THE BASIC UNIFORMITY IN STRUCTURE OF THE NEO

Brain 103, 221-244 DOI: 10.1093/brain/103.2.221

Citation Report

#	Article	IF	CITATIONS
1	Reflections on the origins of the human brain. , 0, , 1-22.		0
2	AN ELECTRON MICROSCOPIC STUDY OF THE TYPES AND PROPORTIONS OF NEURONS IN THE CORTEX OF THE MOTOR AND VISUAL AREAS OF THE CAT AND RAT. Brain, 1980, 103, 245-258.	3.7	124
3	Similarity in number of neurons through the depth of the cortex in the binocular and monocular parts of area 17 of the monkey. Brain Research, 1981, 216, 409-413.	1.1	30
4	An electron microscopic study of the termination of thalamocortical fibres in areas 3b, 1 and 2 of the somatic sensory cortex in the monkey. Brain Research, 1981, 218, 35-47.	1.1	33
5	Magnification factor and receptive field size in foveal striate cortex of the monkey. Experimental Brain Research, 1981, 44, 213-28.	0.7	420
6	Allometry, Brain Size, Cortical Surface, and Convolutedness. , 1982, , 77-84.		35
7	Mosaic Evolution in the Primate Brain: Differences and Similarities in the Hominoid Thalamus. , 1982, , 131-161.		26
8	Human cognitive development in the first four years. Behavioral and Brain Sciences, 1982, 5, 282-283.	0.4	4
9	<i>Homo</i> does not cogitate because of bread alone: Or, "l eat therefore I think?― Behavioral and Brain Sciences, 1982, 5, 283-283.	0.4	0
10	Conceptions of development and the evolution of behavior. Behavioral and Brain Sciences, 1982, 5, 284-284.	0.4	48
11	Problems with Piaget and pallia. Behavioral and Brain Sciences, 1982, 5, 284-287.	0.4	38
12	Control mechanisms of vocalization and the evolution of speech. Behavioral and Brain Sciences, 1982, 5, 287-287.	0.4	1
13	Brain structure, Piaget, and adaptatison, or, "No, I think, therefore I eat― Behavioral and Brain Sciences, 1982, 5, 288-293.	0.4	1
14	Why is there more than one neurotransmitter?. Behavioral and Brain Sciences, 1982, 5, 294-295.	0.4	2
15	Participation of precentral neurons in somatically and visually triggered movements in primates. Brain Research, 1982, 247, 49-56.	1.1	7
16	Increased branching of basal dendrites on pyramidal neurons in the occipital cortex of homozygous Brattleboro rats in standard and enriched environmental conditions: A Golgi study. Experimental Neurology, 1982, 76, 254-262.	2.0	10
17	A two-component theory of encephalization in mammals. Journal of Theoretical Biology, 1982, 99, 571-584.	0.8	22
18	The limbic system and human evolution. Journal of Human Evolution, 1982, 11, 447-460.	1.3	24

#	Article	IF	CITATIONS
19	A laminar analysis of the number of neurons, glia, and synapses in the visual cortex (area 17) of adult macaque monkeys. Journal of Comparative Neurology, 1982, 210, 278-290.	0.9	307
20	TOXIC EFFECTS OF ALCOHOL# ON BRAIN CELLS AND ALTERNATIVE MECHANISMS OF BRAIN DAMAGE IN ALCOHOLISM. Australian Alcohol/Drug Review, 1983, 2, 64-70.	0.2	9
21	The number of neurons in the different laminae of the binocular and monocular regions of area 17 in the cat. Journal of Comparative Neurology, 1983, 217, 337-344.	0.9	113
22	Columnar organization of corticocortical projections in squirrel and rhesus monkeys: Similarity of column width in species differing in cortical volume. Journal of Comparative Neurology, 1983, 220, 355-364.	0.9	102
23	Organization and function of the neocortex. Neuro-Ophthalmology, 1983, 3, 1-14.	0.4	9
24	Laminar cell counts and geniculo-cortical boutons in area 17 of cat and monkey. Brain Research, 1983, 277, 223-229.	1.1	45
25	Parallel processing of somatosensory information: A theory. Brain Research Reviews, 1983, 6, 47-115.	9.1	168
26	The somatosensory cortex of the rodent. Trends in Neurosciences, 1983, 6, 425-429.	4.2	43
27	Hyperfrontal Pattern of Human Cerebral Circulation. Archives of Neurology, 1983, 40, 626.	4.9	41
28	Local differences in the amount of early cell death in neocortex predict adult local specializations. Science, 1983, 219, 1349-1351.	6.0	279
29	LOCALIZATION OF FUNCTION IN THE CEREBRAL CORTEX: PAST, PRESENT AND FUTURE. Brain, 1984, 107, 328-361.	3.7	184
30	The Timm-stained hippocampus of the European hedgehog: A basal mammalian form. Journal of Comparative Neurology, 1984, 226, 477-488.	0.9	31
31	The transmission of information in natural systems. Journal of Theoretical Biology, 1984, 108, 349-367.	0.8	5
32	Influence of nonspecific thalamic nuclei on individual loci of ensemble formation in the visual brain cortex. Neuroscience and Behavioral Physiology, 1984, 14, 206-211.	0.2	1
33	Relationships between behavioural states and activity of the cerebral cortex. Progress in Neurobiology, 1984, 22, 155-184.	2.8	22
35	The distribution and morphological characteristics of the intracortical VIP-positive cell: An immunohistochemical analysis. Brain Research, 1984, 292, 269-282.	1.1	179
36	Diversity in receptive field properties of vertical neuronal arrays in the crown of the postcentral gyrus of the conscious monkey. Experimental Brain Research, 1985, 58, 400-11.	0.7	57
37	Neuronal correlates of corticalization in mammals: A theory. Journal of Theoretical Biology, 1985, 112, 77-95.	0.8	26

-			_	
C 17		ON	REPOR	Τ.
	IAL		REPOR	

#	Article	IF	CITATIONS
38	Callosal and prefrontal associational projecting cell populations in area 7A of the macaque monkey: A study using retrogradely transported fluorescent dyes. Journal of Comparative Neurology, 1985, 232, 443-455.	0.9	297
39	Structure of layer II in cat primary auditory cortex (AI). Journal of Comparative Neurology, 1985, 238, 10-37.	0.9	46
40	The neuronal composition of area 17 of rat visual cortex. III. Numerical considerations. Journal of Comparative Neurology, 1985, 238, 263-274.	0.9	99
41	Origin of interhemispheric fibers in acallosal opossum (with a comparison to callosal origins in rat). Journal of Comparative Neurology, 1985, 241, 82-98.	0.9	34
42	The callosal connexions of the primary somatic sensory cortex in the monkey. Brain Research Reviews, 1985, 9, 43-65.	9.1	53
43	A comparison of the number of neurons in individual laminae of cortical areas 17, 18 and posteromedial suprasylvian (PMLS) area in the cat. Brain Research, 1985, 339, 166-170.	1.1	20
44	A stereological study of neocortical maturation in the precocial mouse, Acomys cahirinus. Developmental Brain Research, 1985, 19, 279-287.	2.1	25
45	Animal intelligence as encephalization. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 1985, 308, 21-35.	2.4	167
46	On the brain of a scientist: Albert Einstein. Experimental Neurology, 1985, 88, 198-204.	2.0	156
47	Histological Asymmetry in the Primary Visual Cortex of the Rat: Implications for Mechanisms of Cerebral Asymmetry. Cortex, 1986, 22, 151-160.	1.1	71
48	Quantitative changes in morphological parameters in the developing visual cortex of the marmoset monkey. Developmental Brain Research, 1986, 29, 173-188.	2.1	40
49	Quantitative correlation between barrel-field size and the sensory innervation of the whiskerpad: a comparative study in six strains of mice bred for different patterns of mystacial vibrissae. Journal of Neuroscience, 1986, 6, 3355-3373.	1.7	164
50	Chapter 6 Morphology and distribution of peptide-containing neurones in the cerebral cortex. Progress in Brain Research, 1986, 66, 119-134.	0.9	12
51	PROGRESSIVE NEURONAL DEGENERATION OF CHILDHOOD WITH LIVER DISEASE. Brain, 1986, 109, 181-206.	3.7	59
52	A quantitative study of neuronal and glial numerical density in the visual cortex of the bottlenose dolphin: Evidence for a specialized subarea and changes with age. Journal of Comparative Neurology, 1986, 247, 491-496.	0.9	78
53	An immunohistochemical characterization of somatostatin-28 and somatostatin-281-12 in monkey prefrontal cortex. Journal of Comparative Neurology, 1986, 248, 1-18.	0.9	156
54	Corticocortical connections of cat primary auditory cortex (AI): Laminar organization and identification of supragranular neurons projecting to area AII. Journal of Comparative Neurology, 1986, 248, 36-56.	0.9	97
55	Comparative aspects of the primate posterior cingulate cortex. Journal of Comparative Neurology, 1986, 253, 539-548.	0.9	61

	Сітаті	on Report	
#	Article	IF	CITATIONS
56	Connectionistic models of boolean category representation. Biological Cybernetics, 1986, 54, 393-406.	0.6	15
57	Quantitative Cytoarchitectural Studies of the Cerebral Cortex of Schizophrenics. Archives of General Psychiatry, 1986, 43, 31.	13.8	480
58	The comparative psychology of intelligence. Behavioral and Brain Sciences, 1987, 10, 645.	0.4	399
59	Intelligence and human language. Behavioral and Brain Sciences, 1987, 10, 657.	0.4	0
60	The supremacy of syntax. Behavioral and Brain Sciences, 1987, 10, 658.	0.4	2
61	Evidence of divergence in vertebrate learning. Behavioral and Brain Sciences, 1987, 10, 659.	0.4	31
62	Within-species variations in g: The case of Homo sapiens. Behavioral and Brain Sciences, 1987, 10, 660.	0.4	0
63	Animal intelligence: A construct neither defined nor measured. Behavioral and Brain Sciences, 1987, 10, 661.	0.4	0
64	Comparative cognition: Inadequate approach, precipitate conclusions. Behavioral and Brain Sciences, 1987, 10, 661.	0.4	3
65	The several meanings of intelligence. Behavioral and Brain Sciences, 1987, 10, 663.	0.4	2
66	Chimps and dolphins: Intellectual bedfellows of the goldfish?. Behavioral and Brain Sciences, 1987, 10, 663.	0.4	1
67	Artifactual intelligence. Behavioral and Brain Sciences, 1987, 10, 664.	0.4	0
68	Cognitive science and comparative intelligence. Behavioral and Brain Sciences, 1987, 10, 665.	0.4	0
69	Wither comparative psychology?. Behavioral and Brain Sciences, 1987, 10, 666.	0.4	14
70	Comparative psychology, cognition, and levels. Behavioral and Brain Sciences, 1987, 10, 667.	0.4	0
71	Phylogenetically widespread "facts-of-life― Behavioral and Brain Sciences, 1987, 10, 667.	0.4	0
72	Animal general intelligence: An idea ahead of its time. Behavioral and Brain Sciences, 1987, 10, 668.	0.4	3
73	Logical and ecological inadequacies in Macphail's account of intelligence and learning. Behavioral and Brain Sciences, 1987, 10, 669.	0.4	0

#	Article	IF	Citations
74	Boiling down intelligence. Behavioral and Brain Sciences, 1987, 10, 671.	0.4	1
75	Species differences in intelligence: Which null hypothesis?. Behavioral and Brain Sciences, 1987, 10, 671.	0.4	Ο
76	Associative learning and the cognitive map: Differences in intelligence as expressions of a common learning mechanism. Behavioral and Brain Sciences, 1987, 10, 672.	0.4	3
77	Bony argument. Behavioral and Brain Sciences, 1987, 10, 673.	0.4	1
78	Is a Darwinian taxonomy of animal learning possible?. Behavioral and Brain Sciences, 1987, 10, 673.	0.4	0
79	Proto-, pre-, and pro-intelligence: Little evidence but a necessary assumption. Behavioral and Brain Sciences, 1987, 10, 674.	0.4	0
80	The epistemology of intelligence: Contextual variables, tautologies, and external referents. Behavioral and Brain Sciences, 1987, 10, 675.	0.4	1
81	The quest for divergent mechanisms in vertebrate learning. Behavioral and Brain Sciences, 1987, 10, 676.	0.4	2
82	Metacomparative psychology. Behavioral and Brain Sciences, 1987, 10, 677.	0.4	8
83	Natural selection and intelligence. Behavioral and Brain Sciences, 1987, 10, 678.	0.4	0
84	Intelligence: More than a matter of associations. Behavioral and Brain Sciences, 1987, 10, 679.	0.4	7
85	Difficulties in comparing intelligence across species. Behavioral and Brain Sciences, 1987, 10, 679.	0.4	13
86	Overcoming contextual variables, negative results, and Macphail's null hypothesis. Behavioral and Brain Sciences, 1987, 10, 680.	0.4	2
88	Comparing intelligences: Not easy, but not impossible. Behavioral and Brain Sciences, 1987, 10, 681.	0.4	1
89	Clever pigeons and another hypothesis. Behavioral and Brain Sciences, 1987, 10, 688.	0.4	0
90	Brain differences determine different limits of intelligence. Behavioral and Brain Sciences, 1987, 10, 689.	0.4	0
91	From null hypothesis to null dogma. Behavioral and Brain Sciences, 1987, 10, 689.	0.4	24
92	Efficiency, versatility, cognitive maps, and language. Behavioral and Brain Sciences, 1987, 10, 657.	0.4	1

#	Article	IF	CITATIONS
93	Psychometric considerations in the evaluation of intraspecies differences in intelligence. Behavioral and Brain Sciences, 1987, 10, 668.	0.4	3
95	The Architecture of Neural Centres and Understanding Neural Organization. , 1987, , 111-129.		4
96	Reply from Neil Kowall and colleagues. Trends in Neurosciences, 1987, 10, 404-406.	4.2	9
97	Regional heterogeneity in the distribution of somatostatin-28- and somatostatin-28(1-12)-immunoreactive profiles in monkey neocortex. Journal of Neuroscience, 1987, 7, 1133-1144.	1.7	70
98	Numbers and proportions of GABA-immunoreactive neurons in different areas of monkey cerebral cortex. Journal of Neuroscience, 1987, 7, 1503-1519.	1.7	510
99	Vertical ascending connections in the isocortex. Anatomy and Embryology, 1987, 175, 443-455.	1.5	30
100	Forms and spatial arrangement of neurons in the primary motor cortex of man. Journal of Comparative Neurology, 1987, 262, 402-428.	0.9	85
101	Effect of the richness of the environment on the cat visual cortex. Journal of Comparative Neurology, 1987, 266, 478-494.	0.9	93
102	Brain sizes, surfaces, and neuronal sizes of the cortex cerebri: A stereological investigation of man and his variability and a comparison with some mammals (primates, whales, marsupials, insectivores,) Tj ETQq0 () 0øg8T /C	Ove tlo rck 10 Tf
103	High-resolution 2-deoxyglucose mapping of functional cortical columns in mouse barrel cortex. Journal of Comparative Neurology, 1988, 278, 555-569.	0.9	114
104	Specification of cerebral cortical areas. Science, 1988, 241, 170-176.	6.0	2,935
105	Functional Implications of the Radial Organization of VIP-Containing Neurons in the Neocortex. Annals of the New York Academy of Sciences, 1988, 527, 130-142.	1.8	5
106	Control of cell number in the developing neocortex. I. Effects of early tectal ablation. Developmental Brain Research, 1988, 43, 1-11.	2.1	24
107	Control of cell number in the developing neocortex. II. Effects of corpus callosum section. Developmental Brain Research, 1988, 43, 13-22.	2.1	32
108	Brainy Minds. Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology, 1988, 40, 389-405.	2.3	6
109	Implications of the "initial brain―concept for brain evolution in Cetacea. Behavioral and Brain Sciences, 1988, 11, 75-89.	0.4	145
110	Conservative aspects of the dolphin cortex match its behavioral level. Behavioral and Brain Sciences, 1988, 11, 89-90.	0.4	2
111	Primitive survivors and neocortical evolution. Behavioral and Brain Sciences, 1988, 11, 90-91.	0.4	1

#	Article	IF	CITATIONS
112	Evolution of the brain in Cetacea $\hat{a} \in $ is bigger better?. Behavioral and Brain Sciences, 1988, 11, 91-92.	0.4	3
113	Cetacean brains have a structure similar to the brains of primitive mammals; does this imply limits in function?. Behavioral and Brain Sciences, 1988, 11, 92-92.	0.4	4
114	Allometry cannot be ignored in brain evolution studies. Behavioral and Brain Sciences, 1988, 11, 92-93.	0.4	2
115	Fish, sea snakes, dolphins, teeth and brains – some evolutionary paradoxes. Behavioral and Brain Sciences, 1988, 11, 93-94.	0.4	1
116	Developmental axes and evolutionary trees. Behavioral and Brain Sciences, 1988, 11, 94-95.	0.4	0
117	Morphogenetic versus morphofunctional theory. Behavioral and Brain Sciences, 1988, 11, 95-96.	0.4	1
118	Whose brain is initial-like?. Behavioral and Brain Sciences, 1988, 11, 96-96.	0.4	3
119	Determining species differences in numbers of cortical areas and modules: The architectonic method needs supplementation. Behavioral and Brain Sciences, 1988, 11, 96-97.	0.4	1
120	The concept of association cortex should be abandoned. Behavioral and Brain Sciences, 1988, 11, 97-97.	0.4	0
121	Putting all cetacean brains in one category is a big order. Behavioral and Brain Sciences, 1988, 11, 97-98.	0.4	1
122	The "initial brain― Initial considerations. Behavioral and Brain Sciences, 1988, 11, 98-99.	0.4	0
123	What aboutSirenia?. Behavioral and Brain Sciences, 1988, 11, 99-99.	0.4	0
124	Cetacean brain evolution. Behavioral and Brain Sciences, 1988, 11, 99-100.	0.4	12
125	Elephants have a large neocortex too. Behavioral and Brain Sciences, 1988, 11, 100-100.	0.4	1
126	Concepts of brain evolution. Behavioral and Brain Sciences, 1988, 11, 100-101.	0.4	0
127	Climbing the evolutionary ladder of success: The scala naturae in models of brain evolution. Behavioral and Brain Sciences, 1988, 11, 101-102.	0.4	0
128	Elegant hypotheses are intellectually rewarding; even more so if more hard data were available. Behavioral and Brain Sciences, 1988, 11, 102-102.	0.4	0
129	Competition for the sake of diversity. Behavioral and Brain Sciences, 1988, 11, 102-103.	0.4	7

TION R

#	Article	IF	CITATIONS
130	Evolutionary events and the "modification/multiplication―relationship. Behavioral and Brain Sciences, 1988, 11, 103-104.	0.4	0
131	Brain evolution: Some problems of interpretation. Behavioral and Brain Sciences, 1988, 11, 104-105.	0.4	0
132	The initial brain concept: A work in progress. Behavioral and Brain Sciences, 1988, 11, 105-106.	0.4	4
133	The "initial―brain concept: Its uses and misuses. Behavioral and Brain Sciences, 1988, 11, 106-116.	0.4	2
134	THE WELLCOME PRIZE LECTURE FROM SINGLE CELLS TO SIMPLE CIRCUITS IN THE CEREBRAL CORTEX. Quarterly Journal of Experimental Physiology (Cambridge, England), 1988, 73, 637-702.	1.0	194
135	The size of the corpus callosum in males and females: Implications of a lack of allometry Canadian Journal of Psychology, 1988, 42, 313-324.	0.8	24
136	A Canonical Microcircuit for Neocortex. Neural Computation, 1989, 1, 480-488.	1.3	443
137	The Lectin <i>Vicia Villosa</i> Labels a Distinct Subset of GABAergic Cells in Macaque Visual Cortex. Visual Neuroscience, 1989, 2, 63-72.	0.5	84
138	How Cortical Interconnectedness Varies with Network Size. Neural Computation, 1989, 1, 473-479.	1.3	87
139	Hominid evolution and primate social cognition. Journal of Human Evolution, 1989, 18, 421-432.	1.3	4
140	Number of neurons in individual laminae of areas 3B, 4?, and 6a? of the cat cerebral cortex: A comparison with major visual areas. Journal of Comparative Neurology, 1989, 279, 228-234.	0.9	65
141	Deprived somatosensory-motor experience in stumptailed monkey neocortex: Dendritic spine density and dendritic branching of layer IIIB pyramidal cells. Journal of Comparative Neurology, 1989, 286, 208-217.	0.9	55
142	Density of neurons and synapses in the cerebral cortex of the mouse. Journal of Comparative Neurology, 1989, 286, 442-455.	0.9	339
143	Quantitative study of glutamic acid decarboxylase-immunoreactive neurons and cytochrome oxidase activity in normal and partially deafferented rat hindlimb somatosensory cortex. Journal of Comparative Neurology, 1989, 288, 583-592.	0.9	72
144	Number and size of neurons and synapses in the motor cortex of cats raised in different environmental complexities. Journal of Comparative Neurology, 1989, 289, 178-187.	0.9	46
145	Size and density of glial and neuronal cells within the cerebral neocortex of various insectivorian species. Glia, 1989, 2, 78-84.	2.5	59
146	The molecular biology of brain and mind development. BioEssays, 1989, 10, 44-48.	1.2	1
147	Comparison of neuronal and glial numerical density in primary and secondary visual cortex of man. Experimental Brain Research, 1989, 77, 31-8.	0.7	76

#	ARTICLE	IF	CITATIONS
148	Regional cerebral blood flow characteristics and variations with age in resting normal subjects. Brain and Cognition, 1989, 10, 28-43.	0.8	80
149	Plasticity in the neocortex: mechanisms underlying recovery from early brain damage. Progress in Neurobiology, 1989, 32, 235-276.	2.8	248
150	Control of cell number in the developing mammalian visual system. Progress in Neurobiology, 1989, 32, 207-234.	2.8	94
151	On the evolution and geometry of the brain in mammals. Progress in Neurobiology, 1989, 32, 137-158.	2.8	303
152	Neuronal models of cognitive functions. Cognition, 1989, 33, 63-109.	1.1	247
153	Do cortical areas emerge from a protocortex?. Trends in Neurosciences, 1989, 12, 400-406.	4.2	464
154	Transient projection from the superior temporal sulcus to area 17 in the newborn macaque monkey Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 8093-8097.	3.3	63
155	Brain development, plasticity, and behavior American Psychologist, 1989, 44, 1203-1212.	3.8	73
156	Firing patterns of single units in the prefrontal cortex and neural network models. Network: Computation in Neural Systems, 1990, 1, 13-25.	2.2	57
157	Confusing size-correlated differences with phylogenetic "progression―in brain evolution. Behavioral and Brain Sciences, 1990, 13, 185-187.	0.4	6
158	Allometricks: Confusion about phylogenetic "progression―in brain evolution?. Behavioral and Brain Sciences, 1990, 13, 187-190.	0.4	0
159	Brain evolution in <i>Homo:</i> The "radiator―theory. Behavioral and Brain Sciences, 1990, 13, 333-344.	0.4	253
160	The multiple obstacles to encephalization. Behavioral and Brain Sciences, 1990, 13, 344-345.	0.4	2
161	Brain evolution in Homo: the "hood―theory. Behavioral and Brain Sciences, 1990, 13, 345-346.	0.4	0
162	The role of a behavior in evolution. Behavioral and Brain Sciences, 1990, 13, 346-347.	0.4	2
163	Exercise as prime mover and a cool brain. Behavioral and Brain Sciences, 1990, 13, 347-348.	0.4	0
164	The brain drain as a means of cooling hot heads. Behavioral and Brain Sciences, 1990, 13, 348-349.	0.4	0
165	Brain cooling via emissary veins: Fact or fancy?. Behavioral and Brain Sciences, 1990, 13, 349-350.	0.4	8

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
166	Beardedness, baldness, and northern climate. Behavioral and Brain Sciences, 1990, 13	351-351.	0.4	0
167	On the possible evolution of brain cooling system in Homo: Sweating versus panting. B Brain Sciences, 1990, 13, 351-352.	Behavioral and	0.4	Ο
168	Heat stress as a factor in the preadaptative approach to the origin of the human brain. Brain Sciences, 1990, 13, 352-353.	Behavioral and	0.4	3
169	Master Mechanic, may I? Evolutionary permission versus evolutionary pressure. Behavi Sciences, 1990, 13, 353-354.	oral and Brain	0.4	1
170	The causes of brain enlargement in human evolution. Behavioral and Brain Sciences, 19	990, 13, 354-356.	0.4	59
171	Aristotle redivivus? Multiple causes and effects in hominid brain evolution. Behavioral a Sciences, 1990, 13, 356-359.	ind Brain	0.4	5
172	Upright posture and cranial hemodynamics in humans and other "tall―animals. Bo Sciences, 1990, 13, 359-360.	2 havioral and Brain	0.4	1
173	Falk's radiator hypothesis. Behavioral and Brain Sciences, 1990, 13, 360-360.		0.4	2
174	Welcome light on a hot topic. Behavioral and Brain Sciences, 1990, 13, 360-361.		0.4	4
175	The radiator hypothesis: A theory in "vein― Behavioral and Brain Sciences, 1990, 2	13, 361-362.	0.4	3
176	Relating brains, blood, and bipedalism. Behavioral and Brain Sciences, 1990, 13, 362-3	63.	0.4	0
177	Have cooler heads prevailed?. Behavioral and Brain Sciences, 1990, 13, 363-364.		0.4	0
178	Boiling over in the great rift valley. Behavioral and Brain Sciences, 1990, 13, 364-364.		0.4	0
179	Overheated brains: Radiation of radiators?. Behavioral and Brain Sciences, 1990, 13, 36	54-365.	0.4	0
180	The cost of a large brain. Behavioral and Brain Sciences, 1990, 13, 365-366.		0.4	31
181	The influence of thermoregulatory selection presures on hominid evolution. Behavioral Sciences, 1990, 13, 366-366.	and Brain	0.4	3
182	Causes and consequences in the evolution of hominid brain size. Behavioral and Brain 13, 367-367.	Sciences, 1990,	0.4	6
183	The problem of variation. Behavioral and Brain Sciences, 1990, 13, 367-368.		0.4	1

	CITATION RI	EPORT	
#	Article	IF	Citations
184	Evolution of a venous "radiator―for cooling cortex: "Prime releaser―of brain evolution in <i>Homo</i> . Behavioral and Brain Sciences, 1990, 13, 368-381.	0.4	6
185	Selective brain cooling: A multidisciplinary concept. Behavioral and Brain Sciences, 1990, 13, 350-351.	0.4	0
186	Venous drainage of the brain. Behavioral and Brain Sciences, 1990, 13, 352-352.	0.4	1
187	Synchronization in Neural Assemblies. Physica Scripta, 1990, T33, 54-64.	1.2	14
188	Evolution of neuromagnetic topographic mapping. Brain Topography, 1990, 3, 113-127.	0.8	22
189	Fallacies of progression in theories of brain-size evolution. International Journal of Primatology, 1990, 11, 193-236.	0.9	139
190	Degeneration of pyramidal projection neurons in Huntington's disease cortex. Annals of Neurology, 1990, 27, 200-204.	2.8	176
191	Statistical analysis of corticopontine neuron distribution in visual areas 17, 18, and 19 of the cat. Journal of Comparative Neurology, 1990, 295, 15-32.	0.9	15
192	Chapter 2 Stereological studies of the hippocampus: a comparison of the hippocampal subdivisions of diverse species including hedgehogs, laboratory rodents, wild mice and men. Progress in Brain Research, 1990, 83, 13-36.	0.9	75
193	A quantitative study of the neurofibrillary tangles and the choline acetyltransferase activity in the cerebral cortex and the amygdala in Alzheimer's disease Journal of Neurology, Neurosurgery and Psychiatry, 1990, 53, 161-165.	0.9	88
194	Neocortical Expansion: An Attempt toward Relating Phylogeny and Ontogeny. Journal of Cognitive Neuroscience, 1990, 2, 1-17.	1.1	157
195	Neuronal population of area 4 during the life span of the rhesus monkey. Neurobiology of Aging, 1990, 11, 201-208.	1.5	61
196	Ultrastructure of synapses and golgi analysis of neurons in neocortex of the lateral gyrus (visual) Tj ETQq0 0 0 rg	;BT_/Overlo	ock 10 Tf 50 2
197	Evolution of Neocortex. Cerebral Cortex, 1990, , 269-283.	0.6	27
198	Neuronal lineages in chimeric mouse forebrain are segregated between compartments and in the rostrocaudal and radial planes. Developmental Biology, 1990, 141, 70-83.	0.9	46
199	Integrated phylogeny of the primate brain, with special reference to humans and their diseases. Brain Research Reviews, 1990, 15, 267-294.	9.1	106
200	Is the cerebral cortex modular?. Trends in Neurosciences, 1990, 13, 487-492.	4.2	114
201	Generalization and specialization in artificial neural networks. Progress in Neurobiology, 1991, 37, 383-431.	2.8	6

	C	ITATION REPORT	
#	Article	IF	CITATIONS
202	Threshold extracellular concentration distribution of penicillin for generation of epileptic focus measured by diffusion analysis. Brain Research, 1991, 561, 292-298.	1.1	21
203	Quantitative Estimation of the Ratio of GABA-Immunoreactive Cells in Neocortical Grafts. Journal of Neural Transplantation, 1991, 2, 235-242.	0.8	5
204	Anatomy of the cerebral cortex. , 1991, , 1-64.		4
205	A functional microcircuit for cat visual cortex Journal of Physiology, 1991, 440, 735-769.	1.3	594
206	Chapter 25 Animal models for human PFC-related disorders. Progress in Brain Research, 1991, 85, 501-519.	0.9	95
207	Sex differences in human brain size and the general meaning of differences in brain size Canadian Journal of Psychology, 1991, 45, 507-522.	0.8	67
208	Spatial extent of coherent sensory-evoked cortical activity. Experimental Brain Research, 1991, 84, 411-6.	0.7	35
209	On the computational architecture of the neocortex. Biological Cybernetics, 1991, 65, 135-145.	0.6	750
210	Cortical Gyrification in the Rhesus Monkey: A Test of the Mechanical Folding Hypothesis. Cerebral Cortex, 1991, 1, 426-432.	1.6	69
211	Asymptotic Inferential Capabilities of Feed-Forward Neural Networks. Europhysics Letters, 1991, 14, 175-180.	0.7	1
212	Separate Progenitor Cells Give Rise to Pyramidal and Nonpyramidal Neurons in the Rat Telencephalo Cerebral Cortex, 1991, 1, 463-468.	n. 1.6	156
213	Thalamic Ablations and Neocortical Development: Alterations of Cortical Cytoarchitecture and Cell Number. Cerebral Cortex, 1991, 1, 230-240.	1.6	63
214	Chapter 11 Anatomical correlates of behavioural change after neonatal prefrontal lesions in rats. Progress in Brain Research, 1991, 85, 241-256.	0.9	42
215	Ontogeny of Cholecystokinin-Immunoreactive Structures in the Primate Cerebral Neocortex. International Journal of Neuroscience, 1992, 64, 139-151.	0.8	5
216	Early regional specification for a molecular neuronal phenotype in the rat neocortex Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 8879-8883.	3.3	166
217	Chapter 22 Organization and plasticity of GABA neurons and receptors in monkey visual cortex. Progress in Brain Research, 1992, 90, 477-502.	0.9	39
218	Chapter 21 GABA-mediated inhibition in the neural networks of visual cortex. Progress in Brain Research, 1992, 90, 443-476.	0.9	44
219	Cell death and removal in the cerebral cortex during development. Progress in Neurobiology, 1992, 3 1-43.	39, 2.8	196

#	Article	IF	CITATIONS
220	Iterated patterns of brain circuitry (or how the cortex gets its spots). Trends in Neurosciences, 1992, 15, 362-368.	4.2	176
221	A computer-assisted direct-imaging system to obtain numerical densities of neurons in human cortex. Brain Research Bulletin, 1992, 29, 441-447.	1.4	6
222	The Functional Architecture of the Medial Geniculate Body and the Primary Auditory Cortex. Springer Handbook of Auditory Research, 1992, , 222-409.	0.3	186
223	Periodic-pattern-selective cells in monkey visual cortex. Journal of Neuroscience, 1992, 12, 1416-1434.	1.7	76
224	Quantitative analysis of neurons and glial cells in the rat somatosensory cortex, with special reference to GABAergic neurons and parvalbumin-containing neurons. Experimental Brain Research, 1992, 92, 1-14.	0.7	127
225	Pyramidal neurons of the rat cerebral cortex, immunoreactive to nicotinic acetylcholine receptors, project mainly to subcortical targets. Journal of Comparative Neurology, 1992, 320, 62-68.	0.9	26
226	Ontogenesis of the pyramidal cell of the mammalian neocortex and developmental cytoarchitectonics: A unifying theory. Journal of Comparative Neurology, 1992, 321, 223-240.	0.9	255
227	Sex differences in neuron number in the binocular area of the rat visual cortex. Journal of Comparative Neurology, 1992, 321, 448-455.	0.9	80
228	Differential expression of cytochrome oxidase (COX) genes in different regions of monkey brain. Journal of Neuroscience Research, 1992, 32, 415-423.	1.3	44
229	Effect of dark rearing on the volume of visual cortex (areas 17 and 18) and number of visual cortical cells in young kittens. Journal of Neuroscience Research, 1992, 32, 449-459.	1.3	16
230	Molecules and cognition: The latterday lessons of levels, language, andiac. Evolutionary overview of brain structure and function in some vertebrates and invertebrates. Journal of Neurobiology, 1993, 24, 842-890.	3.7	79
231	Quantitative morphological changes in neurons and glia in the frontal lobe of the aging rat. The Anatomical Record, 1993, 237, 104-108.	2.3	42
232	Emergence of orientation selective simple cells simulated in deterministic and stochastic neural networks. Biological Cybernetics, 1993, 68, 465-476.	0.6	10
233	Layer V pyramidal cells in the adult human cingulate cortex. Anatomy and Embryology, 1993, 187, 515-522.	1.5	21
234	A model for neural representation of binocular disparity in striate cortex: distributed representation and veto mechanism. Biological Cybernetics, 1993, 69, 165-171.	0.6	3
235	Modulation of the cell cycle contributes to the parcellation of the primate visual cortex. Nature, 1993, 366, 464-466.	13.7	180
236	Preferential representation of the fovea in the primary visual cortex. Nature, 1993, 361, 719-721.	13.7	162
237	Is the Cerebral Neocortex a Uniform Cognitive Architecture?. Mind and Language, 1993, 8, 368-395.	1.2	7

		CITATION RE	PORT	
#	Article		IF	CITATIONS
238	How many neurons does it take to see?. Current Biology, 1993, 3, 510-512.		1.8	5
239	Numerical data on neocortical neurons in adult rat, with special reference to the GABA po Brain Research, 1993, 609, 284-292.	bulation.	1.1	272
240	3D reconstruction of biological objects from sequential image planes—Applied on cereb from cat. Computerized Medical Imaging and Graphics, 1993, 17, 165-174.	al cortex	3.5	12
241	GABAergic Neurons and Their Role in Cortical Plasticity in Primates. Cerebral Cortex, 1993	, 3, 361-372.	1.6	449
242	Cortical Specification of Mice and Men. Cerebral Cortex, 1993, 3, 171-186.		1.6	104
243	Intrinsic Synaptic Organization of the Motor Cortex. Cerebral Cortex, 1993, 3, 430-441.		1.6	177
244	Possible anatomical basis of recovery of function after neonatal frontal lesions in rats Bel Neuroscience, 1993, 107, 799-811.	navioral	0.6	72
245	HOW DOES EVOLUTION DESIGN A BRAIN CAPABLE OF LEARNING LANGUAGE?. Monograp for Research in Child Development, 1993, 58, 243-252.	hs of the Society	6.8	7
246	Lineage analysis reveals neurotransmitter (GABA or glutamate) but not calcium-binding pr homogeneity in clonally related cortical neurons. Journal of Neuroscience, 1994, 14, 107-1	otein 123.	1.7	139
247	Lamina-specific expression and activity-dependent regulation of seven GABAA receptor su in monkey visual cortex. Journal of Neuroscience, 1994, 14, 2236-2259.	bunit mRNAs	1.7	96
248	Evolution of the Brain. , 1994, , 53-82.			9
249	Cortical Cell Assemblies: A Possible Mechanism for Motor Programs. Journal of Motor Beh 26, 66-82.	avior, 1994,	0.5	126
250	Specification of Neocortical Areas and Thalamocortical Connections. Annual Review of Neuroscience, 1994, 17, 419-439.		5.0	174
251	Sparse random networks with LTP learning rules approximate Bayes classifiers via Parzen's Neural Networks, 1994, 7, 463-476.	s method.	3.3	19
252	The neocortex. Anatomy and Embryology, 1994, 190, 307-37.		1.5	201
253	A quantitative analysis of parvalbumin neurons in rabbit auditory neocortex. Journal of Co Neurology, 1994, 349, 493-511.	mparative	0.9	35
254	Intracortical Regionality Represented by Specific Transcription for a Novel Protein, Latexin Journal of Neuroscience, 1994, 6, 973-982.	. European	1.2	51
255	Equivalent cell density in three areas of neonatal rat cerebral cortex. Neuroscience Letters 85-88.	, 1994, 176,	1.0	9

#	Article	IF	CITATIONS
256	Latexin: a molecular marker for regional specification in the neocortex. Neuroscience Research, 1994, 20, 131-135.	1.0	49
257	Dissociation of the Medial Prefrontal, Posterior Parietal, and Posterior Temporal Cortex for Spatial Navigation and Recognition Memory in the Rat. Cerebral Cortex, 1994, 4, 664-680.	1.6	312
258	Cortical surface modeling reveals gross morphometric correlates of individual differences. Human Brain Mapping, 1995, 3, 257-270.	1.9	14
259	Organization of somatosensory cortex in monotremes: In search of the prototypical plan. Journal of Comparative Neurology, 1995, 351, 261-306.	0.9	171
260	Quantitative analysis of the columnar arrangement of neurons in the human cingulate cortex. Journal of Comparative Neurology, 1995, 351, 441-452.	0.9	62
261	Tempo of neurogenesis and synaptogenesis in the primate cingulate mesocortex: Comparison with the neocortex. Journal of Comparative Neurology, 1995, 360, 363-376.	0.9	63
262	Laminar patterns of expression of GABAA receptor subunit mRNAs in monkey sensory motor cortex. Journal of Comparative Neurology, 1995, 362, 565-582.	0.9	19
263	Getting there and being there in the cerebral cortex. Experientia, 1995, 51, 301-316.	1.2	11
264	The distribution of 5-HT1A and 5-HT2A receptor mRNA in human brain. Brain Research, 1995, 676, 157-168.	1.1	263
265	The Segregation of Function in the Nervous System. Contributions To Sensory Physiology, 1995, , 201-240.	2.5	54
266	Women have greater density of neurons in posterior temporal cortex. Journal of Neuroscience, 1995, 15, 3418-3428.	1.7	341
268	Can computers think? Differences and similarities between computers and brains. Progress in Neurobiology, 1995, 45, 99-127.	2.8	1
269	Apoptosis (programmed cell death) and other reasons for elimination of neurons and axons. Brain and Development, 1995, 17, 73-77.	0.6	42
270	Proliferative events in the cerebral ventricular zone. Brain and Development, 1995, 17, 159-163.	0.6	83
271	Advanced application of magnetic resonance imaging in human brain science. Brain and Development, 1995, 17, 399-408.	0.6	17
272	Sequence Seeking and Counter Streams: A Computational Model for Bidirectional Information Flow in the Visual Cortex. Cerebral Cortex, 1995, 5, 1-11.	1.6	227
273	Wiring, dysmorphogenesis and epilepsy: A hypothesis. Seizure: the Journal of the British Epilepsy Association, 1995, 4, 169-185.	0.9	12
274	The connectivity of the brain: multi-level quantitative analysis. Biological Cybernetics, 1995, 73, 529-545.	0.6	150

#	Article	IF	CITATIONS
275	Heterogeneity in the columnar number of neurons in different neocortical areas in the rat. Neuroscience Letters, 1996, 208, 97-100.	1.0	53
276	The overrepresentation of the fovea and adjacent retina in the striate cortex and dorsal lateral geniculate nucleus of the macaque monkey. Neuroscience, 1996, 72, 627-639.	1.1	47
277	Regulation of Normal Proliferation in the Developing Cerebrum Potential Actions of Trophic Factors. Experimental Neurology, 1996, 137, 357-366.	2.0	10
278	An algorithm derived from thalamocortical circuitry stores and retrieves temporal sequences. , 1996, , .		5
279	The Leaving or Q Fraction of the Murine Cerebral Proliferative Epithelium: A General Model of Neocortical Neuronogenesis. Journal of Neuroscience, 1996, 16, 6183-6196.	1.7	311
280	Innateness, autonomy, universality? Neurobiological approaches to language. Behavioral and Brain Sciences, 1996, 19, 611-631.	0.4	107
281	An innate language faculty needs neither modularity nor localization. Behavioral and Brain Sciences, 1996, 19, 631-632.	0.4	4
282	Double dissociation, modularity, and distributed organization. Behavioral and Brain Sciences, 1996, 19, 632-632.	0.4	2
283	How to grow a human. Behavioral and Brain Sciences, 1996, 19, 632-633.	0.4	1
284	Sign language and the brain: Apes, apraxia, and aphasia. Behavioral and Brain Sciences, 1996, 19, 633-634.	0.4	1
285	Familial language impairment: The evidence. Behavioral and Brain Sciences, 1996, 19, 635-636.	0.4	2
286	Speaking of language: Thoughts on associations. Behavioral and Brain Sciences, 1996, 19, 636-636.	0.4	1
287	Neurobiological approaches to language: Falsehoods and fallacies. Behavioral and Brain Sciences, 1996, 19, 637-637.	0.4	1
287 288	Neurobiological approaches to language: Falsehoods and fallacies. Behavioral and Brain Sciences, 1996, 19, 637-637. A worthy enterprise injured by overinterpretation and misrepresentation. Behavioral and Brain Sciences, 1996, 19, 638-638.	0.4	1
	1996, 19, 637-637. A worthy enterprise injured by overinterpretation and misrepresentation. Behavioral and Brain		
288	1996, 19, 637-637. A worthy enterprise injured by overinterpretation and misrepresentation. Behavioral and Brain Sciences, 1996, 19, 638-638.	0.4	1
288 289	 1996, 19, 637-637. A worthy enterprise injured by overinterpretation and misrepresentation. Behavioral and Brain Sciences, 1996, 19, 638-638. Pluripotentiality, epigenesis, and language acquisition. Behavioral and Brain Sciences, 1996, 19, 639-639. Innateness, autonomy, universality, and the neurobiology of regular and irregular inflectional 	0.4	1

		CITATION RE	PORT	
#	Article		IF	CITATIONS
293	Neurobiology and linguistics are not yet unifiable. Behavioral and Brain Sciences, 1996	, 19, 642-643.	0.4	4
294	It's a far cry from speech to language. Behavioral and Brain Sciences, 1996, 19, 645-64	·6.	0.4	1
295	Evolutionary principles and the emergence of syntax. Behavioral and Brain Sciences, 19	996, 19, 646-647.	0.4	39
296	Autonomy and its discontents. Behavioral and Brain Sciences, 1996, 19, 647-648.		0.4	1
297	A polyglot perspective on dissociation. Behavioral and Brain Sciences, 1996, 19, 648-6	48.	0.4	4
298	Genes, specificity, and the lexical/functional distinction in language acquisition. Behavi Sciences, 1996, 19, 648-649.	oral and Brain	0.4	2
299	Is human language just another neurobiological specialization?. Behavioral and Brain S 19, 649-650.	ciences, 1996,	0.4	1
300	The epigenesis of regional specificity. Behavioral and Brain Sciences, 1996, 19, 650-67	5.	0.4	1
301	Autonomy of syntactic processing and the role of Broca's area. Behavioral and Brain So 19, 634-635.	ciences, 1996,	0.4	6
302	Biology of language: Principle predictions and evidence. Behavioral and Brain Sciences 643-645.	1996, 19,	0.4	1
303	Electrical stimulation of neural tissue to evoke behavioral responses. Journal of Neuros Methods, 1996, 65, 1-17.	cience	1.3	426
304	Neurotrophins and the primate central nervous system: A minireview. Neurochemical F 21, 739-747.	lesearch, 1996,	1.6	16
305	Local circuit neurons in the medial prefrontal cortex (areas 24a,b,c, 25 and 32) in the r Quantitative areal and laminar distributions. Journal of Comparative Neurology, 1996,	nonkey: II. 364, 609-636.	0.9	193
306	Contribution of thalamic input to the specification of cytoarchitectonic cortical fields i primate: Effects of bilateral enucleation in the fetal monkey on the boundaries, dimens gyrification of striate and extrastriate cortex. , 1996, 367, 70-89.	n the ions, and		138
307	Colocalization of calbindin D-28k, calretinin, and GABA immunoreactivities in neurons temporal cortex. , 1996, 369, 472-482.	of the human		89
308	Aspects of the quantitative analysis of neurons in the cerebral cortex. Journal of Neuro Methods, 1996, 70, 201-210.	science	1.3	44
309	Searching for cell assemblies: How many electrodes do I need?. Journal of Computation Neuroscience, 1996, 3, 111-124.	nal	0.6	3
310	Neuronal Clones in the Cerebral Cortex Show Morphological and Neurotransmitter He during Development. Cerebral Cortex, 1996, 6, 490-497.	terogeneity	1.6	25

#	ARTICLE	IF	Citations
311	Area and lamina-specific expression of GABA _A receptor subunit mRNAs in monkey cerebral cortex. Canadian Journal of Physiology and Pharmacology, 1997, 75, 452-469.	0.7	6
312	In search of common foundations for cortical computation. Behavioral and Brain Sciences, 1997, 20, 657-683.	0.4	368
313	Structure of the human sensorimotor system. II: Lateral symmetry. Cerebral Cortex, 1997, 7, 31-47.	1.6	98
314	Neural Networks and Motor Control. Neuroscientist, 1997, 3, 52-60.	2.6	4
315	PATTERNING AND SPECIFICATION OF THE CEREBRAL CORTEX. Annual Review of Neuroscience, 1997, 20, 1-24.	5.0	122
316	Disproportion of cerebral surface areas and volumes in cerebral dysgenesis. MRI-based evidence for connectional abnormalities. Brain, 1997, 120, 271-281.	3.7	44
317	Network Hierarchies in Neural Organization, Development and Pathology. Studies of Nonlinear Phenomena in Life Science, 1997, , 319-363.	0.2	2
318	Gene expression and neuronal activity in schizophrenia: a study of polyadenylated mRNA in the hippocampal formation and cerebral cortex. Schizophrenia Research, 1997, 26, 93-102.	1.1	22
319	Information: In the stimulus or in the context?. Behavioral and Brain Sciences, 1997, 20, 698-700.	0.4	5
320	Is synchronization necessary and is it sufficient?. Behavioral and Brain Sciences, 1997, 20, 683-684.	0.4	23
321	Progress toward an understanding of cortical computation. Behavioral and Brain Sciences, 1997, 20, 703-714.	0.4	28
322	Nonlinear computation and dynamic cognitive generalities. Behavioral and Brain Sciences, 1997, 20, 688-689.	0.4	0
323	Topologic organization of context fields for sensorimotor coordination. Behavioral and Brain Sciences, 1997, 20, 693-693.	0.4	0
324	Information theory: The Holy Grail of cortical computation?. Behavioral and Brain Sciences, 1997, 20, 698-698.	0.4	3
325	On the normalization of coherent contrast and the semantics of synchronization. Behavioral and Brain Sciences, 1997, 20, 697-698.	0.4	0
326	Binding by synchronisation: A task-dependence hypothesis. Behavioral and Brain Sciences, 1997, 20, 685-686.	0.4	1
327	Word recognition in the split brain and PET studies of spatial stimulus-response compatibility support contextual integration. Behavioral and Brain Sciences, 1997, 20, 690-691.	0.4	0
328	Internal context and top-down processing. Behavioral and Brain Sciences, 1997, 20, 691-692.	0.4	1

		CITATION REPO	RT	
#	Article	IF	-	CITATIONS
329	Glossing over too much. Behavioral and Brain Sciences, 1997, 20, 692-692.	0).4	0
330	Serotonin Promotes the Differentiation of Glutamate Neurons in Organotypic Slice Cultures Developing Cerebral Cortex. Journal of Neuroscience, 1997, 17, 7872-7880.	of the 1	.7	74
331	Schizophrenia as a model of context-deficient cortical computation. Behavioral and Brain Scio 1997, 20, 696-697.	ences, 0).4	60
332	Support for grouping-by-synchronization, the context-field, and its mechanisms, but doubt in of information theory by the cortex. Behavioral and Brain Sciences, 1997, 20, 686-687.	the use o).4	0
333	Principles of cortical synchronization. Behavioral and Brain Sciences, 1997, 20, 689-690.	0).4	21
334	Synthesizing synchrony versus dissecting dissonance. Behavioral and Brain Sciences, 1997, 2	0, 700-700. o).4	0
335	Synchronization, binding, multiscale dynamic processing, and neuron sociology. Behavioral a Sciences, 1997, 20, 694-695.	nd Brain o).4	1
336	On the computational basis of synchronized codes. Behavioral and Brain Sciences, 1997, 20,	700-701. o).4	0
337	Do the biological details matter?. Behavioral and Brain Sciences, 1997, 20, 684-685.	0).4	1
338	Local attractor dynamics will introduce further information to synchronous neuronal fields. Behavioral and Brain Sciences, 1997, 20, 701-702.	o).4	4
339	Context dependent feature groups, a proposal for object representation. Behavioral and Brain Sciences, 1997, 20, 702-703.	n o).4	0
340	Synchronizing oscillations: Coding by concurrence and by sequence. Behavioral and Brain Sci 1997, 20, 690-690.	ences, o).4	0
341	Synchronicity and its use in the brain. Behavioral and Brain Sciences, 1997, 20, 695-696.	0).4	7
342	An internal teacher for neural computation. Behavioral and Brain Sciences, 1997, 20, 687-68	3. о).4	0
343	'Tis all in pieces (separate RFs and CFs), all coherence gone. Behavioral and Brain Sciences, 19 693-694.	э97, 20, o).4	0
344	Cell Fate Specification and Symmetrical/Asymmetrical Divisions in the Developing Cerebral Co Journal of Neuroscience, 1997, 17, 2018-2029.	ortex. 1	.7	133
345	Correlated Size Variations in Human Visual Cortex, Lateral Geniculate Nucleus, and Optic Trad Journal of Neuroscience, 1997, 17, 2859-2868.	zt. 1	.7	391
346	Organization of Pyramidal Cell Apical Dendrites and Composition of Dendritic Clusters in the Emphasis on Primary Motor Cortex. European Journal of Neuroscience, 1997, 9, 280-290.	Mouse: 1	.2	30

#	Article	IF	CITATIONS
348	Electrically evoked saccades from the dorsomedial frontal cortex and frontal eye fields: a parametric evaluation reveals differences between areas. Experimental Brain Research, 1997, 117, 369-378.	0.7	62
349	Differential distribution of NAA and NAAG in human brain as determined by quantitative localized proton MRS. , 1997, 10, 73-78.		134
350	The timetable of laminar neurogenesis contributes to the specification of cortical areas in mouse isocortex. , 1997, 385, 95-116.		107
351	Regional differences in synaptogenesis in human cerebral cortex. , 1997, 387, 167-178.		2,445
352	Light microscopic quantification of morphological changes during aging in neurons and glia of the rat parietal cortex. The Anatomical Record, 1997, 247, 420-425.	2.3	49
353	Quantitative microscopic anatomy, illustrated by its potential role in furthering understanding of the processes of structuring the developing human cerebral cortex. Pediatrics International, 1998, 40, 400-418.	0.2	5
354	Evidence for a Postnatal Doubling of Neuron Number in the Developing Human Cerebral Cortex Between 15 Months and 6 Years. Journal of Theoretical Biology, 1998, 191, 115-140.	0.8	55
355	Neuronal and glial localization of GAT-1, a high-affinity ?-aminobutyric acid plasma membrane transporter, in human cerebral cortex: With a note on its distribution in monkey cortex. , 1998, 396, 51-63.		124
356	Regional metabolite concentrations in human brain as determined by quantitative localized proton MRS. Magnetic Resonance in Medicine, 1998, 39, 53-60.	1.9	428
357	Astroglial interlaminar processes in the cerebral cortex of prosimians and Old World monkeys. Anatomy and Embryology, 1998, 197, 369-376.	1.5	24
358	Cajal–Retzius cells and the development of the neocortex. Trends in Neurosciences, 1998, 21, 64-71.	4.2	382
359	Dynamic changes in glucose metabolism by lactate loading as revealed by a positron autoradiography technique using rat living brain slices. Neuroscience Letters, 1998, 249, 155-158.	1.0	17
360	Separate Progenitors for Radial and Tangential Cell Dispersion during Development of the Cerebral Neocortex. Neuron, 1998, 21, 295-304.	3.8	222
361	Cortex: Statistics and Geometry of Neuronal Connectivity. , 1998, , .		639
362	A model of cortical associative memory based on a horizontal network of connected columns. Network: Computation in Neural Systems, 1998, 9, 235-264.	2.2	51
364	Brain size, head size, and intelligence quotient in monozygotic twins. Neurology, 1998, 50, 1246-1252.	1.5	123
365	Neurochemical organization of the primate visual cortex. Handbook of Chemical Neuroanatomy, 1998, 14, 299-430.	0.3	19
366	Single Units and Visual Cortical Organization. Perception, 1998, 27, 889-935.	0.5	343

#	Article	IF	CITATIONS
367	Developmental patterns in the cytoarchitecture of the human cerebral cortex from birth to 6 years examined by correspondence analysis. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 4023-4028.	3.3	79
368	A model of cortical neural network structure. , 0, , .		1
369	Structure of Receptive Fields in Area 3b of Primary Somatosensory Cortex in the Alert Monkey. Journal of Neuroscience, 1998, 18, 2626-2645.	1.7	200
370	Changes in cell-cycle kinetics during the development and evolution of primate neocortex. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 1242-1246.	3.3	276
371	Quantitative In Vivo Measurement of Gyrification in the Human Brain: Changes Associated with Aging. Cerebral Cortex, 1999, 9, 151-160.	1.6	253
372	MAKING BRAIN CONNECTIONS: Neuroanatomy and the Work of TPS Powell, 1923–1996. Annual Review of Neuroscience, 1999, 22, 49-103.	5.0	56
373	Frequency change detection in human auditory cortex. Journal of Computational Neuroscience, 1999, 6, 99-120.	0.6	157
374	Neural control of dexterity: what has been achieved?. Experimental Brain Research, 1999, 128, 6-12.	0.7	64
375	Approximate Doubling of Numbers of Neurons in Postnatal Human Cerebral Cortex and in 35 Specific Cytoarchitectural Areas from Birth to 72 Months. Pediatric and Developmental Pathology, 1999, 2, 244-259.	0.5	47
376	The What and Why of Binding. Neuron, 1999, 24, 95-104.	3.8	432
377	The Binding Problem. Neuron, 1999, 24, 7-9.	3.8	276
378	The Psychophysical Evidence for a Binding Problem in Human Vision. Neuron, 1999, 24, 11-17.	3.8	178
379	The Role of Neural Mechanisms of Attention in Solving the Binding Problem. Neuron, 1999, 24, 19-29.	3.8	325
380	The Temporal Correlation Hypothesis of Visual Feature Integration. Neuron, 1999, 24, 31-47.	3.8	504
381	Neuronal Synchrony: A Versatile Code for the Definition of Relations?. Neuron, 1999, 24, 49-65.	3.8	2,256
382	Synchrony Unbound. Neuron, 1999, 24, 67-77.	3.8	539
383	Specialized Representations in Visual Cortex. Neuron, 1999, 24, 79-85.	3.8	79
384	Are Cortical Models Really Bound by the "Binding Problem�. Neuron, 1999, 24, 87-93.	3.8	160

ARTICLE IF CITATIONS Solutions to the Binding Problem. Neuron, 1999, 24, 105-125. 385 3.8 258 Where the abstract feature maps of the brain might come from. Trends in Neurosciences, 1999, 22, 4.2 135-139. Differential expansion of neural projection systems in primate brain evolution. NeuroReport, 1999, 10, 387 0.6 178 1453-1459. A comparative MRI study of the relationship between neuroanatomical asymmetry and interhemispheric connectivity in primates: Implication for the evolution of functional asymmetries.. Behavioral Neuroscience, 2000, 114, 739-748. 388 Neocortical malformation as consequence of nonadaptive regulation of neuronogenetic sequence., 389 17 2000, 6, 22-33. CYBERCHILD: A database of the microscopic development of the postnatal human cerebral cortex from birth to 72 months. Neurocomputing, 2000, 32-33, 1109-1114. 3.5 Distribution of NADPH-diaphorase cells in visual and somatosensory cortex in four mammalian 391 1.1 25 species. Brain Research, 2000, 864, 163-175. Why is Brain Size so Important:Design Problems and Solutions as Neocortex Gets Biggeror Smaller. 0.6 Brain and Mind, 2000, 1, 7-23. A universal scaling law between gray matter and white matter of cerebral cortex. Proceedings of the 393 3.3 682 National Academy of Sciences of the United States of America, 2000, 97, 5621-5626. 394 The Evolution of Intelligence., 2000, , 216-244. Colocalization of integrin receptors and reelin in dendritic spine postsynaptic densities of adult nonhuman primate cortex. Proceedings of the National Academy of Sciences of the United States of 395 3.3 149 America, 2000, 97, 3550-3555. Non-uniformity of Neocortex: Areal Heterogeneity of NADPH-diaphorase Reactive Neurons in Adult 1.6 Macaque Monkeys. Cerebral Cortex, 2000, 10, 160-174. Taking the Measure of Diversity: Comparative Alternatives to the Model-Animal Paradigm in Cortical 397 0.9 122 Neuroscience. Brain, Behavior and Evolution, 2000, 55, 287-299. Neuronogenesis and the Early Events of Neocortical Histogenesis. Results and Problems in Cell 398 0.2 Differentiation, 2000, 30, 107-143. 399 Eye fields in the frontal lobes of primates. Brain Research Reviews, 2000, 32, 413-448. 262 9.1 Optical recording of spatiotemporal activation of rat somatosensory and visual cortex in vitro. Neuroscience Letters, 2000, 287, 29-32. Glutamate, GABA and Precursor Amino Acids in Adult Mouse Neocortex: Cellular Diversity Revealed by 401 1.6 18 Quantitative Immunocytochemistry. Cerebral Cortex, 2000, 10, 1132-1142. Uniformity, specificity and variability of corticocortical connectivity. Philosophical Transactions of 1.8 the Royal Society B: Biological Sciences, 2000, 355, 7-20.

	CITATION	Report	
#	Article	IF	CITATIONS
403	An Outline of the Role of Brain in Human Cognitive Development. Brain and Cognition, 2001, 45, 44-51.	0.8	28
404	Epilogue: The study of primate brain evolution: where do we go from here?. , 2001, , 305-337.		15
405	The Pyramidal Cell in Cognition: A Comparative Study in Human and Monkey. Journal of Neuroscience, 2001, 21, RC163-RC163.	1.7	286
406	Motion Processing in the Macaque: Revisited with Functional Magnetic Resonance Imaging. Journal of Neuroscience, 2001, 21, 8594-8601.	1.7	99
407	Maturation of channels and receptors: Consequences for excitability. International Review of Neurobiology, 2001, 45, 43-87.	0.9	14
408	Cortical mechanism for the visual guidance of hand grasping movements in the monkey: A reversible inactivation study. Brain, 2001, 124, 571-586.	3.7	364
409	The discovery of cerebral diversity: an unwelcome scientific revolution. , 2001, , 138-164.		44
410	Principles underlying mammalian neocortical scaling. Biological Cybernetics, 2001, 84, 207-215.	0.6	127
411	Theocc1gene is preferentially expressed in the primary visual cortex in an activity-dependent manner: a pattern of gene expression related to the cytoarchitectonic area in adult macaque neocortex. European Journal of Neuroscience, 2001, 13, 297-307.	1.2	60
412	Accelerated nervous system development contributes to behavioral efficiency in the laboratory mouse: A behavioral review and theoretical proposal. Developmental Psychobiology, 2001, 39, 151-170.	0.9	98
413	An evolutionary scaling law for the primate visual system and its basis in cortical function. Nature, 2001, 411, 193-195.	13.7	109
414	Interocular rivalry revealed in the human cortical blind-spot representation. Nature, 2001, 411, 195-199.	13.7	411
415	Chapter 6 The origin and migration of cortical neurons. Progress in Brain Research, 2002, 136, 73-80.	0.9	32
416	Unique Morphological Features of the Proliferative Zones and Postmitotic Compartments of the Neural Epithelium Giving Rise to Striate and Extrastriate Cortex in the Monkey. Cerebral Cortex, 2002, 12, 37-53.	1.6	587
417	Population Dynamics During Cell Proliferation and Neuronogenesis in the Developing Murine Neocortex. Results and Problems in Cell Differentiation, 2002, 39, 1-25.	0.2	59
418	The Pyramidal Cell of the Sensorimotor Cortex of the Macaque Monkey: Phenotypic Variation. Cerebral Cortex, 2002, 12, 1071-1078.	1.6	80
419	A Theory of Sulcal-Gap Signalization. Perceptual and Motor Skills, 2002, 95, 375-406.	0.6	0
420	Contribution of GABAergic Inhibition to Receptive Field Structures of Monkey Inferior Temporal Neurons. Cerebral Cortex, 2002, 12, 62-74.	1.6	27

#	Article	IF	CITATIONS
421	Rearrangement of receptive field topography after intracortical and peripheral stimulation: the role of plasticity in inhibitory pathways. Network: Computation in Neural Systems, 2002, 13, 1-40.	2.2	8
422	Predicting Functional Properties of Visual Cortex from an Evolutionary Scaling Law. Neuron, 2002, 36, 139-142.	3.8	18
423	The minicolumn hypothesis in neuroscience. Brain, 2002, 125, 935-951.	3.7	420
424	Interhemispheric Sleep EEG Asymmetry in the Rat is Enhanced by Sleep Deprivation. Journal of Neurophysiology, 2002, 88, 2280-2286.	0.9	69
425	Functional architecture of auditory cortex. Current Opinion in Neurobiology, 2002, 12, 433-440.	2.0	143
426	Size distribution of retrovirally marked lineages matches prediction from population measurements of cell cycle behavior. Journal of Neuroscience Research, 2002, 69, 731-744.	1.3	58
427	Scaling of Differentiation in Networks: Nervous Systems, Organisms, Ant Colonies, Ecosystems, Businesses, Universities, Cities, Electronic Circuits, and Legos. Journal of Theoretical Biology, 2002, 218, 215-237.	0.8	20
428	Differential effects of laminar stimulation of V1 cortex on target selection by macaque monkeys. European Journal of Neuroscience, 2002, 16, 751-760.	1.2	43
429	Unique Profile of Spreading Depression in a Primate Model. Journal of Cerebral Blood Flow and Metabolism, 2002, 22, 835-842.	2.4	23
430	The anatomical basis of functional localization in the cortex. Nature Reviews Neuroscience, 2002, 3, 606-616.	4.9	956
431	Chance or design? Some specific considerations concerning synaptic boutons in cat visual cortex. Journal of Neurocytology, 2002, 31, 211-229.	1.6	43
432	Microstructure of the neocortex: comparative aspects. Journal of Neurocytology, 2002, 31, 299-316.	1.6	574
433	Cortical heterogeneity: implications for visual processing and polysensory integration. Journal of Neurocytology, 2002, 31, 317-335.	1.6	120
434	The Effects of Prolonged Intracortical Microstimulation on the Excitability of Pyramidal Tract Neurons in the Cat. Annals of Biomedical Engineering, 2002, 30, 107-119.	1.3	63
435	Computational constraints that may have favoured the lamination of sensory cortex. Journal of Computational Neuroscience, 2003, 14, 271-282.	0.6	25
436	How Does Connectivity Between Cortical Areas Depend on Brain Size? Implications for Efficient Computation. Journal of Computational Neuroscience, 2003, 15, 347-356.	0.6	42
437	Modeling receptive fields with non-negative sparse coding. Neurocomputing, 2003, 52-54, 547-552.	3.5	83
438	The Cost of Cortical Computation. Current Biology, 2003, 13, 493-497.	1.8	844

#	Article	IF	CITATIONS
439	Behavioural state affects saccadic eye movements evoked by microstimulation of striate cortex. European Journal of Neuroscience, 2003, 18, 969-979.	1.2	17
440	Light-induced Egr-1 expression in the striate cortex of the opossum. Brain Research Bulletin, 2003, 61, 139-146.	1.4	12
441	The neuroscience of recovery and rehabilitation: What have we learned from animal research?. Archives of Physical Medicine and Rehabilitation, 2003, 84, 604-612.	0.5	36
442	Cortical Magnification within Human Primary Visual Cortex Correlates with Acuity Thresholds. Neuron, 2003, 38, 659-671.	3.8	339
443	Cortex, Cognition and the Cell: New Insights into the Pyramidal Neuron and Prefrontal Function. Cerebral Cortex, 2003, 13, 1124-1138.	1.6	368
444	A survey of recent developments in theoretical neuroscience and machine vision. , 0, , .		2
445	The evolutionary origin of the mammalian isocortex: Towards an integrated developmental and functional approach. Behavioral and Brain Sciences, 2003, 26, 535-552.	0.4	142
446	Modular organization of directionally tuned cells in the motor cortex: Is there a short-range order?. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12474-12479.	3.3	72
447	Columnar Transformations in Auditory Cortex? A Comparison to Visual and Somatosensory Cortices. Cerebral Cortex, 2003, 13, 83-89.	1.6	130
448	Computational Models for Neuroscience. , 2003, , .		8
448 449	Computational Models for Neuroscience. , 2003, , . Is the Human Brain Unique?. , 0, , 29-42.		8
		1.6	
449	Is the Human Brain Unique?. , 0, , 29-42.	1.6 0.4	1
449 450	Is the Human Brain Unique?., 0, , 29-42. Hemispheric Surface Area: Sex, Laterality and Age Effects. Cerebral Cortex, 2003, 13, 364-370. Paleoecology and the overlap of homeotic genes for isocortex evolution. Behavioral and Brain		1 21
449 450 451	Is the Human Brain Unique?., 0, , 29-42. Hemispheric Surface Area: Sex, Laterality and Age Effects. Cerebral Cortex, 2003, 13, 364-370. Paleoecology and the overlap of homeotic genes for isocortex evolution. Behavioral and Brain Sciences, 2003, 26, 555-556.	0.4	1 21 1
449 450 451 452	Is the Human Brain Unique?. , 0, , 29-42. Hemispheric Surface Area: Sex, Laterality and Age Effects. Cerebral Cortex, 2003, 13, 364-370. Paleoecology and the overlap of homeotic genes for isocortex evolution. Behavioral and Brain Sciences, 2003, 26, 555-556. Reptilian cortex and mammalian neocortex early developmental homologies. Behavioral and Brain Sciences, 2003, 26, 560-561. Relevance of medial and dorsal cortex function to the dorsalization hypothesis. Behavioral and Brain	0.4	1 21 1 0
449 450 451 452 453	Is the Human Brain Unique?., 0, , 29-42. Hemispheric Surface Area: Sex, Laterality and Age Effects. Cerebral Cortex, 2003, 13, 364-370. Paleoecology and the overlap of homeotic genes for isocortex evolution. Behavioral and Brain Sciences, 2003, 26, 555-556. Reptilian cortex and mammalian neocortex early developmental homologies. Behavioral and Brain Sciences, 2003, 26, 560-561. Relevance of medial and dorsal cortex function to the dorsalization hypothesis. Behavioral and Brain Sciences, 2003, 26, 566-567. Conserved functional organization of the amniote telencephalic pallium. Behavioral and Brain	0.4 0.4 0.4	1 21 1 0 4

		CITATION REPORT	
#	Article	IF	CITATIONS
457	The use and abuse of developmental data. Behavioral and Brain Sciences, 2003, 26, 565-566.	0.4	8
458	Avian and mammalian hippocampus: No degrees of freedom in evolution of function. Behavio Brain Sciences, 2003, 26, 554-555.	ral and 0.4	3
459	The data do not support the hypothesis. Behavioral and Brain Sciences, 2003, 26, 567-568.	0.4	0
460	The third alternative: Duplication of collopallium in isocortical evolution. Behavioral and Brain Sciences, 2003, 26, 553-554.	0.4	0
461	Mesozoic mammals and early mammalian brain diversity. Behavioral and Brain Sciences, 2003 556-557.	, 26, 0.4	3
462	Toward the answer, but still far to go. Behavioral and Brain Sciences, 2003, 26, 569-570.	0.4	Ο
463	Reshuffling or inventing prosomeres: Expensive radiation or expensive neural tissue?. Behavior Brain Sciences, 2003, 26, 564-565.	ral and 0.4	0
464	An interdisciplinary approach to brain evolution: A long due debate. Behavioral and Brain Scier 2003, 26, 572-576.	nces, 0.4	1
465	More dorsal cortex, yes, but what flavor?. Behavioral and Brain Sciences, 2003, 26, 571-572.	0.4	0
466	Occam's razor and the collothalamic projection. Behavioral and Brain Sciences, 2003, 26, 558	3-559. 0.4	2
467	Cortical evolution: No expansion without organization. Behavioral and Brain Sciences, 2003, 2 570-571.	26, 0.4	0
468	The dorsal thalamic connection in the origin of the isocortex. Behavioral and Brain Sciences, 2 557-558.	003, 26, 0.4	1
469	Histogenetic divisions, developmental mechanisms, and cortical evolution. Behavioral and Bra Sciences, 2003, 26, 563-564.	in 0.4	1
470	The evolution of neural dynamics permitting isocortical-limbic-motor communication. Behavio Brain Sciences, 2003, 26, 559-560.	oral and 0.4	2
471	The origin of the amniote sensory and motor cortices. Behavioral and Brain Sciences, 2003, 26	6, 561-563. 0.4	4
472	Quality of Life Philosophy IV. The Brain and Consciousness. Scientific World Journal, The, 2003 1199-1209.	3, 3, 0.8	48
473	Visual System. , 2004, , 1083-1165.		23
474	Efecto de la infección por el virus de la rabia sobre la expresión de parvoalbúmina, calbindir calretinina en la corteza cerebral de ratones Biomedica, 2004, 24, 63.	па у 0.3	11

		CITATION REPORT		
#	Article		IF	Citations
475	Neural Phase Transitions That Made Us Mammals. Lecture Notes in Computer Science	, 2004, , 55-70.	1.0	4
476	A Study of Pyramidal Cell Structure in the Cingulate Cortex of the Macaque Monkey w Notes on Inferotemporal and Primary Visual Cortex. Cerebral Cortex, 2004, 15, 64-73.	ith Comparative	1.6	83
477	Similar Synapse Density in Layer IV Columns of the Primary Somatosensory Cortex of Twith Different Brain Size: Implications for Mechanisms Underlying the Differential Alloc Cortical Space. Brain, Behavior and Evolution, 2004, 64, 61-69.		0.9	8
478	Brain Evolution. , 2004, , 3-21.			66
479	Derivation and Analysis of Basic Computational Operations of Thalamocortical Circuits Cognitive Neuroscience, 2004, 16, 856-877.	s. Journal of	1.1	64
480	Microstimulation of V1 delays the execution of visually guided saccades. European Jou Neuroscience, 2004, 20, 264-272.	rnal of	1.2	42
481	Microstimulation of V1 input layers disrupts the selection and detection of visual targe European Journal of Neuroscience, 2004, 20, 1674-1680.	ets by monkeys.	1.2	12
482	Whisker movements evoked by stimulation of single pyramidal cells in rat motor corte 427, 704-710.	x. Nature, 2004,	13.7	319
483	The role of cell death during neocortical neurogenesis and synaptogenesis: implicatior computational model for the rat and mouse. Developmental Brain Research, 2004, 15	ıs from a 1, 43-54.	2.1	31
484	Scaling Self-Organizing Maps to Model Large Cortical Networks. Neuroinformatics, 20	04, 2, 275-302.	1.5	21
485	Neurons of Layer I and Their Significance in the Embryogenesis of the Neocortex. Neur Behavioral Physiology, 2004, 34, 49-66.	oscience and	0.2	3
486	Receptive field scatter, topography and map variability in different layers of the hindpa representation of rat somatosensory cortex. Experimental Brain Research, 2004, 155,		0.7	9
487	Cortex, Countercurrent Context, and Dimensional Integration of Lifetime Memory. Co 559-576.	rtex, 2004, 40,	1.1	65
488	A method for measuring cerebral blood volume of mouse using multiphoton laser scar microscopy. , 2004, 5463, 1.	ining		3
489	Towards Cortex Sized Artificial Nervous Systems. Lecture Notes in Computer Science,	2004, , 959-966.	1.0	3
490	Phosphene Induction and the Generation of Saccadic Eye Movements by Striate Corte Neurophysiology, 2005, 93, 1-19.	x. Journal of	0.9	78
491	Delaying visually guided saccades by microstimulation of macaque V1: spatial properti fields. European Journal of Neuroscience, 2005, 22, 2635-2643.	es of delay	1.2	19
492	Comparative analysis of cortical layering and supragranular layer enlargement in roder and primate species. Brain Research, 2005, 1052, 71-81.	it carnivore	1.1	120

#	Article	IF	CITATIONS
493	Sustained attention and apical dendrite activity in recurrent circuits. Brain Research Reviews, 2005, 50, 86-99.	9.1	37
494	Four correlates of complex behavioral networks: Differentiation, behavior, connectivity, and compartmentalization: Carving networks at their joints. Complexity, 2005, 10, 13-40.	0.9	8
495	Mammalian sleep. Die Naturwissenschaften, 2005, 92, 203-220.	0.6	12
496	Microstimulation of V1 affects the detection of visual targets: manipulation of target contrast. Experimental Brain Research, 2005, 165, 305-314.	0.7	13
497	Developmental mechanics of the primate cerebral cortex. Anatomy and Embryology, 2005, 210, 411-417.	1.5	174
498	Principles Governing Auditory Cortex Connections. Cerebral Cortex, 2005, 15, 1804-1814.	1.6	83
499	Peripheral variability and central constancy in mammalian visual system evolution. Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 91-100.	1.2	73
500	Modeling the Effects of Transcranial Magnetic Stimulation on Cortical Circuits. Journal of Neurophysiology, 2005, 94, 622-639.	0.9	189
501	Plasticity and Reorganization of the Uninjured Brain. Topics in Stroke Rehabilitation, 2005, 12, 1-10.	1.0	30
502	Depolarisation Phenomena in Traumatic and Ischaemic Brain Injury. Advances and Technical Standards in Neurosurgery, 2005, 30, 3-49.	0.2	57
503	Corticocortical and thalamocortical information flow in the primate visual system. Progress in Brain Research, 2005, 149, 173-185.	0.9	88
504	Renewal of the Neurophysiology of Language: Functional Neuroimaging. Physiological Reviews, 2005, 85, 49-95.	13.1	364
505	Involvement of gap junctions in the development of the neocortex. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1719, 59-68.	1.4	77
506	G1 Phase Regulation, Area-Specific Cell Cycle Control, and Cytoarchitectonics in the Primate Cortex. Neuron, 2005, 47, 353-364.	3.8	301
507	Course 13 Of the evolution of the brain. Les Houches Summer School Proceedings, 2005, , 641-689.	0.2	0
508	Frontal latching networks: a possible neural basis for infinite recursion. Cognitive Neuropsychology, 2005, 22, 276-291.	0.4	107
509	The cortical column: a structure without a function. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360, 837-862.	1.8	465
510	Regional Specialization in Pyramidal Cell Structure in the Visual Cortex of the Galago: An Intracellular Injection Study of Striate and Extrastriate Areas with Comparative Notes on New World and Old World Monkeys. Brain, Behavior and Evolution, 2005, 66, 10-21.	0.9	27

#	Article	IF	CITATIONS
511	Human cerebral cortex: A system for the integration of volume- and surface-based representations. NeuroImage, 2006, 33, 139-153.	2.1	66
512	Quantitative Aspects of Corticocortical Connections: A Tracer Study in the Mouse. Cerebral Cortex, 2006, 16, 1474-1486.	1.6	46
513	Cellular scaling rules for rodent brains. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 12138-12143.	3.3	413
514	Progress in Clinical Neurosciences: Stroke Recovery and Rehabilitation. Canadian Journal of Neurological Sciences, 2006, 33, 357-364.	0.3	48
515	Comparative aspects of cerebral cortical development. European Journal of Neuroscience, 2006, 23, 921-934.	1.2	237
516	Gene expression profiling of primate neocortex: molecular neuroanatomy of cortical areas. Genes, Brain and Behavior, 2006, 5, 38-43.	1.1	12
517	Quantitative MRI: a reliable protocol for measurement of cerebral gyrification using stereology. Magnetic Resonance Imaging, 2006, 24, 265-272.	1.0	28
518	Minicolumnar abnormalities in autism. Acta Neuropathologica, 2006, 112, 287-303.	3.9	434
519	Apical dendrite activity in cognition and consciousness. Consciousness and Cognition, 2006, 15, 235-257.	0.8	21
520	Attractor neural networks with patchy connectivity. Neurocomputing, 2006, 69, 627-633.	3.5	11
521	Primate brain evolution: Integrating comparative, neurophysiological, and ethological data. Evolutionary Anthropology, 2006, 15, 224-236.	1.7	150
522	A Temporal Continuity to the Vertical Organization of the Human Neocortex. Cerebral Cortex, 2006, 17, 130-137.	1.6	28
523	Abnormal Cortical Development after Premature Birth Shown by Altered Allometric Scaling of Brain Growth. PLoS Medicine, 2006, 3, e265.	3.9	348
524	Role of Mechanical Factors in the Morphology of the Primate Cerebral Cortex. PLoS Computational Biology, 2006, 2, e22.	1.5	271
525	The Concerted Modulation of Proliferation and Migration Contributes to the Specification of the Cytoarchitecture and Dimensions of Cortical Areas. Cerebral Cortex, 2006, 16, i26-i34.	1.6	45
526	Dendritic Size of Pyramidal Neurons Differs among Mouse Cortical Regions. Cerebral Cortex, 2006, 16, 990-1001.	1.6	102
527	Activity-dependent Expression of occ1 in Excitatory Neurons Is a Characteristic Feature of the Primate Visual Cortex. Cerebral Cortex, 2006, 16, 929-940.	1.6	30
528	Computational Models of Neocortical Neuronogenesis and Programmed Cell Death in the Developing Mouse, Monkey, and Human. Cerebral Cortex, 2007, 17, 2433-2442.	1.6	48

#	Article	IF	CITATIONS
529	Cellular scaling rules for primate brains. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3562-3567.	3.3	323
531	Scaling of Inhibitory Interneurons in Areas V1 and V2 of Anthropoid Primates as Revealed by Calcium-Binding Protein Immunohistochemistry. Brain, Behavior and Evolution, 2007, 69, 176-195.	0.9	67
532	Mapping the Matrix: The Ways of Neocortex. Neuron, 2007, 56, 226-238.	3.8	300
533	The cognitive auditory cortex: Task-specificity of stimulus representations. Hearing Research, 2007, 229, 213-224.	0.9	90
534	Anisotropy in the visual cortex investigated by neuronavigated transcranial magnetic stimulation. NeuroImage, 2007, 36, 313-321.	2.1	59
535	Specializations of the Cortical Microstructure of Humans. , 2007, , 167-190.		8
536	What Fossils Tell Us about the Evolution of the Neocortex. , 2007, , 1-12.		11
537	The Origin of Neocortex: Lessons from Comparative Embryology. , 2007, , 13-26.		10
538	Scaling the Brain and Its Connections. , 2007, , 167-180.		15
539	The Evolution of Neuron Types and Cortical Histology in Apes and Humans. , 2007, , 355-378.		19
540	Human Development XI: The Structure of the Cerebral Cortex. Are There Really Modules in the Brain?. Scientific World Journal, The, 2007, 7, 1922-1929.	0.8	11
541	What Delay Fields Tell Us About Striate Cortex. Journal of Neurophysiology, 2007, 98, 559-576.	0.9	18
542	To every man his own language: Are we all Darwin's children?. Nature Precedings, 2007, , .	0.1	0
543	Towards cortex sized artificial neural systems. Neural Networks, 2007, 20, 48-61.	3.3	101
544	The apical dendrite theory of consciousness. Neural Networks, 2007, 20, 1004-1020.	3.3	23
545	Cell-cycle control and cortical development. Nature Reviews Neuroscience, 2007, 8, 438-450.	4.9	586
546	Cerebral Cortical Gyrification: A Preliminary Investigation in Temporal Lobe Epilepsy. Epilepsia, 2007, 48, 211-219.	2.6	27
547	Comparative aspects of cortical neurogenesis in vertebrates. Journal of Anatomy, 2007, 211, 164-176.	0.9	128

		CITATION RE	PORT	
#	Article		IF	CITATIONS
548	Mapping Human Whole-Brain Structural Networks with Diffusion MRI. PLoS ONE, 2007, 2	2, e597.	1.1	707
549	Differential dynamics of transient neuronal assemblies in visual compared to auditory cor Experimental Brain Research, 2007, 182, 491-498.	tex.	0.7	12
550	1H-MRS of the macaque monkey primary visual cortex at 7 T: strategies and pitfalls of shi brain surface. Magnetic Resonance Imaging, 2007, 25, 902-912.	mming at the	1.0	11
551	Relation of frontal eye field activity to saccade initiation during a countermanding task. E Brain Research, 2008, 190, 135-151.	xperimental	0.7	71
552	The scalable mammalian brain: emergent distributions of glia and neurons. Biological Cyb 2008, 98, 439-445.	ernetics,	0.6	7
553	What we can do and what we cannot do with fMRI. Nature, 2008, 453, 869-878.		13.7	2,912
554	A neuroanatomically grounded Hebbianâ€learning model of attention–language intera human brain. European Journal of Neuroscience, 2008, 27, 492-513.	ctions in the	1.2	116
555	Crowding: a cortical constraint on object recognition. Current Opinion in Neurobiology, 2 445-451.	.008, 18,	2.0	243
556	Telencephalon: Neocortex. , 2008, , 491-679.			7
557	2074v Alpha1-Beta1 and Alpha6-Beta1-Integrin. , 2008, , 1-1.			0
559	Cortical Thickness Abnormalities in Cocaine Addiction—A Reflection of Both Drug Use a Pre-existing Disposition to Drug Abuse?. Neuron, 2008, 60, 174-188.	nd a	3.8	150
560	Role of Intermediate Progenitor Cells in Cerebral Cortex Development. Developmental Ne 2008, 30, 24-32.	uroscience,	1.0	335
561	Evolution of cortical neurogenesis. Brain Research Bulletin, 2008, 75, 398-404.		1.4	59
562	Confusing cortical columns. Proceedings of the National Academy of Sciences of the Unit America, 2008, 105, 12099-12100.	ted States of	3.3	128
563	Visual Prosthesis. Perception, 2008, 37, 1529-1559.		0.5	75
564	The basic nonuniformity of the cerebral cortex. Proceedings of the National Academy of S the United States of America, 2008, 105, 12593-12598.	ciences of	3.3	137
565	Functional Trade-Offs in White Matter Axonal Scaling. Journal of Neuroscience, 2008, 28,	4047-4056.	1.7	239
566	Making bigger brains–the evolution of neural-progenitor-cell division. Journal of Cell Sc 121, 2783-2793.	ence, 2008,	1.2	250

		CITATION REPORT		
#	Article		IF	CITATIONS
567	Neurophysiological examination methods: electrophysiology and neuroimaging. , 2008	,, 19-38.		0
568	Analysis of Area-Specific Expression Patterns of RORbeta, ER81 and Nurr1 mRNAs in Ra Double In Situ Hybridization and Cortical Box Method. PLoS ONE, 2008, 3, e3266.	it Neocortex by	1.1	32
569	Brain Scaling Laws. , 2009, , 401-406.			2
570	Forced G1-phase reduction alters mode of division, neuron number, and laminar pheno cerebral cortex. Proceedings of the National Academy of Sciences of the United States 2009, 106, 21924-21929.	type in the of America,	3.3	215
571	The Origins of Cortical Interneurons: Mouse versus Monkey and Human. Cerebral Cort 1953-1956.	ex, 2009, 19,	1.6	88
572	The Relation between Connection Length and Degree of Connectivity in Young Adults: Cerebral Cortex, 2009, 19, 554-562.	A DTI Analysis.	1.6	44
573	On the Origin of Event-Related Potentials Indexing Covert Attentional Selection During Journal of Neurophysiology, 2009, 102, 2375-2386.	y Visual Search.	0.9	58
574	Interlaminar Differences of Intrinsic Properties of Pyramidal Neurons in the Auditory Co Cerebral Cortex, 2009, 19, 1008-1018.	ortex of Mice.	1.6	20
575	New perspectives of information transformation through the auditory cortical layers. P of the National Academy of Sciences of the United States of America, 2009, 106, 2146	roceedings 53-21464.	3.3	2
576	Multisensory visual–tactile object related network in humans: insights gained using crossmodal adaptation approach. Experimental Brain Research, 2009, 198, 165-182.	a novel	0.7	101
577	Metabolic and Hemodynamic Events after Changes in Neuronal Activity: Current Hypot Theoretical Predictions and <i>in vivo</i> NMR Experimental Findings. Journal of Cerebra and Metabolism, 2009, 29, 441-463.	:heses, al Blood Flow	2.4	143
578	Evolution of the neocortex: a perspective from developmental biology. Nature Reviews 2009, 10, 724-735.	Neuroscience,	4.9	1,289
579	Depthâ€dependent detection of microampere currents delivered to monkey V1. Europ Neuroscience, 2009, 29, 1477-1489.	ean Journal of	1.2	50
580	Morphometric variability of minicolumns in the striate cortex of <i>Homo sapiens</i> , mulatta, and <i> Pan troglodytes</i> . Journal of Anatomy, 2009, 214, 226-234.	<i>Macaca</i>	0.9	31
581	Neural activity-induced modulation of BOLD poststimulus undershoot independent of signal. Magnetic Resonance Imaging, 2009, 27, 1030-1038.	the positive	1.0	37
582	Automated three-dimensional detection and counting of neuron somata. Journal of Ne Methods, 2009, 180, 147-160.	uroscience	1.3	53
583	Visual perception and imagery: A new molecular hypothesis. BioSystems, 2009, 96, 17	8-184.	0.9	23
584	Sex differences in parietal lobe morphology: Relationship to mental rotation performar Cognition, 2009, 69, 451-459.	ice. Brain and	0.8	144

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
585	Microstimulation of visual cortex to restore vision. Progress in Brain Research, 2009, 1	75, 347-375.	0.9	58
586	Cortex and Memory: Emergence of a New Paradigm. Journal of Cognitive Neuroscience 2047-2072.	2, 2009, 21,	1.1	499
587	Multi-voxel Magnetic Resonance Spectroscopy of Cerebral Metabolites in Healthy Adu Academic Radiology, 2009, 16, 1493-1501.	ts at 3 Tesla.	1.3	14
588	A comparative perspective on minicolumns and inhibitory GABAergic interneurons in the Frontiers in Neuroanatomy, 2010, 4, 3.	ne neocortex.	0.9	43
589	Insular cortex thinning in first episode schizophrenia patients. Psychiatry Research - Ne 2010, 182, 216-222.	uroimaging,	0.9	25
590	Psychophysical channels and ERP population responses in human visual cortex: Area su across chromatic and achromatic pathways. Vision Research, 2010, 50, 1283-1291.	immation	0.7	5
591	Molecular analysis of neocortical layer structure in the ferret. Journal of Comparative N 2010, 518, 3272-3289.	eurology,	0.9	46
592	Implications on visual apperception: Energy, duration, structure and synchronization. E 2010, 101, 1-9.	BioSystems,	0.9	11
593	The Subventricular Zone Is the Developmental Milestone of a 6-Layered Neocortex: Co Metatherian and Eutherian Mammals. Cerebral Cortex, 2010, 20, 1071-1081.	mparisons in	1.6	101
594	Cell-Mediated Neuroprotection in a Mouse Model of Human Tauopathy. Journal of Neu 30, 9973-9983.	roscience, 2010,	1.7	106
596	Neuron densities vary across and within cortical areas in primates. Proceedings of the Academy of Sciences of the United States of America, 2010, 107, 15927-15932.	National	3.3	333
597	Comparative Cytoarchitectural Analyses of Striate and Extrastriate Areas in Hominoids Cortex, 2010, 20, 966-981.	. Cerebral	1.6	59
598	Observed network dynamics from altering the balance between excitatory and inhibitc cultured networks. Physical Review E, 2010, 82, 031907.	ory neurons in	0.8	39
599	Prenatal Development of the Human Fetal Telencephalon. Medical Radiology, 2010, , 8	1-146.	0.0	2
600	An Axonal Perspective on Cortical Circuits. , 2010, , 117-139.			7
601	Automatic segmentation of neonatal images using convex optimization and coupled le NeuroImage, 2011, 58, 805-817.	evel sets.	2.1	120
602	Stereology of the Neocortex in Odontocetes: Qualitative, Quantitative, and Functional Brain, Behavior and Evolution, 2011, 77, 79-90.	Implications.	0.9	26
603	Neuronal plasticity and thalamocortical sleep and waking oscillations. Progress in Brair 2011, 193, 121-144.	n Research,	0.9	40

#	Article	IF	CITATIONS
605	Sex-specific variation of MRI-based cortical morphometry in adult healthy volunteers: The effect on cognitive functioning. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2011, 35, 616-623.	2.5	19
606	The Evolution of the Brain, the Human Nature of Cortical Circuits, and Intellectual Creativity. Frontiers in Neuroanatomy, 2011, 5, 29.	0.9	381
607	Brains matter, bodies maybe not: the case for examining neuron numbers irrespective of body size. Annals of the New York Academy of Sciences, 2011, 1225, 191-199.	1.8	86
608	Variability in Neuron Densities across the Cortical Sheet in Primates. Brain, Behavior and Evolution, 2011, 78, 37-50.	0.9	28
609	Increased gray matter volume of left pars opercularis in male orchestral musicians correlate positively with years of musical performance. Journal of Magnetic Resonance Imaging, 2011, 33, 24-32.	1.9	37
610	Cross-modal Interactions during Perception of Audiovisual Speech and Nonspeech Signals: An fMRI Study. Journal of Cognitive Neuroscience, 2011, 23, 221-237.	1.1	35
611	The need for research on human brain development. Brain, 2011, 134, 2177-2185.	3.7	4
612	Global and regional cortical thinning in first-episode psychosis patients: relationships with clinical and cognitive features. Psychological Medicine, 2011, 41, 1449-1460.	2.7	72
613	Cerebral cortical development in rodents and primates. Progress in Brain Research, 2012, 195, 45-70.	0.9	107
614	Association of common genetic variants in GPCPD1 with scaling of visual cortical surface area in humans. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3985-3990.	3.3	50
615	The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10661-10668.	3.3	480
616	Voxel Scale Complex Networks of Functional Connectivity in the Rat Brain: Neurochemical State Dependence of Global and Local Topological Properties. Computational and Mathematical Methods in Medicine, 2012, 2012, 1-15.	0.7	6
618	Systematic, balancing gradients in neuron density and number across the primate isocortex. Frontiers in Neuroanatomy, 2012, 6, 28.	0.9	101
619	Brain Evolution. , 2012, , 2-13.		6
620	Visual System. , 2012, , 1301-1327.		8
621	Positive selection on <i><scp>NIN</scp></i> , a gene involved in neurogenesis, and primate brain evolution. Genes, Brain and Behavior, 2012, 11, 903-910.	1.1	16
622	Neuronal scaling rules for primate brains. Progress in Brain Research, 2012, 195, 325-340.	0.9	72
623	How Does the Brain Solve Visual Object Recognition?. Neuron, 2012, 73, 415-434.	3.8	1,390

# 624	ARTICLE Morphometric variability of nicotinamide adenine dinucleotide phosphate diaphorase neurons in the primary sensory areas of the rat. Neuroscience, 2012, 205, 140-153.	IF 1.1	Citations 26
625	Mapping genetic and environmental influences on cortical surface area of pediatric twins. Neuroscience, 2012, 220, 169-178.	1.1	13
626	Monkey to human comparative anatomy of the frontal lobe association tracts. Cortex, 2012, 48, 82-96.	1.1	546
627	Neocortex. , 2012, , 52-111.		35
628	Feedback between node and network dynamics can produce real-world network properties. Physica A: Statistical Mechanics and Its Applications, 2012, 391, 6645-6654.	1.2	8
629	Functional impact of interneuronal inhibition in the cerebral cortex of behaving animals. Progress in Neurobiology, 2012, 99, 163-178.	2.8	53
630	The Theory of Evolution and Its Impact. , 2012, , .		3
631	4D Multi-Modality Tissue Segmentation of Serial Infant Images. PLoS ONE, 2012, 7, e44596.	1.1	67
632	How the Cortex Gets Its Folds: An Inside-Out, Connectivity-Driven Model for the Scaling of Mammalian Cortical Folding. Frontiers in Neuroanatomy, 2012, 6, 3.	0.9	71
633	Clonally related visual cortical neurons show similar stimulus feature selectivity. Nature, 2012, 486, 118-121.	13.7	208
634	Cytoarchitecture, areas, and neuron numbers of the Etruscan Shrew cortex. Journal of Comparative Neurology, 2012, 520, 2512-2530.	0.9	30
635	On reverse engineering in the cognitive and brain sciences. Natural Computing, 2012, 11, 141-150.	1.8	3
636	How many neurons do you have? Some dogmas of quantitative neuroscience under revision. European Journal of Neuroscience, 2012, 35, 1-9.	1.2	150
637	Faster scaling of visual neurons in cortical areas relative to subcortical structures in non-human primate brains. Brain Structure and Function, 2013, 218, 805-816.	1.2	32
638	The Long Evolution of Brains and Minds. , 2013, , .		34
639	Scaling of Topologically Similar Functional Modules Defines Mouse Primary Auditory and Somatosensory Microcircuitry. Journal of Neuroscience, 2013, 33, 14048-14060.	1.7	42
640	Sparse coding of harmonic vocalization in monkey auditory cortex. Neurocomputing, 2013, 103, 14-21.	3.5	8
641	Interpolating destin features for image classification. , 2013, , .		1

		CITATION REPORT		
#	Article		IF	Citations
642	Non-uniformity of cell density and networks in the monkey brain. Scientific Reports, 2013,	3, 2541.	1.6	10
643	Topographic Representation of Numerosity in the Human Parietal Cortex. Science, 2013, 34	41, 1123-1126.	6.0	425
644	The cognitive significance of resonating neurons in the cerebral cortex. Consciousness and Cognition, 2013, 22, 1523-1550.		0.8	7
645	New insights into differences in brain organization between Neanderthals and anatomically humans. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20130168.	modern	1.2	156
646	Alterations of neocortical development and maturation in autism: Insight from valproic acid exposure and animal models of autism. Neurotoxicology and Teratology, 2013, 36, 57-66.	I	1.2	45
647	The Convergence of Maturational Change and Structural Covariance in Human Cortical Net Journal of Neuroscience, 2013, 33, 2889-2899.	works.	1.7	417
648	Two-photon imaging and the activation of cortical neurons. Neuroscience, 2013, 245, 12-2	5.	1.1	36
649	Layer-specific BOLD activation in awake monkey V1 revealed by ultra-high spatial resolutior magnetic resonance imaging. NeuroImage, 2013, 64, 147-155.	functional	2.1	55
650	Structural uniformity of neocortex, revisited. Proceedings of the National Academy of Scien the United States of America, 2013, 110, 1488-1493.	ces of	3.3	103
651	Cortical Columns. , 2013, , 109-129.			12
652	Cellular organization of cortical barrel columns is whisker-specific. Proceedings of the Natio Academy of Sciences of the United States of America, 2013, 110, 19113-19118.	nal	3.3	83
653	Theoretical Implications on Visual (Color) Representation and Cytochrome Oxidase Blobs. A Nervosa Superior, 2013, 55, 15-37.	Activitas	0.4	6
654	Optical imaging of cortical networks via intracortical microstimulation. Journal of Neurophysiology, 2013, 110, 2670-2678.		0.9	36
655	Cell and neuron densities in the primary motor cortex of primates. Frontiers in Neural Circui 7, 30.	its, 2013,	1.4	58
656	4D Segmentation of Brain MR Images with Constrained Cortical Thickness Variation. PLoS (e64207.	ONE, 2013, 8,	1.1	21
657	Different scaling of white matter volume, cortical connectivity, and gyrification across rode primate brains. Frontiers in Neuroanatomy, 2013, 7, 3.	nt and	0.9	102
658	The human cerebral cortex is neither one nor many: neuronal distribution reveals two quant different zones in the gray matter, three in the white matter, and explains local variations ir folding. Frontiers in Neuroanatomy, 2013, 7, 28.		0.9	73
659	Distribution of neurons in functional areas of the mouse cerebral cortex reveals quantitative different cortical zones. Frontiers in Neuroanatomy, 2013, 7, 35.	ely	0.9	126

#	Article	IF	CITATIONS
660	A micro-pool model for decision-related signals in visual cortical areas. Frontiers in Computational Neuroscience, 2013, 7, 115.	1.2	12
661	Distinguishing mechanisms of gamma frequency oscillations in human current source signals using a computational model of a laminar neocortical network. Frontiers in Human Neuroscience, 2013, 7, 869.	1.0	58
662	Three counting methods agree on cell and neuron number in chimpanzee primary visual cortex. Frontiers in Neuroanatomy, 2014, 8, 36.	0.9	62
663	Cellular scaling rules for the brain of Artiodactyla include a highly folded cortex with few neurons. Frontiers in Neuroanatomy, 2014, 8, 128.	0.9	46
664	Generation of dense statistical connectomes from sparse morphological data. Frontiers in Neuroanatomy, 2014, 8, 129.	0.9	55
665	Constancy and trade-offs in the neuroanatomical and metabolic design of the cerebral cortex. Frontiers in Neural Circuits, 2014, 8, 9.	1.4	34
666	Mapping arealisation of the visual cortex of non-primate species: lessons for development and evolution. Frontiers in Neural Circuits, 2014, 8, 79.	1.4	16
667	Anisotropy of ongoing neural activity in the primate visual cortex. Eye and Brain, 2014, 6, 113.	3.8	8
668	Interpolating Deep Spatio-Temporal Inference Network features for image classification. , 2014, , .		0
669	Elastic instabilities in a layered cerebral cortex: a revised axonal tension model for cortex folding. New Journal of Physics, 2014, 16, 123058.	1.2	15
670	Muscarinic acetylcholine receptors are expressed by most parvalbuminâ€immunoreactive neurons in area MT of the macaque. Brain and Behavior, 2014, 4, 431-445.	1.0	22
671	The cellular composition of the marsupial neocortex. Journal of Comparative Neurology, 2014, 522, 2286-2298.	0.9	13
672	Coordination of proliferation and neuronal differentiation by the retinoblastoma protein family. Development Growth and Differentiation, 2014, 56, 324-334.	0.6	21
673	3D BrainCV: Simultaneous visualization and analysis of cells and capillaries in a whole mouse brain with one-micron voxel resolution. NeuroImage, 2014, 87, 199-208.	2.1	108
674	Dramatic increases in number of cerebellar granule-cell-Purkinje-cell synapses across several mammals. Mammalian Biology, 2014, 79, 163-169.	0.8	10
675	The elephant brain in numbers. Frontiers in Neuroanatomy, 2014, 8, 46.	0.9	106
677	Predicting visual acuity from the structure of visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7815-7820.	3.3	50
678	Spatiotemporal dynamics of the postnatal developing primate brain transcriptome. Human Molecular Genetics, 2015, 24, 4327-4339.	1.4	53

	CHAHON R		
#	Article	IF	CITATIONS
679	The marmoset monkey as a model for visual neuroscience. Neuroscience Research, 2015, 93, 20-46.	1.0	189
680	Cortical folding scales universally with surface area and thickness, not number of neurons. Science, 2015, 349, 74-77.	6.0	218
681	Functional Organization of the Primary Visual Cortex. , 2015, , 287-291.		0
682	Recent Advances on the Modular Organization of the Cortex. , 2015, , .		3
683	Evolution of the Cerebral Cortex. , 2015, , 3-10.		0
684	General Cortical and Special Prefrontal Connections: Principles from Structure to Function. Annual Review of Neuroscience, 2015, 38, 269-289.	5.0	328
685	Visual Cortical Prosthesis with a Geomagnetic Compass Restores Spatial Navigation in Blind Rats. Current Biology, 2015, 25, 1091-1095.	1.8	15
686	Annual Research Review: Growth connectomics – the organization and reorganization of brain networks during normal and abnormal development. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2015, 56, 299-320.	3.1	173
687	Developmental mechanisms channeling cortical evolution. Trends in Neurosciences, 2015, 38, 69-76.	4.2	124
688	Systematic, Cross-Cortex Variation in Neuron Numbers in Rodents and Primates. Cerebral Cortex, 2015, 25, 147-160.	1.6	131
689	Fine-Tuning of Neurogenesis is Essential for the Evolutionary Expansion of the Cerebral Cortex. Cerebral Cortex, 2015, 25, 346-364.	1.6	54
691	Invasive vs. Non-Invasive Neuronal Signals for Brain-Machine Interfaces: Will One Prevail?. Frontiers in Neuroscience, 2016, 10, 295.	1.4	95
692	Anatomically Detailed and Large-Scale Simulations Studying Synapse Loss and Synchrony Using NeuroBox. Frontiers in Neuroanatomy, 2016, 10, 8.	0.9	14
693	Histological Basis of Laminar MRI Patterns in High Resolution Images of Fixed Human Auditory Cortex. Frontiers in Neuroscience, 2016, 10, 455.	1.4	21
694	Distributions of Cells and Neurons across the Cortical Sheet in Old World Macaques. Brain, Behavior and Evolution, 2016, 88, 1-13.	0.9	32
695	Evolution and scaling of dendrites. , 2016, , 47-76.		2
696	The various forms of neuroplasticity: Biological bases of learning and teaching. Prospects, 2016, 46, 199-213.	1.3	10
698	What Do TMS-Evoked Motor Potentials Tell Us About Motor Learning?. Advances in Experimental Medicine and Biology, 2016, 957, 143-157.	0.8	18

ΙΤΛΤΙΟΝ

D

#	Article	IF	CITATIONS
699	Design of Neuromorphic Cognitive Module based on Hierarchical Temporal Memory and Demonstrated on Anomaly Detection. Procedia Computer Science, 2016, 88, 232-238.	1.2	0
702	Ultrastructural Insights into the Biological Significance of Persisting DNA Damage Foci after Low Doses of Ionizing Radiation. Clinical Cancer Research, 2016, 22, 5300-5311.	3.2	23
703	The Computational Units of the Brain. Studies in Brain and Mind, 2016, , 9-35.	0.5	0
704	Representational Mechanisms. Studies in Brain and Mind, 2016, , 37-89.	0.5	0
705	Encoding and decoding time in neural development. Development Growth and Differentiation, 2016, 58, 59-72.	0.6	22
706	The Neocortex of Indian River Dolphins (Genus <i>Platanista</i>): Comparative, Qualitative and Quantitative Analysis. Brain, Behavior and Evolution, 2016, 88, 93-110.	0.9	10
707	Distinct Genetic Influences on Cortical and Subcortical Brain Structures. Scientific Reports, 2016, 6, 32760.	1.6	40
708	V1 surface size predicts GABA concentration in medial occipital cortex. NeuroImage, 2016, 124, 654-662.	2.1	8
709	Neural plasticity and concepts ontogeny. SynthÃ^se, 2016, 193, 3889-3929.	0.6	3
711	Cortical cell and neuron density estimates in one chimpanzee hemisphere. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 740-745.	3.3	67
712	Neuronal factors determining high intelligence. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150180.	1.8	116
713	Network and external perturbation induce burst synchronisation in cat cerebral cortex. Communications in Nonlinear Science and Numerical Simulation, 2016, 34, 45-54.	1.7	13
714	Cellular Scaling Rules for the Brains of Marsupials: Not as "Primitive―as Expected. Brain, Behavior and Evolution, 2017, 89, 48-63.	0.9	1,761
715	Agnosic vision is like peripheral vision, which is limited by crowding. Cortex, 2017, 89, 135-155.	1.1	12
716	Quantification of neuronal density across cortical depth using automated 3D analysis of confocal image stacks. Brain Structure and Function, 2017, 222, 3333-3353.	1.2	25
717	Universal transition from unstructured to structured neural maps. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4057-E4064.	3.3	23
718	Optical imaging of the rat brain suggests a previously missing link between top-down and bottom-up nervous system function. Neurophotonics, 2017, 4, 031213.	1.7	4
719	Evolution of the Human Nervous System Function, Structure, and Development. Cell, 2017, 170, 226-247.	13.5	316

		CITATION RE	PORT	
# 720	ARTICLE Assessing the Role of Inhibition in Stabilizing Neocortical Networks Requires Large-Scal		IF 1.7	Citations 37
721	Perturbation of the Inhibitory Population. Journal of Neuroscience, 2017, 37, 12050-12 Anatomy of the Cerebral Cortex. , 2017, , 3-36.			0
722	Neuroelectric Tuning of Cortical Oscillations by Apical Dendrites in Loop Circuits. Front Systems Neuroscience, 2017, 11, 37.	iers in	1.2	8
723	The Human Brain. , 2017, , 125-149.			15
724	White Matter Expansion. , 2017, , 291-308.			2
725	What Primate Brains Are Made of. , 2017, , 37-57.			1
726	The Developmental Basis of Evolutionary Trends in Primate Encephalization. , 2017, , 14	49-162.		12
727	Evolution of Large Brain and Body Size in Mammals. , 2017, , 103-136.			8
728	What Modern Mammals Teach About the Cellular Composition of Early Brains and Mec Brain Evolution. , 2017, , 153-180.	hanisms of		2
729	Confirmation of a gyral bias in diffusion <scp>MRI</scp> fiber tractography. Human Br. 2018, 39, 1449-1466.	ain Mapping,	1.9	105
730	The Mammalian Auditory Pathways. Springer Handbook of Auditory Research, 2018, , .		0.3	13
731	Auditory Cortex Circuits. Springer Handbook of Auditory Research, 2018, , 199-233.		0.3	6
732	Ultra-high field MRI: Advancing systems neuroscience towards mesoscopic human brain Neurolmage, 2018, 168, 345-357.	າ function.	2.1	151
733	Imaging microstructure in the living human brain: A viewpoint. NeuroImage, 2018, 182	, 3-7.	2.1	17
734	Cell-Specific Gene-Expression Profiles and Cortical Thickness in the Human Brain. Cereb 2018, 28, 3267-3277.	ral Cortex,	1.6	99
735	Cell Densities in the Mouse Brain: A Systematic Review. Frontiers in Neuroanatomy, 20		0.9	260
736	A Self-Verifying Cognitive Architecture for Robust Bootstrapping of Sensory-Motor Skil Multipurpose Predictors. IEEE Transactions on Cognitive and Developmental Systems, 2 1081-1095.	s via 2018, 10,	2.6	9
737	Effect of developmental lead exposure on neurogenesis and cortical neuronal morphole rats. Toxicology and Industrial Health, 2018, 34, 665-678.	ogy in Wistar	0.6	9

#	Article	IF	CITATIONS
738	The distributed circuit within the piriform cortex makes odor discrimination robust. Journal of Comparative Neurology, 2018, 526, 2725-2743.	0.9	26
739	Mathematical Modeling of Cortical Neurogenesis Reveals that the Founder Population does not Necessarily Scale with Neurogenic Output. Cerebral Cortex, 2018, 28, 2540-2550.	1.6	25
740	The search of "canonical―explanations for the cerebral cortex. History and Philosophy of the Life Sciences, 2018, 40, 40.	0.6	10
741	Studying Cortical Plasticity in Ophthalmic and Neurological Disorders: From Stimulus-Driven to Cortical Circuitry Modeling Approaches. Neural Plasticity, 2019, 2019, 1-12.	1.0	8
742	Life history changes accompany increased numbers of cortical neurons: A new framework for understanding human brain evolution. Progress in Brain Research, 2019, 250, 179-216.	0.9	11
743	Development and Arealization of the Cerebral Cortex. Neuron, 2019, 103, 980-1004.	3.8	241
744	Comparison of contrast sensitivity in macaque monkeys and humans. Visual Neuroscience, 2019, 36, E008.	0.5	3
745	Cortical-like mini-columns of neuronal cells on zinc oxide nanowire surfaces. Scientific Reports, 2019, 9, 4021.	1.6	18
746	Classic psychedelics: the special role of the visual system. Reviews in the Neurosciences, 2019, 30, 651-669.	1.4	6
747	The origin and evolution of neocortex: From early mammals to modern humans. Progress in Brain Research, 2019, 250, 61-81.	0.9	26
748	Changes in vascular density in resected tissue of 97 patients with mild malformation of cortical development, focal cortical dysplasia or TSCâ€related cortical tubers. International Journal of Developmental Neuroscience, 2019, 79, 96-104.	0.7	5
749	Species-Specific miRNAs in Human Brain Development and Disease. Frontiers in Cellular Neuroscience, 2019, 13, 559.	1.8	26
750	The Marmoset as a Model for Visual Neuroscience. , 2019, , 377-413.		4
751	Neocortical Topology Governs the Dendritic Integrative Capacity of Layer 5 Pyramidal Neurons. Neuron, 2019, 101, 76-90.e4.	3.8	55
752	Neuronal Distribution Across the Cerebral Cortex of the Marmoset Monkey (Callithrix jacchus). Cerebral Cortex, 2019, 29, 3836-3863.	1.6	52
753	A possible key role of vision in the development of schizophrenia. Reviews in the Neurosciences, 2019, 30, 359-379.	1.4	8
754	Evolution: Does More Time Buy More Neurons?. Current Biology, 2020, 30, R1316-R1318.	1.8	0
755	Radial Migration Dynamics Is Modulated in a Laminar and Area-Specific Manner During Primate Corticogenesis. Frontiers in Cell and Developmental Biology, 2020, 8, 588814.	1.8	14

#	Article	IF	CITATIONS
756	Neuronal Oscillations of Wakefulness and Sleep. , 2020, , .		1
757	The relationship between the number of neurons and behavioral performance in Swiss mice. Neuroscience Letters, 2020, 735, 135202.	1.0	3
758	An Introduction to Human Brain Evolutionary Studies. , 2020, , 711-731.		0
759	What Modern Mammals Teach About the Cellular Composition of Early Brains and Mechanisms of Brain Evolution. , 2020, , 349-375.		1
760	GABAergic and non-GABAergic subpopulations of Kv3.1b-expressing neurons in macaque V2 and MT: laminar distributions and proportion of total neuronal population. Brain Structure and Function, 2020, 225, 1135-1152.	1.2	2
761	The death of the cortical column? Patchwork structure and conceptual retirement in neuroscientific practice. Studies in History and Philosophy of Science Part A, 2021, 85, 101-113.	0.6	12
762	Orientation Preference Maps in Microcebus murinus Reveal Size-Invariant Design Principles in Primate Visual Cortex. Current Biology, 2021, 31, 733-741.e7.	1.8	21
763	Neural Mechanisms. Studies in Brain and Mind, 2021, , .	0.5	35
764	Distinct Laminar and Cellular Patterns of GABA Neuron Transcript Expression in Monkey Prefrontal and Visual Cortices. Cerebral Cortex, 2021, 31, 2345-2363.	1.6	11
765	An early cell shape transition drives evolutionary expansion of the human forebrain. Cell, 2021, 184, 2084-2102.e19.	13.5	139
767	Monkey V1 epidural field potentials provide detailed information about stimulus location, size, shape, and color. Communications Biology, 2021, 4, 690.	2.0	1
768	Errors in visuospatial working memory across space and time. Scientific Reports, 2021, 11, 14449.	1.6	0
769	Interstitial Axon Collaterals of Callosal Neurons Form Association Projections from the Primary Somatosensory to Motor Cortex in Mice. Cerebral Cortex, 2021, 31, 5225-5238.	1.6	3
770	Identifying Subgroups of Major Depressive Disorder Using Brain Structural Covariance Networks and Mapping of Associated Clinical and Cognitive Variables. Biological Psychiatry Global Open Science, 2021, 1, 135-145.	1.0	2
771	Cortical patterning of morphometric similarity gradient reveals diverged hierarchical organization in sensory-motor cortices. Cell Reports, 2021, 36, 109582.	2.9	26
773	Human Visual Neurobiology. , 2021, , 3935-3944.		Ο
774	Gap Junctionâ€Mediated Communication in the Developing and Adult Cerebral Cortex. Novartis Foundation Symposium, 1999, 219, 157-174.	1.2	18
776	Cellular Mechanisms of Thalamocortical Oscillations in the Sleeping Brain. , 2020, , 119-170.		3

#	Article	IF	CITATIONS
777	Processing Strategies in Auditory Cortex: Comparison with Other Sensory Modalities. , 2011, , 643-656.		2
778	GABA Neurons and Their Cotransmitters in the Primate Cerebral Cortex. , 1988, , 125-152.		10
779	Termination of Thalamic Afferents in the Cerebral Cortex. Cerebral Cortex, 1986, , 271-289.	0.6	50
780	Why Does Cerebral Cortex Fissure and Fold?. Cerebral Cortex, 1990, , 3-136.	0.6	353
781	GABA—Peptide Neurons of the Primate Cerebral Cortex. Cerebral Cortex, 1987, , 237-266.	0.6	26
783	Role of Architectonics and Connections in the Study of Primate Brain Evolution. , 1982, , 203-216.		54
784	Neocortex. , 1984, , 313-339.		9
785	Modulatory Events in the Development and Evolution of Primate Neocortex. Cerebral Cortex, 1990, , 311-362.	0.6	7
786	GABA Neurons and Their Role in Activity-Dependent Plasticity of Adult Primate Visual Cortex. Cerebral Cortex, 1994, , 61-140.	0.6	24
787	Coherent Assembly Dynamics in the Cortex: Multi-Neuron Recordings, Network Simulations and Anatomical Considerations. , 1994, , 59-83.		3
788	Allometric Considerations of the Adult Mammalian Brain, with Special Emphasis on Primates. , 1985, , 115-146.		15
789	Locally Measured Neuronal Correlates of Functional MRI Signals. Biological Magnetic Resonance, 2015, , 105-128.	0.4	3
790	The Significance of Minicolumnar Size Variability in Autism. , 2008, , 349-360.		14
791	Neuroscience and Human Brain Evolution. Springer Series in Bio-/neuroinformatics, 2015, , 11-37.	0.1	4
792	Gap Junctions and Their Implications for Neurogenesis and Maturation of Synaptic Circuitry in the Developing Neocortex. Results and Problems in Cell Differentiation, 2002, 39, 53-73.	0.2	19
794	Brain Complexity: Analysis, Models and Limits of Understanding. Lecture Notes in Computer Science, 2009, , 195-204.	1.0	3
795	The Nature and Nurture of Cortical Development. Research and Perspectives in Neurosciences, 1997, , 25-56.	0.4	13
796	Specific Networks of the Cerebral Cortex: Functional Organization and Plasticity. , 1996, , 1105-1136.		5

#	Article	IF	CITATIONS
798	Evolutionary Biology of Intelligence: The Nature of the Problem. , 1988, , 1-11.		8
799	Human Brain Evolution: II. Embryology and Brain Allometry. , 1988, , 383-415.		28
800	Comparative Aspects of Representation in the Visual System. Experimental Brain Research Supplementum, 1985, , 53-81.	1.0	7
801	Prefrontal Cortex Integration of Emotion and Cognition. , 2017, , 51-76.		13
802	Evolution of the cerebral cortex in amniotes: Anatomical consideration of neuronal types. , 2010, , 329-354.		1
803	New Paths towards Old Dreams: Microphrenology. , 1995, , 3-36.		6
804	The Minicolumn in Comparative Context. , 2015, , 63-80.		4
805	Evolution of the Brain. , 1990, , 1-16.		10
806	Visual System. , 1990, , 945-977.		13
807	Cortical columns. , 2020, , 103-126.		10
808	Microarchitecture of Neocortical Columns. , 1996, , 75-95.		27
809	Brain development, plasticity, and behavior. American Psychologist, 1989, 44, 1203-12.	3.8	33
810	Possible anatomical basis of recovery of function after neonatal frontal lesions in rats. Behavioral Neuroscience, 1993, 107, 799-811.	0.6	26
811	A comparative MRI study of the relationship between neuroanatomical asymmetry and interhemispheric connectivity in primates: implication for the evolution of functional asymmetries. Behavioral Neuroscience, 2000, 114, 739-48.	. 0.6	44
812	Colocalization of integrin receptors and reelin in dendritic spine postsynaptic densities of adult nonhuman primate cortex. Proceedings of the National Academy of Sciences of the United States America, 2000, 97, 3550-5.	of 3.3	117
813	Firing patterns of single units in the prefrontal cortex and neural network models. , 0, .		56
815	Area and lamina-specific expression of GABA _A receptor subunit mRNAs in monkey c cortex. Canadian Journal of Physiology and Pharmacology, 1997, 75, 452-469.	erebral 0.7	5
816	A Computational Model for Neocortical Neuronogenesis Predicts Ethanol-Induced Neocortical Neuron Number Deficits. Developmental Neuroscience, 2002, 24, 467-477.	1.0	18

#	Article	IF	CITATIONS
818	Comparative Studies of Pyramidal Neurons in Visual Cortex of Monkeys. Frontiers in Neuroscience, 2003, , .	0.0	4
819	Cell lineage in the rat cerebral cortex: a study using retroviral-mediated gene transfer. Development (Cambridge), 1988, 104, 473-482.	1.2	370
820	Striatal precursors adopt cortical identities in response to local cues. Development (Cambridge), 1995, 121, 803-812.	1.2	153
821	Clonal dispersion and evidence for asymmetric cell division in ferret cortex. Development (Cambridge), 1997, 124, 2441-2450.	1.2	82
822	Plasticity in Single Axon Glutamatergic Connection to GABAergic Interneurons Regulates Complex Events in the Human Neocortex. PLoS Biology, 2016, 14, e2000237.	2.6	55
823	Columnar Connectivity and Laminar Processing in Cat Primary Auditory Cortex. PLoS ONE, 2010, 5, e9521.	1.1	86
824	Population Receptive Field Dynamics in Human Visual Cortex. PLoS ONE, 2012, 7, e37686.	1.1	66
825	Brain Geometry and its Relation to Migratory Behavior in Birds. Journal of Advanced Neuroscience Research, 2014, 1, 1-9.	0.2	15
827	Myopia, Intelligence, and the Expanding Human Neocortex: Behavioral Influences and Evolutionary Implications. International Journal of Neuroscience, 1999, 98, 153-276.	0.8	40
828	Functional neuroimaging and schizophrenia: a view towards effective connectivity modeling and polygenic risk. Dialogues in Clinical Neuroscience, 2013, 15, 279-289.	1.8	35
831	A THEORY OF SULCAL-GAP SIGNALIZATION. Perceptual and Motor Skills, 2002, 95, 375.	0.6	0
832	Brain ischemia and spreading depression in a primate model. , 2002, , 127-144.		0
833	The Behaving Human Neocortex as a Dynamic Network of Networks. , 2003, , 205-219.		2
834	Towards Cortex Sized Attractor ANN. Lecture Notes in Computer Science, 2004, , 63-79.	1.0	0
835	The Cel Lineage of Neuronal Subtypes in the Mammalian Cerebral Cortex. Novartis Foundation Symposium, 1995, 193, 41-70.	1.2	5
836	The Roles of Growth Factors and Neural Activity in the Development of the Neocortex. Novartis Foundation Symposium, 1995, 193, 231-257.	1.2	0
838	Brain Development: The Generation of Large Brains. , 2009, , 333-335.		0
840	Telencefalo: neocortex. , 2010, , 491-679.		1

#	Article	IF	CITATIONS
841	Reverse Engineering for Biologically Inspired Cognitive Architectures: A Critical Analysis. Advances in Experimental Medicine and Biology, 2011, 718, 111-121.	0.8	1
842	Is the Human Brain Unique?. , 2012, , 175-187.		2
843	Local Field Potential, Relationship to BOLD Signal. , 2014, , 1-11.		2
844	Quantitative Studies of Rodent and Primate Neocortex: Central Monoamine and Peptide Neurons. , 1985, , 197-211.		0
845	Quantitative Studies of Rodent and Primate Neocortex: Central Monoamine and Peptide Neurons. , 1985, , 197-211.		0
846	Neuronal Group Selection: A Basis for Categorization by the Nervous System. , 1988, , 51-69.		1
849	Functional MRI of the Visual System. Biological Magnetic Resonance, 2015, , 429-471.	0.4	1
852	A Matter of Size. , 2017, , 85-129.		0
853	An Introduction to Human Brain Evolutionary Studies. , 2017, , 1-18.		0
861	Circuital and Developmental Explanations for the Cortex. Studies in Brain and Mind, 2021, , 57-83.	0.5	0
863	Network Properties of Visual Cortex. , 2020, , 413-422.		0
864	The Architecture of Somatosensory Cortex. , 2020, , 225-260.		2
865	Human Visual Neurobiology. , 2020, , 1-10.		0
866	The cortical connectome of primate lateral prefrontal cortex. Neuron, 2022, 110, 312-327.e7.	3.8	25
867	A neocortically-derived model of continuous contextual processing. , 0, , .		3
868	MRI-based surface area estimates in the normal adult human brain: evidence for structural organisation. Journal of Anatomy, 1996, 188 (Pt 2), 425-38.	0.9	9
871	Synaptic connectivity to L2/3 of primary visual cortex measured by two-photon optogenetic stimulation. ELife, 2022, 11, .	2.8	35
872	Differential gene expression in layer 3 pyramidal neurons across 3 regions of the human cortical visual spatial working memory network. Cerebral Cortex, 2022, 32, 5216-5229.	1.6	1

#	Article	IF	CITATIONS
873	Synaptic plasticity controls the emergence of population-wide invariant representations in balanced network models. Physical Review Research, 2022, 4, .	1.3	2
874	Punctuated evolution of visual cortical circuits? Evidence from the large rodent Dasyprocta leporina, and the tiny primate Microcebus murinus. Current Opinion in Neurobiology, 2021, 71, 110-118.	2.0	6
876	Evolution and Embryological Development of the Cortex in Amniotes. , 2009, , 1165-1172.		0
881	Intrinsic and Extrinsic Determinants of Neocortical Parcellation: A Radial Unit Model. , 0, , 83-100.		0
883	An Uncouth Approach to Language Recursivity. Biolinguistics, 2011, 5, 133-150.	0.6	4
884	Linking individual differences in human primary visual cortex to contrast sensitivity around the visual field. Nature Communications, 2022, 13, .	5.8	32
885	Local Field Potential, Relationship to BOLD Signal. , 2022, , 1852-1860.		0
887	Identifying transcranial magnetic stimulation induced EEG signatures of different neuronal elements in primary motor cortex. Clinical Neurophysiology, 2022, 141, 42-52.	0.7	2
888	Sharp Cell-Type-Identity Changes Differentiate the Retrosplenial Cortex From the Neocortex. SSRN Electronic Journal, 0, , .	0.4	0
890	The cortical spectrum: A robust structural continuum in primate cerebral cortex revealed by histological staining and magnetic resonance imaging. Frontiers in Neuroanatomy, 0, 16, .	0.9	13
892	A Comprehensive Study of De Novo Mutations on the Protein-Protein Interaction Interfaces Provides New Insights into Developmental Delay. Biomolecules, 2022, 12, 1643.	1.8	0
893	The large numbers of minicolumns in the primary visual cortex of humans, chimpanzees and gorillas are related to high visual acuity. Frontiers in Neuroanatomy, 0, 16, .	0.9	1
894	Single voxel autocorrelation uncovers gradients of temporal dynamics in the hippocampus and entorhinal cortex during rest and navigation. Cerebral Cortex, 2023, 33, 3265-3283.	1.6	5
896	Differential effects of parental socioeconomic status on cortical thickness in patients with schizophrenia spectrum disorders and healthy controls. Neuroscience Letters, 2023, 804, 137239.	1.0	0
897	Sharp cell-type-identity changes differentiate the retrosplenial cortex from the neocortex. Cell Reports, 2023, 42, 112206.	2.9	2
898	Cortical magnification eliminates differences in contrast sensitivity across but not around the visual field. ELife, 0, 12, .	2.8	12
900	Polar angle asymmetries in visual perception and neural architecture. Trends in Neurosciences, 2023, 46, 445-458.	4.2	21
901	H2A monoubiquitination: insights from human genetics and animal models. Human Genetics, 0, , .	1.8	0

#	Article	IF	CITATIONS
902	Locally Measured Neuronal Correlates of Functional MRI Signals. , 2022, , 79-104.		0