiral Ganglion Neurons during Aging. Journal of Neuroscience, 2005, 25, 3041-3045.	3.6	50
134	Ameliorative Effects of Exposing DBA/2J Mice to an Augmented Acoustic Environment on Histological Changes in the Cochlea and Anteroventral Cochlear Nucleus. JARO - Journal of the Association for Research in Otolaryngology, 2005, 6, 234-243.	1.8	27
135	Sustained cadherin 23 expression in young and adult cochlea of normal and hearing-impaired mice. Hearing Research, 2005, 208, 114-121.	2.0	36
136	Cu/Zn superoxide dismutase and age-related hearing loss. Hearing Research, 2005, 209, 76-85.	2.0	119
138	Acceleration of Age-Related Hearing Loss by Early Noise Exposure: Evidence of a Misspent Youth. Journal of Neuroscience, 2006, 26, 2115-2123.	3.6	589
139	Effects of age-related hearing loss on startle reflex and prepulse inhibition in mice on pure and mixed C57BL and 129 genetic background. Behavioural Brain Research, 2006, 172, 307-315.	2.2	54
140	Mapping quantitative trait loci for hearing loss in Black Swiss mice. Hearing Research, 2006, 212, 128-139.	2.0	43
141	Effects of exposing DBA/2J mice to a high-frequency augmented acoustic environment on the cochlea and anteroventral cochlear nucleus. Hearing Research, 2006, 216-217, 138-145.	2.0	16
142	Severe hearing loss in Dlx1 mutant mice. Hearing Research, 2006, 214, 84-88.	2.0	8
143	Synaptic alterations at inner hair cells precede spiral ganglion cell loss in aging C57BL/6J mice. Hearing Research, 2006, 221, 104-118.	2.0	136
144	Strain background effects and genetic modifiers of hearing in mice. Brain Research, 2006, 1091, 79-88.	2.2	118
145	Contributions of mouse models to understanding of age- and noise-related hearing loss. Brain Research, 2006, 1091, 89-102.	2.2	158

#	Article	IF	CITATIONS
146	Genetics of hearing loss: Allelism and modifier genes produce a phenotypic continuum. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2006, 288A, 370-381.	2.0	29
147	Excitatory, inhibitory and facilitatory frequency response areas in the inferior colliculus of hearing impaired mice. Hearing Research, 2007, 228, 212-229.	2.0	32
148	Comparison of distortion product otoacoustic emissions in 28 inbred strains of mice. Hearing Research, 2007, 234, 59-72.	2.0	21
149	Aging cochleas in the F344 rat: Morphological and functional changes. Experimental Gerontology, 2007, 42, 629-638.	2.8	41
150	Impact of IVC housing on emotionality and fear learning in male C3HeB/FeJ and C57BL/6J mice. Mammalian Genome, 2007, 18, 173-186.	2.2	51
151	Age-Related Hearing Loss in C57BL/6J Mice has both Frequency-Specific and Non-Frequency-Specific Components that Produce a Hyperacusis-Like Exaggeration of the Acoustic Startle Reflex. JARO - Journal of the Association for Research in Otolaryngology, 2007, 8, 539-550.	1.8	147
152	Impairment of SLC17A8 Encoding Vesicular Glutamate Transporter-3, VGLUT3, Underlies Nonsyndromic Deafness DFNA25 and Inner Hair Cell Dysfunction in Null Mice. American Journal of Human Genetics, 2008, 83, 278-292.	6.2	237
153	Aged wild-type and APP, PS1, and APP + PS1 mice present similar deficits in associative learning and synaptic plasticity independent of amyloid load. Neurobiology of Disease, 2008, 30, 439-450.	4.4	65
154	Age-Related Hearing Loss and Its Cellular and Molecular Bases. , 2008, , 145-194.		15
155	Strain-dependence of age-related cochlear hearing loss in wild and domesticated Mongolian gerbils. Hearing Research, 2008, 235, 72-79.	2.0	12
156	Age-related auditory pathology in the CBA/J mouse. Hearing Research, 2008, 243, 87-94.	2.0	99
157	A locus on distal chromosome 11 (ahl8) and its interaction with Cdh23ahl underlie the early onset, age-related hearing loss of DBA/2J mice. Genomics, 2008, 92, 219-225.	2.9	60
158	Early Postnatal Development of Spontaneous and Acoustically Evoked Discharge Activity of Principal Cells of the Medial Nucleus of the Trapezoid Body: An <i>In Vivo</i> Study in Mice. Journal of Neuroscience, 2009, 29, 9510-9520.	3.6	132
159	Inheritance patterns of progressive hearing loss in laboratory strains of mice. Brain Research, 2009, 1277, 42-51.	2.2	42
160	Analysis of environmental sound levels in modern rodent housing rooms. Lab Animal, 2009, 38, 154-160.	0.4	52
161	Unmyelinated auditory type I spiral ganglion neurons in congenic Ly5.1 mice. Journal of Comparative Neurology, 2010, 518, 3254-3271.	1.6	29
162	Auditory sensitivity and the outer hair cell system in the CBA mouse model of age-related hearing loss. Open Access Animal Physiology, 2010, 2, 9.	0.3	12
163	Locomotor activity and gait in aged mice deficient for type IX collagen. Journal of Applied Physiology, 2010, 109, 211-218.	2.5	18

#	Article	IF	CITATIONS
164	Separate and combined effects of Sod1 and Cdh23 mutations on age-related hearing loss and cochlear pathology in C57BL/6J mice. Hearing Research, 2010, 268, 85-92.	2.0	48
165	Over-expression of X-linked inhibitor of apoptosis protein slows presbycusis in C57BL/6J mice. Neurobiology of Aging, 2010, 31, 1238-1249.	3.1	34
166	Vitamin D-deficient diet rescues hearing loss in Klotho mice. Hearing Research, 2011, 275, 105-109.	2.0	25
167	F1 (CBA×C57) mice show superior hearing in old age relative to their parental strains: Hybrid vigor or a new animal model for "Golden Ears�. Neurobiology of Aging, 2011, 32, 1716-1724.	3.1	53
168	Selectivity for the rate of frequency-modulated sweeps in the mouse auditory cortex. Journal of Neurophysiology, 2011, 106, 2825-2837.	1.8	35
169	Pathogenesis of presbycusis in animal models: A review. Experimental Gerontology, 2011, 46, 413-425.	2.8	154
170	Gipc3 mutations associated with audiogenic seizures and sensorineural hearing loss in mouse and human. Nature Communications, 2011, 2, 201.	12.8	95
171	Age-related hearing loss and expression of antioxidant enzymes in BDF1 mice. Acta Oto-Laryngologica, 2011, 131, 1020-1024.	0.9	3
172	Genetic background effects on age-related hearing loss associated with Cdh23 variants in mice. Hearing Research, 2012, 283, 80-88.	2.0	143
173	Parvalbumin immunoreactivity in the auditory cortex of a mouse model of presbycusis. Hearing Research, 2012, 294, 31-39.	2.0	65
174	Age-Related Changes of Myelin Basic Protein in Mouse and Human Auditory Nerve. PLoS ONE, 2012, 7, e34500.	2.5	75
175	Time course of tinnitus development following noise exposure in mice. Journal of Neuroscience Research, 2012, 90, 1480-1488.	2.9	67
176	Effects of aging and sensory loss on glial cells in mouse visual and auditory cortices. Glia, 2012, 60, 541-558.	4.9	278
177	Development of response selectivity in the mouse auditory cortex. Hearing Research, 2013, 296, 107-120.	2.0	12
178	Response properties underlying selectivity for the rate of frequency modulated sweeps in the auditory cortex of the mouse. Hearing Research, 2013, 298, 80-92.	2.0	17
179	Histone methylation and acetylation indicates epigenetic change in the aged cochlea of mice. European Archives of Oto-Rhino-Laryngology, 2013, 270, 1823-1830.	1.6	22
180	Engineered Deafness Reveals That Mouse Courtship Vocalizations Do Not Require Auditory Experience. Journal of Neuroscience, 2013, 33, 5573-5583.	3.6	114
181	Hair Cell Overexpression of Islet1 Reduces Age-Related and Noise-Induced Hearing Loss. Journal of Neuroscience, 2013, 33, 15086-15094.	3.6	41

#	Article	IF	Citations
182	Glycinergic synaptic transmission in the cochlear nucleus of mice with normal hearing and age-related hearing loss. Journal of Neurophysiology, 2013, 110, 1848-1859.	1.8	24
183	Identifying MicroRNAs Involved in Degeneration of the Organ of Corti during Age-Related Hearing Loss. PLoS ONE, 2013, 8, e62786.	2.5	82
184	Loss of Central Auditory Processing in a Mouse Model of Canavan Disease. PLoS ONE, 2014, 9, e97374.	2.5	6
185	Quantitative trait loci on chromosome 5 for susceptibility to frequency-specific effects on hearing in DBA/2J mice. Experimental Animals, 2015, 64, 241-251.	1.1	10
186	Immediate and Delayed Cochlear Neuropathy after Noise Exposure in Pubescent Mice. PLoS ONE, 2015, 10, e0125160.	2.5	82
187	Neuronal erythropoietin overexpression protects mice against age-related hearing loss (presbycusis). Neurobiology of Aging, 2015, 36, 3278-3287.	3.1	4
188	Age-Related Deterioration of Perineuronal Nets in the Primary Auditory Cortex of Mice. Frontiers in Aging Neuroscience, 2016, 8, 270.	3.4	42
189	FVB/NJ Mice Are a Useful Model for Examining Cardiac Adaptations to Treadmill Exercise. Frontiers in Physiology, 2016, 7, 636.	2.8	22
190	Mouse models of ageing and their relevance to disease. Mechanisms of Ageing and Development, 2016, 160, 41-53.	4.6	82
191	Selective hair cell ablation and noise exposure lead to different patterns of changes in the cochlea and the cochlear nucleus. Neuroscience, 2016, 332, 242-257.	2.3	35
192	Application of Mouse Models to Research in Hearing and Balance. JARO - Journal of the Association for Research in Otolaryngology, 2016, 17, 493-523.	1.8	93
193	Large-scale phenotyping of noise-induced hearing loss in 100 strains of mice. Hearing Research, 2016, 332, 113-120.	2.0	24
194	Reduced acoustic startle response and peripheral hearing loss in the <scp>5xFAD</scp> mouse model of Alzheimer's disease. Genes, Brain and Behavior, 2017, 16, 554-563.	2.2	55
195	Increasing GABA reverses age-related alterations in excitatory receptive fields and intensity coding of auditory midbrain neuronsAinAaged mice. Neurobiology of Aging, 2017, 56, 87-99.	3.1	7
196	Strain-specific differences in the development of neuronal excitability in the mouse ventral nucleus of the trapezoid body. Hearing Research, 2017, 354, 28-37.	2.0	14
197	An operant-based detection method for inferring tinnitus in mice. Journal of Neuroscience Methods, 2017, 291, 227-237.	2.5	8
198	Dynamic activation of basilar membrane macrophages in response to chronic sensory cell degeneration in aging mouse cochleae. Hearing Research, 2017, 344, 125-134.	2.0	73
199	Effects of Aging and Noise Exposure on Auditory Brainstem Responses and Number of Presynaptic Ribbons in Inner Hair Cells of C57BL/6J Mice. Neurophysiology, 2017, 49, 316-326.	0.3	1

#	Article	IF	CITATIONS
200	Mice harbouring an oculodentodigital dysplasia-linked Cx43 G60S mutation have severe hearing loss. Journal of Cell Science, 2018, 131, .	2.0	10
201	Hidden hearing loss and endbulbs of Held: Evidence for central pathology before detection of ABR threshold increases. Hearing Research, 2018, 364, 104-117.	2.0	26
202	Audiovisual Integration Enhances Stimulus Detection Performance in Mice. Frontiers in Behavioral Neuroscience, 2018, 12, 231.	2.0	22
203	The adhesion molecule cadherin 11 is essential for acquisition of normal hearing ability through middle ear development in the mouse. Laboratory Investigation, 2018, 98, 1364-1374.	3.7	9
204	Urocortin 3 signalling in the auditory brainstem aids recovery of hearing after reversible noiseâ€induced threshold shift. Journal of Physiology, 2019, 597, 4341-4355.	2.9	6
205	Lack of Fractalkine Receptor on Macrophages Impairs Spontaneous Recovery of Ribbon Synapses After Moderate Noise Trauma in C57BL/6 Mice. Frontiers in Neuroscience, 2019, 13, 620.	2.8	50
206	Age-Dependent Calcium-Binding Protein Expression in the Spiral Ganglion and Hearing Performance of C57BL/6J and 129/SvJ Mice. Orl, 2019, 81, 138-154.	1.1	4
207	Functional alteration of ribbon synapses in inner hair cells by noise exposure causing hidden hearing loss. Neuroscience Letters, 2019, 707, 134268.	2.1	27
208	Age-dependent alterations of Kir4.1 expression in neural crest–derived cells of the mouse and human cochlea. Neurobiology of Aging, 2019, 80, 210-222.	3.1	17
209	Early Hearing Loss upon Disruption of Slc4a10 in C57BL/6 Mice. JARO - Journal of the Association for Research in Otolaryngology, 2019, 20, 233-245.	1.8	40
210	Mouse methods and models for studies in hearing. Journal of the Acoustical Society of America, 2019, 146, 3668-3680.	1.1	31
211	Hippocampal Synaptic Plasticity, Spatial Memory, and Neurotransmitter Receptor Expression Are Profoundly Altered by Gradual Loss of Hearing Ability. Cerebral Cortex, 2020, 30, 4581-4596.	2.9	32
212	Measuring Social Communication in Rodent Models of Neurodevelopmental Disorders. , 2022, , 70-84.		0
213	Mitochondrial Damage and Necroptosis in Aging Cochlea. International Journal of Molecular Sciences, 2020, 21, 2505.	4.1	30
214	Scar Formation and Debris Elimination during Hair Cell Degeneration in the Adult DTR Mouse. Neuroscience, 2021, 453, 57-68.	2.3	2
215	Enhanced Discriminative Abilities of Auditory Cortex Neurons for Pup Calls Despite Reduced Evoked Responses in C57BL/6 Mother Mice. Neuroscience, 2021, 453, 1-16.	2.3	6
216	Transient Delivery of aÂKCNQ2/3-Specific Channel Activator 1 Week After Noise Trauma Mitigates Noise-Induced Tinnitus. JARO - Journal of the Association for Research in Otolaryngology, 2021, 22, 127-139.	1.8	6
217	Cochlear protection against noise exposure requires serotonin type 3A receptor via the medial olivocochlear system. FASEB Journal, 2021, 35, e21486.	0.5	4

ARTICLE IF CITATIONS # Sex difference in the efferent inner hair cell synapses of the aging murine cochlea. Hearing Research, 218 2.0 2 2021, 404, 108215. Cochlear Synaptic Degeneration and Regeneration After Noise: Effects of Age and Neuronal Subgroup. 23 Frontiers in Cellular Neuroscience, 2021, 15, 684706. 220 Protection and Repair of Inner Ear Sensory Cells., 0, , 199-255. 5 Abnormal Auditory Development Resulting from Exposure to Ototoxic Chemicals, Noise, and Auditory Restriction11Research supported by Grants AGO-1018 from the U.S. National Institute on Aging and the Deafness Research Foundation.. , 1983, , 273-308. Neurophysiological Manifestations of Aging in the Peripheral and Central Auditory Nervous System., 222 4 2001, 581-595. Cochlear damage resulting from exposure to four different octave bands of noise at three ages. Behavioral Neuroscience, 1984, 98, 107-117. 1.2 Noise and the young mouse: Genotype modifies the sensitive period for effects on cochlear physiology 224 1.2 11 and audiogenic seizures. Behavioral Neuroscience, 1984, 98, 1073-1082. Degradation and modification of cochlear gap junction proteins in the early development of 10 age-related hearing loss. Experimental and Molecular Medicine, 2020, 52, 166-175. 226 Central auditory plasticity in mouse models of progressive sensorineural hearing loss., 2006, , 181-192. 3 Age related changes in gene expression within the cochlea of C57BL/6J mice. Aging Clinical and Experimental Research, 2012, 24, 603-11. Altered Response Dynamics and Increased Population Correlation to Tonal Stimuli Embedded in Noise 228 3.6 13 in Aging Auditory Cortex. Journal of Neuroscience, 2021, 41, 9650-9668. The Development of Animal Models for the Study of Presbycusis: Building a Behavioral Link between Perception and Physiology., 2001, , 623-633. Hair Cell Loss and Synaptic Loss in Inferior Colliculus of C57BL/6 MICE., 1997, , 535-542. 232 0 Epigenetics and It's Detailed Mechanisms in Life Phenomena: A Review. Nihon Ika Daigaku Igakkai Zasshi, 2016, 12, 118-126. Acoustic startle response in young and aging C57BL/6J and CBA/J mice.. Behavioral Neuroscience, 1988, 234 1.2 43 102, 881-886. Deletion of Oncomodulin Gives Rise to Early Progressive Cochlear Dysfunction in C57 and CBA Mice. Frontiers in Aging Neuroscience, 2021, 13, 749729. Age-related Activation of Cyclic GMP–AMP synthase–Stimulator of Interferon Genes Signaling in the 237 2.34 Auditory System is Associated with Presbycusis in C57BL/6J Male Mice. Neuroscience, 2022, 481, 73-84. Time- and frequency-dependent changes in acoustic startle reflex amplitude following cyclodextrin-induced outer and inner cell loss. Hearing Research, 2022, 415, 108441.

#	Article	IF	CITATIONS
240	Prepulse inhibition of the startle response in mice: Relationship to hearing loss and auditory system plasticity Behavioral Neuroscience, 1994, 108, 703-713.	1.2	47
241	Modification of the acoustic startle response in hearing-impaired C57BL/6J mice: Prepulse augmentation and prolongation of prepulse inhibition Behavioral Neuroscience, 1995, 109, 396-403.	1.2	22
242	High-frequency hearing is required to compute a topographic map of auditory space in the mouse superior colliculus. ENeuro, 2022, 9, ENEURO.0513-21.2022.	1.9	1
243	Alcohol-Drinking Under Limited-Access Procedures During Mature Adulthood Accelerates the Onset of Cognitive Impairment in Mice. Frontiers in Behavioral Neuroscience, 0, 16, .	2.0	5
244	Animal models of autism. , 2022, , 157-196.		1
246	Noise overstimulation of young adult UMHET4 mice accelerates age-related hearing loss. Hearing Research, 2022, 424, 108601.	2.0	2
247	Galectin-3 protects auditory function in female mice. Hearing Research, 2022, 424, 108602.	2.0	2
248	Dietary intake of deuterium oxide decreases cochlear metabolism and oxidative stress levels in a mouse model of age-related hearing loss. Redox Biology, 2022, 57, 102472.	9.0	2
250	Strain-dependent regulation of hippocampal long-term potentiation by dopamine D1/D5 receptors in mice. Frontiers in Behavioral Neuroscience, 0, 16, .	2.0	1
251	Age-related changes in excitatory and inhibitory intra-cortical circuits in auditory cortex of C57Bl/6 mice. Hearing Research, 2023, 429, 108685.	2.0	1
252	Cell-type-specific plasticity of inhibitory interneurons in the rehabilitation of auditory cortex after peripheral damage. Nature Communications, 2023, 14, .	12.8	3
253	Differential projections from the cochlear nucleus to the inferior colliculus in the mouse. Frontiers in Neural Circuits, 0, 17, .	2.8	1
254	Age-dependent structural reorganization of utricular ribbon synapses. Frontiers in Cell and Developmental Biology, 0, 11, .	3.7	0
255	Phytosterols reverse antiretroviral-induced hearing loss, with potential implications for cochlear aging. PLoS Biology, 2023, 21, e3002257.	5.6	1
256	Age related changes in gene expression within the cochlea of C57BL/6J mice. Aging Clinical and Experimental Research, 2012, 24, 603-611.	2.9	1
257	Age-related changes of auditory sensitivity across the life span of CBA/CaJ mice. Hearing Research, 2024, 441, 108921.	2.0	1
259	GDF1 ameliorates cognitive impairment induced by hearing loss. Nature Aging, 2024, 4, 568-583.	11.6	0