Role of chemistry in bio-inspired liquid wettability

Chemical Society Reviews 51, 5452-5497 DOI: 10.1039/d2cs00255h

Citation Report

CITATION	DEDODT

#	Article	IF	CITATIONS
1	Bis-Pyridine-Based Organogel with AIE Effect and Sensing Performance towards Hg2+. Gels, 2022, 8, 464.	2.1	2
2	Robust and durable liquid-repellent surfaces. Chemical Society Reviews, 2022, 51, 8476-8583.	18.7	105
3	Surface Modification, Topographic Design and Applications of Superhydrophobic Systems. Chemistry - A European Journal, 2022, 28, .	1.7	4
4	Enhancing the lifespan and durability of superamphiphobic surfaces for potential industrial applications: A review. Advances in Colloid and Interface Science, 2022, 310, 102797.	7.0	18
5	Facile fabrication of superhydrophobic porous materials using the water-based aza-Michael reaction for high-efficiency oil-water separation. Separation and Purification Technology, 2023, 308, 122880.	3.9	5
6	Secured Nanosynthesis–Deposition Aerosol Process for Composite Thin Films Incorporating Highly Dispersed Nanoparticles. Advanced Science, 2023, 10, .	5.6	4
7	Current Understanding of the Wettability of MXenes. Advanced Materials Interfaces, 2023, 10, .	1.9	9
8	High-Performance Photoelectrochemical Enzymatic Bioanalysis Based on a 3D Porous Cu _{<i>x</i>} O@TiO ₂ Film with a Solid–Liquid–Air Triphase Interface. Langmuir, 2022, 38, 15796-15803.	1.6	1
9	Design and fabrication of functional hydrogels with specific surface wettability. Colloids and Interface Science Communications, 2023, 52, 100697.	2.0	7
10	Shelter Forest Inspired Superhydrophobic Flameâ€Retardant Composite with Rootâ€Soil Interlocked Micro/Nanostructure Enhanced Mechanical, Physical, and Chemical Durability. Advanced Functional Materials, 2023, 33, .	7.8	10
11	Amidation reaction to derive waterborne, tolerant, and optically transparent solid slippery and superhydrophobic coatings. Chemical Engineering Journal, 2023, 465, 142776.	6.6	2
12	Tribological Behavior of Bioinspired Surfaces. Biomimetics, 2023, 8, 62.	1.5	2
13	Sophorolipids: A comprehensive review on properties and applications. Advances in Colloid and Interface Science, 2023, 313, 102856.	7.0	21
14	Wetting Effect on Patterned Substrates. Advanced Materials, 2023, 35, .	11.1	20
15	Superhydrophobicityâ€mediated enhanced enzymatic kinetics and highâ€performance bioassays. , 2023, 2, .		4
16	Achieving ultralong directional liquid transportation spontaneously with a high velocity. Journal of Materials Chemistry A, 2023, 11, 10164-10173.	5.2	9
17	Highly transparent, hydrophobic, and durable anisotropic cellulose films as electronic screen protectors. Carbohydrate Polymers, 2023, 311, 120735.	5.1	5
18	Advancements in droplet reactor systems represent new opportunities in chemical reactor engineering: A perspective. Canadian Journal of Chemical Engineering, 2023, 101, 5189-5207.	0.9	1

IF CITATIONS ARTICLE # On-Chip Liquid Manipulation via a Flexible Dual-Layered Channel Possessing Hydrophilic/Hydrophobic 4.0 19 5 Dichotomy. ACS Applied Materials & amp; Interfaces, 2023, 15, 19773-19782. Reactive Superhydrophobic Surfaces for Interlayer Electrical Connectivity in Threeâ ${\in}$ dimensional Electronics. Angewandte Chemie - International Edition, 0, , . Reactive Superhydrophobic Surfaces for Interlayer Electrical Connectivity in Threeâ€dimensional 21 1.6 0 Electronics. Angewandte Chemie, 0, , . Emerging open-channel droplet arrays for biosensing. National Science Review, 2023, 10, . Solidâ€Like Slippery Coating with Highly Comprehensive Performance. Advanced Functional Materials, 23 7.8 25 2023, 33, . Liquid-like polymer lubricating surfaces: Mechanism and applications. Nano Research, 2024, 17, 476-491. 5.8 Self-healing Superhydrophobic Coatings., 2023, , 403-427. 34 0 Polymerization of monomer aggregates for tailoring and patterning water wettability. Chemical 2.2 Communications, 0, , .

CITATION REPORT