City-level impact of extreme temperatures and mortali

Nature Medicine 28, 1700-1705 DOI: 10.1038/s41591-022-01872-6

Citation Report

CITATION	

#	Article	lF	CITATIONS
1	Extreme heat already claims lives in Latin American cities — and the toll is set to rise. Nature, 2022, 607, 11-11.	27.8	0
2	Heating up. Nature Climate Change, 2022, 12, 693-693.	18.8	5
3	Increased risk of cardiovascular disease in cold temperatures. Frigid Zone Medicine, 2022, 2, 138-139.	0.3	0
4	Global Population Exposure to Extreme Temperatures and Disease Burden. International Journal of Environmental Research and Public Health, 2022, 19, 13288.	2.6	0
5	Extreme temperatures and mortality in Latin America: Voices are needed from the Global South. Med, 2022, 3, 656-660.	4.4	2
6	Modification of temperature-related human mortality by area-level socioeconomic and demographic characteristics in Latin American cities. Social Science and Medicine, 2023, 317, 115526.	3.8	3
7	Trends in Temperature-associated Mortality in São Paulo (Brazil) between 2000 and 2018: an Example of Disparities in Adaptation to Cold and Heat. Journal of Urban Health, 2022, 99, 1012-1026.	3.6	2
8	Challenges and opportunities for urban health research in our complex and unequal cities. Cities and Health, 2022, 6, 651-656.	2.6	1
9	Probability and Certainty in the Performance of Evolutionary and Swarm Optimization Algorithms. Mathematics, 2022, 10, 4364.	2.2	4
10	Impacts of heatwaves and cold spells on glaucoma in rural China: a national cross-sectional study. Environmental Science and Pollution Research, 2023, 30, 47248-47261.	5.3	1
11	Quantifying the nonlinear relationship between block morphology and the surrounding thermal environment using random forest method. Sustainable Cities and Society, 2023, 91, 104443.	10.4	13
12	Productivity-adjusted life years lost due to non-optimum temperatures in Brazil: A nationwide time-series study. Science of the Total Environment, 2023, 873, 162368.	8.0	2
13	Compound climate-pollution extremes in Santiago de Chile. Scientific Reports, 2023, 13, .	3.3	3
14	Composition and vertical distribution of agricultural soil Macrofauna community after an extreme high temperature event in the summer of 2022. Ecological Indicators, 2023, 153, 110439.	6.3	2
15	Disproportionate exposure to surface-urban heat islands across vulnerable populations in Lima city, Peru. Environmental Research Letters, 2023, 18, 074001.	5.2	1
16	Potential role of ambient temperature as a trigger for intracerebral hemorrhage: a time-stratified case-crossover study in Tianjin, China. Environmental Science and Pollution Research, 0, , .	5.3	0
19	Rising vulnerability of compound risk inequality to ageing and extreme heatwave exposure in global cities. Npj Urban Sustainability, 2023, 3, .	8.0	8
20	Comparisons of the Urbanization Effect on Heat Stress Changes in Guangdong during Different Periods. Remote Sensing, 2023, 15, 2750.	4.0	2

#	Article	IF	CITATIONS
21	Rapidly increasing likelihood of exceeding 50 °C in parts of the Mediterranean and the Middle East due to human influence. Npj Climate and Atmospheric Science, 2023, 6, .	6.8	7
22	Association of low and high ambient temperature with mortality for cardiorespiratory diseases in Brazil. Environmental Research, 2023, 234, 116532.	7.5	2
24	Climatic and Economic Background Determine the Disparities in Urbanites' Expressed Happiness during the Summer Heat. Environmental Science & Technology, 2023, 57, 10951-10961.	10.0	8
25	2022 early-summer heatwave in Southern South America: 60 times more likely due to climate change. Climatic Change, 2023, 176, .	3.6	3
26	Temperature extremes and infectious diarrhea in China: attributable risks and effect modification of urban characteristics. International Journal of Biometeorology, 0, , .	3.0	0
27	Effects of Short- And Medium-Term Exposures to Lower Air Temperature on 71 Novel Biomarkers of Subclinical Inflammation: Results from the KORA F4 Study. Environmental Science & Technology, 2023, 57, 12210-12221.	10.0	1
28	A hybrid bioelectrochemical system coupling a zero-gap cell and a methanogenic reactor for carbon dioxide reduction using a wastewater-derived catholyte. Cell Reports Physical Science, 2023, 4, 101526.	5.6	0
29	Soil heat extremes can outpace air temperature extremes. Nature Climate Change, 2023, 13, 1237-1241.	18.8	6
30	The complex impacts of economic growth pressure on carbon emission intensity: an empirical evidence from city data in China. Environmental Science and Pollution Research, 0, , .	5.3	0
31	Heat stress in South America over the last four decades: a bioclimatic analysis. Theoretical and Applied Climatology, 2024, 155, 911-928.	2.8	4
32	A daily high-resolution (1 km) human thermal index collection over the North China Plain from 2003 to 2020. Scientific Data, 2023, 10, .	5.3	0
33	Impacts of exposure to humidex on cardiovascular mortality: a multi-city study in Southwest China. BMC Public Health, 2023, 23, .	2.9	2
34	Observational and model evidence together support wide-spread exposure to noncompensable heat under continued global warming. Science Advances, 2023, 9, .	10.3	4
35	Greenness and excess deaths from heat in 323 Latin American cities: Do associations vary according to climate zone or green space configuration?. Environment International, 2023, 180, 108230.	10.0	2
36	Exploring the Spatial Patterning of Sociodemographic Disparities in Extreme Heat Exposure at Multiple Scales Across the Conterminous United States. GeoHealth, 2023, 7, .	4.0	0
37	A simulation framework for assessing thermally resilient buildings and communities. Building and Environment, 2023, 245, 110887.	6.9	1
38	Reconsidering Seasonality, Weather, and Road Safety in Non-temperate Areas: the Case of Kaohsiung, Taiwan. Travel Behaviour & Society, 2024, 34, 100710.	5.0	0
39	Effects of Chronic Cold Exposure on Proteomics of Lung Tissue in Mice. Current Proteomics, 2023, 20, 107-119.	0.3	Ο

#	Article	IF	CITATIONS
40	Ambitious near-term decarbonization and direct air capture deployment in Latin America's net-zero goal. Energy for Sustainable Development, 2023, 77, 101338.	4.5	0
41	Numerical analysis of extreme heat in Nagpur city using heat stress indices, all-cause mortality and local climate zone classification. Sustainable Cities and Society, 2024, 101, 105099.	10.4	0
42	Effect of the thermal environment on mortality: analysis of longitudinal data from Cyprus (2009–2018). Euro-Mediterranean Journal for Environmental Integration, 2024, 9, 115-126.	1.3	0
43	Warming-induced hydrothermal anomaly over the Earth's three Poles amplifies concurrent extremes in 2022. Npj Climate and Atmospheric Science, 2024, 7, .	6.8	1
44	Impact of temperature increase on air pollutants - A case study in a small city in southern Brazil. Case Studies in Chemical and Environmental Engineering, 2024, 9, 100624.	6.1	0
45	Heat-induced risks of road crashes among older motorcyclists: Evidence from three motorcycle-dominant cities in Taiwan. Journal of Transport and Health, 2024, 35, 101754.	2.2	0
46	Twenty-first-century demographic and social inequalities of heat-related deaths in Brazilian urban areas. PLoS ONE, 2024, 19, e0295766.	2.5	0
47	Assessing urban population exposure risk to extreme heat: Patterns, trends, and implications for climate resilience in China (2000–2020). Sustainable Cities and Society, 2024, 103, 105260.	10.4	0
48	Associations between urban greenspace and depressive symptoms in Mexico's cities using different greenspace metrics. Applied Geography, 2024, 164, 103219.	3.7	0
49	Assessment of Outdoor Thermal Comfort in a Hot Summer Region of Europe. Atmosphere, 2024, 15, 214.	2.3	0
50	Short-term associations between fine particulate air pollution and cardiovascular and respiratory mortality in 337 cities in Latin America. Science of the Total Environment, 2024, 920, 171073.	8.0	0
51	Gender disparities in summer outdoor heat risk across China: Findings from a national county-level assessment during 1991–2020. Science of the Total Environment, 2024, 921, 171120.	8.0	0
52	Risk factors associated with heatwave mortality in Chinese adults over 65 years. Nature Medicine, 0, , .	30.7	0